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Abstract: The paper deals with the problem of optimal control with a convex integral quality index for a
linear steady-state control system in the class of piecewise continuous controls with smooth control constraints.
In a general case, to solve such a problem, the Pontryagin maximum principle is applied as the necessary and
sufficient optimum condition. The main difference from the preceding article [10] is that the terminal part of
the convex integral quality index depends not only on slow, but also on fast variables. In a particular case, we
derive an equation that is satisfied by an initial vector of the conjugate system. Then this equation is extended
to the optimal control problem with the convex integral quality index for a linear system with the fast and
slow variables. It is shown that the solution of the corresponding equation as ε → 0 tends to the solution of
an equation corresponding to the limit problem. The results obtained are applied to study a problem which
describes the motion of a material point in Rn for a fixed interval of time. The asymptotics of the initial vector
of the conjugate system that defines the type of optimal control is built. It is shown that the asymptotics is a
power series of expansion.
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Introduction

The paper is devoted to studying the asymptotics of the initial vector of a conjugated state and
an optimal value of the quality index in the optimal control problem [1–3] for a linear system with
a fast and slow variable (see review [4]), convex integral quality index [3, Chapter 3], and smooth
geometrical constraints for control.

Singularly perturbed problems of optimal control have been considered in different settings in
[5–7]. The solving of problems with a closed and bounded control area meets certain difficulties.
That is why the problems with fast and slow variables and closed constraints for control have
been studied to a less extent. A significant contribution to solving these problems was made by
Dontchev and Kokotovic. Problems with constraints for control in the form of a polygon are dealt
with in [5, 7]. The structure of such optimal control is a relay function with values in the apexes
of the polygon. No optimal control with constraints in the form of a sphere, which is a continuous
function with a finite and countable number of discontinuity points, has been considered so far.

The asymptotics of solutions of the perturbed control problem was formulated differently in
papers [8–10].

The main difference from the preceding article [10] is that the terminal part of the convex
integral quality index depends not only on slow, but also on fast variables. In the present work,

1The paper is a translation of the paper “Asymptotic expansion of a solution for the singularly per-
turbed optimal control problem with a convex integral quality index and smooth control constraints” by
A.A.Shaburov published in Proceedings of the Institute of Mathematics and Informatics at Udmurt State
University, 2017, vol. 50, pp. 110–120.
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the basic equation for searching for the asymptotics of the initial vector of the conjugated state of
the problem under consideration and optimal control is obtained.

General relationships are applied to the case of the optimal control with a point of a small mass
in an n-dimensional space under the action of a bounded force.

1. Construction of complete asymptotic expansion of vector λε for an optimal

control problem with fast and slow variables

Let us consider a problem that belongs to the class of piecewise continuous controls optimal
control problem for a linear stationary system with a convex integral quality index:





ẋε = yε, t ∈ [0, T ], ‖u‖ 6 1,

ε · ẏε = −yε + u, xε(0) = x0, yε(0) = y0,

J(u) =
1

2
‖zε(T )‖

2 +

∫ T

0
‖u(t)‖2 dt→ min, zε(T ) = (xε(T ) yε(T ))

T ,

(1.1)

where xε, yε, u ∈ R
n, zε ∈ R

2n. Henceforward ‖ · ‖ is the Euclidean norm in corresponding space.
Problem (1.1) simulates a motion of a material point of small mass ε > 0 with the coefficient of

the medium resistance equals to 1 in the space Rn under action of the constrained control force u(t).
Note that in the considered convex integral quality index J , where the first term can be in-

terpreted as a fine for the control error at a finite time instant T , whereas the second is used to
account for the energy costs of the implementation of the control.

