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Abstract: In this paper, we consider a non-self-adjoint boundary value problem for a fourth-order differential
equation of mixed type with Hilfer operator of fractional integro-differentiation in a positive rectangular domain
and with spectral parameter in a negative rectangular domain. The mixed type differential equation under
consideration is a fourth order differential equation with respect to the second variable. Regarding the first
variable, this equation is a fractional differential equation in the positive part of the segment, and is a second-
order differential equation with spectral parameter in the negative part of this segment. A rational method
of solving a nonlocal problem with respect to the Hilfer operator is proposed. Using the spectral method of
separation of variables, the solution of the problem is constructed in the form of Fourier series. Theorems on the
existence and uniqueness of the problem are proved for regular values of the spectral parameter. For sufficiently
large positive integers in unique determination of the integration constants in solving countable systems of
differential equations, the problem of small denominators arises. Therefore, to justify the unique solvability of
this problem, it is necessary to show the existence of values of the spectral parameter such that the quantity we
need is separated from zero for sufficiently large n. For irregular values of the spectral parameter, an infinite
number of solutions in the form of Fourier series are constructed. Illustrative examples are provided.

Keywords: Mixed type equation, Non-self-adjoint boundary value problem, Hilfer operator, Mittag-Leffler
function, Spectral parameter, Solvability.

1. Problem statement

In a rectangular domain Ω = {(t, x) : −a < t < b, 0 < x < 1}, we consider the partial differen-
tial equation of mixed type

0 =











(

Dα, γ +
∂4

∂x4

)

U (t, x), (t, x) ∈ Ω1,
( ∂2

∂t2
+ ω2 ∂4

∂x4

)

U (t, x), (t, x) ∈ Ω2,

(1.1)

where Ω1 = Ω ∩ (t > 0), Ω2 = Ω ∩ (t < 0), ω is positive spectral parameter, a and b are positive
real numbers,

Dα, γ = Jγ−α
0+

d

dt
J1−γ
0+ (0 < α ≤ γ ≤ 1)
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is the Hilfer operator, and

Iν0+ϕ(t) =
1

Γ(ν)

t
∫

0

(t− τ)ν−1ϕ(τ)dτ , ν > 0

is the Riemann–Liouville integral operator [2, pp. 112, 113].

Nonlocal problem. It is required to find a function U (t, x), which belongs to the class

t1−γ ∂
kU

∂xk
∈C(Ω1),

∂kU

∂xk
∈C(Ω2), Dα, γ U∈C(Ω1), Utt ∈ C(Ω2), Uxxxx∈C(Ω1 ∪ Ω2), (1.2)

k = 0, 3 and satisfies the homogeneous equation (1.1) in the domain Ω1 ∪ Ω2, the homogeneous
boundary value conditions

U |x=0 =
∂2U

∂x2
|x=1 = 0,

∂kU

∂xk
|x=0 =

∂kU

∂xk
|x=1 , k = 1, 3, t 6= 0, (1.3)

the nonlocal condition
U (−a, x) = U (b, x) + ϕ (x), 0 ≤ x ≤ 1, (1.4)

and the gluing conditions

lim
t→+0

J1−γ
0+ U (t, x) = lim

t→−0
U (t, x), lim

t→+0
J1−α
0+

d

dt
J1−γ
0+ U (t, x) = lim

t→−0
Ut(t, x), (1.5)

where ϕ(x) is a given sufficiently smooth function.
Let (t0; b) ⊂ R+ ≡ [0; ∞) be a finite interval, and let α > 0. The Riemann–Liouville α-order

fractional integral of a function f is defined as follows:

Iαt0+f(t) =
1

Γ(α)

t
∫

t0

(t− s)α−1f(s)ds, t ∈ (t0; b),

where Γ(α) is the Gamma function [2, p. 112].
Let n− 1 < α ≤ n, n ∈ N. The Riemann–Liouville α-order fractional derivative of a function f

is defined as follows [9, Vol. 1, p. 27]:

Dα
t0+f(t) =

dn

dtn
In−α
t0+ f(t), t ∈ (t0; b).

The Caputo α-order fractional derivative of a function f is defined [9, Vol. 1, p. 34] by

∗D
α
t0+f(t) = In−α

t0+ f (n)(t) =
1

Γ(n− α)

t
∫

t0

f (n)(s)ds

(t− s)α−n+1 .

Both the derivatives are reduced to the nth order derivatives for α = n ∈ N [9, Vol. 1, pp. 27, 34]:

Dn
t0+f(t)=∗D

n
t0+f(t) =

dnf

dtn
.

The so-called generalized Riemann–Liouville fractional derivative (referred to as the Hilfer frac-
tional derivative) of order α, n − 1 < α ≤ n, n ∈ N, and type β, 0 ≤ β ≤ 1, is defined by the
following composition of three operators: [2, p. 113]:

Dα, β
t0+f(t) = I

β(n−α)
t0+

dn

dtn
I
(1−β)(n−α)
t0+ f(t).
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For β = 0, this operator is reduced to the Riemann–Liouville fractional derivative (Dα, 0
t0+ = Dα

t0+)

and the case β = 1 corresponds to the Caputo fractional derivative: Dα, 1
t0+ = ∗D

α
t0+.

