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Abstract: Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more
than 4096 vertices, in which λ = 2 and µ = 1. They proposed the program of investigation of distance-regular
graphs with λ = 2 and µ = 1. In this paper the automorphisms of a distance-regular graph with intersection
array {39, 36, 4; 1, 1, 36} are studied.
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Introduction

We consider undirected graphs without loops and multiple edges. Our terminology and notation
are mostly standard and could be found in [1]. Given a vertex a in a graph Γ, we denote by Γi(a)
the subgraph induced by Γ on the set of all the vertices of Γ, that are at the distance i from a. The
subgraph [a] = Γ1(a) is called the neighbourhood of a vertex a. Let Γ(a) = Γ1(a), a

⊥ = {a} ∪ Γ(a).
If graph Γ is fixed, then we write [a] instead of Γ(a).

The incidence system with the set of points P and the set of lines L is called α-partial geometry

of order (s, t) if each line contains exactly s + 1 points, each point lies exactly on t+ 1 lines, any
two points lie on no more than one line, and for any antiflag (a, l) ∈ (P,L) there are exactly α lines
passing through a and intersecting l. This geometry is denoted by pGα(s, t).

In the case α = 1, the geometry pGα(s, t) is called a generalized quadrangle and is denoted
by GQ(s, t). A point graph of this geometry is defined on the set of points P and two points are
adjacent if they lie on a line. The point graph of a geometry pGα(s, t) is strongly regular with
parameters v = (s + 1)(1 + st/α), k = s(t + 1), λ = s − 1 + t(α − 1), µ = α(t + 1). A strongly
regular graph with such parameters for some natural numbers α, s, t is called a pseudo-geometric

graph for pGα(s, t).

If vertices u,w are at distance i in Γ, then by bi(u,w) (respectively, ci(u,w)) we denote the
number of vertices in Γi+1(u) ∩ [w] (respectively, Γi−1(u) ∩ [w]). A graph Γ of diameter d is called
distance-regular with intersection array {b0, b1, . . . , bd−1; c1, . . . , cd} if the values bi(u,w) and ci(u,w)
do not depend on the choice of vertices u,w at distance i in Γ for each i = 0, ..., d. Note that, for a
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distance-regular graph, b0 is the degree of the graph and c1 = 1. For a subset X of automorphisms
of a graph Γ, Fix(X) denotes the set of all vertices of Γ, fixed with respect to any automorphism
of X. Further, by plij(x, y) we denote the number of vertices in a subgraph Γi(x)∩Γj(y) for vertices
x, y at distance l in Γ.

A graph is said to be vertex-symmetric if its automorphism group acts transitively on the set
of its vertices.

In [2], intersection arrays of distance-regular graphs with λ = 2, µ = 1 and with the number
of vertices at most 4096 were found. A.A. Makhnev and M.S. Nirova proposed an investigation
program of automorphisms of distance-regular graphs from the obtained list.

Proposition 1. [2] Let Γ be a distance-regular graph with λ = 2, µ = 1, which has at most 4096
vertices. Then Γ has one of the following intersection arrays:

(1) {21, 18; 1, 1}(v = 400);

(2) {6, 3, 3, 3; 1, 1, 1, 2} (Γ is a generalized octagon of order (3, 1), v = 160), {6, 3, 3; 1, 1, 2}
(Γ is a generalized hexagon of order (3, 1), v = 52), {12, 9, 9; 1, 1, 4} (Γ is a generalized hexagon

of order (3, 3), v = 364), {6, 3, 3, 3, 3, 3; 1, 1, 1, 1, 1, 2} (Γ is a generalized dodecagon of order (3, 1),
v = 1456);

(3) {18, 15, 9; 1, 1, 10}(v = 1 + 18 + 270 + 243 = 532, Γ3 is a strongly regular graph);
{33, 30, 8; 1, 1, 30}, {39, 36, 4; 1, 1, 36}, {21, 18, 12, 4; 1, 1, 6, 21}.

In this paper we study automorphisms of a hypothetical distance-regular graph Γ with inter-
section array {39, 36, 4; 1, 1, 36}. The maximal order of a clique C in Γ is not more than 4. A graph
with intersection array {39, 36, 4; 1, 1, 36} has v = 1 + 39 + 1404 + 156 = 1600 vertices and the
spectrum 391, 7675,−1156,−6768.

