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1. Introduction

The paper aims to study asymptotic almost automorphy in the context of functions and
Sobolev–Schwartz distributions, it is well known that the concept of almost automorphy is strictly
more general than the almost periodicity studied in a full generality by H. Bohr, see [4] and [8].
The concept of asymptotic almost periodicity as a perturbation of almost periodic functions by
functions that vanish at infinity belongs to M. Fréchet in [9], one of the main motives of which is
the introduction of this concept in obtaining the existence of an almost periodic solution to differ-
ential equations if they admit an asymptotic almost periodic solution. In the same vein as Fréchet
motivation, we study the existence of solutions of linear neutral difference differential equations
with variable coefficients in the framework of asymptotically almost automorphic distributions.
Almost periodicity in the framework of distributions extending the classical Bohr and Stepanov
almost periodicity [16] is considered by L. Schwartz [13]. The paper [7] deals with asymptotic
almost periodicity of distributions.

In [1] and [3], S. Bochner defined explicitly almost automorphic functions, where some basic
properties have been established. He studied linear difference differential equations in the framework
of almost automorphic functions in [2]. Almost automorphy of primitives and asymptotically almost
automorphic functions are also considered, see [12, 18].

We first investigated the almost automorphy in the settings of distributions and generalized
functions respectively in [6] and [5], then we addressed the issue of asymptotic almost automorphy
in these contexts, see the communication [17].

The paper is organized as follows: the second section studies asymptotically almost automorphic
functions following an appropriate definition, essential properties of these functions are proved;
the third section deals with smooth asymptotically almost automorphic functions. The fourth
section is dedicated to asymptotically almost automorphic distributions; we give their definition,
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characterizations and some of their properties. The last section is an application to linear neutral
difference differential equations of asymptotically almost automorphic distributions.

2. Asymptotically almost automorphic functions

It is worth noting that the definition of an asymptotically almost automorphic function depends
on the choice of authors, but in general the essential idea of the decomposition in the definition
of an asymptotically almost automorphic function is preserved. The differences in their definitions
lie in the domain of definition of the considered functions, their regularity and finally in the choice
of the interval of decomposition. We consider functions defined, continuous and bounded on the
whole space of real numbers R and the decomposition on the closed interval [0,+∞[ . So, we have
to precise some results on asymptotically almost automorphic functions. Let Cb denotes the space
of bounded and continuous complex-valued functions defined on R, endowed with the norm ‖·‖∞
of uniform convergence on R, it is well-known that (Cb, ‖·‖∞) is a Banach algebra. Let ω ∈ R and
f, ϕ functions, we recall that the translation operator τω is defined by τωf (·) = f (·+ ω) , and ϕ̌
by ϕ̌(x) = ϕ(−x). Denote J := [0,+∞[ .

Definition 1. The space C+,0 is the set of all bounded and continuous complex-valued functions
defined on R and vanishing at +∞.

We give some properties of the space C+,0 which are proved in a straight way.

Proposition 1. The following is true:

(1) The space C+,0 is a Banach subalgebra of Cb.

(2) τωC+,0 ⊂ C+,0, ∀ω ∈ R.

(3) C+,0 × Cb ⊂ C+,0.

(4) C+,0 ∗ L
1 ⊂ C+,0.

(5) Let h ∈ C+,0, if h
′ exists and is uniformly continuous on J, then there exists a function

H ∈ C+,0 such that H = h′ on J.

(6) There exists H ∈ C+,0 a primitive of h on J if and only if
+∞
∫

0

h (t) dt < ∞ and
x
∫

0

h (t) dt is

bounded on J.

Remark 1. In (5) if h′ exists and is uniformly continuous on R, then H = h′ on R.

Remark 2. If h is a locally integrable function, we denote by
+∞
∫

0

h (t) dt the improper integral,

and
+∞
∫

0

h (t) dt <∞ means
+∞
∫

0

h (t) dt is finite.

Recall some properties of almost automorphic functions, see [1, 3, 12, 18].

Definition 2. A complex-valued function g defined and continuous on R is called almost au-
tomorphic if for any sequence (sm)m∈N ⊂ R, one can extract a subsequence (smk

)k such that

g̃ (x) := lim
k→+∞

g (x+ smk
) exists for every x ∈ R,
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and

lim
k→+∞

g̃(x− smk
) = g(x) for every x ∈ R.

The space of almost automorphic functions on R is denoted by Caa.

Remark 3. The function g̃ is not necessary continuous but g̃ ∈ L∞(R).

Proposition 2. The following is true:

(1) The space Caa is a Banach subalgebra of Cb.

(2) τωCaa ⊂ Caa, ∀ω ∈ R.

(3) Caa ∗ L
1 ⊂ Caa.

(4) Caa ∩ C+,0 = {0} .

(5) A primitive of an almost automorphic function is almost automorphic if and only if it is
bounded.

We give now the definition of an asymptotically almost automorphic function.

Definition 3. We say that a function f ∈ Cb is asymptotically almost automorphic, if there
exist g ∈ Caa and h ∈ C+,0 such that f = g+h on J. The space of asymptotically almost automorphic
functions is denoted by Caaa.

Example 1. Caa ⊂ Caaa and C+,0 ⊂ Caaa.

It can be seen easly that the decomposition of an asymptotically almost automorphic function
is unique on J, so if f ∈ Caaa and f = g+h on J, where g ∈ Caa and h ∈ C+,0, the function g is said
the principal term of f and the function h is the corrective term of f, we denote them respectively
by faa and fcor. Then the notation f = (faa + fcor) ∈ Caaa means that faa ∈ Caa, fcor ∈ C+,0 and
f = faa + fcor on J.

