DOI: 10.15826/umj.2018.2.008

AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {39, 36, 4; 1, 1, 36}¹.

Konstantin S. Efimov

Ural State University of Economics, 62 March 8th Str., Ekaterinburg, Russia, 620144

konstantin.s.efimov@gmail.com

Alexander A. Makhnev

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences,16 S. Kovalevskaya Str., Ekaterinburg, Russia, 620990

makhnev@imm.uran.ru

Abstract: Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more than 4096 vertices, in which $\lambda = 2$ and $\mu = 1$. They proposed the program of investigation of distance-regular graphs with $\lambda = 2$ and $\mu = 1$. In this paper the automorphisms of a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$ are studied.

Keywords: Strongly regular graph, Distance-regular graph.

Introduction

We consider undirected graphs without loops and multiple edges. Our terminology and notation are mostly standard and could be found in [1]. Given a vertex a in a graph Γ , we denote by $\Gamma_i(a)$ the subgraph induced by Γ on the set of all the vertices of Γ , that are at the distance i from a. The subgraph $[a] = \Gamma_1(a)$ is called the *neighbourhood of a vertex a*. Let $\Gamma(a) = \Gamma_1(a), a^{\perp} = \{a\} \cup \Gamma(a)$. If graph Γ is fixed, then we write [a] instead of $\Gamma(a)$.

The incidence system with the set of points P and the set of lines \mathcal{L} is called α -partial geometry of order (s,t) if each line contains exactly s + 1 points, each point lies exactly on t + 1 lines, any two points lie on no more than one line, and for any antiflag $(a, l) \in (P, \mathcal{L})$ there are exactly α lines passing through a and intersecting l. This geometry is denoted by $pG_{\alpha}(s,t)$.

In the case $\alpha = 1$, the geometry $pG_{\alpha}(s,t)$ is called a generalized quadrangle and is denoted by GQ(s,t). A point graph of this geometry is defined on the set of points P and two points are adjacent if they lie on a line. The point graph of a geometry $pG_{\alpha}(s,t)$ is strongly regular with parameters $v = (s+1)(1+st/\alpha)$, k = s(t+1), $\lambda = s-1+t(\alpha-1)$, $\mu = \alpha(t+1)$. A strongly regular graph with such parameters for some natural numbers α, s, t is called a *pseudo-geometric* graph for $pG_{\alpha}(s,t)$.

If vertices u, w are at distance i in Γ , then by $b_i(u, w)$ (respectively, $c_i(u, w)$) we denote the number of vertices in $\Gamma_{i+1}(u) \cap [w]$ (respectively, $\Gamma_{i-1}(u) \cap [w]$). A graph Γ of diameter d is called distance-regular with intersection array $\{b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d\}$ if the values $b_i(u, w)$ and $c_i(u, w)$ do not depend on the choice of vertices u, w at distance i in Γ for each i = 0, ..., d. Note that, for a

¹This work is partially supported by RSF, project 14-11-00061P

distance-regular graph, b_0 is the degree of the graph and $c_1 = 1$. For a subset X of automorphisms of a graph Γ , Fix(X) denotes the set of all vertices of Γ , fixed with respect to any automorphism of X. Further, by $p_{ij}^l(x, y)$ we denote the number of vertices in a subgraph $\Gamma_i(x) \cap \Gamma_j(y)$ for vertices x, y at distance l in Γ .

A graph is said to be vertex-symmetric if its automorphism group acts transitively on the set of its vertices.

In [2], intersection arrays of distance-regular graphs with $\lambda = 2$, $\mu = 1$ and with the number of vertices at most 4096 were found. A.A. Makhnev and M.S. Nirova proposed an investigation program of automorphisms of distance-regular graphs from the obtained list.

Proposition 1. [2] Let Γ be a distance-regular graph with $\lambda = 2$, $\mu = 1$, which has at most 4096 vertices. Then Γ has one of the following intersection arrays:

(1) $\{21, 18; 1, 1\}(v = 400);$

(2) $\{6,3,3,3;1,1,1,2\}$ (Γ is a generalized octagon of order (3,1), v = 160), $\{6,3,3;1,1,2\}$ (Γ is a generalized hexagon of order (3,1), v = 52), $\{12,9,9;1,1,4\}$ (Γ is a generalized hexagon of order (3,3), v = 364), $\{6,3,3,3,3,3;1,1,1,1,1,2\}$ (Γ is a generalized dodecagon of order (3,1), v = 1456);

(3) $\{18, 15, 9; 1, 1, 10\}(v = 1 + 18 + 270 + 243 = 532, \Gamma_3 \text{ is a strongly regular graph});$ $\{33, 30, 8; 1, 1, 30\}, \{39, 36, 4; 1, 1, 36\}, \{21, 18, 12, 4; 1, 1, 6, 21\}.$

In this paper we study automorphisms of a hypothetical distance-regular graph Γ with intersection array {39, 36, 4; 1, 1, 36}. The maximal order of a clique C in Γ is not more than 4. A graph with intersection array {39, 36, 4; 1, 1, 36} has v = 1 + 39 + 1404 + 156 = 1600 vertices and the spectrum $39^1, 7^{675}, -1^{156}, -6^{768}$.

