URAL MATHEMATICAL JOURNAL, 2018, Vol. 4, No. 1, pp. 24-42
DOI: 10.15826/umj.2018.1.003

EVALUATION OF SOME NON-ELEMENTARY INTEGRALS
INVOLVING SINE, COSINE, EXPONENTIAL AND
LOGARITHMIC INTEGRALS: PART I

Victor Nijimbere

School of Mathematics and Statistics, Carleton University,
Ottawa, Ontario, Canada
victornijimbere@gmail.com

Abstract: The non-elementary integrals Sig , = [[sin \zP)/(Az)]dz, B> 1, a < B+ 1 and Cig,q =
J[cos \zP)/(Az)]dz, B > 1, o < 26 + 1, where {8,a} € R, are evaluated in terms of the hypergeometric
functions 1 F> and 2F3, and their asymptotic expressions for |z| >> 1 are also derived. The integrals of the form
SIsin™ Az?)/(Az*)]dz and [[cos™ (Az?)/(Az*)]dz, where n is a positive integer, are expressed in terms Sig
and Cig,q, and then evaluated. Sig  and Cig , are also evaluated in terms of the hypergeometric function 2 F».
And so, the hypergeometric functions, 1 F» and 2F3, are expressed in terms of 2 F2. The exponential integral
Eig,o = f(e””ﬁ /x%)dz where 8 > 1 and o < B+ 1 and the logarithmic integral Li = fi dt/Int, p > 1, are
also expressed in terms of 2 F5, and their asymptotic expressions are investigated. For instance, it is found
that for > 2, Li ~ z/Inz + In(lnz/In2) — 2 — In2 2F»(1,1;2,2;1n2), where the term In(Inz/In2) — 2 —
In22F5(1,1;2,2;1n2) is added to the known expression in mathematical literature Li ~ z/lnz. The method
used in this paper consists of expanding the integrand as a Taylor and integrating the series term by term, and
can be used to evaluate the other cases which are not considered here. This work is motivated by the applications
of sine, cosine exponential and logarithmic integrals in Science and Engineering, and some applications are given.

Key words: Non-elementary integrals, Sine integral, Cosine integral, Exponential integral, Logarithmic
integral, Hyperbolic sine integral, Hyperbolic cosine integral, Hypergeometric functions, Asymptotic evaluation,
Fundamental theorem of calculus.

1. Introduction

Definition 1. An elementary function is a function of one wvariable constructed using that
variable and constants, and by performing a finite number of repeated algebraic operations involving
exponentials and logarithms. An indefinite integral which can be expressed in terms of elementary
functions is an elementary integral. And if, on the other hand, it cannot be evaluated in terms of
elementary functions, then it is non-elementary [6, 10].

Liouville 1938’s Theorem gives conditions to determine whether a given integral is elemen-
tary or non-elementary [6, 10]. For instance, it was shown in [6, 10], using Liouville 1938’s The-
orem, that the integral Sij; = [(sinz/x)dz is non-elementary. With similar arguments as in
[6, 10], One can show that Cij; = [(cosz/x)dz is also non-elementary. Using the Euler formulas
et = cosz + isinz, and noticing that if the integral of a function g(z) is elementary, then both
its real and imaginary parts are elementary [6], one can, for instance, prove that the integrals
Sig = [[sin(A\z?)/(Ax®)]dz, 8 > 1,a > 1, and Cig, = [[cos (A\z?)/(A\z%)]dz, where 8 > 1 and
« > 1, are non-elementary by using the fact that their real and imaginary parts are non-elementary.
The integrals [[sin™ (Az”)/(Az®)]dz and [[cos™ (\z?)/(Az®)]dz, where n is a positive integer, are
also non-elementary since they can be expressed in terms of Sig, and Cig 4.

To my knowledge, no one has evaluated these integrals before. To this end, in this paper, for-
mulas for these non-elementary integrals are expressed in terms of the hypergeometric functions 1 F5
and oF3 whose properties, for example, the asymptotic expansions for large argument (|Az| > 1),
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are known [9]. We do so by expanding the integrand in terms of its Taylor series and by integrat-
ing the series term by term as in [7]. And therefore, their corresponding definite integrals can be
evaluated using the Fundamental Theorem of Calculus (FTC). For example, the sine integral

B
) sin (Az?)
= _— > <
Slﬁ,oz / (Al’a) dﬂj, /8 - 1? « — IB + 1?

is evaluated for any A and B using the FTC.