Proposition 3. The following is true:

(1) τωCaaa ⊂ Caaa, ∀ω ∈ R+.

(2) Caaa × Caa ⊂ Caaa.

(3) Caaa ∗ L
1 ⊂ Caaa.

(4) Let f ∈ Caaa and φ is a continuous function on C, then φ ◦ f ∈ Caaa.

(5) If f = (faa + fcor) ∈ Caaa, then ‖faa‖∞ ≤ supx∈J |f(x)|. In particular, for f ∈ Caa and
ω ∈ R, ‖f‖∞ = supx≥ω |f(x)|.

(6) Let (fm)m∈N = (fm,aa + fm,cor)m ⊂ Caaa converges uniformly on J to a function f, then
there exists φ = (g + h) ∈ Caaa, such that φ = f on J, g ∈ Caa is the uniform limit on R of
(fm,aa)m and h ∈ C+,0 is the uniform limit on J of (fm,cor)m.
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P r o o f. The proofs of (1) and (2) are easy.

(3) Let ψ ∈ L1 and f = (faa + fcor) ∈ Caaa. Since f = faa + (f − faa), where (f − faa) ∈ C+,0,
it follows from Proposition 2–(3) and Proposition 1–(4) that f ∗ ψ ∈ Caaa. Now we show explicitly
the principal part and the corrective part of f ∗ ψ. For x ∈ J, we have

(f ∗ ψ) (x) =

∫

R

f (y)ψ (x− y) dy =

0
∫

−∞

f (y)ψ (x− y) dy +

+∞
∫

0

(faa (y) + fcor (y))ψ (x− y) dy,

= (faa ∗ ψ) (x) + (fcor ∗ ψ) (x) +

0
∫

−∞

(f − faa − fcor) (y)ψ (x− y) dy.

By Proposition 2–(3), (faa ∗ ψ) ∈ Caa and by Proposition 1–(4), (fcor ∗ ψ) ∈ C+,0. On the other
hand, for x ∈ R,

0
∫

−∞

(f − faa − fcor) (y)ψ (x− y) dy =

∫

R

(f − faa − fcor) (x− y)χ]x,+∞[ (y)ψ (y) dy.

It is easy to see that the latter function is continuous and bounded on R and by the dominated
convergence theorem it vanishes at infinity. Then f ∗ψ = (Ψaa +Ψcor) ∈ Caaa, where Ψaa := faa∗ψ

and Ψcor := fcor ∗ ψ +
0
∫

−∞

(f − faa − fcor) (y)ψ (.− y) dy.

(4) Let f = (faa + fcor) ∈ Caaa and φ be a continuous function on C, then it is well-known that
φ (f) ∈ Cb and also φ (faa) ∈ Caa. On the other hand, it is easy to see that the function φ (f)−φ (faa)
defined on R belongs to C+,0. Consequently we have φ (f) = (φ (f)aa + φ (f)cor) ∈ Caaa, where
φ (f)aa = φ (faa) and φ (f)cor = φ (f)− φ (faa) .

(5) Let f = (faa + fcor) ∈ Caaa and (smk
)k a subsequence of (sm)m∈N ⊂ J which tends to

infinity. Let x ∈ R and k0 ∈ Z+ such that the sequence (x+ smk
)k≥k0 ⊂ J tends to infinity, then

for k ≥ k0, we have

|faa (x+ smk
)| ≤ |f (x+ smk

)|+ |fcor (x+ smk
)| ≤ sup

x∈J
|f (x)|+ |fcor (x+ smk

)|

so ∀x ∈ R,
|f̃aa(x)| = lim

k→+∞
|faa(x+ smk

)| ≤ sup
x∈J

|f(x)|.

It follows then
|faa(x)| = lim

k→+∞
|f̃aa(x− smk

)| ≤ sup
x∈J

|f(x)|, ∀x ∈ R.

Consequently, we obtain the results.

(6) Let (fm)m = (fm,aa + fm,cor)m ⊂ Caaa converges uniformly to f on J, by (5) we have

‖fn,aa − fm,aa‖∞ ≤ sup
x∈J

|fn(x)− fm(x)|,

hence (fm,aa)m∈N is a Cauchy sequence in the Banach space Caa, i.e. (fm,aa) converges uniformly
on R to a function g ∈ Caa. Let’s define the function h by

h(x) =

{

(f − g)(x), x ≥ 0,
(f − g)(0), x < 0.
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Then h ∈ Cb and (fm,cor)m converges uniformly on J to h, i.e. lim
x→+∞

h (x) = 0 hence h ∈ C+,0.

Define φ = g + h on R, then φ ∈ Caaa and φ = f on J. �

The space (Caaa, ‖·‖∞) is complete and it is a consequence of point (6) .

Corollary 1. The space (Caaa, ‖·‖∞) is a Banach subalgebra of Cb.

We have the following results on the derivative and the primitive.

Proposition 4. The following is true:

(1) Let f = (faa + fcor) ∈ Caaa be such that f ′ exists and is uniformly continuous on J, then
there exists φ = (g + h) ∈ Caaa, such that φ = f ′ on J, (faa)

′ = g on R and (fcor)
′ = h on J.

(2) Let f = (faa+fcor) ∈ Caaa be such that f is uniformly continuous on J, then there exists F ∈

Caaa being a primitive of f on J if and only if
x
∫

0

faa (t) dt is bounded on R,
x
∫

0

fcor (t) dt is

bounded on J, and
+∞
∫

0

fcor (t) dt <∞.

