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Abstract: For a class of sets with multiple terms

{λn, µn}
∞

n=1 := {λ1, λ1, . . . , λ1
︸ ︷︷ ︸

µ1−times

, λ2, λ2, . . . , λ2
︸ ︷︷ ︸

µ2−times

, . . . , λk, λk , . . . , λk
︸ ︷︷ ︸

µk−times

, . . . },

having density d counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers
{dn,k : n ∈ N, k = 0, 1, . . . , µn − 1} satisfying certain growth conditions, we consider a moment problem
of the form ∫

∞

−∞

e−2w(t)tkeλntf(t) dt = dn,k, ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1,

in weighted L2(−∞,∞) spaces. We obtain a solution f which extends analytically as an entire function,
admitting a Taylor-Dirichlet series representation

f(z) =
∞∑

n=1

( µn−1∑

k=0

cn,kz
k
)

eλnz , cn,k ∈ C, ∀ z ∈ C.

The proof depends on our previous work where we characterized the closed span of the exponential system
{tkeλnt : n ∈ N, k = 0, 1, 2, . . . , µn − 1} in weighted L2(−∞,∞) spaces, and also derived a sharp upper bound
for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions
from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.

Keywords: Moment problems, Exponential systems, Biorthogonal families, Weighted Banach spaces, Bessel
and Riesz–Fischer sequences.

1. Introduction

P. Malliavin [5] considered the following in the sense of the classical Bernstein weighted poly-
nomial approximation problem on the real line. Let W (t) be a real-valued continuous function
defined on the half-line [0,+∞) such that it is log-convex, that is log |W (es)| is a convex function
on the real line. Let CW be the weighted Banach space whose elements are the complex-valued
continuous functions f defined on [0,∞), such that

lim
t→∞

f(t)

W (t)
= 0,

equipped with the norm

||f ||W = sup

{
|f(t)|

W (t)
: t ∈ [0,∞)

}

.

Suppose also that {λn}
∞
n=1 is a strictly increasing sequence of positive real numbers diverging to

infinity so that lim inf
n→∞

(λn+1 − λn) > 0. Malliavin proved [5, Theorem 8.3] that the span of the
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system {tλn}∞n=1 is not dense in CW if and only if there exists η ∈ R such that

∫ +∞

1

log |W (eσΛ(t)−η)|

t2
dt < ∞, where σΛ(t) =

∑

λn≤t

2

λn
.

The question of the closure of the non-dense span of the system {tλn}∞n=1 was later on addressed
by J. M. Anderson and K. G. Binmore [1, Theorem 3]. Provided that the λn are positive integers,
they proved that any function in the closure extends analytically as an entire function with a gap
power series expansion of the form f(z) =

∑∞
n=1 anz

λn .
We note that A. Borichev [2] gave a complete characterization of the closure of polynomials in

certain weighted Banach spaces on R, when W is an even log-convex function.
Motivated by the above results, we explored in [7, 8] the properties of a class of exponential

systems
EΛ := {tkeλnt : n ∈ N, k = 0, 1, 2, . . . , µn − 1},

in certain weighted Banach spaces on the real line. We note that such a system is associated to a
set Λ = {λn, µn}

∞
n=1 with multiple terms

{λn, µn}
∞
n=1 := {λ1, λ1, . . . , λ1

︸ ︷︷ ︸

µ1−times

, λ2, λ2, . . . , λ2
︸ ︷︷ ︸

µ2−times

, . . . , λk, λk, . . . , λk
︸ ︷︷ ︸

µk−times

, . . . },

where

• {λn}
∞
n=1 is a strictly increasing sequence of positive real numbers diverging to infinity,

• {µn}
∞
n=1 is a sequence of positive integers, not necessarily bounded.

We say that the set Λ is a multiplicity sequence.
In [7, 8] we assumed that the multiplicity sequence Λ belongs to a certain class denoted by

U(d, 0). This class and the weighted Banach spaces involved will be recalled in Section 2, while the
main results from [7, 8] will be restated in Section 3.

In this paper we continue our investigations by considering a moment problem in a weighted L2

space on the real line. Our result, Theorem 4, is proved in Section 5. Prior to that, we introduce
in Section 4 some notions from Non-Harmonic Fourier Series such as Bessel and Riesz–Fischer
sequences that will play a decisive role.

The following interesting result is a special case of Theorem 4.

Theorem 1. Let

w(t) =

{

t2m+2, t ≥ 0,

0, t < 0,
where m ∈ N.