Theorem 1. Let Γ be a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$, $G = \operatorname{Aut}(\Gamma)$, g is an element of prime order p in G and $\Omega = \operatorname{Fix}(g)$ contains exactly s vertices in t antipodal classes. Then $\pi(G) \subseteq \{2, 3, 5\}$ and one of the following statements holds:

(1) Ω is an empty graph and either p = 2, $\alpha_1(g) = 10r + 26m + 12$ and $\alpha_3(g) = 80r$ or p = 5, $\alpha_1(g) = 65n + 10l + 10$ and $\alpha_3(g) = 200l$;

(2) Ω is an n-clique and one of the following statements holds:

(i) n = 1, p = 3, $\alpha_1(g) = 15l + 24 + 39m$ and $\alpha_3(g) = 120l + 36$,

(*ii*) $n = 2, p = 2, \alpha_1(g) = 10l + 26m \text{ and } \alpha_3(g) = 80l - 8,$

(*iii*) n = 4, p = 2, $\alpha_1(g) = 10l + 26m + 14$ and $\alpha_3(g) = 80l - 16$ or p = 3, $\alpha_1(g) = 10l + 39m + 1$, *l* is congruent to -1 modulo 3 and $\alpha_3(g) = 120l + 24$;

(3) Ω consists of *n* vertices pairwise at distance 3 in Γ , p = 3, $n \in \{4, 7, ..., 40\}$, $\alpha_3(g) = 120l + 40 - 4n$ and $\alpha_1(g) = 15l + 30 + 39m - 6n$;

(4) Ω contains an edge and is a union of isolated cliques, any two vertices of different cliques are at distance 3 in Γ , and either p = 3 and the orders of these cliques are 1 or 4, or p = 2 and the orders of these cliques are 2 or 4;

(5) Ω contains vertices that are at distance 2 in Γ and $p \leq 3$.

If Γ is a distance-regular graph with the intersection array $\{39, 36, 4; 1, 1, 36\}$ then Γ_3 is a pseudo-geometric for $pG_3(39, 3)$.

Theorem 2. Let Γ be a strongly regular graph with parameters (1600, 156, 44, 12), $G = \operatorname{Aut}(\Gamma)$, g is an element of prime order p in G and $\Delta = \operatorname{Fix}(g)$. Then $p \leq 43$ and the following statements hold:

(1) if Δ is an empty graph, then p = 2 and $\alpha_1(g) = 80s$ or p = 5 and $\alpha_1(g) = 200t$;

(2) if Δ is an n-clique, then one of the following statements holds:

(i) n = 1, p = 2 and $\alpha_1(g) = 80s - 4$, or p = 3 and $\alpha_1(g) = 120t + 36$, or p = 13 and $\alpha_1(g) = 520l + 156,$

(*ii*) $n \in \{4, 7, 10, ..., 40\}, p = 3 and \alpha_1(g) = 120t + 40 - 4n$,

(*iii*) n = 9, p = 37 and $\alpha_1(g) = 444;$

(3) if Δ is an m-coclique, where m > 1, then either $p = 2, m \in \{4, 6, 8, \dots, 40\}$ and $\alpha_1(g) = 80s - 4m \text{ or } p = 3, m \in \{4, 7, 10, ..., 40\}$ and $\alpha_1(g) = 120t + 40 - 4m;$

(4) if Δ contains an edge and is an union of isolated cliques, then p = 3;

(5) if Δ contains a geodesic 2-path, then $p \leq 43$.

Corollary 1. Let Γ be a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$ and nonsolvable group $G = \operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices of Γ . If a is a vertex of Γ , T is the socle of the group $\overline{G} = G/O_{5'}(G)$, then $\overline{T} = L \times M$, and each of subgroups L, M is isomorphic to one of the following groups: Z_5, A_5, A_6 or PSp(4,3).

If $|\bar{T}:\bar{T}_a|=40^2$, then $O_{5'}(G)=1$ and this case is realized if one of the following statements holds:

(1) $L \cong M \cong PSp(4,3), |L:L_a| = |M:M_a| = 40,$

(2) $L \cong PSp(4,3), |L:L_a| = 40, M \cong A_6 \text{ and } |M_a| = 9,$

(3) $L \cong M \cong A_6$ and $|L_a| = |M_a| = 9$.

1. Proof of Theorem 2

First we give auxiliary results.

Lemma 1. [2, Theorem 3.2] Let Γ be a strongly regular graph with parameters (v, k, λ, μ) and with the second eigenvalue r. If g is an automorphism of Γ and $\Delta = Fix(g)$, then

$$|\Delta| \le v \cdot \max\{\lambda, \mu\}/(k-r).$$

By Lemma 1, for a strongly regular graph with parameters (1600, 156, 44, 12) we have $|\Delta| \le 1600 \cdot \max\{44, 12\}/(156 - 36), \ |\Delta| \le 586.$

Lemma 2. Let Γ be a distance regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$. Then for intersection numbers of Γ the following statements hold:

(1) $p_{11}^1 = 2$, $p_{12}^1 = 36$, $p_{22}^1 = 1224$, $p_{23}^1 = 144$, $p_{33}^1 = 12$; (2) $p_{11}^2 = 1$, $p_{12}^2 = 34$, $p_{13}^2 = 4$, $p_{22}^2 = 1229$, $p_{23}^2 = 140$, $p_{33}^2 = 12$; (3) $p_{12}^3 = 36$, $p_{13}^3 = 3$, $p_{22}^3 = 1260$, $p_{23}^3 = 108$, $p_{33}^3 = 44$.

Proof. This follows from [1, Lemma 4.1.7].

The proofs of Theorems 1 and 2 are based on Higman's method of working with automorphisms of a distance-regular graph, presented in the third chapter of Cameron's book [4].