Controllable system (1.1) contains fast and slow variables. The terminal part of the convex
integral quality index depends not only on slow, but also on fast variables. For each fixed ε > 0
the problem (1.1) takes the form





ż = Aεz + Bεu, z(0) = z0, ‖u(t)‖ 6 1, t ∈ [0, T ],

J(u) = ϕ(z(T )) +

∫ T

0
‖u(t)‖2 dt → min,

(1.2)

where z ∈ R
ñ, u ∈ R

n,

zε(t) =

(
xε(t)

yε(t)

)
, z0ε =

(
x0

y0

)
, ñ = 2n, ϕ(zε) =

1

2
‖zε‖

2,

Aε =

(
A11 A12

ε−1A21 ε−1A22

)
, Bε =

(
B1

ε−1B2

)

Here A11 = O, A12 = I, A21 = O, A22 = −I, B1 = O, B2 = I, and O and I are the zero and
the identity matrices of dimensional n× n respectively.

Calculating eAεt and ∇(12‖zε(T )‖
2), we obtain

eAεt =

(
I ε(1 − e−t/ε)I

O e−t/εI

)
, ∇

(
1

2
‖zε(T )‖

2

)
= zε(T ). (1.3)

Thus, the following conditions are valid:

• for all sufficiently small ε > 0 the pair (Aε,Bε) is completely controllable, that is,

rank
(
Bε,AεBε, . . . ,Aε

2n−1Bε) = 2n;
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• all eigenvalues of matrix A22 have negative real parts;

• the pair (A22, B2) is completely controllable.

Under the formulated conditions applied to the problem (1.2), the Pontryagin maximum princi-
ple is a necessary and sufficient optimum criterion. In this case, the problem has a unique solution
[3, p. 3.5, theorem 14]. As well, the following statement is valid:

Statement 1. The pair zε(t), uε(t) is a solution of the maximum principle problem if and only

if uε(t) is determined with the following formula:

uε(t) =
Bε

∗eAε
∗tλε

S
(
‖Bε

∗eAε
∗tλε‖

) , S(ξ) :=

{
2, 0 6 ξ 6 2,

ξ, ξ > 2,

and the vector λε is the unique solution of the equation

−λε = ∇ϕ

(
eAεT z0ε +

∫ T

0
eAετBε

Bε
∗eAε

∗τλε

S
(
‖Bε

∗eAε
∗τλε‖

) dτ
)
, (1.4)

where ∇ϕ is the subgradient function in the sense of convex analysis. Besides uε(t) is a unique

optimal control in the problem (1.2) [10, Statement 1].

Definition 1. The vector λε, that satisfies the equation (1.4), will be called as a vector de-

termining the optimal control in the problem (1.2). Note that since ∇ϕ(zε) =

(
xε
yε

)
, then the

vector λε, which determines the optimal control in the problem (1.2), has the form λε =

(
lε
ρε

)
,

lε ∈ R
n, ρε ∈ R

n.

Definition 2. The vectors lε, ρε also will be called as a vectors determining the optimal

control in the problem (1.2).

By virtue (1.3) the equation (1.4) transforms into system:





−lε = x0 + ε
(
1− e−T/ε

)
y0 +

∫ T

0

(1− e−t/ε)
(
lε + e−t/ε

(
ε−1ρε − lε

))

S
(
‖lε + e−

t
ε (ε−1ρε − lε) ‖

) dt,

−ρε = e−T/εy0 +

∫ T

0

e−t/ε
(
lε + e−t/ε

(
ε−1ρε − lε

))

ε · S
(
‖lε + e−t/ε (ε−1ρε − lε) ‖

) dt.
(1.5)

Let us note that the optimal control uoε(τ) in the problem (1.1) by virtue 1 is expressed through
the vectors lε, ρε as follows:

uoε(τ) =
lε + e−τ/ε

(
ε−1ρε − lε

)

S
(
‖lε + e−τ/ε (ε−1ρε − lε) ‖

) . (1.6)

The main problem posed for (1.1) is to determine the complete asymptotic expansion in powers
of the small parameter ε of optimal control, optimal values of the quality index and the optimal
process. Formula (1.6) shows that if it is possible to obtain the complete asymptotic expansion of
the vectors lε, ρε, which determine the optimal control in problem (1.1), then this vectors can also
be used for the asymptotic expansions of the above values.
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We introduce some notation. If the vector-function fε(t) is such that fε(t) = O(εα) as ε→ 0 for
any α > 0 uniformly with respect to t ∈ [0, T ], then instead of fε(t) we will write O. In particular,
e−γT/ε = O.