On the other hand, the integrals Eig o = f(e)‘xﬁ /z*)dz and [ dz/Inz, are expressed in terms
of the hypergeometric function oF5. This is quite important since one may re-investigate the
asymptotic behavior of the exponential (Ei) and logarithmic (Li) integrals [3] using the asymptotic
expressions of the hypergeometric function 9F5 which are known [9].

Some other non-elementary integrals which can be written in terms of Eig, or [dz/Inz are
also evaluated. For instance, as a result of substitution, the integral [ e ™ dr is written in terms

of Eig; = f(e)‘“’ﬂ /x)dx and then evaluated in terms of 9Fb, and using integration by parts, the
integral [ In(Inz)dz is written in terms of [ dz/Inz and then evaluated in terms of o F as well.

Using the Euler identity e*™ = cos(z) + isin(x) or the hyperbolic identity e** = cosh(z) &
sinh(x), Sig o and Cig , are evaluated in terms Eig ,. And hence, the hypergeometric functions 1
and 9 F3 are expressed in terms of the hypergeometric o F5.

This type of integrals find applications in many fields in Science and Engineering. For instance,
in wireless telecommunications, the random attenuation capacity of a channel, known as fading
capacity, is calculated as [11]

oo
1 1
Ctading = Elloga(1 + P|H|?)] /log2 (14 Pgetdé = EGI/P [El,l (00) — En1 <F>} )
0
where the fading coefficient H is a complex Gaussian random variable, and F (|X|? < P) is the
maximum average transmitted power of a complex-valued channel input X. In number theory, the
prime number theorem states that [3]

. ’ dx
m(x) ~ Li(z) = ne M=

I
where 7(x) denotes the number of primes small than or equal to . Moreover, there are applications
of sine and cosine integrals in electromagnetic theory, see for example Lebedev [5]. Therefore, it is
quite important to adequately evaluate these integrals.

For that reason, the main goal of this paper is to evaluate non-elementary integrals of sine,
cosine, exponential and logarithmic integrals type in terms of elementary and special functions
with well known properties so that the fundamental theorem of calculus can be used so that we
can avoid to use numerical integration.

Part I is indeed devoted to the cases Sig, = [[sin(Az?)/(A\a¥)|dz, B > 1, a < B + 1,
Ciga = [[cos (Az?)/(Aa®)|dz, B > 1, a < 28+ 1 and Eig, = [(e*/2®)ds where 8> 1,
a < B+ 1, where {3,a} € R. The other cases Sig, = [[sin (Az?)/(A\a¥)|dz, B> 1, a > B+ 1,
Ciga = [[cos(Aa?)/(Az®)]dz, B > 1, a>28+1 and Eig, = [(e*”/z*)dz where 8 > 1,
a > [+ 1, where {#,a} € R, which may involve series whose properties are not necessary known
will be considered in Part 2 [8].

Before we proceed to the objectives of this paper (see sections 2, 3, 4 and 5), we first define the
generalized hypogeometric function as it is an important mathematical that we are going to use
throughout the paper.
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Definition 2. The generalized hypergeometric function, denoted as ,Fy, is a special function
given by the series [1, 9]

(al)n(a2)n ce (ap)n x"
F (o b b bx_E r
b q( b R T ) n=0 (bl)n(bQ)n(bQ)n n!’

where ay,as,- - ,ap and ;by,by,--- by are arbitrary constants, (¥), = I'(Y + n)/I'(¥) (Pochham-
mer’s notation [1]) for any complex ¥, with (V)9 = 1, and I is the standard gamma function [1, 9].

2. Evaluation of the sine integral and related integrals

133 Na?
Proposition 1. The function G(x) = x 1 F» (2 bt 4m ), where 1Fy is a hypergeometric
. , o . L , sin (Az)
function [1] and X\ is an arbitrarily constant, is the antiderivative of the function g(x) = S
x

Thus,

sin(Az) 133 Ma?
/)\x o= :“F2<222 AR

P r o o f. To prove Proposition 1, we expand g(x) as Taylor series and integrate the series term
by term. We also use the gamma duplication formula [1]

1
I'2a) = (277)_%2204—%1“(04)1“ <a + 5) , aecC,

the Pochhammer’s notation for the gamma function [1],

I'(a+n)

() =a(fa+1) - (a+n-—-1)= O

aeC,

and the property of the gamma function I'(a+1) = al'(a) (eg., ' (n +3/2) = (n +1/2) T (n+1/2)
for any real n). We then obtain

sm )\1’ 2n+1 2n 2n+1
/g(x)dm:/ /)\xz 2n+ 1) _AZ 2n+1)‘2n+1+c

53 )\2” " n+1/2) 2,2
= — _177/ B .
QHZ:O( ) (2n+1)!n+1/2 P2n+2 n+3/2)( A"+ C
SR S 0V N O 0 P S U T e WP
_xz(](3/2)n(3/2)n n! tO0=u1l | 5i5,5—— | +C=G@)+C

0

In the following lemma, we assume that the function G(z) is unknown and therefore we establish
its properties such as the inflection points and its behaviour as x — fo0.