Let Γ be a distance-regular graph of diameter d with v vertices. Then we have a symmetric association scheme (X, \mathcal{R}) with d classes, where X is the set of vertices of Γ and $R_i = \{(u, w) \in X^2 |$ d(u, w) = i. For a vertex $u \in X$ we set $k_i = |\Gamma_i(u)|$. Let A_i be an adjacency matrix of graph Γ_i . Then $A_i A_j = \sum p_{ij}^l A_l$ for some integer numbers $p_{ij}^l \ge 0$, which are called the intersection numbers. Note that $p_{ij}^l = |\Gamma_i(u) \cap \Gamma_j(w)|$ for any vertices u, w with d(u, w) = l.

Let P_i be a matrix in which in the (j, l)-th entry is p_{ij}^l . Then eigenvalues $k = p_1(0), ..., p_1(d)$ of the matrix P_1 are eigenvalues of Γ with multiplicities $m_0 = 1, ..., m_d$, respectively. The matrices P

and Q with $P_{ij} = p_j(i)$ and $Q_{ji} = m_j p_i(j)/k_i$ are called the first and the second eigenmatrices of Γ , respectively, and PQ = QP = vI, where I is an identity matrix of order d + 1.

The permutation representation of the group $G = \operatorname{Aut}(\Gamma)$ on the vertex set of Γ naturally gives the monomial matrix representation ψ of a group G in $GL(v, \mathbb{C})$. The space \mathbb{C}^v is an orthogonal direct sum of the eigenspaces $W_0, W_1, ..., W_d$ of the adjacent matrix $A = A_1$ of Γ . For every $g \in G$, we have $\psi(g)A = A\psi(g)$, so each subspace W_i is $\psi(G)$ -invariant. Let χ_i be the character of a representation ψ_{W_i} . Then for $g \in G$ we obtain $\chi_i(g) = v^{-1} \sum_{j=0}^d Q_{ij}\alpha_j(g)$, where $\alpha_j(g)$ is the number of vertices x of X such that $d(x, x^g) = j$.

Lemma 3. Let Γ be a strongly regular graph with parameters (1600, 156, 44, 12) and with the spectrum $156^1, 36^{156}, -4^{1443}, G = \operatorname{Aut}(\Gamma)$. If $g \in G$, χ_1 is the character of ψ_{W_1} , where dim $(W_1) = 156$, then $\alpha_i(g) = \alpha_i(g^l)$ for any natural number l, coprime to |g|, $\chi_1(g) = (4\alpha_0(g) + \alpha_1(g))/40 - 4$. Moreover, if |g| = p is a prime, then $\chi_1(g) - 156$ is divisible by p.

Proof. We have

$$Q = \begin{pmatrix} 1 & 1 & 1 \\ 156 & 36 & -4 \\ 1443 & -37 & 3 \end{pmatrix}.$$

So, $\chi_1(g) = (39\alpha_0(g) + 9\alpha_1(g) - \alpha_2(g))/400$. Note that $\alpha_2(g) = 1600 - \alpha_0(g) - \alpha_1(g)$, so $\chi_1(g) = (4\alpha_0(g) + \alpha_1(g))/40 - 4$. The remaining statements of the lemma follow from Lemma 2 [5]. \Box

Lemma 4. Let Γ be a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$, $G = \operatorname{Aut}(\Gamma)$. If $g \in G$, χ_1 is the character of ψ_{W_1} , where $\dim(W_1) = 675$, χ_2 is the character of ψ_{W_2} , where $\dim(W_2) = 156$, then $\alpha_i(g) = \alpha_i(g^l)$ for any natural number l coprime to |g|, $\chi_1(g) = (44\alpha_0(g) + 8\alpha_1(g) - \alpha_3(g))/104 - 25/13$ and $\chi_2(g) = (4\alpha_0(g) + \alpha_3(g))/40 - 4$. Moreover, if |g| = p is a prime, then $\chi_1(g) - 675$ and $\chi_2(g) - 156$ are divisible by p.

Proof. We have

$$Q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 675 & 1575/13 & -25/13 & -225/13 \\ 156 & -4 & -4 & 36 \\ 768 & -1536/13 & 64/13 & -256/13 \end{pmatrix}.$$

This means $\chi_1(g) = (351\alpha_0(g) + 63\alpha_1(g) - \alpha_2(g) - 9\alpha_3(g))/832$. Note that $\alpha_2(g) = 1600 - \alpha_0(g) - \alpha_1(g) - \alpha_3(g)$, so $\chi_1(g) = (44\alpha_0(g) + 8\alpha_1(g) - \alpha_3(g))/104 - 25/13$.

Similarly, $\chi_2(g) = (39\alpha_0(g) - \alpha_1(g) - \alpha_2(g) + 9\alpha_3(g))/400$. Note that $\alpha_1(g) + \alpha_2(g) = 1600 - \alpha_0(g) - \alpha_3(g)$, so $\chi_2(g) = (4\alpha_0(g) + \alpha_3(g))/40 - 4$.

 \Box .

The remaining statements of this lemma follow from Lemma 2 of [5].

In Lemmas 5–7 we suppose that Γ is a strongly regular graph with parameters (1600, 156, 44, 12), $G = \operatorname{Aut}(\Gamma)$, g is an element of prime order p from G, $\alpha_i(g) = pw_i$ for i > 0 and $\Delta = \operatorname{Fix}(g)$. By Delsarts's boundary the maximal order of a clique K in Γ is not greater than $1 - k/\theta_d$, so $|K| \leq 40$. Due to Hoffman's boundary the maximum order of a coclique C in Γ is not greater than $-v\theta_d/(k - \theta_d)$, so $|C| \leq 40$.