Theorem 1. Let the vectors lε, ρε are the unique solutions of the equation (1.5) in the prob-

lem (1.1), and the vector l0 is the unique solution of the equation

−l0 = x0 +
l0

S
(∥∥l0

∥∥)T. (1.7)

Then lε → l0 and ε−1ρε → −l0 as ε→ +0.

P r o o f. It is known that the attainability set for the controllable system under control
from (1.1) is uniformly bounded by the time instant T at ε ∈ (0, ε0] (see., for example, [6, Theorem
3.1]).

Writing the first equation from (1.5):

−lε = x0 + ε
(
1− e−T/ε

)
y0 +

∫ T

0

(1− e−t/ε)
(
lε + e−t/ε

(
ε−1ρε − lε

))

S
(
‖lε + e−t/ε (ε−1ρε − lε) ‖

) dt.

Taking into account that the expression under integral is uniformly constrained and that
O(e−t/ε) = = e−t/ε

(
ε−1ρε − lε

)
as ε → 0, a proof of that lε → l0, is carried out almost liter-

ally [10, Theorem 1]. Hence, it is enough to show that ε−1ρε → −l0 for a full proof of this theorem.
Let us show that the vector ρε can be presented in the form of ρε = ε · rε, where rε → r0 ∈ R

n

as ε→ +0. Writing the second equation from (1.5):

−ρε = e−T/εy0 +

∫ T

0

e−t/ε
(
lε + e−t/ε(ε−1ρε − lε)

)

ε · S
(
‖lε + e−t/ε(ε−1ρε − lε)‖

) dt. (1.8)

Let τ := t/ε. The equation (1.8) rewriting as

−ρε = O+

∫ ∞

0

e−τ
(
lε + e−τ (ε−1ρε − lε)

)

S (‖lε + e−τ (ε−1ρε − lε)‖)
dτ, ε→ 0.

Replacing the variable ξ := e−τ , we obtain

−ρε = O+

∫ 1

0

lε + ξ(ε−1ρε − lε)

S (‖lε + ξ(ε−1ρε − lε)‖)
dξ, ε→ 0.

Thus, the vector ρε is bounded. Let us prove that a sequence {ε−1ρε} is bounded. By contradiction,
we find εn → 0 : ‖ε−1ρε‖ → ∞. For simplicity, the n dependence of ε will be omitted.

Let us divide the integral into two terms by means of introduction of complementary parame-
ter α(ε):

−ρε = O+

∫ α(ε)

0

lε + ξ(ε−1ρε − lε)

S (‖lε + ξ(ε−1ρε − lε)‖)
dξ +

∫ 1

α(ε)

ξε−1ρε + (1− ξ)lε
S (‖ξε−1ρε + (1− ξ)lε‖)

dξ, ε→ 0, (1.9)

where α(ε) = O(εγ) as ε→ 0 and for a certain positive number γ.
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So far as ‖ξε−1ρε‖ = ξ‖ε−1ρε‖ → ∞ and the vector lε is bounded. Choice of the point of
division of an integral depends on the number γ ∈ (0, 1) as follows:

α(ε) :=
1

‖ε−1ρε‖γ
6 ξ,

where, because expression under integral sign is bounded, α(ε) = o(1) as ε→ 0.
Notice that ‖ξε−1ρε‖ > α(ε)‖ε−1ρε‖ → ∞, i. e. at sufficiently small the inequality ε : ‖ξε−1ρε−

