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Abstract: We study operators given by series, in particular, operators of the form eB =
∞∑

n=0
Bn/n!, where B

is an operator acting in a Banach space X. A corresponding example is provided. In our future research, we
will use these operators for introducing and studying functions of operators constructed (with the use of the
Cauchy integral formula) on the basis of scalar functions and admitting a faster than power growth at infinity.
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The theory of functions of normal operators has been developed in Hilbert spaces [8, Ch. 12,13].
However, functions of an operator in Banach spaces are introduced under quite serious restrictions
on the operator and the corresponding scalar functions (see e.g. [2, Ch. VII.3]). For a considerable
class of operators, these scalar functions are assumed to be analytical with polynomial growth at
infinity (see e.g. [1] and [6, Ch. 1, § 5]). The authors’ papers [3–5] are in the same vein. In these
papers, based on the Cauchy integral formula, functions of an operator were constructed in terms of
natural powers of the operator. To introduce and study functions of an operator built constructed
on the basis of scalar functions and admitting the growth at infinity faster than the power function
but not faster than the exponential function have, we will need operators of the form

eB =
∞∑

n=0

Bn

n!
, (1)

where B is an operator on a Banach space X. In this paper, we study the properties of such
operators.

We will use series of elements of a Banach space X and operator series. The principal notions
of numerical series (double series and repeated series) are naturally extended to series of elements
of the space X [7, Ch. 2, § 2]. In this paper, the convergence of partial sums of series from X is

interpreted as the convergence in the norm of this space. For a series
∞∑
n=0

An of operators An acting

in X, its sum is the operator A with the domain D(A) =
{
x ∈ X :

∞∑
n=0

Anx converges
}

and such

that Ax =
∞∑
n=0

Anx for x ∈ D(A). The expression A ⊂ B (B ⊃ A) for operators A and B means

that B is the extension of A [7, Ch. 7, Sect. 6].
Let us proceed to the results.
In what follows, we will need the following auxiliary assertion.

Assertion 1. The following statements hold :

(i) (An analog of Abel’s test for numerical series). Suppose that a series
∞∑
n=0

an converges in X

and a sequence {αn}∞n=0 ⊂ R is monotonic and bounded. Then, the series
∞∑
n=0

αnan converges.
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(ii) Suppose that {am,n}∞m,n=0 ⊂ X and the series
∞∑

m,n=0
am,n converges absolutely. Then, every

rearrangement of this series converges absolutely to the same sum.

(iii) Suppose that the terms of a series
∞∑

m,n=0
am,n (am,n ∈ X) are reindexed (with a single

index) and the series
∞∑
k=0

bk is composed of them. If one of these two series or the repeated series

∞∑
m=0

∞∑
n=0

am,n converges absolutely, then the other two series converge absolutely to the same sum.

(iv) If a series
∞∑

m,n=0
am,n (am,n ∈ X) converges absolutely, then the series

∞∑
k=0

∞∑
m+n=k
(m,n≥0)

am,n also

converges absolutely to the same sum.

The proof of statement (i) is almost the same as the proof of Abel’s test for numerical series.
The proofs of statements (ii)–(iv) reduce to the use of the corresponding statements for numerical
series after the application a continuous linear functional to the series under consideration. Here,
we take into account the fact that if values of all such functionals coincide at two elements from X,
then these elements are equal [2, Ch. II.3.15].

Assertion 2. Suppose that A is an operator acting in X, x ∈ X, k ∈ N, a sequence {αn}∞n=0 ⊂ R

is such that the sequence
{αn+k

αn

}
is monotonic and bounded, and the series

∞∑
n=0

αnA
n+kx converges.

Then, the series
∞∑
n=0

αnA
nx converges. If the operator Ak is linear and closed, then the following

equality holds:
∞∑

n=0

αnA
n+kx = Ak

∞∑

n=0

αnA
nx, (2)

which is equivalent to the expression

∞∑

n=0

αnA
n+k ⊂ Ak

∞∑

n=0

αnA
n. (3)

P r o o f. The following relations are valid:

∞∑

n=0

αnA
nx =

k−1∑

n=0

αnA
nx+

∞∑

n=0

αn+kA
n+kx =

k−1∑

n=0

αnA
nx+

∞∑

n=0

αn+k

αn
(αnA

n+kx).