Lemma 1. Let G(x) be the antiderivative for g(x) = sinz

. (A=1), and G(0) =
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1. Then G(x) is linear around x = 0 and the point (0,G(0)) = (0,0) is an inflection point of
the curve Y = G(z), x € R.

2. And lim G(x) = —60 while lim G(z) =0, where 8 is a positive finite constant.

r—r—00 T—+00

Proof.

1. The series

sin x > x)%n
o) = L Sy RO

x =~ (2n +1)!
gives G'(0) = ¢g(0) = 1. Then, around z = 0, G(z) ~ x since G'(0) = ¢g(0) =1 and G(0) = 0.
Moreover,
. ! 0 2n
” , sin x 9 n(2n +2)(A\x)
== f— = — _1 _—_—
@) =) = () = NS g

and so G”(0) = ¢’(0) = 0. Hence, by the second derivative test, the point (0,G(0)) = (0,0)
is an inflection point of the curve Y = G(x).

2. It is straight forward, using Squeeze theorem, to obtain lim g(z) = lim g¢(z) = 0. And
T—>—00 T—>+00

since both ¢g(z) and G(x) are analytic on R, then G(z) has to be constant as + — +oo by
Liouville Theorem (section 3.1.3 in [4]) since if a complex function is entire on C then both
its imaginary and real parts are analytic on the real line R including at * — £oo. Also,
there exists some numbers 6 > 0 and € such that if [z| > § then ||sinz|/z — 1/z| < €, and

lim (|sinz|/x)/(1/x) = lim (|sinz|/z)/(1/x) = £1. This makes the function g;(x) =
T——00 T—+00

—1/x an envelop of g(x) away from 2 = 0 if sinz < 0 and go(z) = 1/x an envelop of g(x)
away from z = 0 if sinz > 0. Moreover, on one hand, ¢g) < G"” < g} if z < —¢, and ¢] and ¢}
do not change signs. While on another hand, ¢; < G” < ¢} if z > 4, and also g| and ¢} do
not change signs. Therefore there exists some number 6 > 0 such G(x) oscillates about 6 if
x > ¢ and G(x) oscillates about —6 if x < —¢. And |G(x)| < 0 if |z| < 4. O

Example 1. For instance, if A = 1, then

/Smxda::xlF2<
x

By Proposition 1, the antiderivative of g(x) =

N w

3 2
,5;—%) +C. (2.1)

9

DN | =

sin z 133 22
1 pu— F _ — —_—— —
is G(z) = =4 2(2,2,27 1
graph of G(z) is shown in Figure 1. It is in agreement with Lemma 1. It is seen in Figure 1 that
(0,G(0)) = (0,0) is an inflection point and that G attains some constants as  — 400 as predicted

by Lemma 1.

, and the

In the following lemma, we obtain the values of G(x), the antiderivative of the function
g(x) =sin(A\x)/(A\x), as * — =+oo using the asymptotic expansion of the hypergeometric func-
tion 1F2.

Lemma 2. Consider G(z) in Proposition 1,and preferably assume that A > 0.
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Figure 1. G(x) is the antiderivative of sin(z)/x given in (2.1).

1. Then,
. . 133 \g? s
and \2,2
. ) 133 T T
G(+00) = xgrwa(x) = xlg&x 1Fy <§, 375 _T> = o (2.3)

2. And by the FTC,

o0

/ sin)\(iﬂ:)dx — G(to0) - Glo0) = T — <_ﬁ> _ § (2.4)

—00

Proof.