(1 − ξ)lε‖ > 2 is satisfied. Dividing and multiplying the function under the second integral sign
in (1.9) by a factor ‖ρε‖ and having got rid of a factor ε−1 at ρε, we obtain

−ρε = O+ o(1) +

∫ 1

α(ε)

ξ
ρε

‖ρε‖
+ o(1)

∥∥∥∥ξ
ρε

‖ρε‖
+ o(1)

∥∥∥∥
dξ. (1.10)

Let, without loss of generality, ρ̄ be a partial limit of the vectors ρε/‖ρε‖ as ε → +0, i. e.
ρεk
/
‖ρεk‖

→ ρ for a certain {εk} so that εk → +0. Moreover, ‖ρ̄‖ = 1. Passing to the limit as

k → ∞ in (1.10), we obtain, that −ρo = ρ̄. Consequently, ‖ρ0‖ = 1 and −ρ0 = ρ0.
The received contradiction leads to the fact that ρε = O(ε), and we can rewrite the vector

ρε = ε · rε, where the sequence {rε} is bounded.
Divide the integral into two terms. Taking into account rε −→ r0 as ε→ 0

0 =

∫ 1

0

l0 + ξ(r0 − l0)

S (‖l0 + ξ(r0 − l0)‖)
dξ =

∫ 1

0

l0
S (‖l0 + ξ(r0 − l0)‖)

dξ +

∫ 1

0

ξ(r0 − l0)

S (‖l0 + ξ(r0 − l0)‖)
dξ =

= µ1l0 + µ2(r0 − l0) = µ̃l0 + µ2r0,

where µ̃ = µ1 − µ2.
Positive numbers µ1, µ2 are represented by integrals

µ1 =

∫ 1

0

dξ

S (‖l0 + ξ(r0 − l0)‖)
, µ2 =

∫ 1

0

ξ

S (‖l0 + ξ(r0 − l0)‖)
dξ.

We can suppose, that r0 = µ · l0, where µ := −µ̃/µ2.
Change of variable in integration ν := 1 + ξ(µ − 1) allows to rewrite an integral equation as

follows

l0
µ− 1

∫ µ

1

ν

S(‖l0‖ · |ν|)
dν.

Integral is equal to zero at µ = 1. Let µ 6= 1, then the function under integral sign is uneven
function on a variable ν. Consequently, the integral is equal to zero at µ = −1. We prove, that
ρε = εrε, besides a first term r0 = −l0 is a bounding vector. Theorem 1.1 is proved. �

From (1.5) and (1.7) we obtain two cases:

1) ‖x0‖ < T + 2 =⇒ l0 = −
2

2 + T
x0 and ‖l0‖ < 2,

2) ‖x0‖ > T + 2 =⇒ l0 = −
‖x0‖ − T

‖x0‖
x0 and ‖l0‖ > 2.

(1.11)
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1. Consider the first case ‖x0‖ < T + 2.
By virtue of (1.11) and Theorem 1 the inequality ‖lε‖ < 2 is valid for all sufficiently small ε.

Taking into account that (1 − e−t/ε) 6 1 at any t > 0 and ε > 0, from (1.5) we obtain for lε, ρε
the rewriting system of equations:





−lε = x0 + ε
(
1− e−T/ε

)
y0 +

∫ T

0

(1− e−t/ε)
(
lε + e−t/ε

(
ε−1ρε − lε

))

2
dt,

−ρε = e−T/εy0 +

∫ T

0

e−t/ε
(
lε + e−t/ε

(
ε−1ρε − lε

))

2ε
dt.

(1.12)

The solution of (1.12) are vectors

ρε =
2ε(x0 + εy0)

(T + 2) + 2ε(3 + 2T )− 6ε2
+O, lε =

−2(x0 + εy0)(1 + 4ε)

(T + 2) + 2ε(3 + 2T )− 6ε2
+O, ε→ 0.