Let t0 = 0 and γ = α + βn − αβ. It is easy to see that α ≤ γ ≤ n. Then it is convenient to
use another notation for the operator Dα, β

0+ f(t):

Dα, γf(t) = Dα, β
0+ f(t). (1.6)

For the first time, the generalized Riemann–Liouville operator was introduced in [2] by R. Hilfer
on the basis of fractional time evolutions that arise during the transition from the microscopic scale
to the macroscopic time scale. Using the integral transforms, he investigated the Cauchy problem
for the generalized diffusion equation, the solution of which is presented in the form of the Fox H-
function. We also note [10, 11], where the generalized Riemann–Liouville operator was used in
studying dielectric relaxation in glass-forming liquids with different chemical compositions.

In [23], boundary value problems for a fractional diffusion equation with the Hilfer fractional
derivative in finite and infinite domains were studied. In the finite domain, the spectral method
and the Laplace transform method were used for solving the problem. In the domain infinite with
respect to the spatial variable, the Cauchy problem was solved by the Fourier–Laplace integral
transform method.

In [12], the properties of the generalized Riemann–Liouville operator were investigated in a spe-
cial functional space, and an operational method was developed for solving fractional differential
equations with this operator. Based on the results of [12], the authors of [15] have developed an op-
erational method for solving fractional differential equations containing a finite linear combination
of the generalized Riemann–Liouville operators with various parameters. In [17], the problem of
source identification was studied for the generalized diffusion equation with the operator D α, γ . We
also note the work [4], in which inverse problems were investigated for a generalized fourth-order
parabolic equation with the operator D α, γ .

The construction of various models of theoretical physics problems by the aid of fractional
calculus is described in [9, Vols. 4, 5], [16, 26]. A specific physical interpretation of the Hilfer
fractional derivative, describing the random motion of a particle moving on the real line at Poisson
paced times with finite velocity is given in [25]. A detailed review of the application of fractional
calculus in solving applied problems is given in [9, Vols. 6–8], [19]. More detailed information as
well as a bibliography related to the theory of fractional integro-differentiation, including the Hilfer
fractional derivative, can be found in the recently published monograph [24]. In [7], the boundary
value problems for the generalized modified moisture transfer equation and difference methods for
their numerical implementation were considered.

Nonlocal problems can arise in studying various problems of mathematical biology, predicting
soil moisture, problems of plasma. Note that nonlocal conditions of the type (1.3) take place in
modeling the problems of the flow around a profile by a subsonic velocity stream with a supersonic
zone [20]. More detailed information on nonlocal problems can be found in the monograph [18].
We would like to note some works [14, 30–32], where nonlocal problems for partial differential and
integro-differential equations with derivatives of integer or fractional orders were studied.

As for the equations of mixed type, we note the work [8], where I.M. Gel’fand considered
an example of gas motion in a channel surrounded by a porous medium, and the gas motion
in a channel was described by a wave equation, while the diffusion equation was posed outside
the channel. Ya. S. Uflyand considered a problem on the propagation of electric oscillations in
compound lines when the losses on a semi-infinite line were neglected and the rest of the line was
treated as a cable with no leaks [28]. He reduced this problem to a mixed parabolic-hyperbolic
type equation. In [27], a hyperbolic-parabolic system arising in pulse combustion was investigated.

Nonlocal problems for partial differential equations of mixed type were studied by many authors,
in particular, in [13, 21, 22, 29, 33]. We would like to note also the results on nonlocal problems



156 Tursun K. Yuldashev, Bakhtiyor J. Kadirkulov

for parabolic-hyperbolic type equations with fractional order derivatives [1, 3]. But these listed
works relate mainly to nonlocal problems for fractional mixed type equations of second order. As
for mixed fourth-order equations with derivatives of integer or fractional orders, nonlocal problems
in such formulation have not been previously studied.

In this paper, we consider a non-self-adjoint boundary value problem for a mixed type fourth-
order differential equation with Hilfer operator of fractional integro-differentiation. The spectral
method of separation of variables is used taking into account the features of the fractional integro-
differentiation operator. We study the solvability of the nonlocal problem (1.1)–(1.5) for various
values of the spectral parameter. This work is a further development and generalization of the
results of [5, 6, 20].

2. Ordinary differential equation with Hilfer operator

We consider the Cauchy problem for a differential equation of fractional order with the opera-
tor D α, γ

{

D α, γ u (t) = λu (t) + f (t), t ∈ (0, ℓ),

lim
t→+0

J 1−γ
0+ u (t) = u 0,

(2.1)

where f (t) is a given continuous function and u 0 = const.

Note that the Laplace method was used for solving this problem in [4]. In [15], a solution was
found by the operational calculus for a problem more general than (2.1) in a specially constructed
functional space. In our work, in contrast to these studies, we use a more rational way to solve
problem (2.1), which allows us to obtain an explicit solution.

We prove the following Lemma.

Lemma 1. Assume that f (t) ∈ C (0; ℓ] ∩ L 1 (0; ℓ). Then a solution of problem (2.1)
u (t) ∈ C (0; ℓ] ∩ L 1 (0; ℓ) is representable as follows:

u (t) = u 0 t
γ−1Eα, γ (λ tα) +

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) f (τ) d τ, (2.2)

where

Eα, β (z) =

∞
∑

k=0

z k

Γ (α k + β)
, z, α, β ∈ C, Re (α) > 0

is the Mittag–Leffler function [9, Vol. 1, pp. 269–295].

P r o o f. By virtue of the formula (1.6), we rewrite the differential equation of problem (2.1)
in the form

J γ−α
0+ D γ

0+ u (t) = λu (t) + f (t).