Theorem 1. Let Γ be a distance-regular graph with intersection array {39, 36, 4; 1, 1, 36},
G = Aut(Γ), g is an element of prime order p in G and Ω = Fix(g) contains exactly s vertices

in t antipodal classes. Then π(G) ⊆ {2, 3, 5} and one of the following statements holds:

(1) Ω is an empty graph and either p = 2, α1(g) = 10r + 26m+ 12 and α3(g) = 80r or p = 5,
α1(g) = 65n + 10l + 10 and α3(g) = 200l;

(2) Ω is an n-clique and one of the following statements holds:

(i) n = 1, p = 3, α1(g) = 15l + 24 + 39m and α3(g) = 120l + 36,

(ii) n = 2, p = 2, α1(g) = 10l + 26m and α3(g) = 80l − 8,

(iii) n = 4, p = 2, α1(g) = 10l + 26m+ 14 and α3(g) = 80l − 16 or p = 3,
α1(g) = 10l + 39m+ 1, l is congruent to −1 modulo 3 and α3(g) = 120l + 24;

(3) Ω consists of n vertices pairwise at distance 3 in Γ, p = 3, n ∈ {4, 7, ..., 40},
α3(g) = 120l + 40− 4n and α1(g) = 15l + 30 + 39m− 6n;

(4) Ω contains an edge and is a union of isolated cliques, any two vertices of different cliques

are at distance 3 in Γ, and either p = 3 and the orders of these cliques are 1 or 4, or p = 2 and

the orders of these cliques are 2 or 4;

(5) Ω contains vertices that are at distance 2 in Γ and p ≤ 3.

If Γ is a distance-regular graph with the intersection array {39, 36, 4; 1, 1, 36} then Γ3 is a
pseudo-geometric for pG3(39, 3).

Theorem 2. Let Γ be a strongly regular graph with parameters (1600, 156, 44, 12), G = Aut(Γ),
g is an element of prime order p in G and ∆ = Fix(g). Then p ≤ 43 and the following statements

hold :

(1) if ∆ is an empty graph, then p = 2 and α1(g) = 80s or p = 5 and α1(g) = 200t;

(2) if ∆ is an n-clique, then one of the following statements holds:
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(i) n = 1, p = 2 and α1(g) = 80s − 4, or p = 3 and α1(g) = 120t + 36, or p = 13 and

α1(g) = 520l + 156,

(ii) n ∈ {4, 7, 10, ..., 40}, p = 3 and α1(g) = 120t+ 40− 4n,

(iii) n = 9, p = 37 and α1(g) = 444;

(3) if ∆ is an m-coclique, where m > 1, then either p = 2, m ∈ {4, 6, 8, ..., 40} and

α1(g) = 80s − 4m or p = 3, m ∈ {4, 7, 10, ..., 40} and α1(g) = 120t+ 40− 4m;

(4) if ∆ contains an edge and is an union of isolated cliques, then p = 3;

(5) if ∆ contains a geodesic 2-path, then p ≤ 43.

Corollary 1. Let Γ be a distance-regular graph with intersection array {39, 36, 4; 1, 1, 36} and

nonsolvable group G = Aut(Γ) acts transitively on the set of vertices of Γ. If a is a vertex of Γ, T̄ is

the socle of the group Ḡ = G/O5′(G), then T̄ = L×M , and each of subgroups L,M is isomorphic

to one of the following groups: Z5, A5, A6 or PSp(4, 3).

If |T̄ : T̄a| = 402, then O5′(G) = 1 and this case is realized if one of the following statements
holds:

(1) L ∼=M ∼= PSp(4, 3), |L : La| = |M :Ma| = 40,
(2) L ∼= PSp(4, 3), |L : La| = 40, M ∼= A6 and |Ma| = 9,
(3) L ∼=M ∼= A6 and |La| = |Ma| = 9.

1. Proof of Theorem 2

First we give auxiliary results.

Lemma 1. [2, Theorem 3.2] Let Γ be a strongly regular graph with parameters (v, k, λ, µ) and

with the second eigenvalue r. If g is an automorphism of Γ and ∆ = Fix(g), then

|∆| ≤ v ·max{λ, µ}/(k − r).

By Lemma 1, for a strongly regular graph with parameters (1600, 156, 44, 12) we have
|∆| ≤ 1600 ·max{44, 12}/(156 − 36), |∆| ≤ 586.

Lemma 2. Let Γ be a distance regular graph with intersection array {39, 36, 4; 1, 1, 36}. Then

for intersection numbers of Γ the following statements hold :

(1) p111 = 2, p112 = 36, p122 = 1224, p123 = 144, p133 = 12;

(2) p211 = 1, p212 = 34, p213 = 4, p222 = 1229, p223 = 140, p233 = 12;

(3) p312 = 36, p313 = 3, p322 = 1260, p323 = 108, p333 = 44.

P r o o f. This follows from [1, Lemma 4.1.7]. �

The proofs of Theorems 1 and 2 are based on Higman’s method of working with automorphisms
of a distance-regular graph, presented in the third chapter of Cameron’s book [4].

Let Γ be a distance-regular graph of diameter d with v vertices. Then we have a symmetric
association scheme (X,R) with d classes, where X is the set of vertices of Γ and Ri = {(u,w) ∈ X2|
d(u,w) = i}. For a vertex u ∈ X we set ki = |Γi(u)|. Let Ai be an adjacency matrix of graph Γi.
Then AiAj =

∑

plijAl for some integer numbers plij ≥ 0, which are called the intersection numbers.