It follows from these representations that λε is expanded as ε → 0 into the asymptotic power
series. Moreover, we can obtain explicit form for the first two coefficients of vectors lε, rε.

Theorem 2. Suppose that ‖x0‖ < T +2. Then the vectors lε, rε, which determine the optimal

control in problem (1.1), are expanded as ε→ 0 into a power asymptotic series:

lε
as
= l0 +

∞∑

k=1

εklk, where, in particular, l0 =
−2x0

T + 2
, l1 =

−8x0

T + 2
−

2y0

T + 2
+

4(3 + 2T )x0

(T + 2)2
,

rε
as
= r0 +

∞∑

k=1

εkrk, where, in particular, r0 =
2x0

T + 2
, r1 =

2y0

T + 2
−

4(3 + 2T )x0

(T + 2)2
.

2. Now consider the case ‖x0‖ > T + 2.
Let lε = l0 + l, ρε = −εl0 + εr, where l, r — are infinitesimal numbers.
Rewriting the system of equations (1.12), replacing the variable η := e−t/ε:





−l0 − l = x0 + εy0 +O+ ε

∫ 1

e−T/ε

(1− η)
(
l0 + l + η(r − l − 2l0)

)

η · S
(
‖l0 + l + η(r − l − 2l0)‖

) dη, ε→ 0,

−ε (−l0 + r) = O+

∫ 1

e−T/ε

l0 + l + η(r − l − 2l0)

S
(
‖l0 + l + η(r − l − 2l0)‖

) dη, ε→ 0.

For simplicity, we will reduce a condition ε→ 0.
Replacing the variable ξ := 1− 2η. Then factor under the integral sign in the rewriting system

as a function ψε(η) contains vectors lε, ρε, as follows

ψε(ξ) := ξl0 + λ+ ξν,

where λ = (l + r)/2, ν = (l − r)/2. For a small variables l, r we can receive the following expressions

l = λ+ ν, r = λ− ν.
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Taking into account that we have a new representations of vectors l, r we rewrite the system of
equation as follows





−l0 − λ− ν = x0 + εy0 +O+
ε

2

∫ β(ε)

−1

(1 + ξ) (ξl0 + λ+ ξν)

(1− ξ)S (‖ξl0 + λ+ ξν‖)
dξ,

−ε (−l0 + λ− ν) = O+
1

2

∫ β(ε)

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ,

(1.13)

where β(ε) := 1− 2e−T/ε. Notice that β(ε) → 1 as ε→ 0.
Having transformed a factor

1 + ξ

1− ξ
= 1 +

2ξ

1− ξ

under the integral sign and divided the integral from the first equation of system (1.13) into two
terms, we find

∫ β(ε)

−1

(1 + ξ)

(1− ξ)
·

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ =

=

∫ β(ε)

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ + 2

∫ β(ε)

−1

ξ

(1− ξ)
·

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ.

Calculating the switching points ξ1, ξ2 from a constraint ‖ξl0 + λ+ ξν‖ = 2, we set

ξ1,2 =
−〈l0;λ〉 − 〈ν;λ〉 ±

√(
〈l0;λ〉+ 〈ν;λ〉

)2
− (‖λ‖2 − 4)(‖l0‖2 + ‖ν‖2 + 2〈l0; ν〉)

‖l0‖2 + ‖ν‖2 + 2〈l0; ν〉
.

Henceforward 〈·; ·〉 is a scalar product in a corresponding space.
Using a binomial expansion and expansion of quadratic root as a small parameter, we find ξ1, ξ2:

ξ1,2 = ±
2

‖l0‖
−

〈l0;λ〉

‖l0‖2
∓

2〈l0; ν〉

‖l0‖3
+O

(
‖λ‖2 + ‖ν‖2

)
.

We can extend the integral from the second equation of system (1.13) at the point ξ = 1:

∫ β(ε)

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ =

∫ 1

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ +O = 2ε(l0 − λ+ ν).

