AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY $\{39,36,4 ; 1,1,36\}^{1}$.

Konstantin S. Efimov
Ural State University of Economics, 62 March 8th Str., Ekaterinburg, Russia, 620144
konstantin.s.efimov@gmail.com

Alexander A. Makhnev
Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, Russia, 620990 makhnev@imm.uran.ru

Abstract

Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more than 4096 vertices, in which $\lambda=2$ and $\mu=1$. They proposed the program of investigation of distance-regular graphs with $\lambda=2$ and $\mu=1$. In this paper the automorphisms of a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}$ are studied.

Keywords: Strongly regular graph, Distance-regular graph.

Introduction

We consider undirected graphs without loops and multiple edges. Our terminology and notation are mostly standard and could be found in [1]. Given a vertex a in a graph Γ, we denote by $\Gamma_{i}(a)$ the subgraph induced by Γ on the set of all the vertices of Γ, that are at the distance i from a. The subgraph $[a]=\Gamma_{1}(a)$ is called the neighbourhood of a vertex a. Let $\Gamma(a)=\Gamma_{1}(a), a^{\perp}=\{a\} \cup \Gamma(a)$. If graph Γ is fixed, then we write $[a]$ instead of $\Gamma(a)$.

The incidence system with the set of points P and the set of lines \mathcal{L} is called α-partial geometry of order (s, t) if each line contains exactly $s+1$ points, each point lies exactly on $t+1$ lines, any two points lie on no more than one line, and for any antiflag $(a, l) \in(P, \mathcal{L})$ there are exactly α lines passing through a and intersecting l. This geometry is denoted by $p G_{\alpha}(s, t)$.

In the case $\alpha=1$, the geometry $p G_{\alpha}(s, t)$ is called a generalized quadrangle and is denoted by $G Q(s, t)$. A point graph of this geometry is defined on the set of points P and two points are adjacent if they lie on a line. The point graph of a geometry $p G_{\alpha}(s, t)$ is strongly regular with parameters $v=(s+1)(1+s t / \alpha), k=s(t+1), \lambda=s-1+t(\alpha-1), \mu=\alpha(t+1)$. A strongly regular graph with such parameters for some natural numbers α, s, t is called a pseudo-geometric graph for $p G_{\alpha}(s, t)$.

If vertices u, w are at distance i in Γ, then by $b_{i}(u, w)$ (respectively, $c_{i}(u, w)$) we denote the number of vertices in $\Gamma_{i+1}(u) \cap[w]$ (respectively, $\Gamma_{i-1}(u) \cap[w]$). A graph Γ of diameter d is called distance-regular with intersection array $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$ if the values $b_{i}(u, w)$ and $c_{i}(u, w)$ do not depend on the choice of vertices u, w at distance i in Γ for each $i=0, \ldots, d$. Note that, for a

[^0]distance-regular graph, b_{0} is the degree of the graph and $c_{1}=1$. For a subset X of automorphisms of a graph $\Gamma, \operatorname{Fix}(X)$ denotes the set of all vertices of Γ, fixed with respect to any automorphism of X. Further, by $p_{i j}^{l}(x, y)$ we denote the number of vertices in a subgraph $\Gamma_{i}(x) \cap \Gamma_{j}(y)$ for vertices x, y at distance l in Γ.

A graph is said to be vertex-symmetric if its automorphism group acts transitively on the set of its vertices.

In [2], intersection arrays of distance-regular graphs with $\lambda=2, \mu=1$ and with the number of vertices at most 4096 were found. A.A. Makhnev and M.S. Nirova proposed an investigation program of automorphisms of distance-regular graphs from the obtained list.

Proposition 1. [2] Let Γ be a distance-regular graph with $\lambda=2, \mu=1$, which has at most 4096 vertices. Then Γ has one of the following intersection arrays:
(1) $\{21,18 ; 1,1\}(v=400)$;
(2) $\{6,3,3,3 ; 1,1,1,2\}$ (Γ is a generalized octagon of order $(3,1), v=160$), $\{6,3,3 ; 1,1,2\}$ (Γ is a generalized hexagon of order $(3,1), v=52$), $\{12,9,9 ; 1,1,4\}$ (Γ is a generalized hexagon of order $(3,3)$, $v=364$), $\{6,3,3,3,3,3 ; 1,1,1,1,1,2\}$ (Γ is a generalized dodecagon of order $(3,1)$, $v=1456)$;
(3) $\{18,15,9 ; 1,1,10\}\left(v=1+18+270+243=532, \Gamma_{3}\right.$ is a strongly regular graph $)$; $\{33,30,8 ; 1,1,30\},\{39,36,4 ; 1,1,36\},\{21,18,12,4 ; 1,1,6,21\}$.

In this paper we study automorphisms of a hypothetical distance-regular graph Γ with intersection array $\{39,36,4 ; 1,1,36\}$. The maximal order of a clique C in Γ is not more than 4 . A graph with intersection array $\{39,36,4 ; 1,1,36\}$ has $v=1+39+1404+156=1600$ vertices and the spectrum $39^{1}, 7^{675},-1^{156},-6^{768}$.