Note that plij = |Γi(u) ∩ Γj(w)| for any vertices u,w with d(u,w) = l.

Let Pi be a matrix in which in the (j, l)-th entry is plij. Then eigenvalues k = p1(0), ..., p1(d) of
the matrix P1 are eigenvalues of Γ with multiplicities m0 = 1, ...,md, respectively. The matrices P
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and Q with Pij = pj(i) and Qji = mjpi(j)/ki are called the first and the second eigenmatrices of
Γ, respectively, and PQ = QP = vI, where I is an identity matrix of order d+ 1.

The permutation representation of the group G = Aut(Γ) on the vertex set of Γ naturally gives
the monomial matrix representation ψ of a group G in GL(v,C). The space Cv is an orthogonal
direct sum of the eigenspaces W0,W1, ...,Wd of the adjacent matrix A = A1 of Γ. For every g ∈ G,
we have ψ(g)A = Aψ(g), so each subspace Wi is ψ(G)-invariant. Let χi be the character of a
representation ψWi

. Then for g ∈ G we obtain χi(g) = v−1
∑d

j=0Qijαj(g), where αj(g) is the
number of vertices x of X such that d(x, xg) = j.

Lemma 3. Let Γ be a strongly regular graph with parameters (1600, 156, 44, 12) and with

the spectrum 1561, 36156,−41443, G = Aut(Γ). If g ∈ G, χ1 is the character of ψW1
,

where dim(W1) = 156, then αi(g) = αi(g
l) for any natural number l, coprime to |g|,

χ1(g) = (4α0(g) + α1(g))/40 − 4. Moreover, if |g| = p is a prime, then χ1(g) − 156 is divisi-

ble by p.

P r o o f. We have

Q =





1 1 1
156 36 −4
1443 −37 3



 .

So, χ1(g) = (39α0(g) + 9α1(g) − α2(g))/400. Note that α2(g) = 1600 − α0(g) − α1(g), so χ1(g) =
(4α0(g) + α1(g))/40 − 4. The remaining statements of the lemma follow from Lemma 2 [5]. �

Lemma 4. Let Γ be a distance-regular graph with intersection array {39, 36, 4; 1, 1, 36},
G = Aut(Γ). If g ∈ G, χ1 is the character of ψW1

, where dim(W1) = 675, χ2 is the charac-

ter of ψW2
, where dim(W2) = 156, then αi(g) = αi(g

l) for any natural number l coprime to |g|,
χ1(g) = (44α0(g) + 8α1(g) − α3(g))/104 − 25/13 and χ2(g) = (4α0(g) + α3(g))/40 − 4. Moreover,

if |g| = p is a prime, then χ1(g) − 675 and χ2(g) − 156 are divisible by p.

P r o o f. We have

Q =









1 1 1 1
675 1575/13 −25/13 −225/13
156 −4 −4 36
768 −1536/13 64/13 −256/13









.

This means χ1(g) = (351α0(g)+ 63α1(g)−α2(g)− 9α3(g))/832. Note that α2(g) = 1600−α0(g)−
α1(g)− α3(g), so χ1(g) = (44α0(g) + 8α1(g) − α3(g))/104 − 25/13.

Similarly, χ2(g) = (39α0(g) − α1(g) − α2(g) + 9α3(g))/400. Note that α1(g) + α2(g) = 1600 −
α0(g)− α3(g), so χ2(g) = (4α0(g) + α3(g))/40 − 4.

The remaining statements of this lemma follow from Lemma 2 of [5]. �.

In Lemmas 5–7 we suppose that Γ is a strongly regular graph with parameters (1600, 156, 44, 12),
G = Aut(Γ), g is an element of prime order p from G, αi(g) = pwi for i > 0 and ∆ = Fix(g).
By Delsarts’s boundary the maximal order of a clique K in Γ is not greater than 1 − k/θd, so
|K| ≤ 40. Due to Hoffman’s boundary the maximum order of a coclique C in Γ is not greater than
−vθd/(k − θd), so |C| ≤ 40.

Lemma 5. The following statements hold :

(1) if ∆ is an empty graph, then either p = 2 and α1(g) = 80s or p = 5 and α1(g) = 200t;

(2) if ∆ is an n-clique, then one of the following statements holds:
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(i) n = 1, p = 2 and α1(g) = 80s − 4, or p = 3 and α1(g) = 120t + 36, or p = 13 and

α1(g) = 520l + 156,

(ii) n ∈ {4, 7, 10, ..., 40}, p = 3 and α1(g) = 120t+ 40− 4n,

(iii) n = 9, p = 37 and α1(g) = 444;

(3) if ∆ is an m-coclique, where m > 1, then p = 2, m ∈ {4, 6, 8, ..., 40} and α1(g) = 80s− 4m
or p = 3, m ∈ {4, 7, 10, ..., 40} and α1(g) = 120t + 40− 4m;

(4) if ∆ contains an edge and is an union of isolated cliques, then p = 3.