Introducing into consideration a vector function F (λ, ν, ε) :=



F1(λ, ν, ε)

F2(λ, ν, ε)


, we rewrite system

(1.13) as follows F (λ, ν, ε) = 0, where

F1(λ, ν, ε) := l0 + λ+ ν + x0 + εy0 +O+ ε2(l0 + ν − λ) + ε

(∫ ξ2

−1

ξ

(1− ξ)
·
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
+

+ ε

(∫ ξ1

ξ2

ξ

(1− ξ)
·
ξl0 + λ+ ξν

2
dξ +

∫ β(ε)

ξ1

ξ

(1− ξ)
·
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
= 0, ε→ 0, (1.14)

F2(λ, ν, ε) := ε(λ− l0 − ν) +O+

+
1

2

(∫ ξ2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ ξ1

ξ2

ξl0 + λ+ ξν

2
dξ +

∫ 1

ξ1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
= 0, ε→ 0, (1.15)

where ξ1, ξ2 are the switching points of control u(t).
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Let us remove a singularity at the point ξ = 1, divide the integral from the first equation of the
system into two terms: ∫ β(ε)

ξ1

ξ

1− ξ
·
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ =

=

∫ β(ε)

ξ1

ξ

1− ξ
·

(
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
−

l0 + λ+ ν

‖l0 + λ+ ν‖

)
dξ +

∫ β(ε)

ξ1

ξ

1− ξ
·
l0 + λ+ ν

‖l0 + λ+ ν‖
dξ.

Calculating the second integral:

l0 + λ+ ν

‖l0 + λ+ ν‖

∫ β(ε)

ξ1

ξ

1− ξ
dξ =

l0 + λ+ ν

‖l0 + λ+ ν‖
·

(
−
(
1− 2e−T/ε − ξ1

)
−

(
ln 2−

T

ε
− ln(1− ξ1)

))
.

Let us expand terms 1− ξ1 and ln(1− ξ1) as a small parameter:

1− ξ1 = 1−
2

‖l0‖
+

〈l0;λ〉

‖l0‖2
+

2〈l0; ν〉

‖l0|3
+O

(
‖λ‖2 + ‖ν‖2

)
,

ln(1− ξ1) = ln

(
1−

2

‖l0‖

)
+

〈l0;λ〉

‖l0‖(‖l0‖ − 2)
+

2〈l0; ν〉

‖l0‖2(‖l0‖ − 2)
+O

(
‖λ‖2 + ‖ν‖2

)
.

Calculating the Gateau derivative of function ρ/‖ρ‖, we obtain

D

(
ρ

‖ρ‖

) ∣∣∣∣
ρ=ρ0 6=0

(△ρ) =
△ρ‖ρ0‖

2 − 〈△ρ; ρ0〉ρ0
‖ρ0‖3

. (1.16)

We can use the formula (1.16) to find a partial derivatives

∂F1(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ),
∂F1(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν).

Taking into account that the unique term in the right side of equation (1.14) has no order o(1),
and according to formula (1.16) we find

∂F1(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ) = △λ+ T ·
△λ‖l0‖

2 − l0〈l0;△λ〉

‖l0‖3
,

∂F1(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν) = △ν + T ·
△ν‖l0‖

2 − l0〈l0;△ν〉

‖l0‖3
.

Function F2(λ, ν, ε) from the second equation from (1.15) transforms to

F2(λ, ν, ε) =
1

2

(∫ ξo
2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ ξ2

ξo
2

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ ξ1

ξ2

ξl0 + λ+ ξν

2
dξ

)
+

+
1

2

(∫ ξo
1

ξ1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ 1

ξo
1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
+ ε(λ− ν − l0),

where ξo1,2 = lim
ε→0

ξ1,2.