Further, applying the operator J α
0+ to both sides of this equation and taking into account the

linearity of this operator and the following formula [15]:

J β
0+D β

0+ u (t) = u (t)−
1

Γ (γ)
J 1−β
0+ u (t)| t=0 t

β−1,

we obtain

u (t) =
u 0

Γ (γ)
t γ−1 + J α

0+ f (t) + λJ α
0+ u (t). (2.3)
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Using the lemma from [6, p. 123], we represent the solution of equation (2.3) as

u (t) =
u 0

Γ (γ)
t γ−1 + J α

0+ f (t)+

+λ

t
∫

0

(t− τ)α−1Eα,α (λ (t− τ)α)

[

u 0

Γ (γ)
τ γ−1 + J α

0+ f (τ)

]

d τ. (2.4)

We rewrite representation (2.4) as the sum of two expressions u (t) = I 1 (t) + I 2 (t), where

I 1 (t) = u 0

[

t γ−1

Γ (γ)
+

λ

Γ (γ)

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) τ γ−1 d τ

]

, (2.5)

I 2 (t) = J α
0+ f (t) + λ

t
∫

0

(t− τ)α−1Eα,α (λ (t− τ)α) J α
0+ f (τ) d τ. (2.6)

We make the change of variables s = t−τ in formula (2.5) and use the following formulas [9, Vol. 1,
pp. 269–295]:

Eα, µ (z) =
1

Γ (µ)
+ z Eα, µ+α (t), α > 0, µ > 0, (2.7)

1

Γ (ν)

z
∫

0

(z − t) ν−1Eα, β (λ tα) t β−1 d t = z β+ν−1Eα, β+ν (λ z α) , ν > 0, β > 0. (2.8)

Then we obtain the following representation for integral (2.5):

I1(t) = u0 t
γ−1 Eα,γ(λ t

α). (2.9)

The integral in the formula (2.6) is transformed as follows:

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α ) J α
0+ f (τ) d τ =

=
1

Γ (α)

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) d τ

τ
∫

0

(τ − s)α−1 f (s) d s =

=
1

Γ (α)

t
∫

0

f (s) d s

t
∫

s

(t− τ)α−1 (τ − s)α−1Eα, α (λ (t− τ)α) d τ.

(2.10)

In view of (2.8), the second integral in the latter equality of formula (2.10) can be written as

t
∫

s

(t− τ)α−1 (τ − s)α−1Eα,α (λ (t− τ)α ) d τ = Γ (α) (t − τ) 2α−1Eα, 2α (λ (t− τ)α) .

Then, taking into account (2.7), we represent formula (2.6) in the following form:

I 2 (t) =

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) f (τ) d τ. (2.11)

Substituting (2.9) and (2.11) into the sum u (t) = I 1 (t) + I 2 (t), we obtain formula (2.2). The
lemma is proved. �
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3. Uniqueness of solution of the nonlocal problem

We study this problem by the spectral method of separating variables and seek particular solu-
tions of the nonlocal problem in the form of a product of two functions U(t, x) = u(t) · ϑ(x). From
equation (1.1) and boundary value conditions (1.3), we arrive at the following spectral problem:

ϑ IV (x)− λ4ϑ (x) = 0, ϑ (0) = ϑ′′ (1) = 0, ϑ′ (1) = ϑ′ (1), ϑ′′′ (1) = ϑ′′′ (1),

where λ4 is the constant of separation, 0 < λ = const.
As follows from the results of [5], this spectral problem is non-self-adjoint and has a complete

system of eigenfunctions of the following form in the space L 2 (0; 1):

ϑ 0(x) = 2x, ϑn1(x) = 2 sin λnx, ϑn2(x) =
eλnx − eλn(1−x)

eλn − 1
+ cos λnx,

λn = 2πn, n ∈ N.

(3.1)

System (3.1) forms a Riesz basis in L 2 (0; 1). In [5], it was also proved that there exists a biorthog-
onal system of functions with (3.1):

η 0 (x) = 1, ηn1 (x) =
eλnx + eλn(1−x)

eλn − 1
+ sin 2πnx, ηn2 (x) = 2 cos λnx. (3.2)

System (3.2) also forms a Riesz basis in L 2 (0; 1).
Let U (t, x) be a solution of the nonlocal problem. We consider the functions

u+0 (t) =

1
∫

0

U (t, x) dx, u+ni(t) =

1
∫

0

U (t, x) ηni (x) dx, t > 0, (3.3)

u−0 (t) =

1
∫

0

U (t, x) dx, u−ni (t) =

1
∫

0

U(t, x) ηni (x) dx, i = 1, 2, t < 0, (3.4)

where the functions η 0 (x) and ηni (x), i = 1, 2, are defined in (3.2).
Applying the operator D α, γ with respect to t to both sides of equality (3.3), differentiating (3.4)

twice with respect to t, and taking into account equation (1.1), we obtain differential equations
with respect to the functions u±0 (t) and u±ni (t), i = 1, 2:

D α, γ u+0 (t) = 0, Dα, γ u+ni (t) + λ4
n u

+
ni (t) = 0, i = 1, 2, t > 0, (3.5)

d2

d t2
u−0 (t) = 0,

d2

d t2
u−ni (t) + λ4

nω
2 u−ni (t) = 0, i = 1, 2, t < 0. (3.6)