P r o o f. Let ∆ be an empty graph. As v = 26 · 25, then p is equal to 2 or 5.

In the case p = 2 we have χ1(g) = α1(g)/40 − 4 and α1(g) = 80s.

In the case p = 5 we have χ1(g) = α1(g)/40 − 4 and α1(g) = 200t.

Let ∆ be an n-clique. If n = 1, then p divides 156 and 1443, therefore p ∈ {2, 3, 13}. In the
case p = 2 we have χ1(g) = (4 + α1(g))/40 − 4 and α1(g) = 80s− 4.

In the case p = 3 we have χ1(g) = (4+α1(g))/40−4 and the number (4+3w1)/40 is congruent
to 1 modulo 3. Hence, 4 + 3w1 = 120t+ 40 and α1(g) = 120t + 36.

In the case p = 13 we have χ1(g) = (4+13w1)/40−4 and the number (4+13w1)/40 is congruent
to 4 modulo 13. Hence, 4 + 13w1 = 520l + 160 and α1(g) = 520l + 156.

If n > 1, then for any two vertices a, b ∈ ∆ the element g acts without fixed points on [a]∩[b]−∆,
on [a]− b⊥ and on Γ− (a⊥ ∪ b⊥). Hence, p divides 46− n, 111 and 1332, therefore p ∈ {3, 37}.

In the case p = 3 we have n ∈ {4, 7, 10, ..., 40}. Further, χ1(g) = (4n + α1(g))/40 − 4 and
the number (4n + α1(g))/40 is congruent to 1 modulo 3. Hence, 4n + 3w1 = 120t + 40 and
α1(g) = 120t + 40 − 4n.

In the case p = 37 we have n = 9. Further, χ1(g) = (36 + α1(g))/40 − 4 and the number
(36 + α1(g))/40 is congruent to 12 modulo 37. Hence, α1(g) = 444.

Let ∆ be an m-coclique, where m > 1. Then for any two vertices a, b ∈ ∆ the element g acts
without fixed points on [a] ∩ [b], on [a] − b⊥ and on Γ − (a⊥ ∪ b⊥ ∪∆). Hence, p divides 12, 144
and 1300 −m, therefore p ∈ {2, 3}.

In the case p = 2 we have m ∈ {4, 6, 8, ..., 40}. Further, χ1(g) = (4m + α1(g))/40 − 4 and the
number (4m+ α1(g))/40 is even. Hence, α1(g) = 80s − 4m.

In the case p = 3 we have m ∈ {4, 7, 10, ..., 40}. Further, χ1(g) = (4m+ α1(g))/40 − 4 and the
number (4m+ α1(g))/40 is congruent to 1 modulo 3. Hence, α1(g) = 120t + 40− 4m.

Let ∆ contains an edge and is a union of isolated cliques. Then p divides 12 and 111, there-
fore p = 3. �

Lemma 6. If [a] ⊂ ∆ for some vertex a, then for any vertex u ∈ Γ2(a)−∆ the orbit of u〈g〉 is
a clique or a coclique, and one of the following statements holds:

(1) if on Γ−∆ there are no coclique orbits, then α1(g) = 1600−α0(g), α0(g) = 40l and either

(i) l = 4, p = 2, 3 or

(ii) l = 5, p = 5, 7, or

(iii) l = 6, p = 2, or

(iv) l = 7, p = 3, 11, or

(v) l = 8, p = 2, or

(vi) l = 10, p = 2, 3, 5, or

(vii) l = 12, p = 2, 7, or

(viii) l = 13, p = 3, or

(ix) l = 14, p = 2;

(2) if on Γ −∆ there is a coclique orbit, then p ≤ 3, and if a⊥ = ∆, then p = 3 and α1(g) =
120l + 12.
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P r o o f. Let [a] ⊂ ∆ for some vertex a. Then for any vertex u ∈ Γ2(a) − ∆ the orbit u〈g〉

doesn’t contain a geodesic 2-pathes and is a clique or a coclique.

In the case p ≥ 13 a subgraph [a] ∩ [u] is a 12-clique and for two vertices b, c ∈ [a] ∩ [u] a
subgraph [b] ∩ [c] contains a, 10 vertices from [a] ∩ [u] and p vertices from u〈g〉, so 11 + p ≤ 44,
therefore p ≤ 31.