Theorem 1. Let Γ be a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}$, $G=\operatorname{Aut}(\Gamma), g$ is an element of prime order p in G and $\Omega=\operatorname{Fix}(g)$ contains exactly s vertices in t antipodal classes. Then $\pi(G) \subseteq\{2,3,5\}$ and one of the following statements holds:
(1) Ω is an empty graph and either $p=2, \alpha_{1}(g)=10 r+26 m+12$ and $\alpha_{3}(g)=80 r$ or $p=5$, $\alpha_{1}(g)=65 n+10 l+10$ and $\alpha_{3}(g)=200 l ;$
(2) Ω is an n-clique and one of the following statements holds:
(i) $n=1, p=3, \alpha_{1}(g)=15 l+24+39 m$ and $\alpha_{3}(g)=120 l+36$,
(ii) $n=2, p=2, \alpha_{1}(g)=10 l+26 m$ and $\alpha_{3}(g)=80 l-8$,
(iii) $\quad n=4, \quad p=2, \quad \alpha_{1}(g)=10 l+26 m+14 \quad$ and $\quad \alpha_{3}(g)=80 l-16 \quad$ or $\quad p=3$, $\alpha_{1}(g)=10 l+39 m+1, l$ is congruent to -1 modulo 3 and $\alpha_{3}(g)=120 l+24$;
(3) Ω consists of n vertices pairwise at distance 3 in $\Gamma, p=3, n \in\{4,7, \ldots, 40\}$, $\alpha_{3}(g)=120 l+40-4 n$ and $\alpha_{1}(g)=15 l+30+39 m-6 n$;
(4) Ω contains an edge and is a union of isolated cliques, any two vertices of different cliques are at distance 3 in Γ, and either $p=3$ and the orders of these cliques are 1 or 4 , or $p=2$ and the orders of these cliques are 2 or 4;
(5) Ω contains vertices that are at distance 2 in Γ and $p \leq 3$.

If Γ is a distance-regular graph with the intersection array $\{39,36,4 ; 1,1,36\}$ then Γ_{3} is a pseudo-geometric for $p G_{3}(39,3)$.

Theorem 2. Let Γ be a strongly regular graph with parameters $(1600,156,44,12), G=\operatorname{Aut}(\Gamma)$, g is an element of prime order p in G and $\Delta=\operatorname{Fix}(g)$. Then $p \leq 43$ and the following statements hold:
(1) if Δ is an empty graph, then $p=2$ and $\alpha_{1}(g)=80$ s or $p=5$ and $\alpha_{1}(g)=200 t$;
(2) if Δ is an n-clique, then one of the following statements holds:
(i) $n=1, p=2$ and $\alpha_{1}(g)=80 s-4$, or $p=3$ and $\alpha_{1}(g)=120 t+36$, or $p=13$ and $\alpha_{1}(g)=520 l+156$,
(ii) $n \in\{4,7,10, \ldots, 40\}, p=3$ and $\alpha_{1}(g)=120 t+40-4 n$,
(iii) $n=9, p=37$ and $\alpha_{1}(g)=444$;
(3) if Δ is an m-coclique, where $m>1$, then either $p=2, m \in\{4,6,8, \ldots, 40\}$ and $\alpha_{1}(g)=80 s-4 m$ or $p=3, m \in\{4,7,10, \ldots, 40\}$ and $\alpha_{1}(g)=120 t+40-4 m$;
(4) if Δ contains an edge and is an union of isolated cliques, then $p=3$;
(5) if Δ contains a geodesic 2-path, then $p \leq 43$.

Corollary 1. Let Γ be a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}$ and nonsolvable group $G=\operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices of Γ. If a is a vertex of Γ, \bar{T} is the socle of the group $\bar{G}=G / O_{5^{\prime}}(G)$, then $\bar{T}=L \times M$, and each of subgroups L, M is isomorphic to one of the following groups: Z_{5}, A_{5}, A_{6} or $\operatorname{PSp}(4,3)$.

If $\left|\bar{T}: \bar{T}_{a}\right|=40^{2}$, then $O_{5^{\prime}}(G)=1$ and this case is realized if one of the following statements holds:
(1) $L \cong M \cong P S p(4,3),\left|L: L_{a}\right|=\left|M: M_{a}\right|=40$,
(2) $L \cong P S p(4,3),\left|L: L_{a}\right|=40, M \cong A_{6}$ and $\left|M_{a}\right|=9$,
(3) $L \cong M \cong A_{6}$ and $\left|L_{a}\right|=\left|M_{a}\right|=9$.

1. Proof of Theorem 2

First we give auxiliary results.
Lemma 1. [2, Theorem 3.2] Let Γ be a strongly regular graph with parameters (v, k, λ, μ) and with the second eigenvalue r. If g is an automorphism of Γ and $\Delta=\operatorname{Fix}(g)$, then

$$
|\Delta| \leq v \cdot \max \{\lambda, \mu\} /(k-r)
$$

By Lemma 1, for a strongly regular graph with parameters $(1600,156,44,12)$ we have $|\Delta| \leq 1600 \cdot \max \{44,12\} /(156-36),|\Delta| \leq 586$.

Lemma 2. Let Γ be a distance regular graph with intersection array $\{39,36,4 ; 1,1,36\}$. Then for intersection numbers of Γ the following statements hold:
(1) $p_{11}^{1}=2, p_{12}^{1}=36, p_{22}^{1}=1224, p_{23}^{1}=144, p_{33}^{1}=12$;
(2) $p_{11}^{2}=1, p_{12}^{2}=34, p_{13}^{2}=4, p_{22}^{2}=1229, p_{23}^{2}=140, p_{33}^{2}=12$;
(3) $p_{12}^{3}=36, p_{13}^{3}=3, p_{22}^{3}=1260, p_{23}^{3}=108, p_{33}^{3}=44$.

Proof. This follows from [1, Lemma 4.1.7].

The proofs of Theorems 1 and 2 are based on Higman's method of working with automorphisms of a distance-regular graph, presented in the third chapter of Cameron's book [4].

Let Γ be a distance-regular graph of diameter d with v vertices. Then we have a symmetric association scheme (X, \mathcal{R}) with d classes, where X is the set of vertices of Γ and $R_{i}=\left\{(u, w) \in X^{2} \mid\right.$ $d(u, w)=i\}$. For a vertex $u \in X$ we set $k_{i}=\left|\Gamma_{i}(u)\right|$. Let A_{i} be an adjacency matrix of graph Γ_{i}. Then $A_{i} A_{j}=\sum p_{i j}^{l} A_{l}$ for some integer numbers $p_{i j}^{l} \geq 0$, which are called the intersection numbers. Note that $p_{i j}^{l}=\left|\Gamma_{i}(u) \cap \Gamma_{j}(w)\right|$ for any vertices u, w with $d(u, w)=l$.