The general solutions of these differential equations (3.5) and (3.6) have the form

u±0 (t) =







A 0

Γ (γ)
tγ−1, t > 0,

B 0 t+ C 0, t < 0,
u±ni (t) =

{

Ani t
γ−1Eα, γ(−λ4

n t
α), t > 0,

Bni sin λ2
nω t+ Cni cos λ

2
nω t, t < 0,

(3.7)

where A 0, B 0, C 0, Ani, Bni, and Cni are arbitrary constants, i = 1, 2, n = 1, 2, . . . .
Taking into account conditions (1.4) and (1.5), we conclude from (3.3) and (3.4) that the

functions u±0 (t) and u±ni (t), i = 1, 2, in (3.7) must satisfy the following conditions:

lim
t→+0

J1−γ
0+ u+0 (t) = lim

t→−0
u−0 (t), lim

t→+0
J1−α
0+

( d

d t
J1−γ
0+ u+0 (t)

)

= lim
t→−0

du−0 (t)

d t
, (3.8)
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lim
t→+0

J1−γ
0+ u+ni (t) = lim

t→−0
u−ni (t), lim

t→+0
J1−α
0+

( d

d t
J1−γ
0+ u+ni (t)

)

= lim
t→−0

du−ni (t)

d t
, (3.9)

u−0 (−a) = u+0 (b) + ϕ 0, u−ni (−a) = u+ni (b) + ϕni , i = 1, 2, (3.10)

where

ϕ0 =

1
∫

0

ϕ (x) dx, ϕni =

1
∫

0

ϕ (x) ηni (x) dx, i = 1, 2, n = 1, 2, . . .

Therefore, we obtain the following systems of algebraic equations:






A 0 = C 0, B 0 = 0,

−B 0 a+ C 0 =
A 0

Γ (γ)
b γ−1 + ϕ 0,

(3.11)

{

Ani = Cni, ω Bni = −λ2
nAni,

−Bni sin λ2
nω a+ Cni cos λ

2
nω a−Ani b

γ−1Eα, γ(−λ4
n b

α) = ϕni.
(3.12)

Each of systems (3.11) and (3.12) has a unique solution

C 0 = A 0, B 0 = 0, A 0 =
ϕ 0

∆ 0
, Cni = Ani =

ϕni

∆n(ω)
, Bni = −

λ2
n

ω

ϕni

∆n(ω)
, (3.13)

if the following condition holds for all n ∈ N0 = N ∪ {0}:

∆n(ω) = λ 2
nω sin λ 2

nω a+ cos λ 2
nω a− b γ−1Eα, γ(−λ 4

n b
α) 6= 0. (3.14)

Substituting (3.13) into (3.7), we obtain the representation

u±0 (t) =







ϕ0

Γ (γ)∆ 0
tγ−1, t > 0,

ϕ0

∆ 0
, t ≤ 0,

(3.15)

u±ni (t) =











ϕni

∆n(ω)
t γ−1Eα, γ(−λ4

n t
α), t > 0,

ϕni

∆n(ω)

(

cos λ2
nω t−

λ2
n

ω
sin λ2

nω t

)

, t ≤ 0.
(3.16)

We show the uniqueness of the solution of the nonlocal problem under condition (3.14). Suppose
the opposite. Let the nonlocal problem have two different solutions U1(t, x) and U2(t, x), and let
U(t, x) = U1(t, x)− U2(t, x). It is not difficult to see that U(t, x) is a solution of the homogeneous
nonlocal problem (ϕ(x) = 0). This is why one only needs to prove that the homogeneous problem
has only the trivial solution.

Suppose that condition (3.14) holds and ϕ (x) ≡ 0. Then ϕ 0 = 0, ϕni = 0, i = 1, 2, and the
representations (3.3), (3.4) and (3.15), (3.16) yield

1
∫

0

t 1−γ U (t, x) dx = 0,

1
∫

0

t 1−γ U (t, x) ηni (x) dx = 0, t ∈ [0; b],

1
∫

0

U (t, x) dx = 0,

1
∫

0

U (t, x) ηni (x) dx = 0, t ∈ [−a; 0], i = 1, 2.
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Further, taking into account the completeness of system (3.2) in the space L 2 (0; 1), we conclude
that U (t, x) = 0 almost everywhere on [0; 1] for all t ∈ [−a; b]. Since t 1−γ U (t, x) ∈ C (Ω 1 ) and
U (t, x) ∈ C

(

Ω 2

)

, we have t 1−γU (t, x) ≡ 0 in the domain Ω. Therefore, the solution of the
nonlocal problem is unique in the domain Ω.

Thus, we have proved the following theorem.

Theorem 1. Suppose that there exists a solution of the nonlocal problem. This solution is

unique if condition (3.14) holds for all n ∈ N0.

4. Existence of a solution of the nonlocal problem

Now we consider the case when condition (3.14) is violated. Let ∆m(ω) = 0 for all ω, γ ∈ (0; 1)
and n = m. Then the homogeneous nonlocal problem (ϕ (x) ≡ 0) has a nontrivial solution

V ±

mi (t, x) = v±m(t)ϑmi (x), i = 1, 2, (4.1)

where

v±m (t) =







t γ−1Eα, γ

(

−λ4
mtα

)

, t > 0,

cos λ2
mω t−

λ2
n

ω
sin λ2

m ω t, t < 0.

It is easy to verify that, for γ = 1, the function V (t, x) = x is also a nontrivial solution of the
homogeneous nonlocal problem.