If on Γ−∆ there are no coclique orbits, then α1(g) = v − |∆| and for a vertex u′ ∈ u〈g〉 − {u}
a subgraph [u] ∩ [u′] contains p − 2 vertices from u〈g〉 and 12 vertices from ∆. Further, χ1(g) =
(3α0(g) + 1600)/40 − 4, χ1(g) − 156 is divisible by p and p divides 3α0(g)/40 − 120. We denote
α0(g) = 40l. Then 4 ≤ l ≤ 14, p divides 40(40 − l) and 3(40 − l). Thus, either l = 4, p = 2, 3, or
l = 5, p = 5, 7, or l = 6, p = 2, 17, or l = 7, p = 3, 11, or l = 8, p = 2, or l = 9, p = 31, or l = 10,
p = 2, 3, 5, or l = 11, p = 29, or l = 12, p = 2, 7, or l = 13, p = 3, or l = 14, p = 2, 13. In the case
p ≥ 13 a subgraph [a] ∩ [u] is a 12-clique and p ≤ 23.

Let p = 17 and b ∈ ∆− a⊥. Then |∆(b)− a⊥| ≤ 82 and |[b]−∆| ≥ 68. For w ∈ [b]−∆ we have
[a] ∩ [w] = [a] ∩ [b] (otherwise w〈g〉 is contained in [b] ∩ [c] for c ∈ [a] ∩ [w] − [b]). A contradiction
with a fact that for two vertices c, d ∈ [a]∩ [w] a subgraph [c]∩ [d] contains 68 vertices from [b]−∆.

Let p = 13. Then |∆−a⊥| = 403. If b ∈ ∆−a⊥ and |[b]−∆| = 13, then for any w ∈ [b]−∆ we
have [a]∩[w] = [a]∩[b] (otherwise w〈g〉 is contained in [b]∩[c] for a vertex c ∈ [a]∩[w]−[b]). Further,
[b] ∩ [w] contains 12 vertices from w〈g〉 and 32 vertices from ∆(b). Hence, for w′ ∈ w〈g〉 − {w} a
subgraph [w]∩ [w′] contains b, 32-clique from ∆(b) and 11 vertices from w〈g〉. A contradiction with
a fact that the order of a clique in Γ is not greater than 40.

If b ∈ ∆−a⊥ and |[b]−∆| = 26, then [b]−∆ = u〈g〉∪w〈g〉. As above, [a]∩[u] = [a]∩[w] = [a]∩[b],
therefore a subgraph {b}∪ ([a]∩ [b])∪u〈g〉 ∪w〈g〉 is a 39-clique. If e ∈ [u]∩∆(b)− [w], then [e]∩ [w]
contains 13 vertices from u〈g〉, a contradiction. So, {b}∪ ([u]∩∆(b))∪u〈g〉 ∪w〈g〉 is a 46-coclique, a
contradiction. If b ∈ ∆− a⊥ and |[b]−∆| ≥ 39, then for any two vertices c, d ∈ [a]∩ [b] a subgraph
[c] ∩ [d] contains a, b and 39 vertices from [b]−∆, a contradiction. Statement (1) is proved.

Let on Γ−∆ there is a coclique orbit u〈g〉. Then [ugi ]∩ [ugj ] does not intersect Γ−∆ for distinct
vertices ugi , ugj , so 145p ≤ |Γ−∆| ≤ 1443, therefore p ≤ 7.

Let us show that p ≤ 3.

Let c ∈ [a] ∩ [u] and [c] ∩ [u] contains exactly γ vertices from [a] ∩ [u]. Then [c] ∩ [u] contains
44−γ vertices outside of ∆ (lying in distinct 〈g〉-orbits) and p(44−γ) ≤ |[c]−∆| ≤ 156−45 = 111.
Hence, 32p ≤ 111.

If a⊥ = ∆, then α0(g) = 157, p divides 1443 and p = 3. Further, χ1(g) = (628 +α1(g))/40− 4,
(628 + α1(g))/40 is congruent to 1 modulo 3 and α1(g) = 120l + 12. �

Lemma 7. The following statements hold :

(1) Γ does not contain proper strongly regular subgraphs with parameters (v′, k′, 44, 12);

(2) p ≤ 43.

P r o o f. Assume that Γ contains proper strongly regular subgraph Σ with parameters
(v′, k′, 44, 12). Then 4(k′−12)+322 = n2, therefore n = 2l, k′ = l2−244, l ≥ 16, Σ has nonprincipal
eigenvalues 16+ l, 16− l and multiplicity of 16+ l is equal to (l− 17)(l2 − 244)(l2 + l− 260)/24l. If
l is odd, then 8 divides (l− 17)(l2 + l− 20), l divides 17 · 61 · 65 and l ∈ {5, 13}. If l is even, then 3
divides (l − 2)(l2 − 1)(l2 + l − 2) and l = 16. In all cases we have contradictions.

If p ≥ 47, then ∆ is a strongly regular graph with parameters (v′, k′, 44, 12), so ∆ = Γ, a
contradiction. �

Theorem 2 follows from Lemmas 5–7.
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2. Proof of Theorem 1

In Lemmas 8–9 it is assumed that Γ is a distance-regular graph with intersection array
{39, 36, 4; 1, 1, 36}, G = Aut(Γ), g is an element of prime order p from G, αi(g) = pwi for i > 0 and
Ω = Fix(g).