Lemma 5. The following statements hold:

(1) if Δ is an empty graph, then either p = 2 and $\alpha_1(g) = 80s$ or p = 5 and $\alpha_1(g) = 200t$;

(2) if Δ is an n-clique, then one of the following statements holds:

(i) n = 1, p = 2 and $\alpha_1(g) = 80s - 4$, or p = 3 and $\alpha_1(g) = 120t + 36$, or p = 13 and $\alpha_1(g) = 520l + 156$,

(*ii*) $n \in \{4, 7, 10, ..., 40\}, p = 3 and \alpha_1(g) = 120t + 40 - 4n$,

(*iii*) n = 9, p = 37 and $\alpha_1(g) = 444;$

(3) if Δ is an m-coclique, where m > 1, then p = 2, $m \in \{4, 6, 8, ..., 40\}$ and $\alpha_1(g) = 80s - 4m$ or p = 3, $m \in \{4, 7, 10, ..., 40\}$ and $\alpha_1(g) = 120t + 40 - 4m$;

(4) if Δ contains an edge and is an union of isolated cliques, then p = 3.

P r o o f. Let Δ be an empty graph. As $v = 2^6 \cdot 25$, then p is equal to 2 or 5.

In the case p = 2 we have $\chi_1(g) = \alpha_1(g)/40 - 4$ and $\alpha_1(g) = 80s$.

In the case p = 5 we have $\chi_1(g) = \alpha_1(g)/40 - 4$ and $\alpha_1(g) = 200t$.

Let Δ be an *n*-clique. If n = 1, then *p* divides 156 and 1443, therefore $p \in \{2, 3, 13\}$. In the case p = 2 we have $\chi_1(g) = (4 + \alpha_1(g))/40 - 4$ and $\alpha_1(g) = 80s - 4$.

In the case p = 3 we have $\chi_1(g) = (4 + \alpha_1(g))/40 - 4$ and the number $(4 + 3w_1)/40$ is congruent to 1 modulo 3. Hence, $4 + 3w_1 = 120t + 40$ and $\alpha_1(g) = 120t + 36$.

In the case p = 13 we have $\chi_1(g) = (4+13w_1)/40 - 4$ and the number $(4+13w_1)/40$ is congruent to 4 modulo 13. Hence, $4+13w_1 = 520l+160$ and $\alpha_1(g) = 520l+156$.

If n > 1, then for any two vertices $a, b \in \Delta$ the element g acts without fixed points on $[a] \cap [b] - \Delta$, on $[a] - b^{\perp}$ and on $\Gamma - (a^{\perp} \cup b^{\perp})$. Hence, p divides 46 - n, 111 and 1332, therefore $p \in \{3, 37\}$.

In the case p = 3 we have $n \in \{4, 7, 10, ..., 40\}$. Further, $\chi_1(g) = (4n + \alpha_1(g))/40 - 4$ and the number $(4n + \alpha_1(g))/40$ is congruent to 1 modulo 3. Hence, $4n + 3w_1 = 120t + 40$ and $\alpha_1(g) = 120t + 40 - 4n$.

In the case p = 37 we have n = 9. Further, $\chi_1(g) = (36 + \alpha_1(g))/40 - 4$ and the number $(36 + \alpha_1(g))/40$ is congruent to 12 modulo 37. Hence, $\alpha_1(g) = 444$.

Let Δ be an *m*-coclique, where m > 1. Then for any two vertices $a, b \in \Delta$ the element g acts without fixed points on $[a] \cap [b]$, on $[a] - b^{\perp}$ and on $\Gamma - (a^{\perp} \cup b^{\perp} \cup \Delta)$. Hence, p divides 12, 144 and 1300 - m, therefore $p \in \{2, 3\}$.

In the case p = 2 we have $m \in \{4, 6, 8, ..., 40\}$. Further, $\chi_1(g) = (4m + \alpha_1(g))/40 - 4$ and the number $(4m + \alpha_1(g))/40$ is even. Hence, $\alpha_1(g) = 80s - 4m$.

In the case p = 3 we have $m \in \{4, 7, 10, ..., 40\}$. Further, $\chi_1(g) = (4m + \alpha_1(g))/40 - 4$ and the number $(4m + \alpha_1(g))/40$ is congruent to 1 modulo 3. Hence, $\alpha_1(g) = 120t + 40 - 4m$.

Let Δ contains an edge and is a union of isolated cliques. Then p divides 12 and 111, therefore p = 3.

Lemma 6. If $[a] \subset \Delta$ for some vertex a, then for any vertex $u \in \Gamma_2(a) - \Delta$ the orbit of $u^{\langle g \rangle}$ is a clique or a coclique, and one of the following statements holds:

(1) if on $\Gamma - \Delta$ there are no coclique orbits, then $\alpha_1(g) = 1600 - \alpha_0(g)$, $\alpha_0(g) = 40l$ and either (i) l = 4, p = 2, 3 or

(ii) l = 5, p = 5, 7, or(iii) l = 6, p = 2, or(iv) l = 7, p = 3, 11, or(v) l = 8, p = 2, or(vi) l = 10, p = 2, 3, 5, or(vii) l = 12, p = 2, 7, or(viii) l = 13, p = 3, or(ix) l = 14, p = 2;

(2) if on $\Gamma - \Delta$ there is a coclique orbit, then $p \leq 3$, and if $a^{\perp} = \Delta$, then p = 3 and $\alpha_1(g) = 120l + 12$.

P r o o f. Let $[a] \subset \Delta$ for some vertex a. Then for any vertex $u \in \Gamma_2(a) - \Delta$ the orbit $u^{\langle g \rangle}$ doesn't contain a geodesic 2-pathes and is a clique or a coclique.