From ∆n (ω) = 0, we come to the trigonometric equation

√

1 + ω 2λ 4
n sin

(

λ 2
nω a+ ρn

)

− b γ−1Eα, γ

(

−λ 4
n b

α
)

= 0, (4.2)

where ρn = arcsin
(

1/
√

1 + ω 2λ 4
n

)

and ρn → 0 as n → +∞. Hence, we conclude that the

expression ∆n (ω) is zero only if

ω =
1

λ 2
n a

[

(−1)k arcsin
bγ−1Eα, γ

(

−λ 4
n b

α
)

√

1 + ω 2λ 4
n

+ π k − ρn

]

, k = 1, 2, . . . .

The set ℑ of positive solutions of trigonometric equation (4.2) is called the set of irregular values
of the spectral parameter ω.

The set of remaining values of the spectral parameter ℵ = (0; ∞) \ℑ is called the set of regular
values of the spectral parameter ω.

Since ∆n (ω) is the denominator of a fraction and its values can become quite small for suf-
ficiently large n, the problem of “small denominators” arises. Therefore, in order to justify the
unique solvability of the nonlocal problem for regular values of the spectral parameter ω, it is
necessary to show that the quantity ∆n (ω) is separated from zero for sufficiently large n.

Lemma 2. Suppose that γ ∈ (0; 1], a and b are arbitrary positive real numbers, and ω is such

that the product π ω a is a rational number. Then, for large n, there exists a positive constant M0

such that the following estimate holds:

|∆n (ω) | ≥ M 0 > 0. (4.3)

P r o o f. I. We set ω = p/π a, p ∈ N. Then we derive from (4.2) that, for all n and a, b > 0,

|∆n (ω) | ≥
∣

∣

∣
±

√

1 + 16n 4 π 2
p 2

a 2
− bγ−1Eα, γ

(

−16n 4 π 4 bα
)

∣

∣

∣
≥



Nonlocal Problem for a Mixed Type Fourth-Order Differential Equation 161

≥
∣

∣ 1− b γ−1Eα, γ

(

−16n 4 π 4 bα
)
∣

∣ ≥ 1− b γ−1Eα, γ

(

−16n 4 π 4 bα
)

.

We use the following properties of the Mittag–Leffler function [9, Vol. 1, pp. 269–295].

(1) For all λ > 0, α, γ ∈ (0; 1], α ≤ γ, and t > 0, the function tα−1Eα, γ (−λ tα) is completely
monotone, i.e.,

(−1)n
[

t γ−1Eα, γ (−λ tα)
] (n)

≥ 0, n = 0, 1, 2, . . . . (4.4)

(2) The following estimate is true for all α ∈ (0; 2), γ ∈ R, and arg z = π:

|Eα, γ (z) | ≤
M

1 + |z|
, (4.5)

where 0 < M = const is independent of z.

Then, (4.4) implies that there exists a number n0 ∈ N such that for all n > n0 we have

1− bγ−1Eα, γ

(

−16n 4 π 4 bα
)

= M1 > 0.

Consequently, ∆n (ω) ≥ M 1 > 0.

II. Now we set
p

q
= 4πωa ∈ Q ⇔ ω =

1

4πa

p

q
,

where p, q ∈ N, (p, q) = 1. We divide n2 p by q with a remainder: n2p = sq + r, s ∈ N, 0 ≤ r < q.
Then from (4.1), we obtain

|∆n (ω) | =

∣

∣

∣

∣

√

1 +
[π

a

(

s+
r

q

)] 2
(−1)s sin

(πr

q
+ ρn

)

− b γ−1Eα, γ

(

−16n 4 π 4 bα
)

∣

∣

∣

∣

.

If r = 0, then this case reduces to case I.

Suppose that r > 0. Since ρn → 0 as n → +∞, there exists a number n1 > 0 such that
ρn < π/(2q) for all n > n1. Thus, we obtain the lower estimate

|∆n (ω) | ≥

∣

∣

∣

∣

√

1 +
[π

a

(

s+
r

q

)] 2
sin

(πr

q
+ ρn

)

− bγ−1Eα,γ(−16n 4 π 4 bα)

∣

∣

∣

∣

≥

≥

√

1 +
[π

a

(

s+
r

q

)] 2 ∣
∣

∣
sin

(πr

q
+ ρn

)
∣

∣

∣
− bγ−1Eα,γ(−16n 4 π 4 bα) >

>
π

a

(

s+
r

q

)
∣

∣

∣
sin

(π(q − 1)

q
+

π

2 q

)
∣

∣

∣
− 1 =

π

a

(

s+
r

q

)

sin
π

2 q
− 1 = M 2 > 0

for

n2 ≥
[

a q
(

π p sin
π

2 q

)−1]1/2
.

Setting M 0 > max {M 1, M 2} and n > max {n0, n1, n2}, we complete the proof of the lemma.
Lemma 2 is proved. �

We call the solution of the nonlocal problem (1.1)–(1.5) for regular values of the spectral pa-
rameter ω a regular solution of the nonlocal problem. Estimates (4.3) and (4.5) imply the following
lemma.
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Lemma 3. The following estimates hold for regular values of the spectral parameter ω:

t 1−γ
∣

∣u+0 (t)
∣

∣ ≤ C 1 |ϕ 0 | , t 1−γ
∣

∣u+ni (t)
∣

∣ ≤ C 2 |ϕni | ,

t 1−γ
∣

∣

∣
D α, β u+ni (t)

∣

∣

∣
≤ C 3n

4 |ϕni | , i = 1, 2, t ∈ [0; b];

∣

∣u−0 (t)
∣

∣ ≤ C 4 |ϕ 0 | ,
∣

∣u−ni (t)
∣

∣ ≤ C 5n
2 |ϕni | ,

∣

∣

∣

∣

du−ni (t)

d t

∣

∣

∣

∣

≤ C 6n
4 |ϕni | ,

∣

∣

∣

∣

d 2u−ni (t)

d t 2

∣

∣

∣

∣

≤ C 7n
6 |ϕni| , i = 1, 2, t ∈ [−a; 0],

where C k, k = 1, 7, are positive constants.

