
URAL MATHEMATICAL JOURNAL, Vol. 5, No. 1, 2019, pp. 24–30

DOI: 10.15826/umj.2019.1.003

ON NECESSARY OPTIMALITY CONDITIONS
FOR RAMSEY-TYPE PROBLEMS1

Anton O. Belyakov

Moscow School of Economics, Lomonosov Moscow State University,
Leninskiye Gory, Moscow, 119992, Russia;

National Research Nuclear University “MEPhI”,
31 Kashirskoe shosse, Moscow, 115409, Russia;

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,

16 S. Kovalevskaya Str., Ekaterinburg, 620990, Russia

belyakov@mse-msu.ru

Abstract: We study an optimal control problem in infinite time, where the integrand does not depend
explicitly on the state variable. A special case of such problem is the Ramsey optimal capital accumulation
in centralized economy. To complete the optimality conditions of Pontryagin’s maximum principle, so called
transversality conditions of different types are used in the literature. Here, instead of a transversality condition,
an additional maximum condition is considered.
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1. Introduction

Economic theory has been involving optimal control theory since invention of Pontryagin’s
maximum principle. Based on the maximum principle [1], David Cass in [2] elaborated the problem
of optimal capital accumulation first discussed by Frank Ramsey [3]. Since then, this model,
sometimes referred to as Ramsey–Cass–Koopmans model, is a component of advanced books on
macroeconomics and growth theory, see, e.g. [4]. This model has the infinite planning horizon as
well as many other models in economics.

Optimal control with infinite horizon still has theoretical issues to investigate, see [5]. The
proof of the maximum principle for the infinite time horizon one can find, e.g., in [6]. The proved
theorem does not include transversality conditions. Moreover, it is known [6–8] the that usually
used forms of transversality conditions

lim
t→∞

ψ(t) = 0, (1.1)

lim
t→∞

〈x̂(t), ψ(t)〉 = 0, (1.2)

might be not necessary, where x̂ is the optimal state variable, ψ is the corresponding adjoint variable,
and the angle brackets 〈·, ·〉 denote the scalar product of two vectors.

The condition considered by Philippe Michel in [9], under assumptions including that the ob-
jective functional takes only finite values, has the form of the Hamiltonian H converging to zero
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lim
t→∞

H(x̂(t), û(t), t, ψ(t)) = 0, (1.3)

where û is the optimal control.
Karl Shell [7, Lecture III] proposes, without proof, the condition

lim sup
t→∞

〈ψ(t), x(t)〉 ≥ lim inf
t→∞

〈ψ(t), x̂(t)〉, (1.4)

where x is any admissible path of the state variable. In [7, footnote 4 for Lecture III], he says that

“this conjecture is related to a conjecture made by Kenneth J. Arrow in private corre-
spondence.”

Note that Arrow’s sufficiency theorem contains a condition that follows from (1.4), which one can
expect for problems, where the maximum principle provides both necessary and sufficient conditions
of optimality.

In [10–14], the authors determine the adjoint variable uniquely by a Cauchy-type formula, that
solves the adjoint equation with transversality conditions in the following form:

lim
t→∞

Y (t)ψ(t) = 0, (1.5)

where Y (t) is the fundamental matrix of the state equation linearized about the optimal solution,
see eg. [15, 16].

Conditions (1.2)–(1.5) do hold for an optimal solution of the Ramsey problem with exponential
discounting, when ψ(t) → 0 as t → ∞. But all (1.2)–(1.5) fail for the zero discount rate, when
the objective functional diverges and ψ(t) → const > 0 as t → ∞. This case was considered by
Ramsay in [3, p. 543] with moral motivation:

“One point should perhaps be emphasised more particularly; we do not discount later
enjoyments in comparison with earlier ones, a practice which is ethically indefensible
and arises merely from the weakness of the imagination; we shall, however, in Section II
include such a rate of discount in some of our investigations.”

Even-though condition (1.3) is proved only for converging functionals, it can hold if we modify the
objective improper integral subtracting from its integrand a constant, called “bliss” in [3], such
that, for the optimal solution, the integral converges, see e.g., [2, Section 7].

In this paper, a new necessary condition is obtained for Ramsey-type problems both with and
without discounting, where the integrand of an objective functional does not explicitly depend
on the state variable. Since, without discounting, the objective functional diverges, we involve
the concept of overtaking optimality. The new condition is the maximum of the integrand that
completes the Pontryagin’s maximum principal conditions. In contrast to the maximum condition
for the Hamiltonian, the maximum of the integrand is taken w.r.t. control within admissible
trajectories that satisfy the maximum principle (the maximum of the Hamiltonian, state and adjoint
equations). The example of the Ramsey problem without discounting is considered.