In the case $p \ge 13$ a subgraph $[a] \cap [u]$ is a 12-clique and for two vertices $b, c \in [a] \cap [u]$ a subgraph $[b] \cap [c]$ contains a, 10 vertices from $[a] \cap [u]$ and p vertices from $u^{\langle g \rangle}$, so $11 + p \le 44$, therefore $p \le 31$.

If on $\Gamma - \Delta$ there are no coclique orbits, then $\alpha_1(g) = v - |\Delta|$ and for a vertex $u' \in u^{\langle g \rangle} - \{u\}$ a subgraph $[u] \cap [u']$ contains p-2 vertices from $u^{\langle g \rangle}$ and 12 vertices from Δ . Further, $\chi_1(g) = (3\alpha_0(g) + 1600)/40 - 4$, $\chi_1(g) - 156$ is divisible by p and p divides $3\alpha_0(g)/40 - 120$. We denote $\alpha_0(g) = 40l$. Then $4 \leq l \leq 14$, p divides 40(40 - l) and 3(40 - l). Thus, either l = 4, p = 2, 3, or l = 5, p = 5, 7, or l = 6, p = 2, 17, or l = 7, p = 3, 11, or l = 8, p = 2, or l = 9, p = 31, or l = 10, p = 2, 3, 5, or l = 11, p = 29, or l = 12, p = 2, 7, or l = 13, p = 3, or l = 14, p = 2, 13. In the case $p \geq 13$ a subgraph $[a] \cap [u]$ is a 12-clique and $p \leq 23$.

Let p = 17 and $b \in \Delta - a^{\perp}$. Then $|\Delta(b) - a^{\perp}| \le 82$ and $|[b] - \Delta| \ge 68$. For $w \in [b] - \Delta$ we have $[a] \cap [w] = [a] \cap [b]$ (otherwise $w^{\langle g \rangle}$ is contained in $[b] \cap [c]$ for $c \in [a] \cap [w] - [b]$). A contradiction with a fact that for two vertices $c, d \in [a] \cap [w]$ a subgraph $[c] \cap [d]$ contains 68 vertices from $[b] - \Delta$.

Let p = 13. Then $|\Delta - a^{\perp}| = 403$. If $b \in \Delta - a^{\perp}$ and $|[b] - \Delta| = 13$, then for any $w \in [b] - \Delta$ we have $[a] \cap [w] = [a] \cap [b]$ (otherwise $w^{\langle g \rangle}$ is contained in $[b] \cap [c]$ for a vertex $c \in [a] \cap [w] - [b]$). Further, $[b] \cap [w]$ contains 12 vertices from $w^{\langle g \rangle}$ and 32 vertices from $\Delta(b)$. Hence, for $w' \in w^{\langle g \rangle} - \{w\}$ a subgraph $[w] \cap [w']$ contains b, 32-clique from $\Delta(b)$ and 11 vertices from $w^{\langle g \rangle}$. A contradiction with a fact that the order of a clique in Γ is not greater than 40.

If $b \in \Delta - a^{\perp}$ and $|[b] - \Delta| = 26$, then $[b] - \Delta = u^{\langle g \rangle} \cup w^{\langle g \rangle}$. As above, $[a] \cap [u] = [a] \cap [w] = [a] \cap [b]$, therefore a subgraph $\{b\} \cup ([a] \cap [b]) \cup u^{\langle g \rangle} \cup w^{\langle g \rangle}$ is a 39-clique. If $e \in [u] \cap \Delta(b) - [w]$, then $[e] \cap [w]$ contains 13 vertices from $u^{\langle g \rangle}$, a contradiction. So, $\{b\} \cup ([u] \cap \Delta(b)) \cup u^{\langle g \rangle} \cup w^{\langle g \rangle}$ is a 46-coclique, a contradiction. If $b \in \Delta - a^{\perp}$ and $|[b] - \Delta| \geq 39$, then for any two vertices $c, d \in [a] \cap [b]$ a subgraph $[c] \cap [d]$ contains a, b and 39 vertices from $[b] - \Delta$, a contradiction. Statement (1) is proved.

Let on $\Gamma - \Delta$ there is a coclique orbit $u^{\langle g \rangle}$. Then $[u^{g_i}] \cap [u^{g_j}]$ does not intersect $\Gamma - \Delta$ for distinct vertices u^{g_i}, u^{g_j} , so $145p \leq |\Gamma - \Delta| \leq 1443$, therefore $p \leq 7$.

Let us show that $p \leq 3$.

Let $c \in [a] \cap [u]$ and $[c] \cap [u]$ contains exactly γ vertices from $[a] \cap [u]$. Then $[c] \cap [u]$ contains $44 - \gamma$ vertices outside of Δ (lying in distinct $\langle g \rangle$ -orbits) and $p(44 - \gamma) \leq |[c] - \Delta| \leq 156 - 45 = 111$. Hence, $32p \leq 111$.

If $a^{\perp} = \Delta$, then $\alpha_0(g) = 157$, *p* divides 1443 and p = 3. Further, $\chi_1(g) = (628 + \alpha_1(g))/40 - 4$, $(628 + \alpha_1(g))/40$ is congruent to 1 modulo 3 and $\alpha_1(g) = 120l + 12$.

Lemma 7. The following statements hold:

(1) Γ does not contain proper strongly regular subgraphs with parameters (v', k', 44, 12);

(2) $p \le 43$.

