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Introduction

The paper is concerned with the link between two major classes of the first order PDEs, namely
Hamilton—Jacobi-Bellman equations and quasilinear PDEs. The classical solution may not exist
globally for these equations. Thus both types of equations require the notion of generalized solu-
tion. For Hamilton—Jacobi equation the theory of generalized solution was developed by A.I. Sub-
botin [1] and M. Crandall, P.L. Lions [2], whereas the quasilinear case was studied by O.A. Oleinik,
S.N. Kruzhkov [3]. The generalized solutions of Hamilton-Jacobi equations are called minimax
solutions or viscosity solutions. A.I. Subbotin proved the equivalence of these notions. The gen-
eralized solutions of quasilinear PDEs are called entropy solutions. This term is due to entropy
condition. The existence and uniqueness theorems for Hamilton-Jacobi PDEs can be found in [1,2],
for quasilinear PDEs these theorems can be found in [3].

If we formally differentiate Hamilton—Jacobi equation with respect to phase variable, then in
some cases we get the quasilinear equation. But the question about a link between these generalized
solutions is opened, because the minimax/viscosity solution is only continuous function. Note that
the minimax solution of Hamilton—Jacobi equation is not differentiable. Thus this differentiation
should be performed with the help of methods of nonsmooth analysis.

First one-dimensional case was considered by N.N. Yanenko and B.L. Rozchdestveskii [4]. In
that book a link between the Hamilton—Jacobi PDE and quasilinear equation was mentioned. The
strong result is presented in [5].

In this paper we extend the results of [5] to n-dimensional case.

We assume that the Hamiltonian depends on the linear combination of impulse variables and is
convex with respect to them. This type of equations describes the value function of optimal control
problem with dynamics

n
i = H, (mZM) NER, i=1,...,n,
=1

where ||s|| < D. The restriction D is determined by the Hamiltonian. The purpose is to minimize
the functional

T
I=o(x)+ /(s,Hs(t,x, s)) — H(t,x,s)dt

to
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on the set of admissible controls s. It is known from the work of A.I. Subbotin, N.N. Subbotina,
that if the Hamiltonian and boundary function o are smooth enough, then the value function is
locally Lipschitz continuous. Thus the value function is differentiable almost everywhere.

In the paper we prove that the generalized divergence of the minimax/viscosity solution coin-
cides with the generalized solution of the Cauchy problem for quasilinear equation. The structure
of the entropy solution of the Cauchy problem for quasilinear equation is described in the work [6]
in the cases of piecewise smooth solution and the solution belonging to the class of function with
locally bounded variation. This structure is valid for derivatives of the minimax/viscosity solution
for Hamilton—Jacobi equation.

1. Preliminaries

1.1. Viscosity solution

Let us consider the Cauchy problem for the Hamilton—Jacobi-Bellman equation

6—+H<txZA S0)—0 0(0,2) = o(x) (1.1)

Here (t,z) € Il = [0,7] x R™, \; € R. Remind the definition of Holder spaces.

Definition 1. The Holder space C?>*? is the space of twice continuously differentiable
functions those the second derivatives are Holder continuous of order o € (0, 1].

We assume that

(A1) the function H(t,z,s) € C*+e;

(A2) the function H(t,z,s) satisfies sublinear growth condition and it is convex with respect
to s;

(A3) the function o(z) € C*T% and it is bounded in R™.

In general case this problem has no continuously differentiable (classical) solution in the strip
Iy [1].

The generalized solution of problem (1.1) can be approximated by the solutions ¢ of the
following Cauchy problem

0 9
({;'05 +H( ,Z)\i (;;8) =g, @:(0,2) = o(x). (1.2)
i=1 v
n A2
Here A, = > -5 1s the Laplace operator, ¢. € %o,
i=1 0Z;

It is proved in the work [2] for the viscosity solution ¢ that

o(t,x) = liH(l) ©e(t, ) locally uniformly in IIp.
E—

It is known [1], that the viscosity solution exists, it is unique and it is locally Lipschitz function
in IIp. The superdifferential of the viscosity solution is not empty at all points of IIp.

1.2. Entropy solution

Consider the Cauchy problem

ow A B B - o (x)
s + ;)\ZHM(t,x,w) =0, w(0,z)= Z)\17' (1.3)
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Here
0H O0H ow

o ow oy’
Recall the definition of generalized (entropy) solution of problem (1.3), proposed by
S.N. Kruzchkov [3].

