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One-sided widths of the classes of functions W r
p [0, 1] in the metric Lq [0, 1], 1 ≤ p, q ≤ ∞, r ≥ 1, are studied.

Such widths are defined similarly to Kolmogorov widths with additional constraints on the approximating
functions.
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Let us introduce some definitions. The Kolmogorov width (see [1]) is, by definition, the value

dn(W r
p , Lq) = inf

Ln⊂Lq

sup
f∈W r

p

inf
g(x)∈Ln

‖f − g‖Lq , (1)

where Ln is an n-dimensional subspace of the space Lq[0, 1]; W r
p is the class of functions f(x)

representable in the form

f(x) = Pr−1(x) +
1

(r − 1)!

x∫

0

(x− t)r−1f (r)(t) dt.

Here, Pr−1(x) is a polynomial of degree at most r− 1, r is a positive integer, and r ≥ 1; f (r−1)(x)

is absolutely continuous and ‖f (r)‖Lp =
(∫ 1

0
|f (r)(x)|p dx

)1/p
≤ 1, 1 ≤ p ≤ ∞; by ‖f (r)‖L∞ we

mean ess sup{|f (r)(x)| : 0 ≤ x ≤ 1}.
The corresponding one-sided width is defined as follows (see [2]):

d+
n (W r

p , Lq) = inf
Ln⊂Lq

sup
f∈W r

p

inf
g(x)∈Ln

g(x)≥f(x)

‖f − g‖Lq .

Orders of widths dn(W r
p , Lq) (1) with respect to n were studied by many authors. Detailed

information on this subject is given quite completely in [3], where the final results in this direction
were obtained. The following final order result is valid:

dn(W r
p , Lq) ³





n−r, if 1 ≤ q ≤ p ≤ ∞ or 2 < p ≤ q ≤ ∞,

n
−r− 1

2
+ 1

p , if 1 ≤ p ≤ 2 ≤ q ≤ ∞,

n
−r− 1

q
+ 1

p , if 1 ≤ p < q ≤ 2,

(2)

where the symbol ³ means that the upper and lower bounds hold for dn(W r
p , Lq) with the given

orders with respect to n accurately to the constants that depend only on r, p and q.
In the present paper, we show that one-sided widths d+

n (W r
p , Lq) have the same orders (2) with

respect to n.
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Theorem. For all positive integers r ≥ 1 and 1 ≤ p, q ≤ ∞, the following order equalities are
valid:

d+
n (W r

p , Lq) ³





n−r, if 1 ≤ q ≤ p ≤ ∞ or 2 < p ≤ q ≤ ∞,

n
−r− 1

2
+ 1

p , if 1 ≤ p ≤ 2 ≤ q ≤ ∞,

n
−r− 1

q
+ 1

p , if 1 ≤ p < q ≤ 2.

P r o o f. Since, by definition, d+
n (W r

p , Lq) ≥ dn(W r
p , Lq) and (2) is valid, the lower bounds

follow immediately.
Estimating the widths from above, we consider several cases. Divide the interval [0, 1] into n

equal intervals [xi, xi+1] (i = 0, 1, . . . , n − 1), xi = i/n. On each interval, we will approximate a
function f(x) from W r

p by the Taylor partial sum

ϕi,r(x) = f(xi)(x− xi) + · · ·+ f (r−1)(xi)
(x− xi)r−1

(r − 1)!
, xi =

xi + xi+1

2
.

We have

|f(x)− ϕi,r(x)| =
∣∣∣∣∣

1
(r − 1)!

x∫

xi

(x− t)r−1f (r)(t) dt

∣∣∣∣∣, x ∈ [xi, xi+1]. (3)

The following estimates hold (1/p + 1/p1 = 1):

|f(x)− ϕi,r(x)| ≤ 1
(r − 1)!

∣∣∣∣∣

x∫

xi

(x− t)r−1f (r)(t) dt

∣∣∣∣∣

≤ 1
(r − 1)!

∣∣∣∣∣

x∫

xi

|x− t|(r−1)p1 dt

∣∣∣∣∣

1
p1

∣∣∣∣∣

x∫

xi

|f (r)(t)|p dt

∣∣∣∣∣

1
p

≤ 1
(r − 1)!

|x− xi|
(r−1)p1+1

p1

( xi+1∫

xi

|f (r)(t)|p dt

) 1
p

≤ 1
(r − 1)!