Since system (3.1) is complete and forms a Riesz basis in L 2(0; 1), we write the solution of the
nonlocal problem for regular values of the spectral parameter ω as

U (t, x) =















u+0 (t)ϑ 0 (x) +
∞
∑

n=1

2
∑

i=1
u+ni (t)ϑni (x), (t, x) ∈ Ω 1,

u−0 (t)ϑ 0 (x) +
∞
∑

n=1

2
∑

i=1
u−ni (t)ϑni (x), (t, x) ∈ Ω 2,

(4.6)

where u±0 (t), u±n1 (t), and u±n2 (t) are defined in (3.15) and (3.16).

Indeed, substituting function (4.6) into the mixed equation (1.1) and satisfying conditions
(1.3)–(1.5), we obtain problems (3.5), (3.6), (3.8)–(3.10) with respect to the desired functions. The
solutions of these problems can be represented as functions (3.15) and (3.16).

Now formally differentiating term-by-term the series (4.6) the required number of times, we
obtain the series

D α, γ U (t, x) =

∞
∑

n=1

2
∑

i=1

D α, γ u+ni (t)ϑni (x), t > 0, (4.7)

∂ kU (t, x)

∂ xk
= u+0 (t)

d k ϑ 0 (x)

dx k
+

∞
∑

n=1

2
∑

i=1

u+ni (t)
d kϑni (x)

dx k
, k = 1, 4, t > 0, (4.8)

∂ 2U (t, x)

∂ t 2
=

∞
∑

n=1

2
∑

i=0

d 2u−ni (t)

d t 2
ϑni (x), t < 0, (4.9)

∂ kU (t, x)

∂ x k
= u−0 (t)

d k ϑ 0 (x)

dx k
+

∞
∑

n=1

2
∑

i=1

u−n2 (t)
d k ϑn 2 (x)

dx k
, k = 0, 4, t < 0. (4.10)

By virtue of Lemma 2 and Lemma 3, we conclude that series (4.9) and (4.10) are majorized by
the following sum of series:

∞
∑

n=1

n 6 |ϕn1 |+

∞
∑

n=1

n 6|ϕn2|. (4.11)

Multiplying series (4.7) and (4.8) term-by-term by t 1−γ , we obtain the series

∞
∑

n=1

2
∑

i=1

t 1−γ D α, γ u+ni (t)ϑni (x),

∞
∑

n=1

2
∑

i=1

t 1−γ u+ni (t)
d k ϑni (x)

dx k
, k = 0, 4, t > 0. (4.12)
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The series in (4.12) are also majorized by the series (4.11). Taking into account the fact that the
function ϕ (x) is sufficiently smooth and integrating by parts

ϕni =

1
∫

0

ϕ (x) ηni (x) dx, i = 1, 2,

we derive

ϕn1 = −
1

(2π n) 7
ϕ
(7)
n1 = −

1

(2π n) 7

(

ϕ (7) (x), ϑn2 (x)
)

,

ϕn2 =
1

(2π n) 7
ϕ
(7)
n2 =

1

(2π n) 7

(

ϕ (7) (x), ϑn1 (x)
)

.

By virtue of these representations, we apply the Cauchy–Schwartz inequality and Bessel in-
equality to (4.11)

∞
∑

n=1

n 6|ϕni |≤

∞
∑

n=1

1

n
|ϕ

(7)
ni |≤

(

∞
∑

n=1

1

n 2

) 1/2(
∞
∑

n=1

|ϕ
(7)
ni |

2
) 1/2

≤ C ‖ϕ (7) (x) ‖L 2(0, 1) < ∞, i = 1, 2.

This estimate implies that series (4.9) and (4.10) converge absolutely and uniformly in the domains
Ω1 and Ω2, respectively. Therefore, the function U (t, x), represented by series (4.6), possesses
properties (1.2) and satisfies conditions (1.3)–(1.5).

We note that ∆n (ω) = 0 for irregular values of the spectral parameter ω and n = k 1 , . . . , k s,
1 ≤ k 1 < k 1 < · · · < k s , s ∈ N (γ 6= 1). Then, the following orthogonality conditions are
necessary and sufficient for the solvability of systems (3.11) and (3.12):

ϕni =

1
∫

0

ϕ (x) ηni dx = 0, i = 1, 2, n = k 1 , . . . , k s . (4.13)

In this case, the solutions of the nonlocal problem are representable as a sum of series

U (t, x) = u±0 (t)ϑ 0 (x) +

+

[ k1−1
∑

n=1

+

k2−1
∑

n=k1+1

+ · · ·+

∞
∑

n=ks+1

] 2
∑

i=1

u±ni (t)ϑni (x) +
∑

m

2
∑

i=1

Cmi V
±

mi (t),
(4.14)

where m = k 1 , . . . , k s, Cmi are arbitrary constants, and the functions V ±

mi (t), i = 1, 2, are defined
in (4.1). Note that, in the case γ = 1, we replace the function u±0 (t) in (4.14) with a constant C0;
moreover, the orthogonality condition

ϕ 0 =

1
∫

0

ϕ (x) dx = 0 (4.15)

is added to formula (4.13).
Thus, the following theorem is proved.