Definition 2. A Lebesgue measurable function w : Il — R is called an entropy solution
of problem (1.3), if for any constant k£ € R, nonnegative function f € C§°, the inequality holds

Hy, (t,z,w) =

/Z |w(r, ) — k| fr + sign(w Z)\ (1,2, k) — H(T, 2, w)) fo,dxdT+

/sign( (1,2) Z/\ H, (1,2,k)fdzdr > 0,

iy =1

Under assumptions (A1)-(A3) the entropy solution of problem (1.3) exists and it is unique in
the class of locally bounded measurable functions [3].
Let us consider the Cauchy problem

8“’ otz wf) = eAgw®,  w(0,z) = ina"("’“). (1.4)

o0x;
i=1 v

It is proved [7,8] that solution w® of problem (1.4) exists, it is unique and w® is continuously
differentiable with respect to ¢ and twice continuously differentiable with respect to x.

The classical solutions w® of problem (1.4) pointwise converge to the solution w of problem (1.3),
as € — 0 almost everywhere in II7 [3], [6].

Definition 3. A measurable function w : Il — R is piecewise smooth, if there exists not
more then countable set of open domains D; C IIp and dimension of D; equals n + 1, such that

|JeDi =TIy, DinD; =@ for i # j,
the function w is continuously differentiable on clD;.

Here cl states for the closure.

The following property of solution of (1.3) is proved in [3]. If the solution of problem (1.3) is
piecewise smooth in the neighborhood of the point of discontinuity, then the discontinuity surface
satisfies the condition

|wy — k|cosvT + sign(wy — k)(H (7,2, k) — H(T,2,w1)) cos(v, z;) <
(1.5)
|wa — k| cosvT + sign(wg — k)(H (1,2, k) — H(7,z,w2)) cos(v,x;), i=1,....,n

for any k € R, for any (t,z) € clD; NclDj, i # j.
Here v is the normal to the discontinuity surface at the point (t,z) € clD; N clD;,

wy = lim w(T, x), we = lim w(T, x).
(1, 2)=(r,2(7)+v) (1, 2)=(r,2(7)-v)
Recall a definition from measure theory [9].

Definition 4. A function w is of locally bounded variation on an open subset A C Il if
w € L} (A) and grad w is a (R"*'-valued) Radon measure M on A, i. e.,

- / w div y(t, 2)dadt / n(t, 2)dM (L, ),

A A

loc

for any test function n € C§°(A).
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Assertion 1. If w is the entropy solution of problem (1.3) then w € BVi,.(Il7).

Proof. Since the function w is locally bounded measurable, w € Li, (A). Here A C Iy is
a compact set. It suffices to prove [6,9], that

1
I = limsup 7 / |lw(t+ h,z + hE;) —w(t, x)|dzdt
h—
0 A

is finite for any compact A C IIp. Here vectors F; C R™, ¢ =1,...,n form the orthonormal basis
in R™.

Remind that w(t, x) = lin% w(t,x) almost everywhere. Here w® is solution (1.4).

e—

According to Lousin’s theorem [10] there exist the sets A and A® such, that the measure
uw(A\ A®) < € and the function w is continuous on (¢, x) € A®.

Consider the integral I. One can get

I1<L+1I+Is,
where

1
I, = limsup 7 / |lw(t+ h,z + hE;) — w*(t + h,x + hE;)|dzdt,
h—0
A

1
I, = limsup 7 / |w(t + h,x + hE;) — w®(t,z)|dxdt,
h—0
A

1
I3 = limsup — / lw(t, x) — w(t, z)|dzdt.
h—0 h
A
The function w® € C?*t®, since it belongs to BV,.. Therefore, Iy < oco. If we choose the
parameter € = h?, then we have the estimates

lw(t 4+ h,x + hE;) —w(t + h,x + hE;)| <e=h% |w(t,z) —w(t,z)| <e=h®for (t,z) € A°.
Consequently I, I3 < oo. O

The domain Il is the union of three, pairwise disjoint, subsets C,.J, and I with the following
properties [6] :
a) C' is the set of points of approximate continuity of w, i. e., with each (¢,z) € C' is associated

wgy € R such that

1
lim —— / |w(t, z) — wo|dxdt = 0.

r—0 rntl
B (t,7)
b) J is the set of points of approximate jump discontinuity of w, i. e., with each (¢,Z) C J are
associated N in unit sphere S™ and distinct w™ , w* € R such that

1
lim —— / lw(t, z) — wF|dzdt = 0,

r—0 rntl
B (t.2)

where BF (%, %) denote the semiballs B,.(f,z) N {(t,z) : ((t —t,2 —Z), N) < 0} or B,(t,z) N {(t,x) :
((t—t,z—x), N) > 0}. Moreover, J is essentially covered by the countable union of C'* n-dimensional
manifolds {F;} embedded in R**! : H™(J \ UF;) = 0. Furthermore, when (,7) € J N F;, then N
is normal on F; at (¢, z).