Let P_{i} be a matrix in which in the (j, l)-th entry is $p_{i j}^{l}$. Then eigenvalues $k=p_{1}(0), \ldots, p_{1}(d)$ of the matrix P_{1} are eigenvalues of Γ with multiplicities $m_{0}=1, \ldots, m_{d}$, respectively. The matrices P
and Q with $P_{i j}=p_{j}(i)$ and $Q_{j i}=m_{j} p_{i}(j) / k_{i}$ are called the first and the second eigenmatrices of Γ, respectively, and $P Q=Q P=v I$, where I is an identity matrix of order $d+1$.

The permutation representation of the group $G=\operatorname{Aut}(\Gamma)$ on the vertex set of Γ naturally gives the monomial matrix representation ψ of a group G in $G L(v, \mathbb{C})$. The space \mathbb{C}^{v} is an orthogonal direct sum of the eigenspaces $W_{0}, W_{1}, \ldots, W_{d}$ of the adjacent matrix $A=A_{1}$ of Γ. For every $g \in G$, we have $\psi(g) A=A \psi(g)$, so each subspace W_{i} is $\psi(G)$-invariant. Let χ_{i} be the character of a representation $\psi_{W_{i}}$. Then for $g \in G$ we obtain $\chi_{i}(g)=v^{-1} \sum_{j=0}^{d} Q_{i j} \alpha_{j}(g)$, where $\alpha_{j}(g)$ is the number of vertices x of X such that $d\left(x, x^{g}\right)=j$.

Lemma 3. Let Γ be a strongly regular graph with parameters $(1600,156,44,12)$ and with the spectrum $156^{1}, 36^{156},-4^{1443}, G=\operatorname{Aut}(\Gamma)$. If $g \in G$, χ_{1} is the character of $\psi_{W_{1}}$, where $\operatorname{dim}\left(W_{1}\right)=156$, then $\alpha_{i}(g)=\alpha_{i}\left(g^{l}\right)$ for any natural number l, coprime to $|g|$, $\chi_{1}(g)=\left(4 \alpha_{0}(g)+\alpha_{1}(g)\right) / 40-4$. Moreover, if $|g|=p$ is a prime, then $\chi_{1}(g)-156$ is divisible by p.

Proof. We have

$$
Q=\left(\begin{array}{ccc}
1 & 1 & 1 \\
156 & 36 & -4 \\
1443 & -37 & 3
\end{array}\right) .
$$

So, $\chi_{1}(g)=\left(39 \alpha_{0}(g)+9 \alpha_{1}(g)-\alpha_{2}(g)\right) / 400$. Note that $\alpha_{2}(g)=1600-\alpha_{0}(g)-\alpha_{1}(g)$, so $\chi_{1}(g)=$ $\left(4 \alpha_{0}(g)+\alpha_{1}(g)\right) / 40-4$. The remaining statements of the lemma follow from Lemma 2 [5].

Lemma 4. Let Γ be a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}$, $G=\operatorname{Aut}(\Gamma)$. If $g \in G, \chi_{1}$ is the character of $\psi_{W_{1}}$, where $\operatorname{dim}\left(W_{1}\right)=675, \chi_{2}$ is the character of $\psi_{W_{2}}$, where $\operatorname{dim}\left(W_{2}\right)=156$, then $\alpha_{i}(g)=\alpha_{i}\left(g^{l}\right)$ for any natural number l coprime to $|g|$, $\chi_{1}(g)=\left(44 \alpha_{0}(g)+8 \alpha_{1}(g)-\alpha_{3}(g)\right) / 104-25 / 13$ and $\chi_{2}(g)=\left(4 \alpha_{0}(g)+\alpha_{3}(g)\right) / 40-4$. Moreover, if $|g|=p$ is a prime, then $\chi_{1}(g)-675$ and $\chi_{2}(g)-156$ are divisible by p.

Proof. We have

$$
Q=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
675 & 1575 / 13 & -25 / 13 & -225 / 13 \\
156 & -4 & -4 & 36 \\
768 & -1536 / 13 & 64 / 13 & -256 / 13
\end{array}\right) .
$$

This means $\chi_{1}(g)=\left(351 \alpha_{0}(g)+63 \alpha_{1}(g)-\alpha_{2}(g)-9 \alpha_{3}(g)\right) / 832$. Note that $\alpha_{2}(g)=1600-\alpha_{0}(g)-$ $\alpha_{1}(g)-\alpha_{3}(g)$, so $\chi_{1}(g)=\left(44 \alpha_{0}(g)+8 \alpha_{1}(g)-\alpha_{3}(g)\right) / 104-25 / 13$.

Similarly, $\chi_{2}(g)=\left(39 \alpha_{0}(g)-\alpha_{1}(g)-\alpha_{2}(g)+9 \alpha_{3}(g)\right) / 400$. Note that $\alpha_{1}(g)+\alpha_{2}(g)=1600-$ $\alpha_{0}(g)-\alpha_{3}(g)$, so $\chi_{2}(g)=\left(4 \alpha_{0}(g)+\alpha_{3}(g)\right) / 40-4$.

The remaining statements of this lemma follow from Lemma 2 of [5].

In Lemmas 5-7 we suppose that Γ is a strongly regular graph with parameters ($1600,156,44,12$), $G=\operatorname{Aut}(\Gamma), g$ is an element of prime order p from $G, \alpha_{i}(g)=p w_{i}$ for $i>0$ and $\Delta=\operatorname{Fix}(g)$. By Delsarts's boundary the maximal order of a clique K in Γ is not greater than $1-k / \theta_{d}$, so $|K| \leq 40$. Due to Hoffman's boundary the maximum order of a coclique C in Γ is not greater than $-v \theta_{d} /\left(k-\theta_{d}\right)$, so $|C| \leq 40$.