Lemma 8. The following statements hold :
(1) if Ω is an empty graph, then either p = 2, α1(g) = 10r + 26m + 12 and α3(g) = 80r =

1600 − α1(g) or p = 5, α1(g) = 65n+ 10l + 10 and α3(g) = 200l;
(2) if Ω is an n-clique, then one of the following statements holds:

(i) n = 1, p = 3, α1(g) = 15l + 24 + 39m and α3(g) = 120l + 36,
(ii) n = 2, p = 2, α1(g) = 10l + 26m and α3(g) = 80l − 8,
(iii) or n = 4, p = 2, α1(g) = 10l + 26m + 14 and α3(g) = 80l − 16 or p = 3,

α1(g) = 10l + 39m+ 1, l is congruent to −1 modulo 3 and α3(g) = 120l + 24;
(3) if Ω consists of n vertices at distance 3 in Γ, then p = 3, n ∈ {4, 7, 10, ..., 40},

α3(g) = 120l + 40− 4n and α1(g) = 15l + 30 + 39m− 6n;
(4) if Ω contains an edge and doesn’t contain vertices at distance 2 in Γ, then Ω is an union of

isolated cliques and any two vertices from different cliques are at distance 3 in Γ, either p = 3 and

the orders of these cliques are equal to 1 or 4, or p = 2 and the orders of these cliques are equal to

2 or 4.

P r o o f. Let Ω be an empty graph and αi(g) = pwi for i ≥ 1. As v = 1600, then p is equal to
2 or 5.

Let p = 2. Then w1 + w2 + w3 = 800 and χ2(g) = w3/20 − 4. Hence, w3 = 40r. Further,
the number χ1(g) = (2w1 − 10r − 25)/13 is odd, therefore w1 = 13m + 6 + 5r. Finally, α2(g) = 0
(if d(u, ug) = 2, then the only vertex from [u] ∩ [ug] belongs to Ω, a contradiction). Therefore
α1(g) = 10r + 26m+ 12 = 1600 − 80r.

Let p = 5. Then w1 + w2 + w3 = 320 and χ2(g) = w3/8 − 4. Hence, w3 = 40l. Finally,
χ1(g) = (5w1 − 25l − 25)/13, therefore w1 = 13n + 5l + 5. Statement (1) is proved.

Let Ω be an n-clique. If n = 1, then p divides 39 and 315, therefore p = 3. We have χ1(g) =
(8α1(g) − α3(g) − 156)/104, χ2(g) = (4 + α3(g))/40 − 4. Therefore the number (4 + α3(g))/40
is congruent to 1 modulo 3, α3(g) = 120l + 36 and the number χ1(g) = (α1(g) − 15l − 24)/13 is
divisible by 3. Hence, α1(g) = 15l + 24 + 39m.

If n > 1, then p divides 4 − n and 36, therefore either n = 2, p = 2, or n = 4, p = 2, 3.
In the first case the number χ2(g) = (8 + α3(g))/40 − 4 is even and α3(g) = 80l − 8. Further,
the number χ1(g) = (α1(g) − 10l)/13 − 1 is odd and α1(g) = 10l + 26m. In the second case
χ2(g) = (16 + α3(g))/40 − 4 and either p = 2, α3(g) = 80l − 16, or p = 3 and α3(g) = 120l + 24.
Further, χ1(g) = (176 + 8α1(g)− α3(g))/104− 25/13 and either p = 2, α1(g) = 10l+ 26m+ 14, or
p = 3 and α1(g) = 10l + 39m+ 1, l is congruent to −1 modulo 3.

Let Ω consists of n vertices at distance 3. As p313 = 3, p333 = 44, then p divides 3 and 46 − n.
Hence, p = 3 and n ∈ {4, 7, 10, ..., 40}. We have χ2(g) = (4n + α3(g))/40 − 4 and the number
(4n+α3(g))/40 is congruent to 1 modulo 3, therefore α3(g) = 120l+40− 4n. Further, the number
χ1(g) = (6n+ α1(g)− 15l − 30)/13 is divisible by 3 and α1(g) = 15l + 30 + 39m− 6n.

Let Ω contains an edge and does not contain vertices at distance 2 in Γ. Then Ω is an union
of isolated cliques, any two vertices from distinct cliques are at distance 3 in Γ. As orders of these
cliques are at most 4, then p ≤ 3. If p = 3, then the orders of these cliques are equal to 1 or 4. If
p = 2, then the orders of these cliques are equal to 2 or 4. �
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Lemma 9. If Ω contains vertices a, b at distance 2 in Γ, then p ≤ 3.

P r o o f. Let Ω contains vertices a, b at distance 2 in Γ and Ω0 is a connected component of Ω
containing a, b.

