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IMPULSE CONTROL OF THE MANIPULATION ROBOT
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Abstract: A nonlinear control problem for a manipulation robot is considered. The solvability conditions for
the problem are obtained in the class of special impulse controls. To achieve the control goal, the kinetic energy
of the manipulation robot is used. When finding analytical formulas for controls, the classical first integrals
of Lagrangian mechanics were used. The effectiveness of the proposed algorithm is illustrated by computer
simulation.
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Introduction

The purpose of controlling the manipulation robot is to transfer it from the initial position
to the final. The significant nonlinearity of the mathematical model describing the movements of
the manipulation robot does not allow the use of the methods of the mathematical control theory
directly for the original model. Decomposition methods make it possible to reduce the dimension of
the control problem, passing to approximate linear or integrable mathematical control models [1, 2].
The work considers a manipulation robot with three degrees of freedom, imitating the movement of
a human hand, described in the monograph [3]. In [4], the problem of controlling the horizontal two-
dimensional motion of this robot was studied. The original nonlinear control model was replaced
with an integrable controlled model. The Pontryagin maximum principle was used to find controls
in the performance problem. The use of special impulse controls in this work allows the kinetic
energy of the manipulation robot to be used to reach the final position. This approach preserves
the integrability of the original controlled mathematical model and, when solving the problem,
uses the classical first integrals of Lagrangian mechanics. The article concludes with the results of
numerical simulation of the algorithm.

1. Mathematical statement of the problem

A manipulation robot with three degrees of freedom, imitating the movement of a human hand,
described in the monograph [3, p. 263]. Figure 1 shows a robot manipulator. The number 1
indicates the base of the robotic arm, 2 is a rack of vertically oriented shaft. This shaft is rigidly
connected to the guide beam 4 and hand 5.

Kinetic energy of the manipulation robot is determined by the formula

T =
1

2

(

m1z
′2 + (J1 + J2)ϕ

′2 +m2(z
′2 + x′2 + x2ϕ′2)

)

,
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Figure 1

where x is the coordinate of the center of mass of the arm, x > 0; z is the height of the arm, z > 0;
ϕ is the angle of rotation of the hand; m1 is the total mass of the shaft that rotates the arm, and the
guides that implement the horizontal displacement of the arm; m2 is the mass of the arm; J1 is the
moment of inertia of the shaft and guides relative to the vertical axis; J2 is the central moment of
inertia of the arm relative to the vertical axis. The potential energy of gravity is V = (m1 +m2)g,
where g is the gravitational acceleration.

The second-order Lagrange equations for the mechanical system under consideration are of the
form [3, p. 263]

z′′ + g = u1, (1.1)

x′′ − xϕ′2 = u2, (1.2)

ϕ′′ + α2
(

x2ϕ′
)′

= u3. (1.3)

Here u1 = P/(m1 +m2), u2 = F/m2, u3 = M/(J1 + J2) are the control force actions, where P is
the magnitude of the longitudinal force acting along the vertical axis, F is the magnitude of the
longitudinal force acting along the horizontal guides, M is the magnitude of the moment of force
directed along the vertical axis, α =

√

m2/(J1 + J2).

It is required to find the controls u1, u2, u3 that translate the system (1.1)–(1.3) from the initial
equilibrium position (z0, x0, ϕ0)

⊤ , z0 > 0, x0 > 0, to the given end position (z∗, x∗, ϕ∗)
⊤, z∗ > 0,

x∗ > 0, z∗ 6= z0, x∗ 6= x0, ϕ∗ 6= ϕ0.

To solve this problem, we use a special set U of impulse controls defined by the formulas

u1(t) = ż0δ(t), u2(t) = ẋ0δ(t), u3(t) = ϕ̇0δ(t), t ∈ R,

where δ(·) is the Dirac impulse function. Impulse controls at the initial moment of time t = 0 to
the dynamic system (1.1)–(1.3), which are in equilibrium, report the initial velocities z′(0) = ż0,
x′(0) = ẋ0, ϕ

′(0) = ϕ̇0. The initial speeds are control parameters, the choice of which should ensure
that the dynamic system (1.1)–(1.3) falls into the final position.