Calculating the third integral:

∫ ξ1

ξ2

ξl0 + λ+ ξν

2
dξ =

2λ

‖l0‖
−

2l0〈l0;λ〉

‖l0‖3
,
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and calculating partial derivatives of the third integral :

1

2

∂

∂λ

(
2λ

‖l0‖
−

2l0〈l0;λ〉

‖l0‖3

) ∣∣∣∣
λ,ν,ε=0

(△λ) =
△λ

‖l0‖
−
l0〈l0;λ〉

‖l0‖3
,

1

2

∂

∂ν

(
2λ

‖l0‖
−

2l0〈l0;λ〉

‖l0‖3

) ∣∣∣∣
λ,ν,ε=0

(△ν) = 0.

Calculating derivatives of first and fifth integrals, we use formula (1.16):

∂

∂λ

(∫ ξo
2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

) ∣∣∣∣
λ,ν,ε=0

(△λ) =
∂

∂λ

(∫ 1

ξo
1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)∣∣∣∣
λ,ν,ε=0

(△λ) =

=
△λ‖l0‖

2 − 〈l0;△λ〉l0
‖l0‖3

·

(
− ln

2

‖l0‖

)
,

∂

∂ν

(∫ ξo
2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

) ∣∣∣∣
λ,ν,ε=0

(△ν) =
△ν‖l0‖

2 − 〈l0;△ν〉l0
‖l0‖3

·

(
2

‖l0‖
− 1

)
,

∂

∂ν

(∫ 1

ξo
1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)∣∣∣∣
λ,ν,ε=0

(△ν) =
△ν‖l0‖

2 − 〈l0;△ν〉l0
‖l0‖3

·

(
1−

2

‖l0‖

)
.

Calculating derivatives of second and fourth integrals, we take into account the following formula
(
∂

∂λ

∫ β(λ)

α(λ)
f(t, λ) dt

)∣∣∣∣
λ=λ0

(△λ) =

=

∫ β(λ)

α(λ)

∂f

∂λ
(△λ) dt+ f(β(λ), λ) ·

∂β

∂λ

∣∣∣∣
λ=λ0

(△λ)− f(α(λ), λ) ·
∂α

∂λ

∣∣∣∣
λ=λ0

(△λ). (1.17)

Since each integral contains only one multiple limit and integral from the partial derivative of
the expression under the integral sign is equal to zero, and taking into account the formula (1.17)
we obtain

∂

∂λ

∫ ξ2

ξo
2

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

∣∣∣∣
λ,ν,ε=0

(△λ) =
∂ξ2
∂λ

∣∣∣∣
λ,ν,ε=0

(△λ)·
ξ2l0 + λ+ ξ2ν

‖ξ2l0 + λ+ ξ2ν‖

∣∣∣∣
λ,ν,ε=0

(△λ) =
l0〈l0;△λ〉

‖l0‖3
,

∂

∂λ

∫ ξo
1

ξ1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

∣∣∣∣
λ,ν,ε=0

(△λ) = −
∂ξ1
∂λ

∣∣∣∣
λ,ν,ε=0

(△λ)·
ξ1l0 + λ+ ξ1ν

‖ξ1l0 + λ+ ξ1ν‖

∣∣∣∣
λ,ν,ε=0

(△λ) =
l0〈l0;△λ〉

‖l0‖3
.

Following this line of reasoning, we find

∂

∂ν

∫ ξ2

ξo
2

ξl0 + λ+ ξν

ξl0 + λ+ ξν
dξ

∣∣∣∣
λ,ν,ε=0

(△ν) = −
2l0〈l0;△ν〉

‖l0‖4
,

∂

∂ν

∫ ξo
1

ξ1

ξl0 + λ+ ξν

ξl0 + λ+ ξν
dξ

∣∣∣∣
λ,ν,ε=0

(△ν) =
2l0〈l0;△ν〉

‖l0‖4
.