Assume that the diameter of graph Ω0 is equal to 2. Then by [1, 1.17.1] one of the following
statements holds:

(i) Ω0 ⊆ a⊥ and Ω0(a) is an union of isolated cliques;
(ii) Ω0 ia a strongly regular graph;
(iii) Ω0 is a biregular graph with degrees of vertices α, β, where α < β, and if A and B are sets

of vertices from Ω0 with degrees α and β, then A is a coclique, the lines between A and B have
order 2, the lines from B have order l = β − α+ 2 > 2, and |Ω0| = αβ + 1.

Last case is impossible because c2 = 1 in Γ.
In the case (i) we have p ∈ {2, 3} because of p133 = 12.
In the case (ii) either p = 2 and Ω0 is the pentagon, Petersen graph or Hoffman-Singletone

graph, or p > 2 and Ω0 is a strongly regular graph with parameters (v′, k′, 2, 1).
Let p > 2. Then Ω(a) consists of e isolated triangles and either e = 1, p = 3, or e = 2, p = 3, 11,

or e = 3, p = 3, 5, or e = 4, p = 3, or e = 5, p = 3, or e = 6, p = 3, 7, or e = 7, p = 3, or e = 8,
p = 3, 5, or e ≥ 9, p = 3.

In case p = 11 graph Ω is a regular graph of degree 6, |Ω ∩ Γ2(a)| = 18, |Ω ∩ Γ3(a)| = 24 and
|Γ3(a)− Ω| is not divisible by 11.

In case p = 7 graph Ω is a regular graph of degree 18, |Ω∩Γ2(a)| = 270, |Ω∩Γ3(a)| = 270·4/15 =
64 and |Γ3(a)− Ω| is not divisible by 7.

In case p = 5 graph Ω contains vertices of degrees 9 and 24. Assume that |Ω(a)| = 24, Ω(a)
contains β vertices of degree 24 in Ω and Ω3(a) contains γ vertices of degree 24 in Ω. Then the
number 21β + 6(24− β) = |Ω ∩ Γ2(a)| is congruent to 4 modulo 5 and 4|Ω ∩ Γ2(a)| = 21γ +6(|Ω ∩
Γ3(a)| − γ). Hence, |Γ2(a) ∩Ω| = (144 + 15β) and 576 + 60β = 15γ + 6|Ω ∩ Γ3(a)|, a contradiction
with the fact that |Ω ∩ Γ3(a)| is divisible by 5.

So, Ω is an amply regular graph with parameters (v′, 9, 2, 1), 54 = |Ω∩Γ2(a)| and |Ω∩Γ3(a)| =
36. Again we have a contradiction with the fact that |Ω ∩ Γ3(a)| is divisible by 5.

The lemma is proved. �

Theorem 1 follows from Lemmas 8–9.

3. Proof of Corollary 1

Until the end of the paper we will assume that Γ is a distance-regular graph with intersection
array {39, 36, 4; 1, 1, 36} and the nonsolvable group G = Aut(Γ) acts transitively on the set of
vertices of this graph. For the vertex a ∈ Γ we get |G : Ga| = 1600. In view of Theorem 1 we have
p ∈ {2, 3, 5}. Let T̄ be the socle of the group Ḡ = G/O5′(G).

Lemma 10. If f is an element of order 5 of G, g is an element of order p < 5 of CG(f) and

Ω = Fix(g), then one of the following statements holds:
(1) Ω is an empty graph, p = 2, α3(g) = 80r, r ≤ 19, α1(g) = 10r + 26m + 12 = 1600 − 80r,

and m ∈ {−7,−2, 3, 8, ..., 58};
(2) Ω consists of n vertices at distance 3 in Γ, p = 3, n ∈ {10, 25, 40}, α3(g) = 120l + 40− 4n,

α1(g) + α3(g) = 135l − 10n+ 39m+ 70 ≤ 1600 and m is divisible by 5 ;
(3) p = 3, α3(g) = 120s, α0(g) = 30t+10, α1(g) = 39l− 165t+15s− 30 or α3(g) = 120s+60,

α0(g) = 30t− 5, α1(g) = 195l − 165t + 15s+ 60;
(4) p = 2, α3(g) = 80s − 4α0(g) and α1(g) = 10s + 26l + 38 − 6α0(g), l is congruent to 2

modulo 5.
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P r o o f. In view of Theorem 1 Fix(f) is empty graph, α1(f) = 65n+10l+10 and α3(f) = 200l.
If Ω is an empty graph, then p = 2, α3(g) = 80r and α1(g) = 10r + 26m + 12 = 1600 − 80r is

divisible by 5. Hence, 13m+ 6 is divisible by 5 and m ∈ {−7,−2, 3, 8, ..., 58}. Finally, 26m+ 12 =
1600 − 90r, therefore m is congruent to 2 modulo 3 and m ∈ {−7, 8, 23, 38, 53}.