P r o o f. (1) Let (σm)m∈N ⊂ J converging to zero and define the sequence (φm)m∈N ⊂ Caaa by

φm (x) =
f (x+ σm)− f (x)

σm
, x ∈ R

=

1
∫

0

f ′(x+ θσm)dθ, x ∈ J.

then the sequence (φm)m converges uniformly to f ′ on J and for x ∈ J,

φm (x) = φm,aa (x) + φm,cor (x) ,

where

φm,aa (x) :=
faa (x+ σm)− faa (x)

σm
, φm,cor (x) :=

fcor (x+ σm)− fcor (x)

σm
.

By (1), there exists φ = (g + h) ∈ Caaa, such that φ = f ′ on J, g ∈ Caa is the uniform limit of
(φm,aa)m on R and h ∈ C+,0 is the uniform limit of (φm,cor)m on J. Hence (faa)

′ := lim
m→+∞

φm,aa = g

on R and (fcor)
′ := lim

m→+∞
φm,cor = h on J.

(2) If F = (Faa + Fcor) ∈ Caaa is a primitive of f on J, then F ′ = f is uniformly continuous on J.
By (2), (Faa)

′ ∈ Caa, there exists h ∈ C+,0 such that (Fcor)
′ = h on J and F ′ = (Faa)

′+(Fcor)
′ on J.

Consequently, by Proposition 1–(6) and Proposition 2–(5), we obtain the result. Conversely, as
+∞
∫

0

fcor (t) dt < ∞ and
x
∫

0

fcor (t) dt is bounded on J, by Proposition 1–(6) , there exits H ∈ C+,0

which is a primitive on J of fcor and as
x
∫

0

faa (t) dt is bounded on R, by Proposition 2–(5), there

exits G ∈ Caa which is a primitive on R of faa, so F := G+H is a primitive on J of f. �

Corollary 2. Let f = (faa + fcor) ∈ Caaa such that f ′ exists and is uniformly continuous on R,
then f ′ = (g + h) ∈ Caaa, where (faa)

′ = g on R and (fcor)
′ = h on J.
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3. Smooth asymptotically almost automorphic functions

Let E (I) be the space of infinitely derivable functions on I = R or J , and p ∈ [1,+∞] , the
space

DLp (I) :=
{

ϕ ∈ E (I) : ∀j ∈ Z+, ϕ
(j) ∈ Lp (I)

}

endowed with the topology defined by the family of seminorms

|ϕ|k,p,I :=
∑

j≤k

‖ϕ(i)‖Lp(I), k ∈ Z+,

is a Fréchet subalgebra of E (I) . The spaces DLp (I) studied in [13] are connected with the classical
Sobolev spacesWm,p (I) , see [15]. We denote B (I) := DL∞ (I) . Let Ḃ be the closure in B := B (R) of
the space D of smooth functions with compact support.

Remark 4. By the definition ϕ ∈ B (J) requires that lim
x→

>
0
ϕ(j)(x) exists ∀j ∈ Z+.

Let B+,0 be the space of smooth functions vanishing at infinity, i.e.

B+,0 :=
{

ϕ ∈ E (R) : ∀j ∈ Z+, ϕ
(j) ∈ C+,0

}

.

We endow B+,0 with the topology induced by B.

Proposition 5. The following is true:

(1) The space B+,0 is a Fréchet subalgebra of B.

(2) τωB+,0 ⊂ B+,0, ∀ω ∈ R.

(3) B+,0 × B ⊂ B+,0.

(4) B+,0 ∗ L
1 ⊂ B+,0.

(5) B+,0 = C+,0 ∩ B.

(6) There exists H ∈ B+,0 which is a primitive on J of h ∈ B+,0 if and only if
x
∫

0

h (t) dt is

bounded on J and
+∞
∫

0

h (t) dt <∞.

P r o o f. (1) It is easy to see that B+,0 is an algebra and since B is complete, it suffices to show

that B+,0 is closed. Let (hm)m∈N be a sequence of B+,0 that converges to h ∈ B, i.e. ∀i ∈ Z+, (h
(i)
m )m

converges uniformly on R to h(i). By Proposition 1–(1), h(i) ∈ C+,0, ∀i ∈ Z+, i.e. h ∈ B+,0.

(2) This inclusion is obvious.

(3) If ϕ ∈ B and h ∈ B+,0, then by Leibniz’s formula and Proposition 1–(3), ∀i ∈ Z+,
(hϕ)(i) ∈ C+,0.

(4) Let ψ ∈ L1 and h ∈ B+,0, then by Proposition 1–(4), ∀i ∈ Z+, (h ∗ ψ)(i) = h(i) ∗ ψ ∈ C+,0.

(5) It is clear that B+,0 ⊂ C+,0 ∩B. Conversely, if h ∈ C+,0 ∩ B, then h′ is uniformly continuous
on R, so by Remark 2, h′ ∈ C+,0. By repeating this to all derivatives, we obtain that h ∈ B+,0.

(6) The necessity is a consequence of Proposition 1–(6). To prove the sufficiency we need
the following preliminary result on extension operators, it can be obtained from [14]: there exist
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two sequences of real numbers (al)l∈Z+ and (bl)l∈Z+ such that bl ≤ 0,∀l ∈ Z+, and the operator
E : B (J) → B (R) defined by

Ef(x) :=











f(x) if x ≥ 0,

+∞
∑

l=0

alf(blx) if x < 0

is linear and continuous. Suppose that
x
∫

0

h (t) dt is bounded on J and
+∞
∫

0

h (t) dt < ∞. By

Proposition 1–(6), there exits E ∈ C+,0 such that E′ = h on J, so E is a smooth function on J
such that ∀i ∈ Z+, E

(i) is bounded on J, i.e. E ∈ B (J) . Due to the extension result there ex-
ists a functionH ∈ B such that H = E on J. SoH ∈ B∩C+,0 = B+,0 and it is a primitive of h on J. �

Recall the definition and some properties of the space of smooth almost automorphic functions,
see [6] for details.