2. Statement of the problem

Let X be a nonempty open convex subset of R, and let U be an arbitrary nonempty set in R.
Let us consider the following optimal control problem:

∫

∞

t0

e−ρtg(u(t)) dt→ max
u
, (2.1)

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (2.2)
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where the control u(t) ∈ U and the state variable x(t) ∈ X for all t ∈ (t0,+∞). We call such control
u(·) and state variable x(·) trajectories admissible. The functions f and g are differentiable w.r.t.
all their arguments, and f together with its partial derivatives is continuous in (x, u). Moreover,
the function g is strictly concave and ρ ≥ 0.

2.1. The concept of optimality

The improper integral in (2.1) might not converge for any candidate for optimal control û(·);
i.e., the limit

lim
T→∞

J(û(·), t0, T ), (2.3)

might fail to exist, or might be infinite, where we introduce the finite time horizon functional:

J(u(·), t0, T ) =

∫ T

t0

e−ρtg(u(t)) dt,

subject to state equation (2.2). Thus, the functional J may be unbounded as T → ∞. So, we use
the following more general concept of optimality.

Definition 1. An admissible control û(·) is overtaking optimal (OO) if for every admissible

control u(·) :
lim sup
T→∞

(J(u(·), t0, T )− J(û(·), t0, T )) ≤ 0.

When the ordinary optimality holds, i.e. a finite limit exists in (2.3) and, for all admissible con-
trols u(·),

lim sup
T→∞

J(u(·), t0, T ) ≤ lim
T→∞

J(û(·), t0, T ),

then û(·) is also OO.

3. Optimality conditions

3.1. Pontryagin’s maximum principle

With the use of the adjoint variable ψ, we introduce current value Hamiltonian

H(x, u, ψ, λ) = λ g(u) + ψ f(x, u).

Theorem 1 [1, 6, 7]. There exist λ ≥ 0 and ψ0 such that (λ, ψ0) 6= 0 and the maximum
condition

H(x̂(t), û(t), ψ(t), λ) = max
u∈U

H(x̂(t), u, ψ(t), λ) (3.1)

holds along with the adjoint equation

−ψ̇(t) = −ρψ(t) + ψ(t)
∂f

∂x
(x̂(t), û(t)), ψ(t0) = ψ0. (3.2)

In this theorem, ψ0 remains undetermined. Note that, for ψ ≡ ψ0 = 0, the maximum condition (3.1)
might have no solution with λ > 0, while λ = ψ0 = 0 contradicts the theorem. Additional arguments
are used to refine solutions of (3.1)–(3.2) and single out a nonzero value of ψ0.

But it turns out that the maximum condition (3.1) with ψ ≡ 0 and λ = 1 can yield an additional
necessary optimality condition if we replace the set U by the set Û(x̂(t)) defined as follows.
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Definition 2.

Û(x) = {u : (u, x) ∈ G},

where G ⊂ U ×X consists of graphs of all admissible trajectories (u(·), x(·)) satisfying maximum

principle (3.1)–(3.2) and the state equation (2.2). We denote the set of such trajectories by D, so

that

G = {(u(t), x(t)) : t ∈ (t0,∞), (u(·), x(·)) ∈ D}.

3.2. An additional maximum condition

In order to use the condition in the main Proposition 1, we first need to calculate the sets Û(x),
thus making the synthesis of control. Due to the continuous dependence of solutions of the differ-
ential equation (3.2) on the initial value ψ0 and due to the convexity of the set X, we state the
following.

Assertion 1. If an admissible pair (û(·), x̂(·)) belongs to D, i.e., satisfies the maximum prin-

ciple (3.1)–(3.2) and the state equation (2.2), then, for almost all τ > t0, there exists α0 > 0 such

that, for all α ∈ (0, α0), the control







û(t), t ≤ τ − α,
u(t), t ∈ (τ − α, τ ],
û(t), t > τ,

is admissible, where u(t) for t ∈ (τ −α, τ ] satisfies the maximum principle (3.1)–(3.2) and the state

equation

ẋ(t) = f(x(t), u(t)), x(τ − α) = x̂(τ − α),

with the current state x̂(t) at time t = τ − α as the initial condition.

The following main proposition is proved with the needle variation technique similar to the one
in [11], provided that Assertion 1 holds.

Proposition 1 (Necessary optimality condition). Let there exists an admissible pair

(û(·), x̂(·)) ∈ D. If the control û is optimal, then

g(u) ≤ g(û(τ)) (3.3)

for almost all τ ∈ [t0,∞) and all u ∈ Û(x̂(τ)).