2. Impulse control parameters

The problem is divided into two problems. In the first problem, for the equation (1.1) that
determines the vertical movement of the manipulation robot, we use the set U1 of impulse controls
defined by the formula u1(t) = ż0δ(t), t ∈ R. It is required to find the control u1, which transfers
the dynamical system (1.1) from the initial equilibrium position z0, z0 > 0, to the given final
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position z∗, z∗ > 0, z∗ 6= z0. In the second problem, for the system of equations (1.2), (1.3),
which determines the horizontal movement of the manipulation robot, we use the set U2 of impulse
controls defined by the formulas u2(t) = ẋ0δ(t), u3(t) = ϕ̇0δ(t), t ∈ R. It is required to find
controls u2, u3 that translate the dynamical system (1.2), (1.3) from the initial equilibrium position
(x0, ϕ0)

⊤ , x0 > 0, to the given end position (x∗, ϕ∗)
⊤ , x∗ > 0, x∗ 6= x0, ϕ∗ 6= ϕ0.

Lemma 1. In the set U1 there are impulse controls u1 that transfer the dynamical system (1.1)
from an arbitrary initial position z0, z0 > 0, to an arbitrary end position z∗, z∗ > 0, z∗ 6= z0.

P r o o f. The impulse control u1 ∈ U1 provides the dynamic system (1.1) at the initial moment
t = 0 the initial velocity z′(0) = ż0. For t > 0, the motion of a free dynamic system is determined
by the differential equation z′′+ g = 0 with the initial conditions z(0) = z0, z

′(0) = ż0. The vertical
movement is described by the formula z(t) = −gt2/2 + ż0t + z0, t > 0. For any τ1 > 0 there is a
unique value of the control parameter z0 for which the equality z(τ1) = z∗, ż0 = τ−1

1 (z∗ − z0)+gτ1/2
is true.

We show that the velocity at the finite moment of time is minimal in absolute value if
τ1 =

√

2|z∗ − z0|/g. The velocity at the finite moment of time is determined by the formula

z′(τ1) = −gτ1 + ż0 = −gτ1/2 + τ−1
1 (z∗ − z0) .

If z∗ > z0 > 0, then we have z′(τ1) = 0 under the condition τ1 =
√

2(z∗ − z0)/g. The func-
tion f(τ) = g1/2 + τ−1 (z0 − z∗) has a minimum at τ = τ1 =

√

2 (z0 − z∗) /g which is equal to
√

2g (z0 − z∗) if z0 > z∗ > 0.
The impulse controls u2, u3 ∈ U2 prescribe the dynamic system (1.2), (1.3) at the initial moment

t = 0 the initial speeds x′(0) = ẋ0, ϕ
′(0) = ϕ̇0. For t > 0 the motion of a free dynamic system

is determined by differential equations x′′ − xϕ′2 = 0, ϕ′′ + α2
(

x2ϕ′
)′

= 0 with initial conditions
x(0) = x0, ϕ(0) = ϕ0, x

′(0) = ẋ0, ϕ
′(0) = ϕ̇0. For the horizontal free movement of the manipulation

robot, kinetic energy and momentum are kept the same [5]

T2 =
1

2

(

(J1 + J2)ϕ
′2 +m2(x

′2 + x2ϕ′2)
)

= const,

p2 =
∂T2

∂ϕ′
= (J1 + J2 +m2x

2)ϕ′ = const.

When describing horizontal motion for t > 0, we replace the system (1.1), (1.2) with the system of
differential equations

α2x′2 + (1 + α2x2)ϕ′2 = c1, (2.1)

(1 + α2x2)ϕ′ = c2, (2.2)

where
c1 = α2ẋ20 + (1 + α2x20)ϕ̇

2
0, c2 = (1 + α2x20)ϕ̇0.