The latter series converges by the analog of Abel’s test. Moreover, under the assumption that the
operator Ak is linear and closed, equality (2) holds. �

Remark 1. The operator Ak is linear and closed if the operator A is linear and its resolvent
set ρ(A) 6= ∅ [2, VII.9.7].

Remark 2. The boundedness and monotonicity of the sequence
{αn+k

αn

}
starting from a certain

index follow from the fact that the sequence
{αn+1

αn

}
is monotonic and bounded.

This remark follows from the relation

αn+k

αn
=

αn+1

αn
× αn+2

αn+1
× · · · × αn+k

αn+k−1
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and the fact that terms of a monotonic sequence of reals are of the same sign starting from a certain
index.

Remark 3. Equality (2) holds without the assumption that the sequence
{αn+k

αn

}
is monotonic

and bounded if the operator Ak is linear and closed and both the series in (2) converge.

Corollary 1. Suppose that k ∈ N and the operator Ak is linear and closed. Then,

eAAk ⊂ AkeA.

To prove this fact, it is sufficient to take αn = 1/n! in (3).

In Assertion 1, the sequence
{αn+k

αn

}∞

n=0
is required to be monotonic and bounded. Let us

consider the conditions related to these properties.

Lemma 1. If a ∈ R and a sequence {αn} ⊂ (0,+∞) is such that
αn+1

αn
≤ a for all n, then

αn ≤ Can for all n, where C = α1/a. Conversely, if the sequence
{αn+1

αn

}
is monotonic and

αn ≤ Can for some C, a ∈ (0,+∞) and all n, then the sequence
{αn+1

αn

}
is bounded.

P r o o f. Suppose that a ∈ R is such that
αn+1

αn
≤ a for all n. Then,

αn

α1
=

α2

α1
× α3

α2
× · · · × αn

αn−1
≤ an−1;

i. e., αn ≤ Can for C = α1/a.

Conversely, suppose that αn ≤ Can for some C, a ∈ (0,+∞), and all n and the sequence
{αn+1

αn

}

is monotonic. Denote by d the limit of this sequence, d ∈ [0,+∞]. Assume that d = +∞. Then
lim
n→∞

n
√
αn = +∞. This contradicts the inequality n

√
αn ≤ n

√
Ca. Therefore, d ∈ R; i. e., the sequence

{αn+1

αn

}
is bounded. The lemma is proved. �

Note that the requirement of monotonicity in the second part of the lemma is essential.

Example 1. Suppose that a sequence {nm} ⊂ N is such that nm+1 > nm + 1, 2nm > m!, and

αn = (m − 1)! for nm−1 < n ≤ nm (n0 = 0) for all m ∈ N. In this case, the sequence
{αn+1

αn

}
is

unbounded, although αn < 2n. (Indeed, if nm−1 < n ≤ nm, then αn = (m− 1)! < 2nm−1 < 2n).

Assertion 3. Suppose that k ∈ N and {αn}∞n=0 ⊂ (0,+∞). If the sequence
{αn+k

αn

}
is bounded,

then αn ≤ Cbn for some b, C ∈ (0,+∞) and all n. Conversely, if the sequence
{αn+k

αn

}
is monotonic,

C, b ∈ (0,+∞), and αn ≤ Cbn for all n, then the sequence
{αn+k

αn

}
is bounded.

P r o o f. Suppose that a ∈ R is such that
αn+k

αn
≤ a for all n. Let us consider the subsequences

{β(r)
m }∞m=0 of {αn} with β

(r)
m = αmk+r (r = 0, 1, . . . , k − 1). For all m, we have

β
(r)
m+1

β
(r)
m

=
α(m+1)k+r

αmk+r
=

α(mk+r)+k

αmk+r
≤ a.
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Then, according to Lemma 1, there is a number Cr ∈ (0,+∞) such that

β(r)
m ≤ Cra

m =
Cr

ar/k
( k
√
a)mk+r

for all m. Setting C = max
0≤r≤k−1

Cr

ar/k
and b = k

√
a, we obtain αn ≤ Cbn for all n.