If Ω is an n-clique, then n is divisible by 5, we have got a contradiction.

If Ω consists of n vertices at distance 3 in Γ, then p = 3, n ∈ {10, 25, 40}, the numbers
α3(g) = 120l + 40 − 4n and α1(g) = 15l + 30 + 39m− 6n are divisible by 5. Hence, m is divisible
by 5, α1(g) + α3(g) = 135l − 10n + 39m+ 70 ≤ 1600.

If p = 3, then χ2(g) = (4α0(g)+α3(g))/40−4 and the number (4α0(g)+α3(g))/40 is congruent
to 1 modulo 3. Further, the number χ1(g) = (44α0(g) + 8α1(g) − α3(g))/104 − 25/13 is divisible
by 3, α3(g) is divisible by 60. If α3(g) = 120s, then α0(g) = 30t+10, α1(g) = 39l−165t+15s−30.
If α3(g) = 120s + 60, then α0(g) = 30t− 5, α1(g) = 195l − 165t + 15s + 60.

If p = 2, then χ2(g) = (4α0(g) + α3(g))/40 − 4, 4α0(g) + α3(g) = 80s. Further, α1(g) =
−6α0(g) + 10s + 26l + 38 and 13l + 19 is divisible by 5, therefore l ∈ {2, 7, ...}. Finally, 1600 −
5α0(g) + 80s = −6α0(g) + 10s + 26l + 38, 1600 = −70s − α0(g) + 26l + 38. �

Lemma 11. The following statements hold :
(1) T̄ = L × M , and each of subgroups L,M is isomorphic to one of the following groups

Z5, A5, A6 or PSp(4, 3);
(2) in case |T̄ : T̄a| = 402 we have O5′(G) = 1 and this case is realized if one of the following

statements holds:
(i) L ∼=M ∼= PSp(4, 3), or
(ii) L ∼= PSp(4, 3), |L : La| = 40, M ∼= A6 and |Ma| = 9, or
(iii) L ∼=M ∼= A6 and |La| = |Ma| = 9.

P r o o f. Recall that a nonabelian simple {2, 3, 5}-group is isomorphic to A5, A6 or PSp(4, 3)
(see, [6, Table 1]). Hence, in view of Theorem 1 we have T̄ = L ×M , each of subgroups L,M is
isomorphic to one of the following groups A5, A6 or PSp(4, 3).

If T̄ ∼= PSp(4, 3), then the group T̄a has an index 40 in T̄ and is isomorphic to E9.SL2(3) or
E27.S4.

If T̄ ∼= A6, then the group T̄a has an index in T̄ , divisible by 10, and dividing 40.
If T̄ ∼= A5, then the group T̄a has an index in T̄ , divisible by 10, and dividing 20.

In case |T̄ : T̄a| = 402 we have O5′(G) = 1 and this case is realized if one of the following
statements holds: either L ∼= M ∼= PSp(4, 3), or L ∼= PSp(4, 3), M ∼= A6 |Ma| = 9, or
L ∼=M ∼= A6 and |La| = |Ma| = 9. �

Corollary is proved.

4. Conclusion

We found possible automorphisms of a distance-regular graph with intersection array
{39, 36, 4; 1, 1, 36}. In particular this graph is not arc-transitive.

REFERENCES

1. Brouwer A. E., Cohen A.M., Neumaier A. Distance-Regular Graphs. New York: Springer-Verlag, 1989.
495 p. DOI: 10.1007/978-3-642-74341-2

2. Makhnev A.A., Nirova M. S. On distance-regular graphs with λ = 2. J. Sib. Fed. Univ. Math. Phys.,
2014. Vol. 7, No. 2. P. 204–210.

https://doi.org/10.1007/978-3-642-74341-2


78 Konstantin Efimov and Alexander Makhnev

3. Behbahani M., Lam C. Strongly regular graphs with nontrivial automorphisms. Discrete Math., 2011.
Vol. 311, No. 2–3. P. 132–144. DOI: 10.1016/j.disc.2010.10.005

4. Cameron P. J. Permutation Groups. London Math. Soc. Student Texts, No. 45. Cambridge: Cambridge
Univ. Press, 1999.

5. Gavrilyuk A. L., Makhnev A.A. On automorphisms of distance-regular graph with the in-
tersection array {56, 45, 1; 1, 9, 56}. Doklady Mathematics, 2010. Vol. 81, No. 3. P. 439–442.
DOI: 10.1134/S1064562410030282

6. Zavarnitsine A. V. Finite simple groups with narrow prime spectrum. Sib. Electron. Math. Izv., 2009.
Vol. 6. P. S1–S12.

https://doi.org/10.1016/j.disc.2010.10.005
https://doi.org/10.1134/S1064562410030282

	Proof of Theorem 2
	Proof of Theorem 1
	Proof of Corollary 1
	Conclusion