�

Lemma 2. Let the conditions

|ϕ∗ − ϕ0| ≤
x∗
∫

x0

√

1 + α2x20ds
√

(1 + α2s2)(s2 − x20)
, 0 < x0 < x∗, (2.3)

|ϕ∗ − ϕ0| ≤
x0
∫

x∗

√

1 + α2x2∗ds
√

(1 + α2s2)(s2 − x2∗)
, 0 < x∗ < x0, (2.4)
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hold. Then in the set U2 there are impulse controls u1, u2 that move the dynamical system (1.2),
(1.3) from the starting position (x0, ϕ0)

⊤ , x0 > 0, to the ending position (x∗, ϕ∗)
⊤ , x∗ > 0, x∗ 6= x0,

ϕ∗ 6= ϕ0.

P r o o f. Under the condition ẋ0 6= 0, the system of differential equations (2.1), (2.2) is
transformed to the following form

x′ = sgn ẋ0

√

ẋ20 + (1 + α2x20) ϕ̇
2
0

x2 − x20
1 + α2x2

, x ∈ X, (2.5)

ϕ′ =
(1 + α2x20)ϕ̇0

1 + α2x2
, x ∈ X, (2.6)

where

X =
{

x ∈ R
+ : ẋ20 + (1 + α2x20)ϕ̇

2
0

x2 − x20
1 + α2x2

≥ 0
}

.

To move the motion of the dynamical system (2.5), (2.6) from the initial to the final position,
the control parameters ẋ0, ϕ̇0 must satisfy the conditions

ϕ̇0 6= 0, sgn ẋ0 = sgn (x∗ − x0), sgn ϕ̇0 = sgn (ϕ∗ − ϕ0).

We introduce the parameter p = |ẋ0|/|ϕ̇0|. Now the description of the set X = X(p) is simplified.
As a result, we have

X(p) = R
+ under p ≥ x0

√

1 + α2x20,

X(p) = R
+/(0, x1(p)) under p < x0

√

1 + α2x20,

where

x1(p) =

√

x20(1 + α2x20)− p2

1 + α2x20
+ α2p2.

The equation (2.5) is converted to

x′ = sgn (x∗ − x0)|ϕ̇0|

√

p2 + (1 + α2x20)
x2 − x20
1 + α2x2

, x ∈ X. (2.7)

It is also valid for p = 0. Using (2.7) and (2.6), we obtain a differential equation for finding the
trajectory of a horizontal movement

dx

dϕ
=

sgn (x− x0)(1 + α2x2)

sgn (ϕ∗ − ϕ0)(1 + α2x20)

√

p2 + (1 + α2x20)
x2 − x20
1 + α2x2

, x ∈ X(p).

Integrating the differential equation, we find the equation of the trajectory of a horizontal movement

sgn (x∗ − x0)

x
∫

x0

(1 + α2x20)ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

= sgn (ϕ∗ − ϕ0)(ϕ− ϕ0), x ∈ X(p).

The trajectory passes through the end point if the condition is true

∣

∣

∣

∣

∣

x∗
∫

x0

(1 + α2x20)ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

= |ϕ∗ − ϕ0|, x∗ ∈ X(p).
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We select the value of the parameter p to satisfy the condition obtained. For 0 < x0 < x∗, the
required value of the parameter p is determined by the equation

x∗
∫

x0

ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

=
|ϕ∗ − ϕ0|
1 + α2x20

, 0 ≤ p < +∞. (2.8)

For 0 < x∗ < x0, the required value of the parameter p is determined by the equation

x0
∫

x∗

ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

=
|ϕ∗ − ϕ0|
1 + α2x20

, pkp ≤ p < +∞, (2.9)

where

pkp =

√

(1 + α2x20)(x
2
0 − x2∗)

1 + α2x2∗
.

The equation (2.8) has a unique solution p = p∗ under the condition (2.3) and equation (2.9) also
has a unique solution p = p∗ if the conditions (2.4) hold.