Theorem 2. Suppose that the following conditions are fulfilled:

ϕ (x) ∈ C 6 [0; 1], ϕ (7) (x) ∈ L 2 (0; 1), ϕ (2k) (0) = 0,

ϕ (2 (k+1)) (1) = 0, k = 0, 2, ϕ (k) (0) = ϕ (k) (1), k = 1, 3, 5.



164 Tursun K. Yuldashev, Bakhtiyor J. Kadirkulov

Then the nonlocal boundary value problem is uniquely solvable for regular values of the spectral

parameter ω, and this solution is represented in the form of the Fourier series (4.6) in the domain Ω.
For irregular values of the spectral parameter ω and some n = k 1 , . . . , k s, the nonlocal problem

has an infinite number of solutions in the form of series (4.14).
For γ < 1, the solvability condition has the form (4.13). For γ = 1 in (4.14), the function u±0 (t)

is replaced with a constant C 0 and conditions (4.13), and (4.15) are the solvability conditions.

5. Stability of solution of the nonlocal problem

For regular values of the spectral parameter ω, we consider the question of the stability of the
solution of the nonlocal problem with respect to the function ϕ (x) from condition (1.4). To this
end, we introduce the norm in the space of continuous functions as follows:

‖U (t, x) ‖C (Ω) = ‖ t1−γU (t, x)‖C (Ω 1)
+ ‖U (t, x) ‖C (Ω 2)

=

= max
(t, x)∈Ω 1

∣

∣ t1−γU (t, x)
∣

∣+ max
(t, x)∈Ω 1

|U (t, x) | .

Theorem 3. Suppose that all the conditions of Theorem 2 are fulfilled. Then the following es-

timate holds for the solution of the nonlocal problem with regular values of the spectral parameter ω:

‖U (t, x) ‖C (Ω) ≤ C ‖ϕ′′′(x) ‖C [0; 1], (5.1)

where 0 < C = const is independent of ϕ (x) and ‖f(x)‖C[0; 1] = max
[0; 1]

|f(x)|.

P r o o f. Let (t, x) be an arbitrary point of the domain Ω2. Then we have the representations

ϕn1 = −
1

λ 3
n

ϕ
(3)
n1 , ϕ

(3)
n1 =

1
∫

0

ϕ′′′(x)ϑn2 (x) dx,

ϕn2 =
1

λ 3
n

ϕ
(3)
n2 , ϕ

(3)
n2 =

1
∫

0

ϕ′′′(x)ϑn1 (x) dx.

Applying Lemma 3 and the Cauchy–Schwarz inequality to (4.6), we obtain

‖U(t, x) ‖C(Ω2)
≤ 2C4|ϕ0|+ C5

∞
∑

n=1

1

n

(

|ϕ
(3)
n1 |+ |ϕ

(3)
n2 |

)

≤

≤ 2C4|ϕ0|+ C5

(

∞
∑

n=1

1

n2

)1/2(
∞
∑

n=1

(

|ϕ
(3)
n1 |+ |ϕ

(3)
n2 |

)2
)1/2

.

It is well known that the former series converges. Applying the inequality (|a|+|b|)2 ≤ 2
(

|a|2 + |b|2
)

and the Bessel inequality to the latter series, we obtain

∞
∑

n=1

(

|ϕ
(3)
n1 |+ |ϕ

(3)
n2 |

)2
≤ 2

∞
∑

n=1

(

|ϕ
(3)
n1 |

2 + |ϕ
(3)
n2 |

2
)

≤ C11

∥

∥ϕ′′′(x)
∥

∥

2

L2(0;1)
, 0 < C11 = const. (5.2)

Similarly, we can find for all (t, x) ∈ Ω 1 that

‖ t1−γU (t, x) ‖C(Ω1)
≤ C12

∥

∥ϕ′′′ (x)
∥

∥

2

L2(0; 1)
, 0 < C 12 = const. (5.3)

Estimates (6.1) and (6.2) imply estimate (5.1), where C = C 11 + C 12 . If we assume that
‖ϕ′′′(x)‖2L2(0; 1)

< δ, then the estimate ‖U(t, x)‖C(Ω) < ε is true for all ε = C · δ. The theorem is
proved. �
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6. Illustrative examples

Example 1. Consider the nonlocal problem for γ = 1. Then we have D α, γ = D α, 1 = C D α

and equation (1.1) takes the form

0 =











CD
αU (t, x) +

∂ 4U (t, x)

∂ x 4
, t > 0,

∂ 2U (t, x)

∂ t 2
+ ω 2∂

4U (t, x)

∂ x 4
, t < 0.

(6.1)

Equations (6.1) is a mixed type differential equation with the Caputo operator in a positive rect-
angular domain. We consider it under conditions (1.3)–(1.5). From (3.14), we obtain A 0 = ϕ 0 = 0,
i.e., we arrive at condition (4.15). The solution of this problem with regular values of the spectral
parameter ω can be represented as

U (t, x) =















∞
∑

n=1

2
∑

i=1

ϕni

∆n(ω)
Eα, 1

(

−λ4
n t

α
)

ϑni (x) + C 01 x, (t, x) ∈ Ω 1,

∞
∑

n=1

2
∑

i=1

ϕni

∆n (ω)

(

cos λ 2
nω t−

λ 2
n

ω
sin λ 2

n ω t

)

ϑni (x) + C 02 x, (t, x) ∈ Ω 2,

where C0 i = const, i = 1, 2.