Conversely, suppose that the sequence
{αn+k

αn

}
is monotonic, C, b ∈ (0,+∞), and αn ≤ Cbn

for all n. If lim
n→∞

αn+k

αn
is finite, then there is nothing to prove. Assume that lim

n→∞

αn+k

αn
= +∞.

Again, introducing β
(r)
m = αmk+r (r = 0, 1, . . . , k − 1), we conclude that the sequence {β(r)

m }∞m=0 is
monotonic because

β
(r)
m+1

β
(r)
m

=
α(mk+r)+k

αmk+r
.

Moreover,

β(r)
m = αmk+r ≤ Cbmk+r = C1b

m
1 (C1 = Cbr, b1 = bk).

Hence, according to Lemma 1,

α(mk+r)+k

αmk+r
=

β
(r)
m+1

β
(r)
m

≤ ar

for some Cr, ar ∈ (0,+∞) and arbitrary m. Therefore,

αn+k

αn
≤ max{a0, a1, . . . , ak−1} = a

for all n. The assertion is proved. �

Assertion 4. Suppose that operators B1, . . . , Bn act in X, B1, . . . , Bn−1 are linear operators

with nonempty resolvent sets, x ∈ X, the series

∞∑

m1,...,mn=0

Bm1
1 . . . Bmn

n

m1! . . . mn!
x (4)

converges absolutely, and the following condition holds:

(v) for all k ∈ N and a set of natural indices i1, . . . , ik not exceeding n, the expression Bi1 . . . Bikx
is valid and, if a set j1, . . . , jk is obtained from the set i1, . . . , ik by a rearrangement of its elements,

then

Bi1 . . . Bikx = Bj1 . . . Bjkx. (5)

In this case,

eB1 . . . eBnx = eB1+···+Bnx

(both parts of the relation are valid).

P r o o f. Let us first establish the equality

∞∑

m1=0

Bm1
1

m1!

∞∑

m2=0

Bm2
2

m2!
· · ·

∞∑

mn=0

Bmn
n

mn!
x =

∞∑

m1,m2,...,mn=0

Bm1
1 Bm2

2 . . . Bmn
n

m1!m2! . . . mn!
x (6)



Some properties of operator exponent 37

by induction on n. For n = 1, (6) holds. Assume that, under the conditions of the assertion,
equality (6) holds for n = k − 1 (k ≥ 2). Now, let n = k. Note that the absolute convergence of
series (4) implies the absolute convergence of the series

∞∑

m2,...,mn=0

Bm2
2 . . . Bmn

n

m2! . . . mn!
x.

Taking into account the fact that the operators Bm1
1 (m1 ∈ N) are closed, condition (v), and the

induction hypothesis, we obtain

∞∑

m1=0

Bm1
1

m1!

∞∑

m2=0

Bm2
2

m2!
· · ·

∞∑

mn=0

Bmn
n

mn!
x =

∞∑

m1=0

Bm1
1

m1!

∞∑

m2,...,mn=0

Bm2
2 . . . Bmn

n

m2! . . . mn!
x =

=

∞∑

m1=0

∞∑

m2,...,mn=0

Bm1
1 Bm2

2 . . . Bmn
n

m1!m2! . . . mn!
x =

∞∑

m1,m2,...,mn=0

Bm1
1 Bm2

2 . . . Bmn
n

m1!m2! . . . mn!
x,

i. e., equality (6) is proved. Using this equality, we obtain

eB1 . . . eBnx =

∞∑

m1,...,mn=0

Bm1
1 . . . Bmn

n

m1! . . . mn!
x =

∞∑

s=0

∑

m1+···+mn=s

Bm1
1 . . . Bmn

n

m1! . . . mn!
x =

=

∞∑

s=0

1

s!

∑

m1+···+mn=s

(m1,...,mn≥0)

s!

m1! . . . mn!
Bm1

1 . . . Bmn
n x =

∞∑

s=0

(B1 + · · ·+Bn)
s

s!
x = eB1+···+Bnx.

The assertion is proved. �

Remark 4. Equality (5) holds if the operators B1, . . . , Bn pairwise commute and the left-hand
side of (5) is valid.