Let us write the partial derivatives
∂F2(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ),
∂F2(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν):

∂F2(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ) =
△λ

‖l0‖
− ln

2

‖l0‖

(
△λ‖l0‖

2 − 〈l0;△λ〉l0
‖l0‖3

)
,
∂F2(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν) = 0.

Then we obtain, that F1(0, 0, 0) = 0, F2(0, 0, 0) = 0 and functions F1(·, ·, ·), F2(·, ·, ·) are
infinitely differentiable in λ, ν, ε in a certain neighborhood of the point (0; 0; 0).
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Show that operator

F(△λ,△ν) := D

(
F1

F2

) ∣∣∣∣
λ,ν,ε=0

=

=




△λ+ T
△λ‖l0‖

2 − l0〈l0;△λ〉

‖l0‖3
+△ν + T

△ν‖l0‖
2 − l0〈l0;△ν〉

‖l0‖3

△λ

‖l0‖
− ln

2

‖l0‖

(
△λ‖l0‖

2 − 〈l0;△λ〉l0
‖l0‖3

)



,

(1.18)

is continuously reversible.
Consider the equation F(0, 0)(△λ,△ν) =: (g1, g2). Multiplying scalarly the first and second

coordinates of vectors (1.18), we find unknown couples of multiply scalarly:

〈l0;△λ〉 = ‖l0‖〈l0; g2〉, 〈l0;△ν〉 = 〈l0; g1 − ‖l0‖g2〉.

The reversible operator F−1(g1, g2) is equal:

F−1(g1, g2) =

=




(
g1 + T

l0〈l0; g2〉

‖l0‖2
+ T

l0〈l0; g1 − ‖l0‖g2〉

‖l0‖3

) ‖l0‖

‖l0‖+ T
−
(
g2 − ln

2

‖l0‖

l0〈l0; g2〉

‖l0‖2

) ‖l0‖

1− ln(2/‖l0‖)(
g2 − ln

2

‖l0‖

l0〈l0; g2〉

‖l0‖2

) ‖l0‖

1− ln(2/‖l0‖)


 .

Thus, the implicit function theorem is applicable. It means that the vectors lε, rε (as a functions
of ε) are infinitely differentiable with respect to ε for all small ε and, therefore, lε, rε can be
expanded into the asymptotic series. The coefficients of this series can be found via the standard
procedure: substituting the series into the equation F(λ, ν, ε) = 0, expanding values dependent
on ε into the asymptotic series in power of ε and equating terms of the same order of smallness
with respect to ε, we obtain equations of the form F(△λk,△νk) = (g1,k, g2,k) with the right parts
known. Then, by the formula (1) we find lk, rk.

Theorem 3. Suppose that ‖x0‖ > T +2. Then the vectors lε, rε, which determine the optimal

control in problem (1.1) are expanded as ε→ 0 into the power asymptotic series:

lε
as
= l0 +

∞∑

k=1

εklk, rε
as
= r0 +

∞∑

k=1

εkrk.

2. Conclusion

1. Both in the first and the second cases under consideration, from (1.14), (1.15) and the
asymptotic expansion of lε the asymptotic expansions of both the quality index and optimal control
as well as optimal state of the system are conventionally obtained. With this, the asymptotic
expansions of the optimal control and optimal state of the system will be exponentially decreasing
boundary layers in the neighborhood of point t = 0. Moreover, if t > εβ and β ∈ (0, 1), then the
optimal control uo(t) is constant plus the asymptotic zero.



Asymptotic expansion of a solution for the singularly perturbed optimal control problem 73

2. It follows form the formulas F1(λ, ν, ε) = 0, F2(λ, ν, ε) = 0 that λε lies in the subspace Π,
generated by vectors x0 and y0. Therefore, for all t ∈ [0, T ] and uoε(t), and xε(t), and yε(t) lie in the
same subspace Π. In this way, the problem (1.1) is equivalent to the corresponding two-dimensional
problem.
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