Baa :=
{

ϕ ∈ E : ∀j ∈ Z+, ϕ
(j) ∈ Caa

}

.

Proposition 6. The following is true:

(1) Baa is a Fréchet subalgebra of B.

(2) τωBaa ⊂ Baa, ∀ω ∈ R.

(3) Baa ∗ L
1 ⊂ Baa.

(4) Baa = Caa ∩ B.

(5) Let f ∈ Baa and F is its primitive on R, then F ∈ Baa if and only if F is bounded.

We now introduce smooth asymptotically almost automorphic functions.

Definition 4. The space of smooth asymptotically almost automorphic functions is denoted
and defined by

Baaa :=
{

ϕ ∈ E : ∀j ∈ Z+, ϕ
(j) ∈ Caaa

}

.

Example 2. Baa ⊂ Baaa and B+,0 ⊂ Baaa.

We endow Baaa with the topology induced by B. The following proposition is proved in the
same way as Proposition 5 by using results of Propositions 3 and 4.

Proposition 7. The following is true:

(1) The space Baaa is a Fréchet subalgebra of B.

(2) τωBaaa ⊂ Baaa, ∀ω ∈ R.

(3) Baaa × Baa ⊂ Baaa.

(4) Baaa ∗ L
1 ⊂ Baaa.

(5) Baaa = Caaa ∩ B.
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(6) There exists F ∈ Baaa being a primitive on J of f ∈ Baaa if and only if
x
∫

0

faa (t) dt is bounded

on R,
x
∫

0

fcor (t) dt is bounded on J,
+∞
∫

0

fcor (t) dt <∞.

Remark 5. Baaa ( Caaa ∩ E .

We have the following result needed in the sequel.

Proposition 8. Let f ∈ Baaa, i.e. f = faa+ fcor and for i ∈ N, f (i) = faa,i+ fcor,i on J. Then
faa,i = (faa)

(i) on R and fcor,i = (fcor)
(i) on J.

P r o o f. If f ∈ Baaa, then f ′ is uniformly continuous on R and by Proposition 4–(2), we
have f ′ = (faa)

′ + h on J, where (faa)
′ ∈ Caa, h ∈ C+,0 and (fcor)

′ = h on J. By hypothesis,
f ′ = faa,1 + fcor,1 on J and since the decomposition of an asymptotically almost automorphic
function is unique, then (faa)

′ = faa,1 on R and (fcor)
′ = fcor,1 on J. By repeating this to all

derivative, we obtain the desired result. �

In order to prove the main result on linear neutral difference differential equations in the frame-
work of asymptotically almost automorphic distributions, we need the following characterization
of the space Baa.

Proposition 9. Let g ∈ E , the following statements are equivalent :

(1) g ∈ Baa.

(2) For every sequence (ρm)m∈N ⊂ R there exist a subsequence (ρmk
)k and g̃ ∈ B such that for

all x ∈ R and i ∈ Z+, we have

g̃(i) (x) = lim
k→+∞

g(i) (x+ ρmk
) and lim

k→+∞
g̃(i) (x− ρmk

) = g(i) (x) . (3.1)

P r o o f. (1) ⇒ (2) Let g ∈ Baa, so ∀i ∈ Z+, ∀(ρm)m∈N ⊂ R, ∃(ρmi,k
)k ⊂ (ρm)m, ∃(g̃i)i ⊂ L∞

such that ∀x ∈ R,

lim
k→+∞

g(i)(x+ ρmi,k
) =: g̃i(x) and lim

k→+∞
g̃i(x− ρmi,k

) = g(i)(x).

There exist subsequences (ρmn,k
)k, n ∈ Z+, of the sequence (ρm)m such that

∀i ≤ n, lim
k→+∞

g(i)(x+ ρmn,k
) = g̃i(x), ∀x ∈ R. (3.2)

Indeed, the proof is done by induction, if g ∈ Caa it is clear that (3.2) holds for n = 0. Now, let
n ∈ N such that (3.2) holds. As g(n+1) ∈ Caa, there exists a subsequence (ρm(n+1),k

)k of (ρmn,k
)k

and g̃n+1 ∈ L
∞ such that ∀x ∈ R,

g̃n+1(x) := lim
k→+∞

g(n+1)(x+ ρm(n+1),k
).

Furthermore, as ∀i ≤ n, ∀x ∈ R, the subsequence (g(i)(x + ρm(n+1),k
))k is extracted from

(g(i)(x+ ρmn,k
))k then

lim
k→+∞

g(i)(x+ ρm(n+1),k
) = g̃i(x), ∀x ∈ R.
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By construction, ∀k, i,∈ Z+, mi,k ≤ m(i+1),k and since k 7−→ m(i+1),k is strictly increasing
from N to N, then in particular we have mi,i ≤ m(i+1),i < m(i+1),(i+1), ∀i ∈ Z+. This gives that
the map k 7−→ mk,k is strictly increasing from N to N. The sequence (ρmk,k

)k, which we denote by
(ρmk

)k, is extracted from the subsequences (ρmi,k
)k, i ∈ Z+, which is in fact extracted from the

sequence (ρm)m. Consequently,

lim
k→+∞

g(i)(x+ ρmk
) = g̃i(x) exists ∀x ∈ R, ∀i ∈ Z+.

With the same steps we have that

lim
k→+∞

g̃i(x− ρmk
) = g(i)(x), ∀x ∈ R, ∀i ∈ Z+.