Suppose that the condition (2.3) holds for 0 < x0 < x∗ and for 0 < x∗ < x0 the condition (2.4)
is satisfied. Then impulse control u2(t) = ẋ0δ(t), u3(t) = ϕ̇0δ(t) (t ∈ R) bring the dynamic
system (1.2), (1.3) to the given final position, if the control parameters are determined by the
formulas

ẋ0 = |ẋ0| sgn (x∗ − x0), ϕ̇0 = |ϕ̇0| sgn (ϕ∗ − ϕ0), |ẋ0| = p∗|ϕ̇0|,
where p∗ is the root of the equation (2.8) for 0 < x0 < x∗, and for 0 < x∗ < x0 there is a root of
the equation (2.9).

Integrating the differential equation (2.7), we find the arrival time of the motion of the dynamical
system (1.2), (1.3) at the end point

τ2 =
1

|ϕ̇0|

∣

∣

∣

∣

∣

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

.

We synchronize the arrival times of the movements of the dynamical systems (1.1)–(1.3) to the
end points. �

Theorem 1. Let the conditions of Lemma 2 be satisfied. Then the values of the parame-

ters of the impulse controls that move the dynamical system (1.1)–(1.3) from the initial position

(z0, x0, ϕ0)
⊤ , z0, x0 > 0, to end position (z∗, x∗, ϕ∗)

⊤ , z∗ > 0, x∗ > 0, z∗ 6= z0, x∗ 6= x0, ϕ∗ 6= ϕ0

are defined by formulas

ż0 =
√

2g(z∗ − z0) for 0 < z0 < z∗,

ż0 = 0 for 0 < z∗ < z0,

ϕ̇0 =

√
g sgn (ϕ∗ − ϕ0)
√

2|z∗ − z0|

∣

∣

∣

∣

∣

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

,

ẋ0 =

√
gp∗

√

2|z∗ − z0|

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

.
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P r o o f. Using Lemma 1 and the arrival time τ1 of the motion of the dynamical system (1.1) to
the end point, we find the value of the control parameter ż0. The synchronization condition τ1 = τ2
of the arrival times of the motions of dynamical systems (1.1)–(1.3) at end points determines
the arrival time τ =

√

2|z∗ − z0|/g of dynamic system movements (1.1)–(1.3) to the end point

(z∗, x∗, ϕ∗)
⊤ and the equation for the control parameter ϕ̇0. From this equation we find

|ϕ̇0| =
√
g

√

2|z∗ − z0|

∣

∣

∣

∣

∣

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

.

Using Lemma 2, we find the control parameters ϕ̇0, ẋ0. �

3. Stabilization of manipulation robot in a final position

When stabilizing the manipulation robot in a small neighborhood of the final position, we use
special positional controls, the choice of which turns the final position into a stable equilibrium
position of the controlled system. For this purpose we use substitutions for coordinates

z = z∗ + ẑ, x = x∗ + x̂, ϕ = ϕ∗ + ϕ̂

and controls
u1 = û1 + g, u2 = û2, u3 = û3(1 + α2x2∗).

In a small neighborhood of the final equilibrium, the controlled system (1.1)–(1.3) is replaced by
the following controlled system

ẑ′′ = û1, x̂′′ = û2, ϕ̂′′ = û3. (3.1)

We find the stabilizing control using the theory of optimal stabilization for linear systems with
quadratic quality criteria. Choosing the quality criterion

J1 =

+∞
∫

0

(

ẑ2(t) + k21 ẑ
′2(t) + û21(t)

)

dt, k1 > 0, (3.2)

for the first control of the system (3.1), we find the stabilizing control

û1 = −ẑ −
√

k21 + 2ẑ′.

We also can find stabilizing controls for the second and third equations in (3.1)

û2 = −x̂−
√

k22 + 2x̂′, û3 = −ϕ̂−
√

k23 + 2ϕ̂′,

using a quality criteria similar to (3.2) with constants k2 and k2, respectively.