Let {pn}
∞
n=1 be the increasing sequence of prime numbers and let µn = pn+1 − pn for each n ∈ N,

that is, µn is the distance between consecutive primes. Then, for any real number γ < 2, there
exists an entire function f admitting a Taylor-Dirichlet series representation

f(z) =

∞∑

n=1

( µn−1
∑

k=0

cn,kz
k
)

epnz, cn,k ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that

∫ ∞

−∞
e−2w(t)tkepntf(t) dt = pγpnn , ∀n ∈ N and k = 0, 1, 2, . . . µn − 1.
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2. Notations and definitions from [7, 8]

2.1. Weighted Banach spaces

Definition 1. We denote by Aρ,τ the class of all non-negative convex functions w(t) defined

on the real line that satisfy the following properties:

(i) w(0) = 0 and w(t) ≥ t2, ∀ t ≥ τ ≥ 0,

(ii) there is some ρ > 0 so that w(t) ≤ ρ|t| ∀ t < 0,

(iii) for all A > 0 there is a positive number t(A) such that w(t+A) ≥ w(t) + t, ∀ t ≥ t(A).

Example 1. Let

w(t) =

{

t2m+2, t ≥ 0,

0, t < 0,
where m ∈ N,

then w ∈ Aρ,τ .

For p ≥ 1 we denote by Lp
w the weighted Banach space of complex-valued measurable functions f

defined on R such that ∫ ∞

−∞
|f(t)e−w(t)|p dt < ∞,

equipped with the norm

||f ||Lp
w
:=

(∫ ∞

−∞
|f(t)e−w(t)|p dt

)1/p

.

As usual, L2
w is a Hilbert space when endowed with the inner product

〈f, g〉 :=

∫ ∞

−∞
f(t)g(t)e−2w(t) dt.

2.2. The class of multiplicity sequences U(d, 0)

We say that a multiplicity sequence Λ = {λn, µn}
∞
n=1 has finite density d counting multiplicities,

if

lim
n→∞

nΛ(t)

t
= d < ∞, where nΛ(t) :=

∑

λn≤t

µn. (2.1)

If µn = 1 for all n ∈ N the above is equivalent to

n

λn
→ d as n → ∞.

Definition 2. We denote by L(c, d) the class of strictly increasing sequences A = {an}
∞
n=1

having positive real terms an such that A has a finite density d and uniformly separated terms for

some c > 0, that is,

n

an
→ d as n → ∞, an+1 − an > c ∀ n ∈ N.
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Suppose now that a sequence A={an}
∞
n=1 belongs to the class L(c, d). Then choose two positive

numbers α, δ so that

α < 1 and δ ≤ min{4, c}.

For each n ∈ N consider the closed segment Tn := {x : |x− an| ≤ aαn} ⊂ R. Then, choose a point
in Tn that we call bn, in an almost arbitrary way, in the sense that

for all n 6= m either (I) bm = bn or (II) |bm − bn| ≥ δ.

Hence a new sequence B = {bn}
∞
n=1 is constructed.

We remark that the condition (I) allows for the presence of multiple terms in B. We may now
rewrite B = {bn}

∞
n=1 in the form of a multiplicity sequence Λ = {λn, µn}

∞
n=1, by grouping together

all those terms that have the same modulus.

Definition 3. Fix a nonnegative constant d. We denote by U(d, 0) the class of all the multiplic-

ity sequences Λ = {λn, µn}
∞
n=1 constructed in the way described above from sequences A = {an}

∞
n=1

which belong to the class L(c, d), for any positive constants α, δ, c, with α < 1 and δ ≤ min{4, c}.

Remark 1. Clearly L(c, d) is a subclass of U(d, 0).

We now mention two important properties of a sequence Λ ∈ U(d, 0) [8, Section 2].

(1) Λ has the same density d counting multiplicities as the original sequence A from which it
was constructed, that is, (2.1) holds.

(2) There exists some χ > 0 independent of n, so that

µn ≤ χλα
n ∀ n ∈ N. (2.2)

We also note that since α < 1, then µn/λn → 0 as n → ∞, hence for every ǫ > 0 there is n(ǫ) ∈ N

so that

µn ≤ ǫλn ∀ n ≥ n(ǫ). (2.3)

Remark 2. We use the notation U(d, 0) since Λ has density d and µn/λn → 0 as n → ∞. That
is, the second parameter in our notation stands for the relation between the multiplicities µn and
their corresponding frequencies λn.

An interesting multiplicity sequence in the U(1, 0) class with unbounded multiplicities is the
following.

Example 2. Let {pn}
∞
n=1 be the increasing sequence of prime numbers, and let µn = pn+1 − pn

for each n ∈ N. Then Λ = {pn, µn}
∞
n=1 belongs to the class U(1, 0). It can be constructed in the

way described above from the set N of natural numbers which has density 1 (see [7, Example 1.3]
and [8, Example 2.1]).