Let (σn)n∈N ⊂ J converging to zero and consider the sequence of functions (φn,k)n,k∈N defined
on R by the equality

φn,k(·) =
g(·+ ρmk

+ σn)− g(· + ρmk
)

σn
=

∫ 1

0
g′(·+ ρmk

+ θσn)dθ.

Since g ∈ Baa ⊂ B, then g′ is bounded and uniformly continuous on R, so

lim
k→+∞

lim
n→+∞

∫ 1

0
g′(·+ ρmk

+ θσn)dθ = lim
n→+∞

lim
k→+∞

∫ 1

0
g′(·+ ρmk

+ θσn)dθ.

Consequently, ∀x ∈ R, lim
k→+∞

lim
n→+∞

φn,k(x) = lim
n→+∞

lim
k→+∞

φn,k(x) which gives that ∀x ∈ R,

g̃1(x) = lim
k→+∞

lim
n→+∞

φn,k(x) = lim
n→+∞

lim
k→+∞

φn,k(x) := g̃′0(x).

By iterating to all derivatives, we obtain that g̃0 ∈ E and g̃
(i)
0 = g̃i ∈ L∞,∀i ∈ Z+, i.e. g̃0 ∈ B such

that relations (3.1) hold.
(2) ⇒ (1) is obvious. �

4. Asymptotically almost automorphic distributions

The space of Lp−distributions, denoted by D′
Lp , is the topological dual of DLq , where

1/p + 1/q = 1. The topological dual of Ḃ is denoted by D′
L1 . The space of bounded distribu-

tions D′
L∞ is denoted by B′. The translate τωT, ω ∈ R, of a distribution T ∈ D′ is defined by

〈τωT, ϕ〉 = 〈T, τ−ωϕ〉 , ∀ϕ ∈ D.

Definition 5. By B′
+,0 we denote the space of distributions Q ∈ B′ vanishing at infinity, i.e.

satisfying
lim

ω→+∞
〈τωQ,ϕ〉 = 0, ∀ϕ ∈ D.

We have the following characterizations of B′
+,0 , see [7].

Theorem 1. Let Q ∈ B′, the following assertions are equivalent:

(1) Q ∈ B′
+,0.

(2) Q ∗ ϕ ∈ C+,0, ∀ϕ ∈ D.
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(3) ∃k ∈ Z+ and hj ∈ C+,0, 0 ≤ j ≤ k, such that Q =
k
∑

j=0
h
(j)
j .

We study some properties of the space B′
+,0.

Proposition 10. The following is true:

(1) If Q ∈ B′
+,0, then Q

(i) ∈ B′
+,0, ∀i ∈ Z+.

(2) τωB
′
+,0 ⊂ B′

+,0, ∀ω ∈ R.

(3) B′
+,0 × B ⊂ B′

+,0.

(4) B′
+,0 ∗ D

′
L1 ⊂ B′

+,0.

(5) Let Q ∈ B′, then Q ∈ B′
+,0 if and only if there exists a sequence (ϕm)m∈N ⊂ B+,0 converging

to Q in B′.

P r o o f. (1) and (2) are obvious.

(3) Let ϕ ∈ B and Q ∈ B′
+,0, then by Theorem 1–(3), there exist (hi)i≤k ⊂ C+,0, such that

Q =
k
∑

i=0
h
(i)
i . So

ϕQ =

k
∑

i=0

ϕh
(i)
i =

k
∑

i=0

i
∑

j=0

(−1)j
(

i

j

)

(ϕ(j)hi)
(i−j).

By Proposition 1–(3), ϕ(j)hi ∈ C+,0, hence ϕQ ∈ B′
+,0.

(4) Let Q ∈ B′
+,0, then there exists (hi)i≤k ⊂ C+,0 such that Q =

k
∑

i=0
h
(i)
i , and let S ∈ D′

L1 ,

by [13, Theorem XXV , Section 8, Chapter VI], there exist (ψj)j≤m ⊂ L1 such that S =
m
∑

j=0
ψ
(j)
j .

Thus

(Q ∗ S) =

k
∑

i=0

m
∑

j=0

(hi ∗ ψj)
(i+j) .

By Proposition 1–(4), hi ∗ ψj ∈ C+,0, hence Q ∗ S ∈ B′
+,0.

(5) Let φm)m∈N ⊂ B+,0 such that lim
m→+∞

φm = Q in B′. For a fixed ϕ ∈ D, the set

U : = {τ−xϕ̌ : x ∈ R}

is bounded in DL1 , so

sup
x∈R

|(φm ∗ ϕ) (x)− (Q ∗ ϕ) (x)| = sup
x∈R

|〈φm −Q, τ−xϕ̌〉| ,

= sup
ψ∈U

|〈φm −Q,ψ〉| −→
m→+∞

0,

i.e. (φm ∗ ϕ)m∈N ⊂ C+,0 is uniformly convergent to (Q ∗ ϕ) . By Proposition 1–(1),
Q ∗ ϕ ∈ C+,0, ∀ϕ ∈ D, and by Theorem 1, we obtain Q ∈ B′

+,0.
Conversely, let Q ∈ B′

+,0 and take a sequence of positive test functions (θm)m∈N such that

supp θm ⊂

[

0,
1

m

]

and

∫

R

θm (x) dx = 1.
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Define φm := θm ∗Q ∈ B+,0 , we have

〈φm −Q,ϕ〉 =
〈

Q, θ̌m ∗ ϕ− ϕ
〉

,

and there exist l ∈ Z+, C > 0 such that

∣

∣

〈

Q, θ̌m ∗ ϕ− ϕ
〉∣

∣ ≤ C
∣

∣θ̌m ∗ ϕ− ϕ
∣

∣

l,1
, ∀ϕ ∈ DL1 .