(xi+1 − xi)
r−1+ 1

p1

2r−1+ 1
p1

( xi+1∫

xi

|f (r)(t)|p dt

) 1
p

= Ci. (4)

Thus, the following inequalities are valid:

f(x)− ϕi,r(x) + Ci ≥ 0 (i = 0, 1, . . . , n− 1), (5)

0 ≤ f(x)− ϕi,r(x) + Ci ≤ 2Ci =
1

(r − 1)!
(xi+1 − xi)

r−1+ 1
p1

2r+ 1
p1

( xi+1∫

xi

|f (r)(t)|p dt

) 1
p

. (6)

Denote by Lnr the nr-dimensional subspace of functions g(x) of the form

g(x) = Pr−1,i(x), x ∈ [xi, xi+1] (i = 0, 1, . . . , n− 1),

where Pr−1,i(x) is a polynomial of degree at most r−1. Then, for the functions from (3)–(6), which
belong to Lnr, we have

d+
nr1

(W r
p , Lq) ≤

(
n−1∑

i=0

xi+1∫

xi

|f(x)− ϕi,r(x) + Ci|q dx

) 1
q
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≤
[

n−1∑

i=0

(xi+1 − xi)(2Ci)q

] 1
q

≤
(

1
n

)r− 1
p
+ 1

q 1

(r − 1)!2r− 1
p

[
n−1∑

i=0

( xi+1∫

xi

|f (r)(t)|p dt

) q
p
] 1

q

. (7)

Denote αi =
∫ xi+1

xi

|f (r)(t)|p dt ≥ 0. Since f ∈ W r
p , we have

∑n−1
i=0 αi = 1. This and (7) imply that

∑n−1
i=0 α

q
p

i achieves the largest value for q/p > 1 if one of αi is equal to 1 and all the other are zero;
i. e., in this case,

d+
nr(W

r
p , Lq) ≤ 1

(r − 1)!2r− 1
p

(
1
n

)r− 1
p
+ 1

q

, q > p.

For q ≤ p, the largest value on the right-hand side of (7) is achieved for αi = (1/n); i. e., in this
case,

d+
nr(W

r
p , Lq) ≤ 1

(r − 1)!2r− 1
p

(
1
n

)r− 1
p
+ 1

q

[
n−1∑

i=0

(
1
n

) q
p

] 1
q

=
1

(r − 1)!2r− 1
p

(
1
n

)r− 1
p
+ 1

q
(

1
n

) 1
p

n
1
q =

1

(r − 1)!2r− 1
p

(
1
n

)r

(q ≤ p). (8)

Further, consider the case 2 < p ≤ q ≤ ∞. Here, we use a fact mentioned in [3]. The following
inequalities are valid:

d+
n (W r

p , Lq) ≤ d+
n (W r

p , L∞) ≤ d+
n (W r

2 , L∞). (9)

The former inequality in (9) follows from the inequality ‖f‖Lq ≤ ‖f‖L∞ , and the latter inequality
follows from the embedding W r

p ⊂ W r
2 because

( 1∫

0

|f (r)(x)|2 dx

) 1
2

≤
( 1∫

0

|f (r)(x)|2· p2 dx

) 1
p
( 1∫

0

(1)
p

p−2 dx

) p−2
p

=

( 1∫

0

|f (r)(x)|p dx

) 1
p

.

From inequality (9) for 2 < p ≤ q ≤ ∞, we deduce that

dn(W r
p , Lq) ≤ d+

n (W r
p , Lq) ≤ d+

n (W r
2 , L∞) ≤ 2dn(W r

2 , L∞) ³ n−r,

2 < p ≤ q ≤ ∞;

i. e., in this case,
d+

n (W r
2 , L∞) ³ n−r, 2 ≤ p ≤ q ≤ ∞.

It remains to prove that d+
n (W r

p , Lq) ³ n
−r− 1

2
+ 1

p for 1 ≤ p ≤ 2 ≤ q ≤ ∞. Taking into account the
former inequality in (9), we have

d+
n (W r

p , Lq) ≤ d+
n (W r

p , L∞).

Note the following fact. If a set W [0, 1] from L∞ contains an arbitrary constant, then approxi-
mating subspaces must also contain this constant. Otherwise, dn(W,L∞) = ∞. Therefore,

dn(W r
p , L∞) ≤ d+

n (W r
p , L∞) = inf

Ln

sup
f∈W r

p

inf
g(x)∈Ln

g(x)≥f(x)

‖f − g‖Lq

≤ inf
Ln

sup
f∈W r

p

inf
g(x)∈Ln

‖f − g + dn(W r
p , L∞)‖L∞ ≤ 2dn(W r

p , L∞) ³ n
−r+ 1

2
+ 1

p (1 ≤ p ≤ 2 ≤ q ≤ ∞).

For the latter equivalence, see the case p ≤ 2 ≤ q ≤ ∞ in (2).
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For a given m, we find [m/r], where [m/r] is the integer part of the number m/r. Then,
[m/r]r ≤ m ≤ ([m/r] + 1)r. In this case,

d+
[m

r
]r+1(W

r
p , Lq) ≤ d+

m(W r
p , Lq) ≤ d+

[m
r

]r(W
r
p , Lq)

and, from the foregoing, we obtain the exact order of behavior of the one-sided widths with respect
to m (m → ∞) for all m, not only for m that are multiples of r. Moreover, the equivalence
constants are finite and depend only on r, p, and q; r ∈ N and 1 ≤ p, q ≤ ∞. ¤

For an even positive integer r, we can also use the results from [4]. Then, in a number of cases,
estimating from above, we can obtain the constants independent of n that may be less than the
constants in the present paper; however, the order of their behavior with respect to n (n → ∞)
will be the same.
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