Corollary 2. Suppose that α1, . . . , αn ∈ C, x ∈ X, A is a linear operator acting in X, ρ(A) 6= ∅,
and a series

∞∑

m1,...,mn=0

αm1
1 . . . αmn

n

m1! . . . mn!
Am1+···+mnx

converges absolutely. Then,

eα1A . . . eαnAx = e(α1+···αn)Ax (7)

(both sides of the equality are valid).

To formulate the next assertion, let us introduce some definitions and make a number of
assumptions.

Suppose that L = L (p, q) (p > 0, q > 0) is a curve given in the complex plane (λ) by the
equation

β2 = 2pα ln
α

q
(α = Reλ, β = Imλ, α ≥ q); (8)

Let G = G(p, q) be a domain containing the origin with the boundary L ; let the direction of L be
chosen so that the domain G is on the right; and let A be an injective linear operator with domain
D(A) dense in X and range Im(A) ⊂ X. The following estimate for the norm of the resolvent
operator R(λ) = RA(λ) = (A− λE)−1 of the operator A in G is known:

‖R(λ)‖ ≤ C0

(|λ|+ 1)γ
(9)
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for some C0 > 0 and γ ≤ 1 and all λ ∈ G.

For ϕ ∈ (0, π), we denote by ∆(ϕ) the domain in C that contains the negative real semiaxis and
its boundary is L(ϕ) = L1(ϕ) ∪ L2(ϕ), where

L1(ϕ) = {λ ∈ C : λ = teiϕ, t ≥ 0}, L2(ϕ) = {λ ∈ C : λ = te−iϕ, t ≥ 0}.

Suppose that Ω(a, ϕ) = ∆(ϕ) ∪B(0, a) (a > 0, ϕ ∈ (0, π), and B(0, a) is the open disk of radius a
centered at the origin), and the direction of Γ(a, ϕ) = ∂Ω(a, ϕ) is chosen so that Ω(a, ϕ) is on the
right. Given p and q, we chose a and ϕ so that Ω(a, ϕ) ⊂ G(p, q).

Under these assumptions, the authors studied [5] the operator functions

f(A) = − 1

2πi
An

∫

Γ(a,ϕ)

f(λ)

λn
R(λ)dλ, (10)

f̃(A) = − 1

2πi

∫

Γ(a,ϕ)

f(λ)

λn
R(λ)dλ An (11)

constructed on the basis of corresponding scalar functions f(λ) continuous in C\Ω(a, ϕ) and analytic
in C \ Ω(a, ϕ); in addition, for every such function f there exist C ∈ (0,+∞) and σ ∈ R such that

|f(λ)| ≤ C|λ|σ (12)

for all λ ∈ C \Ω(a, ϕ). The number n ∈ N ∪ {0} in (10) and (11) is chosen so that σ − n− γ < −1.

It was proved that the right-hand sides of these representations are independent of such n, the
operator functions f(A) and f̃(A) are densely defined, f̃(A) ⊂ f(A), and the functions coincide if
one of them is continuous.

We can take the function e−tλ (t > 0) as the function f and consider two operator functions, one
of which is given by series according to formula (1) and the other is given by relations (10) and (11)
for n = 0 (these relations yield the same result because their right-hand sides are continuous).
Denoted by (e−tA)I the function given by formulas (10) and (11).

Lemma 2. Let σ ∈ R, σ − γ < −1, and let a function f be continuous in C\Ω(a, ϕ), analytic

in C\Ω(a, ϕ) and such that (12) holds for some C ∈ (0,+∞) and all λ ∈ C\Ω(a, ϕ).
Then ∫

Γ(a,ϕ)
f(λ)R(λ)dλ =

∫

L (p,q)
f(λ)R(λ)dλ.

The proof of this lemma is similar to the proof of [3, Lemma 1].

Assertion 5. Let a curve Lt (t > 0) be given by the equation β2 = 2tpα ln
α

qt
(α = Reλ,

β = Imλ, and α ≥ qt), and let n(t) ∈ N satisfy the inequality

tp− n(t)− γ < −1. (13)

Then

etA(e−tA)I
∣∣
D(An(t))

= E
∣∣
D(An(t))

, (14)

(e−tA)Ie
tA = E

∣∣
D(etA)

. (15)
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P r o o f. Let us first consider the case t = 1. Note that L1 = L . Denote by n0
1 the value n(1).