By Minkowski’s inequality and the mean value theorem we obtain for t ∈ ]0, 1[ ,

∥

∥(θ̌m ∗ ϕ)(i) − ϕ(i)
∥

∥

L1 ≤

1/m
∫

0

θ̌m(y)

(
∫

R

|y|
∣

∣ϕ(i+1)(x+ ty)
∣

∣dx

)

dy

≤

1/m
∫

0

|y|θ̌m(y)

(
∫

R

∣

∣ϕ(i+1)(z)
∣

∣dz

)

dy ≤
1

m

∥

∥ϕ(i+1)
∥

∥

L1‖θ̌m‖L1 ,

so
∣

∣θ̌m ∗ ϕ− ϕ
∣

∣

l,1
≤

1

m
|ϕ|l+1,1 , ∀ϕ ∈ DL1 .

Let U be a bounded set of DL1 and ϕ ∈ U, then ∃M > 0 such that

sup
ϕ∈U

∣

∣θ̌m ∗ ϕ− ϕ
∣

∣

l,1
≤
M

m
−→

m→+∞
0,

which gives θm → Q in B′. �

We recall the definition, characterizations and some properties of almost automorphic distribu-
tions, see [6].

Definition 6. A distribution T ∈ B′ is said almost automorphic if it satisfies one of the
following equivalent conditions:

(1) T ∗ ϕ ∈ Caa, ∀ϕ ∈ D.

(2) ∃k ∈ Z+ and gj ∈ Caa, 0 ≤ j ≤ k, such that T =
k
∑

i=0
g
(i)
i .

(3) For every sequence (sm)m∈N ⊂ R, there is a subsequence (smk
)k such that

S := lim
k→+∞

τsmk
T exists in D′,

and

lim
k→+∞

τ−smk
S = T in D′.

(4) There exists a sequence (ϕm)m∈N ⊂ Baa converging to T in B′.

We denote by B′
aa the space of almost automorphic distributions defined on R.

Proposition 11. The following is true:

(1) If T ∈ B′
aa, then T

(i) ∈ B′
aa, ∀i ∈ Z+.
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(2) τωB
′
aa ⊂ B′

aa, ∀ω ∈ R.

(3) B′
aa × Baa ⊂ B′

aa.

(4) B′
aa ∗ D

′
L1 ⊂ B′

aa.

(5) B′
aa ∩ B′

+,0 = {0} .

We now give the definition of asymptotically almost automorphic distributions.

Definition 7. A distribution T ∈ B′ is said asymptotically almost automorphic if there exist
P ∈ B′

aa and Q ∈ B′
+,0 such that T = P +Q on J. We denote by B′

aaa the space of asymptotically
almost automorphic distributions.

Remark 6. The equality T = P +Q on J means that ∀ϕ ∈ D+, 〈T, ϕ〉 = 〈P,ϕ〉+ 〈Q,ϕ〉 , where
D+ := {ϕ ∈ D : suppϕ ⊂ J} .

Proposition 12. The decomposition of an asymptotically almost automorphic distribution is
unique on J.

P r o o f. Let P1, P2 ∈ B′
aa and Q1, Q2 ∈ B′

+,0 such that T = P1 +Q1 = P2 +Q2 on J, then we
obtain that P1 − P2 ∈ B′

+,0, by Proposition 11–(5), P1 − P2 = 0. Hence Q1 = Q2 on J. �

Notation 1. If T ∈ B′
aaa and T = P+Q on J, we call P the principal term and R the corrective

term of T and we denote them respectively by Taa and Tcor. This is summarized by the notation
T = (Taa + Tcor) ∈ B′

aaa.

Example 3.

1. Caaa ⊂ B′
aaa.

2. B′
aa ⊂ B′

aaa.

3. B′
+,0 ⊂ B′

aaa.

4. B′
aap  B′

aaa, where B′
aap is the space of asymptotically almost periodic distributions of [7].

The following results characterize asymptotically almost automorphic distributions.

Theorem 2. Let T ∈ B′, the following assertions are equivalent :

(1) T ∈ B′
aaa.

(2) ∃ (θm)m∈N ⊂ Baaa such that lim
n→+∞

θm = T in B′.

(3) T ∗ ϕ ∈ Caaa, ∀ϕ ∈ D.

(4) ∃k ∈ Z+ and fj ∈ Caaa, 0 ≤ j ≤ k, such that T =
k
∑

j=0
f
(j)
j .
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P r o o f. (1) ⇒ (2) Let T ∈ B′
aaa, by definition T = Taa + Tcor on J. By the characterization

of B′
aa there exists (ϕm)m∈N ⊂ Baa such that lim

m→+∞
ϕm = Taa in B′. It is easy to prove that

T − Taa ∈ B′
+,0, so by Proposition 10–(5) there exists (ψm)m∈N ⊂ B+,0 such that lim

m→+∞
ψm =

T −Taa in B′. Set θm := ϕm+ψm,m ∈ N, then (θm)m∈N ⊂ Baaa and we have T − θm = (T −Taa)−
ψm + (Taa − ϕm). Hence we obtain lim

n→+∞
θm = T in B′.

(2) ⇒ (3) As in the proof of Proposition 10-(5), if (φm)m∈N ⊂ Baaa is such that lim
m→+∞

φm = T

in B′, then for ∀ϕ ∈ D we have

sup
x∈R

|(φm ∗ ϕ) (x)− (T ∗ ϕ) (x)| = sup
x∈R

|〈φm − T, τ−xϕ̌〉| −→
m→+∞

0.