(c) I is the set of irregular points of w; its n+1-dimensional Hausdorff measure is zero: H"(I) = 0.
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2. Connection between generalized solutions of problems (1.1) and (1.3)

Let us introduce a notion of generalized divergence of a nonsmooth field. This notion is similar
to a notion of a divergence of a field.
Definition 4. The set Divy(t, z) = co{ lim )div y(tg, xx)} is called generalized
tr,zE)—(, x
divergence of the field y € R™ at the point (¢,z). Here div y(tx, xr) is the divergence of the field y
with respect to z, (tx,z)) are the points of differentiability of y.

The map (t,2) — Div(p(t,z)A) is convex-valued, upper semicontinuous and locally bounded.
Really, the map is convex according to definition 4. The map is upper semicontinuous, because the

supergradient To(t,z) and D} o(t, z) is upper semicontinuous and locally bounded [1].

Hence we can choose a measurable selector w : IIp — R, w(t, z) € Div(p(t,x)\), where @ is the
viscosity solution of problem (1.1) [10].

Assertion 2. If assumptions (A1)-(As) are true, then the solution of problem (1.3)
w(t,z) € Div(Ap(t,x)), where ¢ is the viscosity solution of problem (1.1).

Proof. Since the viscosity solution ¢ is a Lipschitz continuous function, the map (¢,x) —
Div ¢(t,z)A is single-valued almost everywhere. Let us denote by J the set of points (¢, x) such,
that the map (¢,2) — Div (¢, )\ is multivalued. The measure of J is equal zero. Consider the
case Div(pA) < k. Let the function f be a finite function with compact support B C Ilp.

/(k: Div (¢( fT—I-Z)\< (T{L‘ Z)\ O:B) (T,x,k‘))f%— iHy, (1,2, k) fdzdt =

IIr

/k:fT Z/\ (7,2, k) fo, + Hy, (7,2, k) f)dadt—

I
/Zx(a‘pfﬂLH Z)\ O fml>da:dt (2.1)
I \J

Let us calculate the first integral in (2.1):

(., k)f)dxdt:O

/ka Z)\ Ta:kfl«z—i-H(T,x,k:)f)dxdt:/ka Z/\

It It

because the function f is finite.
Integrating the second integral in (2.1) by parts several times we set, that

to n
/ ZA Dy f7+z/\ H( Z i%)fxidxdtz /Z)\iSOfT|Ddt_
¢ i =1

mp\J °

n n

(pz )\ig‘:: + Z /\Z‘H(T, T, Z )\i((?j)fxida:dt =
i=1 ¢

S 7 S
I\ J =1 =1

to
Z)\iSOﬁHT\J_/ZAiWTf‘Ddt_/(PZ)\iamdl"F
i=1 5 =1 Hooi=l !
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/ @TZA Z)\H(TxZ)\ (’D>fxdxdt

r\J =1

_ZAzapflnT\ﬁ/ZA 22 flizda + / (o7 + X (7.2, Zaxz))ZA axldxdt:(),

i\ J

hence ¢ satisfies equation (1.1) on the set Il \ J.
Similarly one can consider the case Div A > k. O

Corollary 1. If the viscosity solution ¢ of problem (1.1) is piecewise smooth, then the set of
point (t,z) € Iy, where the function ¢ is not differentiable, has form (1.5).

Denote by Dt p(t, x) the superdifferential of function ¢ at the point (¢,z). The map (t,z) —
DT (t,z) is upper semicontinuous, concave and locally bounded. So there exists a measurable
selector, which belongs to L}, .. Hence function w € Div(p)) € Lj, .. According to assertion 2 the
set of definition of the viscosity solution is the union of three, pairwise disjoint, subsets C, J, and I:

a) C'is the set of points, where the viscosity solution is continuously differentiable;

b) J is the set of points, where the viscosity solution has a jump. Moreover, J is essen-
tially covered by the countable union of C! n-dimensional manifolds {F;} embedded in R"*! :
H™(J \ UF;) = 0. Furthermore, when ¢,z € J N F;, then N is normal on F; at (¢, z).

(c) I is the set of irregular points of ¢; its n-dimensional Hausdorff measure is zero: H"(I) = 0.
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