Lemma 5. The following statements hold:
(1) if Δ is an empty graph, then either $p=2$ and $\alpha_{1}(g)=80$ s or $p=5$ and $\alpha_{1}(g)=200 t$;
(2) if Δ is an n-clique, then one of the following statements holds:
(i) $n=1, p=2$ and $\alpha_{1}(g)=80 s-4$, or $p=3$ and $\alpha_{1}(g)=120 t+36$, or $p=13$ and $\alpha_{1}(g)=520 l+156$,
(ii) $n \in\{4,7,10, \ldots, 40\}, p=3$ and $\alpha_{1}(g)=120 t+40-4 n$,
(iii) $n=9, p=37$ and $\alpha_{1}(g)=444$;
(3) if Δ is an m-coclique, where $m>1$, then $p=2, m \in\{4,6,8, \ldots, 40\}$ and $\alpha_{1}(g)=80 s-4 m$ or $p=3, m \in\{4,7,10, \ldots, 40\}$ and $\alpha_{1}(g)=120 t+40-4 m$;
(4) if Δ contains an edge and is an union of isolated cliques, then $p=3$.

Proof. Let Δ be an empty graph. As $v=2^{6} \cdot 25$, then p is equal to 2 or 5 .
In the case $p=2$ we have $\chi_{1}(g)=\alpha_{1}(g) / 40-4$ and $\alpha_{1}(g)=80 s$.
In the case $p=5$ we have $\chi_{1}(g)=\alpha_{1}(g) / 40-4$ and $\alpha_{1}(g)=200 t$.
Let Δ be an n-clique. If $n=1$, then p divides 156 and 1443 , therefore $p \in\{2,3,13\}$. In the case $p=2$ we have $\chi_{1}(g)=\left(4+\alpha_{1}(g)\right) / 40-4$ and $\alpha_{1}(g)=80 s-4$.

In the case $p=3$ we have $\chi_{1}(g)=\left(4+\alpha_{1}(g)\right) / 40-4$ and the number $\left(4+3 w_{1}\right) / 40$ is congruent to 1 modulo 3 . Hence, $4+3 w_{1}=120 t+40$ and $\alpha_{1}(g)=120 t+36$.

In the case $p=13$ we have $\chi_{1}(g)=\left(4+13 w_{1}\right) / 40-4$ and the number $\left(4+13 w_{1}\right) / 40$ is congruent to 4 modulo 13 . Hence, $4+13 w_{1}=520 l+160$ and $\alpha_{1}(g)=520 l+156$.

If $n>1$, then for any two vertices $a, b \in \Delta$ the element g acts without fixed points on $[a] \cap[b]-\Delta$, on $[a]-b^{\perp}$ and on $\Gamma-\left(a^{\perp} \cup b^{\perp}\right)$. Hence, p divides $46-n, 111$ and 1332, therefore $p \in\{3,37\}$.

In the case $p=3$ we have $n \in\{4,7,10, \ldots, 40\}$. Further, $\chi_{1}(g)=\left(4 n+\alpha_{1}(g)\right) / 40-4$ and the number $\left(4 n+\alpha_{1}(g)\right) / 40$ is congruent to 1 modulo 3 . Hence, $4 n+3 w_{1}=120 t+40$ and $\alpha_{1}(g)=120 t+40-4 n$.

In the case $p=37$ we have $n=9$. Further, $\chi_{1}(g)=\left(36+\alpha_{1}(g)\right) / 40-4$ and the number $\left(36+\alpha_{1}(g)\right) / 40$ is congruent to 12 modulo 37 . Hence, $\alpha_{1}(g)=444$.

Let Δ be an m-coclique, where $m>1$. Then for any two vertices $a, b \in \Delta$ the element g acts without fixed points on $[a] \cap[b]$, on $[a]-b^{\perp}$ and on $\Gamma-\left(a^{\perp} \cup b^{\perp} \cup \Delta\right)$. Hence, p divides 12 , 144 and $1300-m$, therefore $p \in\{2,3\}$.

In the case $p=2$ we have $m \in\{4,6,8, \ldots, 40\}$. Further, $\chi_{1}(g)=\left(4 m+\alpha_{1}(g)\right) / 40-4$ and the number $\left(4 m+\alpha_{1}(g)\right) / 40$ is even. Hence, $\alpha_{1}(g)=80 s-4 m$.

In the case $p=3$ we have $m \in\{4,7,10, \ldots, 40\}$. Further, $\chi_{1}(g)=\left(4 m+\alpha_{1}(g)\right) / 40-4$ and the number $\left(4 m+\alpha_{1}(g)\right) / 40$ is congruent to 1 modulo 3 . Hence, $\alpha_{1}(g)=120 t+40-4 m$.

Let Δ contains an edge and is a union of isolated cliques. Then p divides 12 and 111, therefore $p=3$.

Lemma 6. If $[a] \subset \Delta$ for some vertex a, then for any vertex $u \in \Gamma_{2}(a)-\Delta$ the orbit of $u^{\langle g\rangle}$ is a clique or a coclique, and one of the following statements holds:
(1) if on $\Gamma-\Delta$ there are no coclique orbits, then $\alpha_{1}(g)=1600-\alpha_{0}(g), \alpha_{0}(g)=40 l$ and either
(i) $l=4, p=2,3$ or
(ii) $l=5, p=5,7$, or
(iii) $l=6, p=2$, or
(iv) $l=7, p=3,11$, or
(v) $l=8, p=2$, or
(vi) $l=10, p=2,3,5$, or
(vii) $l=12, p=2,7$, or
(viii) $l=13, p=3$, or
(ix) $l=14, p=2$;
(2) if on $\Gamma-\Delta$ there is a coclique orbit, then $p \leq 3$, and if $a^{\perp}=\Delta$, then $p=3$ and $\alpha_{1}(g)=$ $120 l+12$.
Proof. Let $[a] \subset \Delta$ for some vertex a. Then for any vertex $u \in \Gamma_{2}(a)-\Delta$ the orbit $u^{\langle g\rangle}$ doesn't contain a geodesic 2-pathes and is a clique or a coclique.

In the case $p \geq 13$ a subgraph $[a] \cap[u]$ is a 12 -clique and for two vertices $b, c \in[a] \cap[u]$ a subgraph $[b] \cap[c]$ contains a, 10 vertices from $[a] \cap[u]$ and p vertices from $u^{\langle g\rangle}$, so $11+p \leq 44$, therefore $p \leq 31$.