That is (φm ∗ ϕ)m∈N ⊂ Caaa converges uniformly on R to (T ∗ ϕ) , it follows that T ∗ ϕ ∈ Caaa,
∀ϕ ∈ D.

(3) ⇒ (4) For n ∈ Z+, consider the function

En (x) =







xn−1

(n− 1)!
, x ≥ 0.

0, x < 0.

Then En ∈ Cn−2, suppEn ⊂ J and E
(n)
n = δ. Take a function γ ∈ D such that γ = 1 in the

neighborhood of 0, a direct calculus gives (γEn)
(n) = δ + ζn, where

ζn =

n−1
∑

k=0

(

n

k

)

γ(n−k) E(k)
n ∈ D.

As T ∈ B′, we have

T = (γEn ∗ T )
(n) − T ∗ ζn,

where T ∗ ζn ∈ Caaa. It remains to show that γEn ∗ T ∈ Caaa for a suitable n. There exist m ∈ Z+

and C > 0 such that

|〈T, ψ〉| ≤ C |ψ|m,1 , ∀ψ ∈ DL1 .

Take n = m+ 2, then γEm+2 ∈ Dm
L1 , where

Dm
L1 :=

{

ϕ ∈ Cm : ∀j ≤ m, ϕ(j) ∈ L1
}

endowed with the norm | · |m,1.

We have D →֒ DL1 →֒ Dm
L1 and there exists a sequence (θk)k∈N ⊂ D such that (θk)k converges to

γEm+2 with respect to the norm | · |m,1, so

|(T ∗ θk) (x)− (T ∗ γEm+2) (x)| =
∣

∣

〈

T, τ−xθ̌k − τ−x
(

γ̌Ěm+2

)〉
∣

∣ ,

≤ C
∣

∣τ−xθ̌k − τ−x
(

γ̌Ěm+2

)
∣

∣

m,1
,

≤ C |θk − γEm+2|m,1 ,

consequently,

sup
x∈R

|(T ∗ θk) (x)− (T ∗ γEm+2) (x)| ≤ C |θk − γEm+2|m,1 −→
k→+∞

0.

i.e. the sequence of functions (T ∗ θk)k∈N ⊂ Caaa converges uniformly on R to T ∗ γEm+2, hence
T ∗ γEm+2 ∈ Caaa.
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(4) ⇒ (1) Let T =
k
∑

j=0
f
(j)
j , where fj ∈ Caaa, j = 0, ..., k, so

T =

k
∑

j=0

f
(j)
j,aa +

k
∑

j=0

f
(j)
j,cor on J.

Then by Theorem 1 and Definition 6, P =
k
∑

j=0
f
(j)
j,aa ∈ B′

aa and Q =
k
∑

j=0
f
(j)
j,cor ∈ B′

+,0. Therefore

T = P +Q on J, i.e. T ∈ B′
aaa. �

Remark 7. Connected with this theorem, let us quote the preprint [10]. The authors thank the
referee for pointing out the recent work [11].

We have the following properties of B′
aaa.

Proposition 13. The following is true:

(1) If T ∈ B′
aaa, then ∀i ∈ Z+, T

(i) =
(

T
(i)
aa + T

(i)
cor

)

∈ B′
aaa.

(2) τωB
′
aaa ⊂ B′

aaa, ∀ω ∈ R+.

(3) B′
aaa × Baa ⊂ B′

aaa.

(4) B′
aaa ∗ D

′
L1 ⊂ B′

aaa.

P r o o f. The proof of the assertions (1)–(3) follows from the definition, the uniqueness of the
decomposition and the same properties satisfied by the space B′

aa.

(4) Let T ∈ B′
aaa, by the previous Theorem, there exist (fi)i≤k ⊂ Caaa such that T =

k
∑

i=0
f
(i)
i .

Let S ∈ D′
L1 , by [13, Theorem XXV, Section 8, Chapter VI], there exists (ψj)j≤m ⊂ L1 such that

S =
m
∑

j=0
ψ
(j)
j . Thus

(T ∗ S) =

k
∑

i=0

m
∑

j=0

(fi ∗ ψj)
(i+j) .

By Proposition 7–(4), fi ∗ ψj ∈ Caaa. By [13, Theorem XXVI, Section 8, Chapter VI] we have
B′ ∗ D′

L1 ⊂ B′, hence S ∗ T ∈ B′
aaa. �

5. Linear neutral difference differential equations

A linear neutral difference differential equation is an equation

Lωu :=

p
∑

i=0

q
∑

j=0

aij
di

dxi
τωj

u+K ∗ u = f,

where (aij)i≤p, j≤q ⊂ Baa, K ∈ L1 and ω = (ωj)j≤q ⊂ R
q
+.

By the properties of the space B′
aaa it is clear that LωB

′
aaa ⊂ B′

aaa. To prove the main result of
this section we need the following result.
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Lemma 1. Let T ∈ B′, g, g̃ ∈ B and (sm)m∈N a sequence of real numbers such that

T̃ := lim
m→+∞

τsmT in D′, (5.1)

and
g̃(j) (x) = lim

n→+∞
τsmg

(j) (x) , ∀x ∈ R, ∀j ∈ Z+, (5.2)

then
lim

n→+∞
τsm (gT ) = g̃T̃ in D′.

P r o o f. Let (sm)m∈N , T ∈ B′ and g, g̃ ∈ B such that (5.1) and (5.2) hold. As T ∈ B′, ∃C > 0,
∃l ∈ Z+, such that

|〈T, ψ〉| ≤ C |ψ|l,1 , ∀ψ ∈ DL1 .

