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Abstract: A mathematical model of the dynamic deformation of three-component elastic media saturated
with liquid and gas, given by elastic moduli and coefficients characterizing the porosity and compressibility of
the liquid and gas, is considered. Formulas for determining the propagation velocity of monochromatic waves
in ternary porous media are obtained. The existence of three longitudinal waves depends on the discriminant
of a cubic equation and the velocity ratio.
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1. Introduction

There are a number of papers [1–3, 8, 10] devoted to the propagation of elastic waves in two-
component porous media. Among these studies, papers of M.A. Biot [1–3] should be noted. He
created the theory of elasticity and consolidation of a porous medium. This theory studies settle-
ment under the influence of a load of a porous medium containing a viscous fluid.

Phase states, laws of thermodynamics of porous systems, and attempts to solve wave problems
in porous materials and moist soils were considered by Ya. I. Phrenkel [6], J. V.Reznichenko [13],
and Kh.A.Rakhmatulin [12]. The studies of these authors played a huge role in creating the classic
Biot–Phrenkel model.

When solving a considerable number of applied problems arising in various areas of human
activity (soil, porous sintered composition materials, building materials, etc.), one has to deal with
a three-component media. The complexity of describing the effects of the interaction of components,
heat transfer, and other related processes has led to the fact that until now the generally accepted
models (elastic medium—liquid—gas) have not been fully developed. Therefore, a mathematical
three-component model that takes into account the porosity of the medium is of apparent interest.

The paper considers the ratio of the velocities of acceleration waves in a three-component porous
medium to the propagation velocities of the wave surface of the porous medium in the longitudinal
and transverse directions. The interpenetrating motion of the elastic component, liquid and gas is
perceived as the motion of liquid, and gas in a deformable porous medium. It is supposed that the
pore size is small compared to the distance at which the kinematic and dynamic characteristics of
the motion change significantly. This allows us to assume that all three media are continuous and
that at each point in space there are three displacement vectors.

It is proved that, in such a medium, in the general case, three waves propagate, whose velocities
essentially depend on the direction of propagation of the wave surface. Graphs of the dependence
of the velocity ratio on the porosity of the medium are constructed.
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2. Main results

Consider a system of equations determining the dynamic behavior of a three-component medium
saturated with liquid and gas in the motion of the components [9]:

• complete stress tensor in the skeleton in the presence of liquid and gas in pores
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• forces acting on the liquid and gas per unit area of the cross section of the porous medium:
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• equations of motion of the porous media
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Here λ and µ are the Lamé coefficients; u
(α)
i are the component displacements, where α = 1, 3

stands for the medium: 1 for the rigid component, 2 for the liquid, and 3 for the gas; the dots
above the letters indicate the time derivatives; indices after the comma below the letter stand for
the derivatives of the corresponding coordinates; δij is the Kronecker symbol; ρ11, ρ22, and ρ33
are effective densities of the rigid component, liquid, and gas, respectively; ρ11 < 0, ρ12 < 0, and

ρ13 < 0 are the coefficients of dynamic coupling of the skeleton, liquid, and gas, respectively; R
(2)
0

and R
(3)
0 are compressibility moduli of the components saturated with liquid and gas, respectively;

0 ≤ m ≤ 1 is the porosity of a medium, m = 1−m; and i, j, k = 1, 3. Suppose that ρij = ρji.
Hereinafter, the repeated indices assume a summation of one to three.
An acceleration wave in a three-component porous media saturated with a liquid and gas is

an isolated surface on which the stress, the forces acting on the liquid and gas, and the prop-
agation velocities of the components are continuous while some of their partial derivatives have
discontinuities.

Differentiating relations (2.1) and (2.2) in t, we obtain
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Let us write equations (2.3) and relations (2.4) in discontinuities [5, 7, 11, 14]:
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where [·] denotes the difference in the values of a function on different sides of the discontinuity
surface.

We apply kinematic and geometric consistency conditions of first-order to relations (2.5) on the
discontinuity surface:

[Tik,k] = sikνk, [Ṫik] = −sikG, [N,k] = ηνk, [Ṅ ] = −ηG,
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(2.6)

Here sik, η, γ, and λ
(α)
i are values characterizing jumps of the first derivatives of stresses,

forces acting on the liquid and gas, and the propagation velocities of the components; νi are the
components of the unit normal to the wave surface; and G is the propagation velocity of the wave
surface of the porous medium.

Using conditions (2.6), we write formulas (2.5) in the form
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Excluding the values sij, η, and γ from (2.7), we get a homogeneous system for λ
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Similar to [8], system (2.8) enables deriving formulas for determining the velocity of longitudinal
and transverse waves in the three-component porous media.