P r o o f. According to Assertion 1, we can define an admissible needle variation of optimal
pair (û(·), x̂(·)) ∈ D at almost any time τ , i.e., excluding discontinuity time instances of control, as

uα(t) :=







û(t), t ≤ τ − α,
u(t), t ∈ (τ − α, τ ],
û(t), t > τ,

where u(t) satisfies the maximum principle (3.1)–(3.2) and the state equation ẋ(t) = f(x(t), u(t))
with the condition x(τ − α) = x̂(τ − α). Thus,

J(uα(·), t0, T ) =

∫ τ−α

t0

e−ρtg(û(t)) dt+

∫ τ

τ−α
e−ρtg(u(t)) dt+

∫ T

τ
e−ρtg(û(t)) dt.
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The corresponding increment in the value of the functional can be written as follows:

∆Jα(T ) := J(uα(·), t0, T )− J(û(·), t0, T ) = J(uα(·), τ − α, τ)− J(û(·), τ − α, τ) =

=

∫ τ

τ−α
e−ρt (g(u(t)) − g(û(t))) dt,

Hence,
∆Jα(T )

α
≥

1

α

∫ τ

τ−α
e−ρt (g(u(t)) − g(û(t))) dt. (3.4)

We have the following approximation of the latter term in (3.4), due to the continuity of u and û
at τ and the continuity of g w.r.t. u:

1

α

τ
∫

τ−α

e−ρt (g(u(t)) − g(û(t))) dt = e−ρτ (g(u(τ)) − g(û(τ))) +O(α),

where lim
α→0

O(α) = 0. Hence, inequality (3.4) takes the form

∆Jα(T )

α
≥ e−ρτ (g(u(τ)) − g(û(τ))) +O(α).

Definition 1 of OO for the initial problem means that, for all ε2 > 0, there exists T2(ε2) > t0
such that, for all T ′ ≥ T2(ε2), we have ∆Jα(T

′) ≤ ε2. Let us take ε2 = α ε. Then the inequality
∆Jα(T

′) ≤ αε results in

ε ≥ e−ρτ (g(u(τ)) − g(û(τ))) +O(α). (3.5)

Suppose that (3.3) is violated, i.e., there exist ε > 0 and u ∈ Û(x̂(τ)) such that the following
inequality holds:

e−ρτ (g(u) − g(û(τ))) ≥ 2ε,

this contradicts to (3.5) for u = u(τ), when α is small enough. Hence, (3.3) should hold. �

Corollary 1. If g is a strictly monotone function and there exists an optimal control, then the

optimal trajectory (û(·), x̂(·)) is unique and its graph belongs to the boundary of the set G.

This is the case in the Ramsey problem of optimal capital accumulation, where the optimal trajec-
tory is on the saddle path separating the domain of admissible pairs (c(·), k(·)) of consumption c
and capital k that does not deplete capital, k(t) > 0 for all t > 0, see the domain of thin solid lines
in Fig. 1.

Example 1. [The Ramsey problem with ρ = 0.] We maximize the aggregated constant relative
risk aversion utility

∫

∞

0

c(t)1−θ

1− θ
dt→ max

c>0

subject to the dynamics of the capital

k̇(t) = k(t)α − δk(t) − c(t), k(t) > 0,

where k(0) = k0 > 0, θ 6= 1, θ > 0, and α ∈ (0, 1).

The Hamiltonian:

H(k, c, ψ, λ) = λ
c1−θ

1− θ
+ ψ (kα − δk − c) , λ ≥ 0, (λ, ψ) 6= 0.
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k∗

ċ = 0

k̇ = 0

k̇ = k
α − δk − c

ċ

c
=

αk
α−1 − δ

θ

Figure 1. The bold lines are the stationary curves, k̇ = 0 and ċ = 0. The solid lines are the trajectories
governed by the state and Euler equations, for which k(t) > 0 for all t > t0.

The abnormal case (λ = 0) would lead to ψ = 0 and thus impossible.
The stationarity condition

λ c(t)−θ = ψ(t)

and the adjoint equation
−ψ̇(t) =

(

αk(t)α−1 − δ
)

ψ(t)

result in the Euler equation
ċ(t)

c(t)
=
αk(t)α−1 − δ

θ
.

Due to the Euler and state equations, any admissible pair (k(·), c(·)) not violating the constraints

c(t) ≥ 0 and k(t) > 0 converges either to the steady state (k∗, c∗), where k∗ = (δ/α)1/(α−1) and
c∗ = (1− α) k∗ > 0, or to (δ1/(α−1), 0), where k∗ < δ1/(α−1). The solid lines in Fig. 1 belong to D
and their graphs constitute the set G, which is whole space below the saddle path and the horizontal
line c = 0.2 Thus, condition (3.3)

ĉ(t)1−θ

1− θ
≥

c1−θ

1− θ
for all c ∈ {c : (c, k̂(t)) ∈ G}

selects the saddle path as unique possible optimal.

2It is easy to see in Fig. 1, that Assertion 1 holds, since such a variation of the saddle path trajectory
diverts the remaining part of the trajectory below the saddle path so that its graph remains in G, even
though the trajectory itself might not belong to D anymore, because its remaining part does not have to
satisfy the maximum principle.
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4. Conclusion

A quite simple additional necessary optimality condition is derived in the form of maximization
of the integrand of the objective functional in each state x on the subset of control values Û(x) ⊂ U .
Even though one should first determine the set D of admissible trajectories that solve state and
adjoint equations subject to the maximum condition, it is anyway done in practice when possible.
The substantial assumption is that the objective functional does not explicitly depend on the state.
The functional is subject to the state equation indirectly via the form of an open admissible set X.
In a more general case, the additional maximum condition is more involved, see [17].
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