P r o o f. Assume that Γ contains proper strongly regular subgraph Σ with parameters (v', k', 44, 12). Then $4(k'-12)+32^2 = n^2$, therefore n = 2l, $k' = l^2 - 244$, $l \ge 16$, Σ has nonprincipal eigenvalues 16 + l, 16 - l and multiplicity of 16 + l is equal to $(l - 17)(l^2 - 244)(l^2 + l - 260)/24l$. If l is odd, then 8 divides $(l - 17)(l^2 + l - 20)$, l divides $17 \cdot 61 \cdot 65$ and $l \in \{5, 13\}$. If l is even, then 3 divides $(l - 2)(l^2 - 1)(l^2 + l - 2)$ and l = 16. In all cases we have contradictions.

If $p \ge 47$, then Δ is a strongly regular graph with parameters (v', k', 44, 12), so $\Delta = \Gamma$, a contradiction.

Theorem 2 follows from Lemmas 5–7.

2. Proof of Theorem 1

In Lemmas 8–9 it is assumed that Γ is a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}, G = \operatorname{Aut}(\Gamma), g$ is an element of prime order p from $G, \alpha_i(g) = pw_i$ for i > 0 and $\Omega = \operatorname{Fix}(g)$.

Lemma 8. The following statements hold:

(1) if Ω is an empty graph, then either p = 2, $\alpha_1(g) = 10r + 26m + 12$ and $\alpha_3(g) = 80r = 1600 - \alpha_1(g)$ or p = 5, $\alpha_1(g) = 65n + 10l + 10$ and $\alpha_3(g) = 200l$;

(2) if Ω is an n-clique, then one of the following statements holds:

(i) $n = 1, p = 3, \alpha_1(g) = 15l + 24 + 39m \text{ and } \alpha_3(g) = 120l + 36,$

(*ii*) $n = 2, p = 2, \alpha_1(g) = 10l + 26m \text{ and } \alpha_3(g) = 80l - 8,$

(iii) or n = 4, p = 2, $\alpha_1(g) = 10l + 26m + 14$ and $\alpha_3(g) = 80l - 16$ or p = 3, $\alpha_1(g) = 10l + 39m + 1$, *l* is congruent to -1 modulo 3 and $\alpha_3(g) = 120l + 24$;

(3) if Ω consists of *n* vertices at distance 3 in Γ , then p = 3, $n \in \{4, 7, 10, ..., 40\}$, $\alpha_3(g) = 120l + 40 - 4n$ and $\alpha_1(g) = 15l + 30 + 39m - 6n$;

(4) if Ω contains an edge and doesn't contain vertices at distance 2 in Γ , then Ω is an union of isolated cliques and any two vertices from different cliques are at distance 3 in Γ , either p = 3 and the orders of these cliques are equal to 1 or 4, or p = 2 and the orders of these cliques are equal to 2 or 4.

P r o o f. Let Ω be an empty graph and $\alpha_i(g) = pw_i$ for $i \ge 1$. As v = 1600, then p is equal to 2 or 5.

Let p = 2. Then $w_1 + w_2 + w_3 = 800$ and $\chi_2(g) = w_3/20 - 4$. Hence, $w_3 = 40r$. Further, the number $\chi_1(g) = (2w_1 - 10r - 25)/13$ is odd, therefore $w_1 = 13m + 6 + 5r$. Finally, $\alpha_2(g) = 0$ (if $d(u, u^g) = 2$, then the only vertex from $[u] \cap [u^g]$ belongs to Ω , a contradiction). Therefore $\alpha_1(g) = 10r + 26m + 12 = 1600 - 80r$.

Let p = 5. Then $w_1 + w_2 + w_3 = 320$ and $\chi_2(g) = w_3/8 - 4$. Hence, $w_3 = 40l$. Finally, $\chi_1(g) = (5w_1 - 25l - 25)/13$, therefore $w_1 = 13n + 5l + 5$. Statement (1) is proved.

Let Ω be an *n*-clique. If n = 1, then *p* divides 39 and 315, therefore p = 3. We have $\chi_1(g) = (8\alpha_1(g) - \alpha_3(g) - 156)/104$, $\chi_2(g) = (4 + \alpha_3(g))/40 - 4$. Therefore the number $(4 + \alpha_3(g))/40$ is congruent to 1 modulo 3, $\alpha_3(g) = 120l + 36$ and the number $\chi_1(g) = (\alpha_1(g) - 15l - 24)/13$ is divisible by 3. Hence, $\alpha_1(g) = 15l + 24 + 39m$.

If n > 1, then p divides 4 - n and 36, therefore either n = 2, p = 2, or n = 4, p = 2, 3. In the first case the number $\chi_2(g) = (8 + \alpha_3(g))/40 - 4$ is even and $\alpha_3(g) = 80l - 8$. Further, the number $\chi_1(g) = (\alpha_1(g) - 10l)/13 - 1$ is odd and $\alpha_1(g) = 10l + 26m$. In the second case $\chi_2(g) = (16 + \alpha_3(g))/40 - 4$ and either p = 2, $\alpha_3(g) = 80l - 16$, or p = 3 and $\alpha_3(g) = 120l + 24$. Further, $\chi_1(g) = (176 + 8\alpha_1(g) - \alpha_3(g))/104 - 25/13$ and either p = 2, $\alpha_1(g) = 10l + 26m + 14$, or p = 3 and $\alpha_1(g) = 10l + 39m + 1$, l is congruent to -1 modulo 3.

Let Ω consists of n vertices at distance 3. As $p_{13}^3 = 3$, $p_{33}^3 = 44$, then p divides 3 and 46 - n. Hence, p = 3 and $n \in \{4, 7, 10, ..., 40\}$. We have $\chi_2(g) = (4n + \alpha_3(g))/40 - 4$ and the number $(4n + \alpha_3(g))/40$ is congruent to 1 modulo 3, therefore $\alpha_3(g) = 120l + 40 - 4n$. Further, the number $\chi_1(g) = (6n + \alpha_1(g) - 15l - 30)/13$ is divisible by 3 and $\alpha_1(g) = 15l + 30 + 39m - 6n$.