Example 2. Consider the nonlocal problem for γ = α < 1. Then we haveD α, γ = D α, α = RLD
α

and equation (1.1) takes the form

0 =











RLD
αU (t, x) +

∂ 4U (t, x)

∂ x 4
, t > 0,

∂ 2U (t, x)

∂ t 2
+ ω 2 ∂

4U (t, x)

∂ x 4
, t < 0.

(6.2)

Equation (6.2) is a mixed type differential equation with the Riemann–Liouville operator in
a positive rectangular domain. We consider it under conditions (1.3)–(1.5). A solution of this
problem with regular values of the spectral parameter ω exists and is unique. This solution has a
representation coinciding with (4.6) for γ = α < 1.

Example 3. Consider the case γ = α = 1. Then we have D α, γ = D 1, 1 = d/d t and equa-
tion (1.1) takes the form

0 =











∂ U (t, x)

∂ t
+

∂ 4U (t, x)

∂ x 4
, t > 0,

∂ 2U (t, x)

∂ t 2
+ ω 2 ∂

4U (t, x)

∂ x 4
, t < 0.

We obtained a mixed type differential equation of integer order, which is a particular case
of equation (6.1) and, therefore, the solvability condition for this problem coincides with condi-
tion (4.15), and the solution of the nonlocal problem is represented as

U (t, x) =















∞
∑

n=1

2
∑

i=1

ϕni

∆n(ω)
e−λ4

n
t ϑni(x) +Ax, (t, x) ∈ Ω1,

∞
∑

n=1

2
∑

i=1

ϕni

∆n(ω)

(

cos λ2
n ω t−

λ2
n

ω
sinλ2

n ω t

)

ϑni(x) +Ax, (t, x) ∈ Ω2,

where A = const.



166 Tursun K. Yuldashev, Bakhtiyor J. Kadirkulov

7. Conclusion

We established a criterion for the existence and uniqueness of the regular solution of the nonlocal
problem for a fourth-order differential equation of mixed type with Hilfer operator in a positive
rectangular domain and with spectral parameter in a negative rectangular domain. We use the
spectral method of separation of variables, which helps us to construct the solution of the nonlocal
problem (1.1)–(1.5) in the form of Fourier series. Theorems on the existence and uniqueness of
the problem are proved for regular values of the spectral parameter ω. We study also the case of
irregular values of spectral parameter ω. Our theorem proving methods are based on expanding
the regular solution using a biorthogonal set of functions. The stability of the regular solution of
the nonlocal problem with respect to the data is proved.

REFERENCES

1. Abdullaev O. Kh., Sadarangani K. Non-local problems with integral gluing condition for loaded mixed
type equations involving the Caputo fractional derivative. Electron. J. Differential Equations, 2016.
Vol. 2016. No. 164. P. 1–10. URL: https://ejde.math.txstate.edu

2. Application of Fractional Calculus in Physics. Hilfer R. (ed.) Singapore: World Scientific Publishing
Company, 2000. 472 p. DOI: 10.1142/3779

3. Agarwal P., Berdyshev A., Karimov E. Solvability of a non-local problem with integral transmitting
condition for mixed type equation with Caputo fractional derivative. Results Math., 2017. Vol. 71,
P. 1235–1257. DOI: 10.1007/s00025-016-0620-1

4. Aziz S., Malik S.A. Identification of an unknown source term for a time fractional fourth-
order parabolic equation. Electron. J. Differential Equations, 2016. Vol. 2016. No. 293. P. 1–20.
URL: https://ejde.math.txstate.edu

5. Berdyshev A. S., Cabada A., Kadirkulov B. J. The Samarskii–Ionkin type problem for the fourth order
parabolic equation with fractional differential operator. Comput. Math. Appl., 2011. Vol. 62. P. 3884–
3893. DOI: 10.1016/j.camwa.2011.09.038

6. Berdyshev A. S., Kadirkulov J. B. On a nonlocal problem for a fourth-order parabolic equation
with the fractional Dzhrbashyan–Nersesyan operator. Differ. Equ., 2016. Vol. 52. No. 1. P. 122–127.
DOI: 10.1134/S0012266116010109

7. Beshtokov M.Kh. Boundary value problems for the generalized modified moisture transfer equation
and difference methods for their numerical implementation. Appl. Math. Phys., 2020. Vol. 52. No. 2.
P. 128–138. DOI: 10.18413/2687-0959-2020-52-2-128-138 (in Russian)

8. Gel’fand I. M. Some questions of analysis and differential equations. Uspekhi Matem. Nauk., 1959. Vol.
14. No. 3. P. 3–19 (in Russian).

9. Handbook of Fractional Calculus with Applications. Vols. 1–8. Tenreiro Machado J.A. (ed.). Berlin,
Boston: Walter de Gruyter GmbH, 2019.

10. Hilfer R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys.,

2002. Vol. 284, No. 1–2. P. 399–408. DOI: 10.1016/S0301-0104(02)00670-5

11. Hilfer R. On fractional relaxation. Fractals, 2003. Vol. 11. No. Supp. 01. Part III: Scaling. P. 251–257.
DOI: 10.1142/S0218348X03001914
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