So ∀ϕ ∈ D,
∣

∣

〈

τsm(gT )− g̃T̃ , ϕ
〉∣

∣ =
∣

∣ 〈T, gτ−smϕ〉 −
〈

T̃ , g̃ϕ
〉∣

∣,

=
∣

∣ 〈τsmT, ϕτsmg〉 −
〈

T̃ , g̃ϕ
〉
∣

∣,

≤
∣

∣

〈

τsmT − T̃ , g̃ϕ
〉
∣

∣+
∣

∣

〈

τsmT, (τsmg − g̃)ϕ
〉
∣

∣,

≤
∣

∣

〈

τsmT − T̃ , g̃ϕ
〉∣

∣+ C
∣

∣(τsmg − g̃)ϕ
∣

∣

l,1
,

≤
∣

∣

〈

τsmT − T̃ , g̃ϕ
〉∣

∣+ C

l
∑

i=0

∥

∥ ((τsmg − g̃)ϕ)(i)
∥

∥

L1 .

The lemma is proved due to (5.1) and the following estimate

∥

∥

(

(τsmg − g̃)ϕ
)(i)∥

∥

L1 ≤
i

∑

j=0

(

i

j

)
∫

R

∣

∣g(j)(x+ sm)− g̃(j)(x)
∣

∣

∣

∣ϕ(i−j)(x)
∣

∣dx −→
m→∞

0,

which is due to the dominated convergence theorem. �

The main result of this section is the following.

Theorem 3. Let S ∈ B′
aaa, the equation LωT = S has a solution T ∈ B′

aaa on J if and only if
there exist V ∈ B′

aa and W ∈ B′
+,0, such that

LωV = Saa on R (5.3)

and
LωW = Scor on J. (5.4)

P r o o f. Suppose that equations (5.3) and (5.4) are satisfied, then

Lω (V +W ) = LωV + LωW = Saa + Scor = S on J.

So T = V +W ∈ B′
aaa is a solution on J of LωT = S.

Conversely, let T ∈ B′
aaa be a solution on J of the equation LωT = S and let (sm)m∈N be a

sequence of real numbers which converges to +∞. As Saa, Taa ∈ B′
aa and Scor, Tcor ∈ B′

+,0, and by
Proposition 9, there is a subsequence (smk

)k of (sm) converging to +∞ and functions ãij ∈ B such
that ∀x ∈ R, ∀i ≤ p, ∀j ≤ q, we have

lim
k→+∞

τsmk
aij (x) = ãij (x) exists and lim

k→+∞
τ−smk

ãij (x) = aij (x) , (5.5)
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and the following limits exist in D′,

lim
k→+∞

τsmk
Taa = V and lim

k→+∞
τ−smk

V = Taa, (5.6)

lim
k→+∞

τsmk
Saa = P and lim

k→+∞
τ−smk

P =Saa,

lim
k→+∞

τsmk
Tcor = 0 and lim

k→+∞
τsmk

Scor = 0. (5.7)

Let ϕ ∈ D, we have

〈

τsmk
(LωT ), ϕ

〉

=

p
∑

i=0

q
∑

j=0

(−1)i
〈

T, τ−ωj
(aijτ−smk

ϕ)(i)
〉

+
〈

K ∗ τsmk
T, ϕ

〉

,

=

p
∑

i=0

q
∑

j=0

(−1)i
〈

τsmk
T, τ−ωj

(ϕτsmk
aij)

(i)
〉

+
〈

K ∗ τsmk
T, ϕ

〉

,

=

p
∑

i=0

q
∑

j=0

〈

τsmk
aijτωj

(τsmk
T )(i), ϕ

〉

+
〈

K ∗ τsmk
T, ϕ

〉

,

=
〈

Lω,k(τsmk
T ), ϕ

〉

,

where

Lω,k =

p
∑

i=0

q
∑

j=0

τsmk
aij

di

dxi
τωj

+K ∗ .

On [−smk
,+∞[ we have τsmk

S = τsmk
LωT, i.e.

τsmk
Saa + τsmk

Scor = τsmk
(LωTaa) + τsmk

(LωTcor) =
(

Lω,kτsmk
Taa

)

+
(

Lω,kτsmk
Tcor

)

,

By (5.5), (5.6), (5.7) and Lemma 1, the limits

lim
k→+∞

(

τsmk
Saa + τsmk

Scor
)

= lim
k→+∞

(

Lω,kτsmk
Taa

)

+ lim
k→+∞

(

Lω,kτsmk
Tcor

)

,

give
P = L̃ωV on R,

where

L̃ω=

p
∑

i=0

q
∑

j=0

ãij
di

dxi
τωj

+K ∗ .

Consequently by (5.6) we obtain

lim
k→+∞

τ−smk
P = lim

k→+∞

(

L̃ω,kτ−smk
V
)

on R,

where

L̃ω,k=

p
∑

i=0

q
∑

j=0

τ−smk
ãij

di

dxi
τωj

+K∗,

which gives
Saa = LωTaa on R.

Finally, the equation Saa + Scor = LωTaa + LωTcor on J implies

Scor = LωTcor on J,
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hence the conclusion is true. �

Remark 8. The proof of the theorem appeals to Lemma 1 and particulary to Proposition 9
characterisating the introduced space of smooth asymptotically almost automorphic functions.

Remark 9. The result of the theorem remains valid if we consider systems. Other problems
can be tackled within the space of asymptotically almost automorphic distributions.

The following result concerns primitives.

Corollary 3. Let S ∈ B′
aaa, the following propositions are equivalent :

(1) T ∈ B′
aaa is a primitive of S on J .

(2) There exist V ∈ B′
aa a primitive on R of Saa and W ∈ B′

+,0 a primitive of Scor on J such
that

T = V +W on J.
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