If on $\Gamma-\Delta$ there are no coclique orbits, then $\alpha_{1}(g)=v-|\Delta|$ and for a vertex $u^{\prime} \in u^{\langle g\rangle}-\{u\}$ a subgraph $[u] \cap\left[u^{\prime}\right]$ contains $p-2$ vertices from $u^{\langle g\rangle}$ and 12 vertices from Δ. Further, $\chi_{1}(g)=$ $\left(3 \alpha_{0}(g)+1600\right) / 40-4, \chi_{1}(g)-156$ is divisible by p and p divides $3 \alpha_{0}(g) / 40-120$. We denote $\alpha_{0}(g)=40 l$. Then $4 \leq l \leq 14, p$ divides $40(40-l)$ and $3(40-l)$. Thus, either $l=4, p=2,3$, or $l=5, p=5,7$, or $l=6, p=2,17$, or $l=7, p=3,11$, or $l=8, p=2$, or $l=9, p=31$, or $l=10$, $p=2,3,5$, or $l=11, p=29$, or $l=12, p=2,7$, or $l=13, p=3$, or $l=14, p=2,13$. In the case $p \geq 13$ a subgraph $[a] \cap[u]$ is a 12 -clique and $p \leq 23$.

Let $p=17$ and $b \in \Delta-a^{\perp}$. Then $\left|\Delta(b)-a^{\perp}\right| \leq 82$ and $|[b]-\Delta| \geq 68$. For $w \in[b]-\Delta$ we have $[a] \cap[w]=[a] \cap[b]$ (otherwise $w^{\langle g\rangle}$ is contained in $[b] \cap[c]$ for $\left.c \in[a] \cap[w]-[b]\right)$. A contradiction with a fact that for two vertices $c, d \in[a] \cap[w]$ a subgraph $[c] \cap[d]$ contains 68 vertices from $[b]-\Delta$.

Let $p=13$. Then $\left|\Delta-a^{\perp}\right|=403$. If $b \in \Delta-a^{\perp}$ and $|[b]-\Delta|=13$, then for any $w \in[b]-\Delta$ we have $[a] \cap[w]=[a] \cap[b]$ (otherwise $w^{\langle g\rangle}$ is contained in $[b] \cap[c]$ for a vertex $\left.c \in[a] \cap[w]-[b]\right)$. Further, $[b] \cap[w]$ contains 12 vertices from $w^{\langle g\rangle}$ and 32 vertices from $\Delta(b)$. Hence, for $w^{\prime} \in w^{\langle g\rangle}-\{w\}$ a subgraph $[w] \cap\left[w^{\prime}\right]$ contains b, 32-clique from $\Delta(b)$ and 11 vertices from $w^{\langle g\rangle}$. A contradiction with a fact that the order of a clique in Γ is not greater than 40 .

If $b \in \Delta-a^{\perp}$ and $|[b]-\Delta|=26$, then $[b]-\Delta=u^{\langle g\rangle} \cup w^{\langle g\rangle}$. As above, $[a] \cap[u]=[a] \cap[w]=[a] \cap[b]$, therefore a subgraph $\{b\} \cup([a] \cap[b]) \cup u^{\langle g\rangle} \cup w^{\langle g\rangle}$ is a 39-clique. If $e \in[u] \cap \Delta(b)-[w]$, then $[e] \cap[w]$ contains 13 vertices from $u^{\langle g\rangle}$, a contradiction. So, $\{b\} \cup([u] \cap \Delta(b)) \cup u^{\langle g\rangle} \cup w^{\langle g\rangle}$ is a 46-coclique, a contradiction. If $b \in \Delta-a^{\perp}$ and $|[b]-\Delta| \geq 39$, then for any two vertices $c, d \in[a] \cap[b]$ a subgraph $[c] \cap[d]$ contains a, b and 39 vertices from $[b]-\Delta$, a contradiction. Statement (1) is proved.

Let on $\Gamma-\Delta$ there is a coclique orbit $u^{\langle g\rangle}$. Then $\left[u^{g_{i}}\right] \cap\left[u^{g_{j}}\right]$ does not intersect $\Gamma-\Delta$ for distinct vertices $u^{g_{i}}, u^{g_{j}}$, so $145 p \leq|\Gamma-\Delta| \leq 1443$, therefore $p \leq 7$.

Let us show that $p \leq 3$.
Let $c \in[a] \cap[u]$ and $[c] \cap[u]$ contains exactly γ vertices from $[a] \cap[u]$. Then $[c] \cap[u]$ contains $44-\gamma$ vertices outside of Δ (lying in distinct $\langle g\rangle$-orbits) and $p(44-\gamma) \leq|[c]-\Delta| \leq 156-45=111$. Hence, $32 p \leq 111$.

If $a^{\perp}=\Delta$, then $\alpha_{0}(g)=157, p$ divides 1443 and $p=3$. Further, $\chi_{1}(g)=\left(628+\alpha_{1}(g)\right) / 40-4$, $\left(628+\alpha_{1}(g)\right) / 40$ is congruent to 1 modulo 3 and $\alpha_{1}(g)=120 l+12$.

Lemma 7. The following statements hold:

(1) Γ does not contain proper strongly regular subgraphs with parameters $\left(v^{\prime}, k^{\prime}, 44,12\right)$;
(2) $p \leq 43$.

Proof. Assume that Γ contains proper strongly regular subgraph Σ with parameters $\left(v^{\prime}, k^{\prime}, 44,12\right)$. Then $4\left(k^{\prime}-12\right)+32^{2}=n^{2}$, therefore $n=2 l, k^{\prime}=l^{2}-244, l \geq 16, \Sigma$ has nonprincipal eigenvalues $16+l, 16-l$ and multiplicity of $16+l$ is equal to $(l-17)\left(l^{2}-244\right)\left(l^{2}+l-260\right) / 24 l$. If l is odd, then 8 divides $(l-17)\left(l^{2}+l-20\right), l$ divides $17 \cdot 61 \cdot 65$ and $l \in\{5,13\}$. If l is even, then 3 divides $(l-2)\left(l^{2}-1\right)\left(l^{2}+l-2\right)$ and $l=16$. In all cases we have contradictions.