4. Numerical modeling

In the numerical simulation of the system motions (1.1)–(1.3), the following values of the
parameters of the mechanical system were used

m1 = 20, m2 = 8, J1 = 12, J2 = 6, g = 9.8.
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The start and the end positions are z0 = 0, x0 = 0, ϕ0 = 0 and z∗ = 1.4, x∗ = 0.5, ϕ∗ = 1.2.
We take the controls

u1(t, z) = upr1 (t) + ups1 (z), u2(t, x) = upr2 (t) + ups2 (x), u3(t, ϕ) = upr3 (t) + ups3 (ϕ).

The program control is defined by formulas

upr1 (t) = ż0δ(t), upr2 (t) = ẋ0δ(t), upr3 (t) = ϕ̇0δ(t), t ∈ R,

where the parameters are given by formulas

ż0 =
√

2gz∗, ẋ0 = p∗ϕ̇0, ϕ̇0 =

√

g

2z∗

x∗
∫

0

√

1 + α2s2

p2∗(1 + α2s2) + s2
ds.

Here p = p∗ is the positive root of the equation

x∗
∫

0

ds
√

(1 + α2s2)((1 + α2s2)p2 + s2)
= ϕ∗.

Impulse controls moves the mechanical system into equilibrium, the initial speeds are

z′(+0) = ż0, x′(+0) = ẋ0, ϕ̇(+0) = ϕ̇0.

We also consider software controls in the form of rectangular impulses, which are approximations
of ideal impulses

upr1 (t) = ż0δ∆(t), upr2 (t) = ẋ0δ∆(t), upr3 (t) = ϕ̇0δ∆(t), t ∈ R,

where
δ∆(t) = 1/∆, t ∈ (0,∆), δ∆(t) = 0, t ∈ R/(0,∆), ∆ = 0.1.

For these controls, the initial velocities of the equilibrium mechanical system are determined by
the formulas z′(0) = 0, x′(0) = 0, ϕ̇(0) = 0.

Positional controls are determined by the following formulas

ups1 (z) = 0, 0 < z ≤ z∗ − ǫ1,

ups1 (z) = g − (z − z∗)−
√

k21 + 2 z′, z > z∗ − ǫ1,

ups2 (x) = 0, 0 < x ≤ x∗ − ǫ2,

ups2 (x) = −(x− x∗)−
√

k22 + 2x′, x > x∗ − ǫ2,

ups3 (ϕ) = 0, 0 < ϕ ≤ ϕ∗ − ǫ3,

ups3 (ϕ) = −(1 + α2x2∗)
(

(ϕ− ϕ∗) +
√

k23 + 2ϕ′
)

, ϕ > ϕ∗ − ǫ3,

where
k1 = 1, k2 = 1, k3 = 1, ǫ1 = 0.1, ǫ2 = 0.1, ǫ3 = 0.1.

In the final position, the following conditions must be met

|z(τf )| < ǫ, |x(τf )| < ǫ, |ϕ(τf )| < ǫ, |z′(τf )| < ǫ, |x′(τf )| < ǫ, |ϕ′(τf )| < ǫ.

In the computational experiment, we assumed that ǫ = 0.01.
The time movement to the final position is τf = 7.5 sec. for impulse controls and τf = 7.51 sec.

for rectangular impulses approximating ideal impulse actions. Projections of phase trajectories on
state planes (x, x′) and (ϕ,ϕ′) are shown in Fig. 2 and Fig. 3.

The trajectories corresponding to impulse controls are shown in blue, the trajectories corre-
sponding to the approximations of ideal impulse controls are shown in brown.
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Figure 2. State plane (x, x′).
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Figure 3. State plane (ϕ, ϕ′).

5. Conclusion

The impulse control is constructed in the work that transfers the manipulator from a given
position to its final position. A computational experiment showing the efficiency of the proposed
algorithm is presented. The proposed algorithm is simulated in the case when the ideal impulse is
approximated by the usual bounded control.
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