3. Our previous main results and the new one

Assuming that a multiplicity sequence Λ = {λn, µn}
∞
n=1 belongs to the class U(d, 0), we obtained

in [7] necessary and sufficient conditions in order for the span of EΛ to be dense in Lp
w.
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Theorem 2 [7, Theorem 1.1]. Let w(t) be a function which belongs to the class Aρ,τ and sup-

pose that Λ ∈ U(d, 0) for some d > 0. Then the span of the system EΛ is not dense in Lp
w for all

p ∈ [1,∞), if and only if there exists η ∈ R such that

∫ +∞

1

w(σΛ(t)− η)

1 + t2
dt < ∞, σΛ(t) := 2

∑

λn≤t

µn

λn
. (3.1)

We then characterized in [8] the closure of the non-dense span of EΛ. Moreover, in [8] we also
derived an upper bound for the norm of the elements of a biorthogonal sequence

rΛ := {rn,k : n ∈ N, k = 0, 1, . . . , µn − 1} ⊂ L2
w

to the system EΛ in L2
w, where biorthogonality means

∫ ∞

−∞
rn,k(t)t

leλjte−2w(t) dt =







1, j = n, l = k,

0, j = n, l ∈ {0, 1, . . . , µn − 1} \ {k},

0, j 6= n, l ∈ {0, 1, . . . , µj − 1}.

Theorem 3 [8, Theorems 2.1 and 6.1]. Suppose that Λ ∈ U(d, 0) for some d > 0, w(t) ∈ Aρ,τ

and (3.1) holds.
Part I. Let f be a function which belongs to the closed span of EΛ in Lp

w for some p ≥ 1. Then

there is an entire function g(z) which admits a Taylor-Dirichlet series representation

g(z) =
∞∑

n=1

( µn−1
∑

k=0

cn,kz
k
)

eλnz, cn,k ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that f(x) = g(x) almost everywhere

on the real line.

Part II. There is a unique biorthogonal sequence rΛ to the system EΛ in L2
w which belongs to its

closed span, such that for every ǫ > 0 there is a constant mǫ > 0, independent of n and k, so that

||rn,k||L2
w
≤ mǫ exp

{
(−2d+ ǫ)λn log λn

}
, ∀ n ∈ N, k = 0, 1, . . . , µn − 1. (3.2)

Our aim in this article is to prove the following moment problem result.

Theorem 4. Suppose that Λ ∈ U(d, 0) for some d > 0, w(t) ∈ Aρ,τ and (3.1) holds. Consider

a doubly-indexed sequence of non-zero complex numbers

{dn,k : n ∈ N, k = 0, 1, . . . , µn − 1}

such that

lim sup
n→∞

logAn

λn log λn
= γ < 2d, An = max{|dn,k| : k = 0, 1, . . . , µn − 1}. (3.3)

Then there exists a function f ∈ span (EΛ) in L2
w that extends analytically as an entire function,

admitting a Taylor-Dirichlet series representation

f(z) =

∞∑

n=1

(
µn−1
∑

k=0

cn,kz
k

)

eλnz, cn,k ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that
∫ ∞

−∞
e−2w(t)tkeλntf(t) dt = dn,k, ∀ n ∈ N and k = 0, 1, 2, . . . µn − 1. (3.4)
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We point out that similar moment problems were considered in [8, Theorems 1.2 and 7.1] but
the solution obtained is a continuous function on R rather than an entire function.

We also note that Theorem 1 follows by combining Theorem 4 with Example 1, Example 2,
and

Remark 3. Suppose that Λ has a positive density d. A sufficient condition for (3.1) to hold (see
the proof of [8, Theorem 2.2]) is if w(t) ∈ Aρ,τ such that

t2 ≤ w(t) ≤ eξt, ∀ t ≥ τ ≥ 0, 0 < ξ <
1

2d
.

The following results are direct consequences of Theorem 4.

Corollary 1. Let w(t) be as in Example 1.

(A) Suppose that {λn}
∞
n=1 is a sequence in the L(c, d) class for some d > 0 and consider a sequence

of non-zero complex numbers {dn}
∞
n=1 such that

lim sup
n→∞

log |dn|

λn log λn
< 2d.

Then there exists an entire function f admitting a Dirichlet series representation

f(z) =

∞∑

n=1

cne
λnz, cn ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that

∫ ∞

−∞
e−2w(t)eλntf(t) dt = dn, ∀ n ∈ N.

(B) There exist entire functions f and g admitting a Dirichlet series representation

f(z) =

∞∑

n=1

cne
nz, g(z) =

∞∑

n=1

dne
nz,

so that for all n ∈ N we have

∫ ∞

−∞
e−2w(t)entf(t) dt = nn,

∫ ∞

−∞
e−2w(t)entg(t) dt = n!.

4. Bessel and Riesz–Fischer sequences

The proof of Theorem 4 depends on Theorem 3 and utilizes the following notions from Non-
Harmonic Fourier Series.