The following equalities hold for x ∈ D
(
eA(e−A)I

)
:

eA(e−A)Ix = − 1

2πi

∞∑

n=0

An

n!

∫

L

e−λR(λ)dλ x = − 1

2πi
lim
n→∞

n∑

k=0

Ak

k!

∫

L

e−λR(λ)dλ x.

For every n ∈ N, consider n1 ∈ N satisfying the inequality n − n1 − γ < −1. Then, according
to [4, Theorem 9],

n∑

k=0

Ak

k!
= −An1

2πi

∫

L

n∑

k=0

λk−n1

k!
R(λ)dλ;

i. e., according to [5, Theorem 3],

n∑

k=0

Ak

k!

∫

L

e−λR(λ)dλ = An1

∫

L

n∑

k=0

λk−n1

k!
e−λR(λ)dλ. (16)

For the functions fn(λ) =
n∑

k=0

λk

k!
e−λ in (10) and (11), we can take an arbitrary σ from (12).

Thus, the right-hand side of (16) is independent of n1 ∈ N ∪ {0}. Therefore, for x ∈ D(An0
1), we

have

An1

∫

L

n∑

k=0

λk−n1

k!
e−λR(λ)dλ x = An0

1

∫

L

n∑

k=0

λk−n0
1

k!
e−λR(λ)dλ x =

∫

L

λk−n0
1

k!
e−λR(λ)dλ An0

1x,

i. e.,

eA(e−A)Ix = − 1

2πi
lim
n→∞

∫

L

n∑

k=0

λk−n0
1

k!
e−λR(λ)dλ An0

1x

whenever this limit exists. Let us establish the existence of this limit and find its value using the
Lebesgue (dominated convergence) theorem on passing to the limit under the integral sign. Let us
check the conditions of this theorem.

Let

Hn(λ) =

n∑

k=0

λk−n0
1

k!
e−λR(λ),

and let λ = α+ iβ ∈ L be arbitrary. Then

lim
n→∞

Hn(λ) =
∞∑

n=0

λn−n0
1

n!
e−λR(λ) = λ−n0

1R(λ)

(the limit and the convergence of the series are considered with respect to the operator norm). Let
us show that the sequence {‖Hn(λ)‖} is dominated by a Lebesgue integrable function in L :

‖Hn(λ)‖ ≤
n∑

k=0

|λ|k−n0
1

k!
e−α‖R(λ)‖ ≤ C0|λ|−n0

1e|λ|−α

(|λ|+ 1)γ
≤ C0C1|λ|−n0

1−γe|λ|−α,

where C1 = sup
µ∈L

( |µ|
|µ|+ 1

)γ

(the function

( |µ|
|µ|+ 1

)γ

is continuous in L , has a finite limit at

infinity and, therefore, is bounded in L ). Using (8), we obtain that

|λ| − α =
√

α2 + β2 − α =
β2

√
α2 + β2 + α

≤
2pα ln α

q

2α
= p ln

α

q
;
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i. e.,

e|λ|−α ≤
(
α

q

)p

≤
( |λ|

q

)p

.

Hence,
‖Hn(λ)‖ ≤ C|λ|p−n0

1−γ ,

where C =
C0C1

qp
. By (13) for t = 1, the integral

∫

L

|λ|p−n0
1−γ |dλ| converges. By the Lebesgue

theorem,

− 1

2πi
lim
n→∞

∫

L

Hn(λ)dλ = − 1

2πi

∫

L

λ−n0
1R(λ)dλ = A−n0

1

(the limit is considered with respect to the operator norm). Therefore,

eA(e−A)Ix = A−n0
1An0

1x = x,

and (14) is proved.

Let us show that (15) holds. For x ∈ D(eA) ⊂
∞
∩

n=0
D(An), in view of continuity of the opera-

tor (e−A)I , we have

(e−A)Ie
Ax = (e−A)I lim

n→∞

n∑

k=0

Akx

k!
= − 1

2πi
(e−A)I

∫

L

n∑

k=0

λk−n1

k!
R(λ)dλ An1x,

where n1, as before, satisfies inequality (13) for t = 1. Arguing similarly to the proof of formula (14),
we obtain (15). Thus, the assertion holds for t = 1.