We find propagation velocities of longitudinal waves assuming that λ
(α)
k νk 6= 0 on the wave

surface. Reducing (2.8) by νi and summing over the repeated index i, we obtain the homogeneous

system of three linear equations for ωα = λ
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where Λ = λ+ 2µ.
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Taking into account (2.10), we write system (2.9) in the dimensionless matrix form:

(Σz2l − Γ)−→ω = 0,Σ = {σij} ,Γ = {γij} ,
−→
ω = {ωi} , (2.11)

where z2l = c2l /G
2
l , c

2
l = M/ρ; cl are the propagation velocities of the longitudinal waves in the

porous media; Gl is the longitudinal component of the propagation velocity the wave surface in the
porous medium; and zl is the longitudinal velocity ratio.

The condition for system (2.11), homogeneous with respect to ω1, ω2, and ω3, to have a non-
trivial solution is that its third order determinant must be zero:

∣

∣Σz2l − Γ
∣

∣ = 0. (2.12)

It is shown in what follows that condition (2.12) also defines three propagation velocities of the
wave surface in the three-component porous medium.

Expanding the determinant (2.12), we obtain a cubic equation for z2l :
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2
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We find the solution of the cubic equation (2.13) by the Cardano formulas [4]. Divide (2.13) by
k and introduce a new variable
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On rearrangement, we get
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Let us calculate the discriminant D = p3 + q2. If D < 0, then (2.14) has three distinct real
roots expressed in terms of complex values. If D > 0, then (2.14) has one real and two imaginary
solutions. If D = 0, then there are three real solutions, two of which coincide.
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Thus, in the considered three-component porous medium, there are three types of longitudinal
waves can propagate depending on the discriminant of the cubic equation (2.14) and the velocity

ratios z
(α)
l

.
Knowing the propagation velocities cl of the longitudinal waves and the velocity ratios zl, we

can calculate the propagation velocity of the longitudinal wave surface in the three-component

porous media by the formula G
(α)
l = cl/z

(α)
l .

In the absence of coupling between the liquid—gas and elasticity—gas components, i.e., if
γ13 = 0, γ23 = 0, σ13 = 0, and σ32 = 0, then equation (2.13) takes the form of biquadratic equation
with respect to z2l :

k1z
4
l + b1z

2
l + d1 = 0, (2.15)

where
k1 = σ11σ22 − σ2

12, b1 = 2σ12γ12 − σ11γ22 − σ22γ11, d1 = γ11γ22 − γ212.

Equation (2.15) coincides with the equation from [8].

Assume that λ
(α)
i νi = 0 in (2.8). Under the condition G = Gt, we obtain in the dimensionless

form
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For system (2.16) to have a nontrivial solution, its determinant must be zero.
Expanding the determinant
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we obtain an expression for determining the ratio of the propagation velocities of the transverse
waves in the three-component media:

zt =

√

γ11γ22γ33 + 2γ12γ13γ23 − γ11γ223 − γ22γ213 − γ33γ212
σ′
11(γ22γ33 − γ223)

. (2.17)

In the absence of coupling between the liquid—gas and elastic—gas components, i.e., if γ23 = 0
and γ13 = 0, then (2.17) yields

zt =

√

γ11γ22 − γ212
σ′
11γ22

. (2.18)

Formula (2.18) coincides with the formula obtained in [8].

3. Calculation results

The figure, using the data in the table, shows the dependencies of the ratio of the propagation
velocity of longitudinal waves in the three-component medium to the propagation velocity of the
wave surface in the longitudinal direction on the medium porosity.
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Table 1. Input data for calculating z
(α)
l

m σ11 σ22 σ33 σ12 σ13 {γij}

0.2

0.6

0.2 0.15 0.08 0.009
γ11 = 0.7; γ22 = 0.32;

γ33 = 0.1; γ12 = γ13 =

= γ23 = −0.02

0.4 0.15 0.1 0.025 0.025

0.7 0.15 0.19 0.01 0.01

0.9 0.1 0.15 0.025 0.025

Figure 1. Velocity ratios in the three-component porous media

It is seen from the figure that the ratios z
(1)
l and z

(2)
l change from 1.4 to 1.9 and from 0.7 to 0.9,

respectively. The ratio z
(3)
l demonstrates a weak dependence on the porosity and is close to 1.1.

Thus, in the three-component porous media, the ratios of longitudinal velocities can take values
both more and less than one.

4. Conclusion

1. In the three-component porous media, three longitudinal and one transverse waves propagate

whose velocities are defined by formulas (2.8) with λ
(α)
k νk 6= 0 or λ

(α)
i νi = 0.

2. In general, ratios of the longitudinal velocity components in the three-component porous
medium depend on the coefficients and discriminant of a cubic equation.
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