If $p \geq 47$, then Δ is a strongly regular graph with parameters $\left(v^{\prime}, k^{\prime}, 44,12\right)$, so $\Delta=\Gamma$, a contradiction.

Theorem 2 follows from Lemmas 5-7.

2. Proof of Theorem 1

In Lemmas $8-9$ it is assumed that Γ is a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}, G=\operatorname{Aut}(\Gamma), g$ is an element of prime order p from $G, \alpha_{i}(g)=p w_{i}$ for $i>0$ and $\Omega=\operatorname{Fix}(g)$.

Lemma 8. The following statements hold:
(1) if Ω is an empty graph, then either $p=2, \alpha_{1}(g)=10 r+26 m+12$ and $\alpha_{3}(g)=80 r=$ $1600-\alpha_{1}(g)$ or $p=5, \alpha_{1}(g)=65 n+10 l+10$ and $\alpha_{3}(g)=200 l ;$
(2) if Ω is an n-clique, then one of the following statements holds:
(i) $n=1, p=3, \alpha_{1}(g)=15 l+24+39 m$ and $\alpha_{3}(g)=120 l+36$,
(ii) $n=2, p=2, \alpha_{1}(g)=10 l+26 m$ and $\alpha_{3}(g)=80 l-8$,
(iii) or $n=4, p=2, \alpha_{1}(g)=10 l+26 m+14$ and $\alpha_{3}(g)=80 l-16$ or $p=3$, $\alpha_{1}(g)=10 l+39 m+1, l$ is congruent to -1 modulo 3 and $\alpha_{3}(g)=120 l+24$;
(3) if Ω consists of n vertices at distance 3 in Γ, then $p=3, n \in\{4,7,10, \ldots, 40\}$, $\alpha_{3}(g)=120 l+40-4 n$ and $\alpha_{1}(g)=15 l+30+39 m-6 n$;
(4) if Ω contains an edge and doesn't contain vertices at distance 2 in Γ, then Ω is an union of isolated cliques and any two vertices from different cliques are at distance 3 in Γ, either $p=3$ and the orders of these cliques are equal to 1 or 4 , or $p=2$ and the orders of these cliques are equal to 2 or 4 .

Proof. Let Ω be an empty graph and $\alpha_{i}(g)=p w_{i}$ for $i \geq 1$. As $v=1600$, then p is equal to 2 or 5.

Let $p=2$. Then $w_{1}+w_{2}+w_{3}=800$ and $\chi_{2}(g)=w_{3} / 20-4$. Hence, $w_{3}=40 r$. Further, the number $\chi_{1}(g)=\left(2 w_{1}-10 r-25\right) / 13$ is odd, therefore $w_{1}=13 m+6+5 r$. Finally, $\alpha_{2}(g)=0$ (if $d\left(u, u^{g}\right)=2$, then the only vertex from $[u] \cap\left[u^{g}\right]$ belongs to Ω, a contradiction). Therefore $\alpha_{1}(g)=10 r+26 m+12=1600-80 r$.

Let $p=5$. Then $w_{1}+w_{2}+w_{3}=320$ and $\chi_{2}(g)=w_{3} / 8-4$. Hence, $w_{3}=40 l$. Finally, $\chi_{1}(g)=\left(5 w_{1}-25 l-25\right) / 13$, therefore $w_{1}=13 n+5 l+5$. Statement (1) is proved.

Let Ω be an n-clique. If $n=1$, then p divides 39 and 315 , therefore $p=3$. We have $\chi_{1}(g)=$ $\left(8 \alpha_{1}(g)-\alpha_{3}(g)-156\right) / 104, \chi_{2}(g)=\left(4+\alpha_{3}(g)\right) / 40-4$. Therefore the number $\left(4+\alpha_{3}(g)\right) / 40$ is congruent to 1 modulo $3, \alpha_{3}(g)=120 l+36$ and the number $\chi_{1}(g)=\left(\alpha_{1}(g)-15 l-24\right) / 13$ is divisible by 3 . Hence, $\alpha_{1}(g)=15 l+24+39 m$.

If $n>1$, then p divides $4-n$ and 36 , therefore either $n=2, p=2$, or $n=4, p=2,3$. In the first case the number $\chi_{2}(g)=\left(8+\alpha_{3}(g)\right) / 40-4$ is even and $\alpha_{3}(g)=80 l-8$. Further, the number $\chi_{1}(g)=\left(\alpha_{1}(g)-10 l\right) / 13-1$ is odd and $\alpha_{1}(g)=10 l+26 m$. In the second case $\chi_{2}(g)=\left(16+\alpha_{3}(g)\right) / 40-4$ and either $p=2, \alpha_{3}(g)=80 l-16$, or $p=3$ and $\alpha_{3}(g)=120 l+24$. Further, $\chi_{1}(g)=\left(176+8 \alpha_{1}(g)-\alpha_{3}(g)\right) / 104-25 / 13$ and either $p=2, \alpha_{1}(g)=10 l+26 m+14$, or $p=3$ and $\alpha_{1}(g)=10 l+39 m+1, l$ is congruent to -1 modulo 3 .

Let Ω consists of n vertices at distance 3 . As $p_{13}^{3}=3, p_{33}^{3}=44$, then p divides 3 and $46-n$. Hence, $p=3$ and $n \in\{4,7,10, \ldots, 40\}$. We have $\chi_{2}(g)=\left(4 n+\alpha_{3}(g)\right) / 40-4$ and the number $\left(4 n+\alpha_{3}(g)\right) / 40$ is congruent to 1 modulo 3 , therefore $\alpha_{3}(g)=120 l+40-4 n$. Further, the number $\chi_{1}(g)=\left(6 n+\alpha_{1}(g)-15 l-30\right) / 13$ is divisible by 3 and $\alpha_{1}(g)=15 l+30+39 m-6 n$.