Let us now consider an arbitrary t > 0. The mapping µ = tλ takes the curve L to the curve Lt

and the domain G = G1 to the domain Gt ∋ 0 such that ∂Gt = Lt. In addition, ρ(tA) = tρ(A)
(ρ(A) and ρ(tA) are the regular sets of the operators A and tA, respectively) and the estimate for
‖RtA(λ)‖ in Gt coincides with the estimate (9) for ‖RA(λ)‖ in G with certain constant Ct instead
of C0. The analysis of the proof for t = 1 shows that formulas (14) and (15) remain valid for t > 0
under condition (13). The assertion is proved. �

Corollary 3. If t > 0 and the operator etA is closed, then it is invertible and (etA)−1 = (e−tA)I .

The corollary follows from (14), (15), and the fact that if a closed operator coincides with a
continuous operator on a dense set, then they coincide in the entire space.

Example 2. Let X = Lp[1,+∞) and Ax(t) = tx(t) (x ∈ X). Let us show that D(eA) = {x ∈
X : etx ∈ X} and the equality eAx = etx holds for x ∈ D(eA).

Let x ∈ X andetx ∈ X. Let us establish that x ∈ D(eA) and eAx = etx. To this end, we have

to prove that the series

∞∑

n=0

tn

n!
x converges in X to etx, i. e., that

∥∥∥∥e
tx−

n∑

k=0

Akx

k!

∥∥∥∥ =

∥∥∥∥e
tx−

n∑

k=0

tkx

k!

∥∥∥∥ −−−→
k→∞

0.

Since

∫ +∞

1
ept|x(t)|p dt < +∞, there exists a function α(t) defined on [1,+∞) such that α(t) ≥ α0

for some α0 > 0, α(t) −−−→
t→∞

+∞ (in particular, we can take a continuous positive function α with

infinite limit at +∞), and

∫ +∞

1
|α(t)etx(t)|p dt < +∞. Then

∥∥∥∥e
tx−

n∑

k=0

tkx

k!

∥∥∥∥ =

∥∥∥∥
1− e−t

∑n
k=0 t

k/k!

α
αetx

∥∥∥∥ ≤ sup
t≥1

1− e−t
∑n

k=0 t
k/k!

α(t)
‖αetx‖ = γn‖αetx‖.
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Let us show that

γn = sup
t≥1

1− e−t
∑n

k=0 t
k/k!

α(t)
−−−→
n→∞

0.

Take an arbitrary ε > 0. Since α(t) −−−→
t→∞

+∞, there is a number ∆ > 1 such that 1/α(t) < ε for

all t ≥ ∆; i. e.,

1− e−t
∑n

k=0 t
k/k!

α(t)
∈ [0, ε)

for all t ≥ ∆ and n ∈ N. Since the power series
∑∞

n=0 t
n/n! uniformly converges to et on [1,∆], the

sequence of functions {
1− e−t

∑n
k=0 t

k/k!

α(t)

}

uniformly tends to zero on [1,∆]. Hence, there exists a number N such that

1− e−t
∑n

k=0 t
k/k!

α(t)
< ε

for all t ∈ [1,∆] and n > N. Thus, γn ≤ ε for all n > N, i. e., γn −−−→
n→∞

0 and, consequently,

∞∑

n=0

tn

n!
x = etx in X.

Conversely, suppose that x ∈ D(eA) and eAx = y ∈ X, i. e.,

Sn =
n∑

k=0

tk

k!
x −−−→

n→∞
y in X.

Then, there exists a subsequence {Snk
} of {Sn} such that

Snk
(t)

a. e.−−−→
k→∞

y(t).

But

Sn(t)x(t) −−−→
n→∞

etx(t)

at every point t ≥ 1; i. e., y = etx in X. Since etx ∈ X, we have eAx = etx.

Note that equality (7) holds for the operator A if

x, eαntx, e(αn−1+αn)tx, . . . , e(α1+···+αn)tx ∈ X.

Conclusion

We have considered some natural properties of exponential operator defined by power series
(Corollary 1 and Assertion 4). The main result of the paper is the connection (under certain
conditions) of the exponential operator eA in the form of power series with the exponential function
e−A defined on the basis of the Cauchy integral formula (Assertion 5). These facts may give an
impulse to obtaining further results on functional calculus of operators.
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