Let H be a separable Hilbert space endowed with an inner product 〈 · 〉, and consider two
sequences {fn}

∞
n=1 and {gn}

∞
n=1 in H. We say that [6, Chapter 4, Section 2]:

(i) {fn}
∞
n=1 is a Bessel sequence if there exists a constant B > 0 such that

∞∑

n=1

|〈f, fn〉|
2 < B||f ||2 ∀ f ∈ H.
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(ii) {gn}
∞
n=1 is a Riesz–Fischer sequence if the moment problem 〈f, gn〉 = cn has at least one

solution f ∈ H for every sequence {cn}
∞
n=1 in the space l2(N).

Remark 4. It follows from [3, Proposition 2.3] that if two sequences {fn}
∞
n=1 and {gn}

∞
n=1 in H

are biorthogonal, that is

〈fn, gm〉 =

{

1, m = n,

0, m 6= n,

and {fn}
∞
n=1 is a Bessel sequence, then {gn}

∞
n=1 is a Riesz–Fischer sequence.

We give now a sufficient condition in order for {gn}
∞
n=1 to be a Riesz–Fischer sequence.

Lemma 1. Let H be a separable Hilbert space and consider two biorthogonal sequences {fn}
∞
n=1

and {gn}
∞
n=1 in H. Let cn,m = 〈fn, fm〉 and let C = (cn,m) be the Hermitian Gram matrix associated

with {fn}
∞
n=1. If there is some M > 0 so that

∞∑

n=1

|cn,m| < M for all m = 1, 2, 3, . . . , (4.1)

then {fn}
∞
n=1 and {gn}

∞
n=1 are Bessel and Riesz-Fischer sequences respectively in H.

P r o o f. Relation (4.1) implies that the Gram matrix C defines a bounded linear operator on
the space of sequences l2(N) (see [4, Lemma 3.5.3] and [6, Sec. 4.2, Lemma 1]). It then follows by
[4, Lemma 3.5.1] that {fn}

∞
n=1 is a Bessel sequence in H. By Remark 4 we conclude that {gn}

∞
n=1

is a Riesz–Fischer sequence in H. �

5. Proof of Theorem 4

Clearly span (EΛ) in L2
w is a separable Hilbert space and let us denote this space by HΛ. From

Theorem 3 (Part II), let {rn,k} be the biorthogonal sequence to EΛ which belongs to its closed
span.

Then, define for every n ∈ N and k = 0, 1, . . . , µn − 1 the following:

Un,k(t) := λndn,krn,k(t) and Vn,k(t) :=
tkeλnt

λndn,k
.

It easily follows that {Un,k} and {Vn,k} are biorthogonal sequences in HΛ.
We now claim that {Un,k} and {Vn,k} are Bessel and Riesz–Fischer sequences respectively inHΛ.

First, since (3.2) and (3.3) hold, if we let ǫ = (2d− γ)/2 we get

||Un,k||L2
w
≤ e−ǫλn , ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1.

Then, by the Cauchy-Schwartz inequality we get

|〈Un,k, Um,j〉| ≤ e−ǫλn · e−ǫλm , ∀ n,m ∈ N k = 0, 1, 2, . . . , µn − 1 j = 0, 1, 2, . . . , µm − 1. (5.1)

Next, let cn,k,m,j be the value of 〈Un,k, Um,j〉 and let C be the infinite dimensional hermitian
matrix with entries the cn,k,m,j’s, that is C is the Gram matrix associated with {Un,k}. From (2.3)
and (5.1) we get

∞∑

n=1

µn−1
∑

k=0

∞∑

m=1

µm−1
∑

j=0

|cn,k,m,j| < ∞.
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It then follows from Lemma 1 that our claim is valid.
Thus, the moment problem

∫ ∞

−∞
f(t)Vn,k(t)e

−2w(t) dt = an,k ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1,

has a solution in HΛ whenever
∑∞

n=1

∑µn−1
k=0 |an,k|

2 < ∞. Now, if we let

an,k =
1

λn
∀ n ∈ N and k = 0, 1, . . . , µn − 1,

then the density of Λ and relation (2.2) imply that

∞∑

n=1

µn−1
∑

k=0

|an,k|
2 =

∞∑

n=1

µn

λ2
n

< ∞.

Thus, {an,k} belongs to the space l2(N). Hence, and recalling the definition of Vn,k, there is some
function f ∈ HΛ so that

∫ ∞

∞
f(t)

(
tkeλnt

dn,kλn

)

e−2w(t) dt =
1

λn
, ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1.

Clearly now (3.4) holds.
Finally, since f ∈ HΛ it follows from Theorem 3 (Part I) that f extends analytically as an entire

function admitting a Taylor–Dirichlet series representation. Our proof is now complete.
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