Let Ω contains an edge and does not contain vertices at distance 2 in Γ. Then Ω is an union of isolated cliques, any two vertices from distinct cliques are at distance 3 in Γ. As orders of these cliques are at most 4 , then $p \leq 3$. If $p=3$, then the orders of these cliques are equal to 1 or 4 . If $p=2$, then the orders of these cliques are equal to 2 or 4 .

Lemma 9. If Ω contains vertices a, b at distance 2 in Γ, then $p \leq 3$.
Proof . Let Ω contains vertices a, b at distance 2 in Γ and Ω_{0} is a connected component of Ω containing a, b.

Assume that the diameter of graph Ω_{0} is equal to 2 . Then by [1, 1.17.1] one of the following statements holds:
(i) $\Omega_{0} \subseteq a^{\perp}$ and $\Omega_{0}(a)$ is an union of isolated cliques;
(ii) Ω_{0} ia a strongly regular graph;
(iii) Ω_{0} is a biregular graph with degrees of vertices α, β, where $\alpha<\beta$, and if A and B are sets of vertices from Ω_{0} with degrees α and β, then A is a coclique, the lines between A and B have order 2 , the lines from B have order $l=\beta-\alpha+2>2$, and $\left|\Omega_{0}\right|=\alpha \beta+1$.

Last case is impossible because $c_{2}=1 \mathrm{in} \Gamma$.
In the case (i) we have $p \in\{2,3\}$ because of $p_{33}^{1}=12$.
In the case (ii) either $p=2$ and Ω_{0} is the pentagon, Petersen graph or Hoffman-Singletone graph, or $p>2$ and Ω_{0} is a strongly regular graph with parameters ($v^{\prime}, k^{\prime}, 2,1$).

Let $p>2$. Then $\Omega(a)$ consists of e isolated triangles and either $e=1, p=3$, or $e=2, p=3,11$, or $e=3, p=3,5$, or $e=4, p=3$, or $e=5, p=3$, or $e=6, p=3,7$, or $e=7, p=3$, or $e=8$, $p=3,5$, or $e \geq 9, p=3$.

In case $p=11$ graph Ω is a regular graph of degree $6,\left|\Omega \cap \Gamma_{2}(a)\right|=18,\left|\Omega \cap \Gamma_{3}(a)\right|=24$ and $\left|\Gamma_{3}(a)-\Omega\right|$ is not divisible by 11 .

In case $p=7$ graph Ω is a regular graph of degree $18,\left|\Omega \cap \Gamma_{2}(a)\right|=270,\left|\Omega \cap \Gamma_{3}(a)\right|=270 \cdot 4 / 15=$ 64 and $\left|\Gamma_{3}(a)-\Omega\right|$ is not divisible by 7 .

In case $p=5$ graph Ω contains vertices of degrees 9 and 24. Assume that $|\Omega(a)|=24, \Omega(a)$ contains β vertices of degree 24 in Ω and $\Omega_{3}(a)$ contains γ vertices of degree 24 in Ω. Then the number $21 \beta+6(24-\beta)=\left|\Omega \cap \Gamma_{2}(a)\right|$ is congruent to 4 modulo 5 and $4\left|\Omega \cap \Gamma_{2}(a)\right|=21 \gamma+6(\mid \Omega \cap$ $\left.\Gamma_{3}(a) \mid-\gamma\right)$. Hence, $\left|\Gamma_{2}(a) \cap \Omega\right|=(144+15 \beta)$ and $576+60 \beta=15 \gamma+6\left|\Omega \cap \Gamma_{3}(a)\right|$, a contradiction with the fact that $\left|\Omega \cap \Gamma_{3}(a)\right|$ is divisible by 5 .

So, Ω is an amply regular graph with parameters ($v^{\prime}, 9,2,1$), $54=\left|\Omega \cap \Gamma_{2}(a)\right|$ and $\left|\Omega \cap \Gamma_{3}(a)\right|=$ 36. Again we have a contradiction with the fact that $\left|\Omega \cap \Gamma_{3}(a)\right|$ is divisible by 5 .

The lemma is proved.
Theorem 1 follows from Lemmas 8-9.

3. Proof of Corollary 1

Until the end of the paper we will assume that Γ is a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}$ and the nonsolvable group $G=\operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices of this graph. For the vertex $a \in \Gamma$ we get $\left|G: G_{a}\right|=1600$. In view of Theorem 1 we have $p \in\{2,3,5\}$. Let \bar{T} be the socle of the group $\bar{G}=G / O_{5^{\prime}}(G)$.

Lemma 10. If f is an element of order 5 of G, g is an element of order $p<5$ of $C_{G}(f)$ and $\Omega=\operatorname{Fix}(g)$, then one of the following statements holds:
(1) Ω is an empty graph, $p=2, \alpha_{3}(g)=80 r, r \leq 19, \alpha_{1}(g)=10 r+26 m+12=1600-80 r$, and $m \in\{-7,-2,3,8, \ldots, 58\}$;
(2) Ω consists of n vertices at distance 3 in $\Gamma, p=3, n \in\{10,25,40\}, \alpha_{3}(g)=120 l+40-4 n$, $\alpha_{1}(g)+\alpha_{3}(g)=135 l-10 n+39 m+70 \leq 1600$ and m is divisible by 5 ;
(3) $p=3, \alpha_{3}(g)=120 s, \alpha_{0}(g)=30 t+10, \alpha_{1}(g)=39 l-165 t+15 s-30$ or $\alpha_{3}(g)=120 s+60$, $\alpha_{0}(g)=30 t-5, \alpha_{1}(g)=195 l-165 t+15 s+60$;
(4) $p=2, \alpha_{3}(g)=80 s-4 \alpha_{0}(g)$ and $\alpha_{1}(g)=10 s+26 l+38-6 \alpha_{0}(g)$, l is congruent to 2 modulo 5 .