Let Ω contains an edge and does not contain vertices at distance 2 in Γ . Then Ω is an union of isolated cliques, any two vertices from distinct cliques are at distance 3 in Γ . As orders of these cliques are at most 4, then $p \leq 3$. If p = 3, then the orders of these cliques are equal to 1 or 4. If p = 2, then the orders of these cliques are equal to 2 or 4.

Lemma 9. If Ω contains vertices a, b at distance 2 in Γ , then $p \leq 3$.

P r o o f. Let Ω contains vertices a, b at distance 2 in Γ and Ω_0 is a connected component of Ω containing a, b.

Assume that the diameter of graph Ω_0 is equal to 2. Then by [1, 1.17.1] one of the following statements holds:

(i) $\Omega_0 \subseteq a^{\perp}$ and $\Omega_0(a)$ is an union of isolated cliques;

(*ii*) Ω_0 is a strongly regular graph;

(*iii*) Ω_0 is a biregular graph with degrees of vertices α, β , where $\alpha < \beta$, and if A and B are sets of vertices from Ω_0 with degrees α and β , then A is a coclique, the lines between A and B have order 2, the lines from B have order $l = \beta - \alpha + 2 > 2$, and $|\Omega_0| = \alpha\beta + 1$.

Last case is impossible because $c_2 = 1$ in Γ .

In the case (i) we have $p \in \{2, 3\}$ because of $p_{33}^1 = 12$.

In the case (ii) either p = 2 and Ω_0 is the pentagon, Petersen graph or Hoffman-Singletone graph, or p > 2 and Ω_0 is a strongly regular graph with parameters (v', k', 2, 1).

Let p > 2. Then $\Omega(a)$ consists of e isolated triangles and either e = 1, p = 3, or e = 2, p = 3, 11, or e = 3, p = 3, 5, or e = 4, p = 3, or e = 5, p = 3, or e = 6, p = 3, 7, or e = 7, p = 3, or e = 8, $p = 3, 5, \text{ or } e \ge 9, p = 3.$

In case p = 11 graph Ω is a regular graph of degree 6, $|\Omega \cap \Gamma_2(a)| = 18$, $|\Omega \cap \Gamma_3(a)| = 24$ and $|\Gamma_3(a) - \Omega|$ is not divisible by 11.

In case p = 7 graph Ω is a regular graph of degree 18, $|\Omega \cap \Gamma_2(a)| = 270, |\Omega \cap \Gamma_3(a)| = 270 \cdot 4/15 =$ 64 and $|\Gamma_3(a) - \Omega|$ is not divisible by 7.

In case p = 5 graph Ω contains vertices of degrees 9 and 24. Assume that $|\Omega(a)| = 24$, $\Omega(a)$ contains β vertices of degree 24 in Ω and $\Omega_3(a)$ contains γ vertices of degree 24 in Ω . Then the number $21\beta + 6(24 - \beta) = |\Omega \cap \Gamma_2(a)|$ is congruent to 4 modulo 5 and $4|\Omega \cap \Gamma_2(a)| = 21\gamma + 6(|\Omega \cap \Gamma_2(a)|)$ $\Gamma_3(a)|-\gamma$). Hence, $|\Gamma_2(a) \cap \Omega| = (144 + 15\beta)$ and $576 + 60\beta = 15\gamma + 6|\Omega \cap \Gamma_3(a)|$, a contradiction with the fact that $|\Omega \cap \Gamma_3(a)|$ is divisible by 5.

So, Ω is an amply regular graph with parameters $(v', 9, 2, 1), 54 = |\Omega \cap \Gamma_2(a)|$ and $|\Omega \cap \Gamma_3(a)| =$ 36. Again we have a contradiction with the fact that $|\Omega \cap \Gamma_3(a)|$ is divisible by 5.

The lemma is proved.

Theorem 1 follows from Lemmas 8–9.

3. Proof of Corollary 1

Until the end of the paper we will assume that Γ is a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$ and the nonsolvable group $G = \operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices of this graph. For the vertex $a \in \Gamma$ we get $|G:G_a| = 1600$. In view of Theorem 1 we have $p \in \{2, 3, 5\}$. Let \overline{T} be the socle of the group $\overline{G} = G/O_{5'}(G)$.

Lemma 10. If f is an element of order 5 of G, g is an element of order p < 5 of $C_G(f)$ and $\Omega = Fix(q)$, then one of the following statements holds:

(1) Ω is an empty graph, p = 2, $\alpha_3(g) = 80r$, $r \le 19$, $\alpha_1(g) = 10r + 26m + 12 = 1600 - 80r$, and $m \in \{-7, -2, 3, 8, ..., 58\};$

(2) Ω consists of *n* vertices at distance 3 in Γ , p = 3, $n \in \{10, 25, 40\}$, $\alpha_3(g) = 120l + 40 - 4n$, $\alpha_1(g) + \alpha_3(g) = 135l - 10n + 39m + 70 \le 1600$ and m is divisible by 5;

(3) p = 3, $\alpha_3(g) = 120s$, $\alpha_0(g) = 30t + 10$, $\alpha_1(g) = 39l - 165t + 15s - 30$ or $\alpha_3(g) = 120s + 60$, $\alpha_0(g) = 30t - 5, \ \alpha_1(g) = 195l - 165t + 15s + 60;$

(4) p = 2, $\alpha_3(g) = 80s - 4\alpha_0(g)$ and $\alpha_1(g) = 10s + 26l + 38 - 6\alpha_0(g)$, l is congruent to 2 modulo 5.