Proof. In view of Theorem $1 \operatorname{Fix}(f)$ is empty graph, $\alpha_{1}(f)=65 n+10 l+10$ and $\alpha_{3}(f)=200 l$.
If Ω is an empty graph, then $p=2, \alpha_{3}(g)=80 r$ and $\alpha_{1}(g)=10 r+26 m+12=1600-80 r$ is divisible by 5 . Hence, $13 m+6$ is divisible by 5 and $m \in\{-7,-2,3,8, \ldots, 58\}$. Finally, $26 m+12=$ $1600-90 r$, therefore m is congruent to 2 modulo 3 and $m \in\{-7,8,23,38,53\}$.

If Ω is an n-clique, then n is divisible by 5 , we have got a contradiction.
If Ω consists of n vertices at distance 3 in Γ, then $p=3, n \in\{10,25,40\}$, the numbers $\alpha_{3}(g)=120 l+40-4 n$ and $\alpha_{1}(g)=15 l+30+39 m-6 n$ are divisible by 5 . Hence, m is divisible by $5, \alpha_{1}(g)+\alpha_{3}(g)=135 l-10 n+39 m+70 \leq 1600$.

If $p=3$, then $\chi_{2}(g)=\left(4 \alpha_{0}(g)+\alpha_{3}(g)\right) / 40-4$ and the number $\left(4 \alpha_{0}(g)+\alpha_{3}(g)\right) / 40$ is congruent to 1 modulo 3. Further, the number $\chi_{1}(g)=\left(44 \alpha_{0}(g)+8 \alpha_{1}(g)-\alpha_{3}(g)\right) / 104-25 / 13$ is divisible by $3, \alpha_{3}(g)$ is divisible by 60 . If $\alpha_{3}(g)=120 s$, then $\alpha_{0}(g)=30 t+10, \alpha_{1}(g)=39 l-165 t+15 s-30$. If $\alpha_{3}(g)=120 s+60$, then $\alpha_{0}(g)=30 t-5, \alpha_{1}(g)=195 l-165 t+15 s+60$.

If $p=2$, then $\chi_{2}(g)=\left(4 \alpha_{0}(g)+\alpha_{3}(g)\right) / 40-4,4 \alpha_{0}(g)+\alpha_{3}(g)=80 s$. Further, $\alpha_{1}(g)=$ $-6 \alpha_{0}(g)+10 s+26 l+38$ and $13 l+19$ is divisible by 5 , therefore $l \in\{2,7, \ldots\}$. Finally, $1600-$ $5 \alpha_{0}(g)+80 s=-6 \alpha_{0}(g)+10 s+26 l+38,1600=-70 s-\alpha_{0}(g)+26 l+38$.

Lemma 11. The following statements hold:
(1) $\bar{T}=L \times M$, and each of subgroups L, M is isomorphic to one of the following groups Z_{5}, A_{5}, A_{6} or $\operatorname{PSp}(4,3)$;
(2) in case $\left|\bar{T}: \bar{T}_{a}\right|=40^{2}$ we have $O_{5^{\prime}}(G)=1$ and this case is realized if one of the following statements holds:
(i) $L \cong M \cong P S p(4,3)$, or
(ii) $L \cong \operatorname{PSp}(4,3),\left|L: L_{a}\right|=40, M \cong A_{6}$ and $\left|M_{a}\right|=9$, or
(iii) $L \cong M \cong A_{6}$ and $\left|L_{a}\right|=\left|M_{a}\right|=9$.
Proof. Recall that a nonabelian simple $\{2,3,5\}$-group is isomorphic to A_{5}, A_{6} or $\operatorname{PSp}(4,3)$ (see, [6, Table 1]). Hence, in view of Theorem 1 we have $\bar{T}=L \times M$, each of subgroups L, M is isomorphic to one of the following groups A_{5}, A_{6} or $\operatorname{PSp}(4,3)$.

If $\bar{T} \cong P S p(4,3)$, then the group \bar{T}_{a} has an index 40 in \bar{T} and is isomorphic to $E_{9} \cdot S L_{2}(3)$ or $E_{27} . S_{4}$.

If $\bar{T} \cong A_{6}$, then the group \bar{T}_{a} has an index in \bar{T}, divisible by 10 , and dividing 40 .
If $\bar{T} \cong A_{5}$, then the group \bar{T}_{a} has an index in \bar{T}, divisible by 10 , and dividing 20 .
In case $\left|\bar{T}: \bar{T}_{a}\right|=40^{2}$ we have $O_{5^{\prime}}(G)=1$ and this case is realized if one of the following statements holds: either $L \cong M \cong P S p(4,3)$, or $L \cong P S p(4,3), M \cong A_{6} \quad\left|M_{a}\right|=9$, or $L \cong M \cong A_{6}$ and $\left|L_{a}\right|=\left|M_{a}\right|=9$.

Corollary is proved.

4. Conclusion

We found possible automorphisms of a distance-regular graph with intersection array $\{39,36,4 ; 1,1,36\}$. In particular this graph is not arc-transitive.

REFERENCES

1. Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs. New York: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
2. Makhnev A. A., Nirova M. S. On distance-regular graphs with $\lambda=2$. J. Sib. Fed. Univ. Math. Phys., 2014. Vol. 7, No. 2. P. 204-210.
3. Behbahani M., Lam C. Strongly regular graphs with nontrivial automorphisms. Discrete Math., 2011. Vol. 311, No. 2-3. P. 132-144. DOI: 10.1016/j.disc.2010.10.005
4. Cameron P. J. Permutation Groups. London Math. Soc. Student Texts, No. 45. Cambridge: Cambridge Univ. Press, 1999.
5. Gavrilyuk A.L., Makhnev A.A. On automorphisms of distance-regular graph with the intersection array $\{56,45,1 ; 1,9,56\}$. Doklady Mathematics, 2010. Vol. 81, No. 3. P. 439-442. DOI: 10.1134/S1064562410030282
6. Zavarnitsine A. V. Finite simple groups with narrow prime spectrum. Sib. Electron. Math. Izv., 2009. Vol. 6. P. S1-S12.

[^0]: ${ }^{1}$ This work is partially supported by RSF, project $14-11-00061 \mathrm{P}$