P r o o f. In view of Theorem 1 Fix(f) is empty graph, $\alpha_1(f) = 65n + 10l + 10$ and $\alpha_3(f) = 200l$.

If Ω is an empty graph, then p = 2, $\alpha_3(g) = 80r$ and $\alpha_1(g) = 10r + 26m + 12 = 1600 - 80r$ is divisible by 5. Hence, 13m + 6 is divisible by 5 and $m \in \{-7, -2, 3, 8, ..., 58\}$. Finally, 26m + 12 = 1600 - 90r, therefore m is congruent to 2 modulo 3 and $m \in \{-7, 8, 23, 38, 53\}$.

If Ω is an *n*-clique, then *n* is divisible by 5, we have got a contradiction.

If Ω consists of n vertices at distance 3 in Γ , then p = 3, $n \in \{10, 25, 40\}$, the numbers $\alpha_3(g) = 120l + 40 - 4n$ and $\alpha_1(g) = 15l + 30 + 39m - 6n$ are divisible by 5. Hence, m is divisible by 5, $\alpha_1(g) + \alpha_3(g) = 135l - 10n + 39m + 70 \le 1600$.

If p = 3, then $\chi_2(g) = (4\alpha_0(g) + \alpha_3(g))/40 - 4$ and the number $(4\alpha_0(g) + \alpha_3(g))/40$ is congruent to 1 modulo 3. Further, the number $\chi_1(g) = (44\alpha_0(g) + 8\alpha_1(g) - \alpha_3(g))/104 - 25/13$ is divisible by 3, $\alpha_3(g)$ is divisible by 60. If $\alpha_3(g) = 120s$, then $\alpha_0(g) = 30t + 10$, $\alpha_1(g) = 39l - 165t + 15s - 30$. If $\alpha_3(g) = 120s + 60$, then $\alpha_0(g) = 30t - 5$, $\alpha_1(g) = 195l - 165t + 15s + 60$.

If p = 2, then $\chi_2(g) = (4\alpha_0(g) + \alpha_3(g))/40 - 4$, $4\alpha_0(g) + \alpha_3(g) = 80s$. Further, $\alpha_1(g) = -6\alpha_0(g) + 10s + 26l + 38$ and 13l + 19 is divisible by 5, therefore $l \in \{2, 7, ...\}$. Finally, $1600 - 5\alpha_0(g) + 80s = -6\alpha_0(g) + 10s + 26l + 38$, $1600 = -70s - \alpha_0(g) + 26l + 38$.

Lemma 11. The following statements hold:

(1) $\overline{T} = L \times M$, and each of subgroups L, M is isomorphic to one of the following groups Z_5, A_5, A_6 or PSp(4,3);

(2) in case $|\bar{T}:\bar{T}_a| = 40^2$ we have $O_{5'}(G) = 1$ and this case is realized if one of the following statements holds:

(i) $L \cong M \cong PSp(4,3)$, or

(ii) $L \cong PSp(4,3), |L:L_a| = 40, M \cong A_6 \text{ and } |M_a| = 9, \text{ or }$

(iii) $L \cong M \cong A_6$ and $|L_a| = |M_a| = 9$.

P r o o f. Recall that a nonabelian simple $\{2,3,5\}$ -group is isomorphic to A_5, A_6 or PSp(4,3) (see, [6, Table 1]). Hence, in view of Theorem 1 we have $\overline{T} = L \times M$, each of subgroups L, M is isomorphic to one of the following groups A_5, A_6 or PSp(4,3).

If $\overline{T} \cong PSp(4,3)$, then the group \overline{T}_a has an index 40 in \overline{T} and is isomorphic to $E_9.SL_2(3)$ or $E_{27}.S_4$.

If $\overline{T} \cong A_6$, then the group \overline{T}_a has an index in \overline{T} , divisible by 10, and dividing 40.

If $\overline{T} \cong A_5$, then the group \overline{T}_a has an index in \overline{T} , divisible by 10, and dividing 20.

In case $|\overline{T}:\overline{T}_a| = 40^2$ we have $O_{5'}(G) = 1$ and this case is realized if one of the following statements holds: either $L \cong M \cong PSp(4,3)$, or $L \cong PSp(4,3)$, $M \cong A_6$ $|M_a| = 9$, or $L \cong M \cong A_6$ and $|L_a| = |M_a| = 9$.

Corollary is proved.

4. Conclusion

We found possible automorphisms of a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$. In particular this graph is not arc-transitive.

REFERENCES

- Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs. New York: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
- 2. Makhnev A. A., Nirova M. S. On distance-regular graphs with $\lambda = 2$. J. Sib. Fed. Univ. Math. Phys., 2014. Vol. 7, No. 2. P. 204–210.

- Behbahani M., Lam C. Strongly regular graphs with nontrivial automorphisms. Discrete Math., 2011. Vol. 311, No. 2–3. P. 132–144. DOI: 10.1016/j.disc.2010.10.005
- 4. Cameron P. J. *Permutation Groups*. London Math. Soc. Student Texts, No. 45. Cambridge: Cambridge Univ. Press, 1999.
- 5. Gavrilyuk A. L., Makhnev A. A. On automorphisms of distance-regular graph with the intersection array {56, 45, 1; 1, 9, 56}. Doklady Mathematics, 2010. Vol. 81, No. 3. P. 439–442. DOI: 10.1134/S1064562410030282
- Zavarnitsine A. V. Finite simple groups with narrow prime spectrum. Sib. Electron. Math. Izv., 2009. Vol. 6. P. S1–S12.