1. To prove (2.2) and (2.3), we use the asymptotic formula for the hypergeometric function 1 F5
which is valid for |z] > 1 and —7 < arg z < 7, where arg z is the argument of z in the
complex plane. It can be derived using formulas (16.11.1), (16.11.2) and (16.11.8) in [9] and

is given by
155 (a1501,b9; —2) =
- (a1) (=2)"
—ai 1)n B —R
F(bl)r(b2)z {nz:% F(bl —a —’I’L)F(bQ —a —TL) n! +O(|Z| )}
in 4 S—1
T'(b1)(by) 62z1/2e /2(Zefzﬂ)(alfblfbg+l/2)/2 Lin i g (2.5)
) T NG 2 e (ze7) "+ O(]2]77)
21/2¢im/ im\ (a1 —b1— S5-1
L DOUT(Ba) €27 (zeim) (a0 tet1/2)/2 T (2™ 4 0|27
I'(ay) NZS vt PA ’

where aj, b1 and by are constants and the coefficient p, is given by formula (16.11.4) in [9].
We then set z = \222/4, a; = 1/2, b; = 3/2 and by = 3/2, and we obtain
133 A22\ =« e [ER1/2), (AR Az |2
=2 2. — 2 (12,2 N | il
12(2’2’2’ 4) y W) 2 <12> O3

n=0
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VT e [T Az |72
a2 2 ;2” 3 o115

)

e (S—1
N )\:c Az
N2 2 Z o \"2 o[

2

Then, for |z| > 1,

R—1 —2n —2R
T ~1/2 (1/2), [ Az Az T
o )\2 2 n il il ~
y (W) {n;] nl \"2 O3 oNz]’
while
S—1 —2n  S-1 —2n -28
N Ihn Az n (AT Az
e\ r\2) TXalE) tOolT
N cos (Ax)
~ 5 5 =7 5
(Ax) (Ax)
We then obtain,
133 A\a? T x  /mcos(Ax)
Rz ATy T2 VT .
o 2(2’2’2’ 4 ) Al A a0 Bl

133 A\a? T x  /mcos(Azx) s
—o0) = lim @B (22,2 - — lim (L VT __T
Glmo0) = lim o 2(2’2’2’ 1 ) = (2)\|x| DY > 2

and

133 )\23:2 T x  J/mcos(Ax) T
G — lim o F — lm (1P VT -
(+o0) = lim a1 2(2 2'2° " 4 ) -+ <2A|x| DY > 2\

2. By the FTC,

"Fsin (Aa) [ sin (Aa) f sin (\a)

Sin X Sin X Sin X

oV A = i Ii — —G(—
/ S dx yimw/ S dw+y$rfw/ gy dx = G(+00) — G(—00)
—00 Yy 0

133 M\%? 133 X% T
_ykrfooylF2<222 4 )UEIP y1F2<222 4 >_X'

We now verify whether this is correct or not using Fubini’s Theorem [2]. We first observe that

+oo (}\ ) +oo (}\ )
Sin X Sin X
= 2 _
/ pv dx / pv dx
—00 0

since the integrand is an even function. We have in terms of double integrals and using Fubini’s

Theorem that

+o0 +o0 +00 +00
n

/51

0 0 0 0

—i / Tsin (Az)dsdr = / /esmsin()\x)dxds. (2.6)



30 Victor Nijimbere

Now using the fact that the inside integral in (2.6) is the Laplace transform of sin (Ax) [1] yields

+00 +00 +oo
A
/ / e **sin (Ax)dxds = / mds = arctan (+00) — arctan 0 = g
0 0 0
Hence,
+oo ()\ ) +o00 )\ 9 400
sin (A\z sin (Az) i
/ gy dr =2 / = / / Tsin (Az)dsdz = 25 =
—0o0 0 0
as before. O

Setting A = 1 as in Example 1, Lemma 2 gives ll)IEl G(zr) = —0 = —xw/2 while lim G(z) =

T—+00
0 = w/2. And these are the exact values of G(x) as © — 400 in Figure 1.

Theorem 1. If > 1 and o < S+ 1, then the function

B—a+1 1 3 3 )\2 25
x x
G(zr) = — 1 F — + == —toi5i—
() ,3—04+11 2( ﬂ+ ﬂ+ 54‘ 5‘1‘2,27 1 >a
where 1 Fy is a hypergeometric function [1] and X is an arbitrarily constant, is the antiderivative of
= B
the function g(x) = w Thus,
Az&
, sin (\z?) gh—atl 1 1 « 1 33 X\
Sig a0 = dr = F: — — + — 4+ =, == C.
'8, / oo T p a1 C B+ 23 2 gty )t
(2.7)
And for x| > 1,
et (a1l a1 33 Na¥
B—a+1"2\28 "28 "2 28 "2 "2'2" 4 28)
/NPT (—a/(28) + 1/(28) +3/2) Y7 201 B—a+1ymeos ()
F-atl  T(+a/@P)-1/@) 2 RPen  p  x aret
Proof.

sin ( )\xﬁ )‘336 ot
Co de — A A—
Sig o /9(5'3) x / o / Az Z (2n 4+ 1)! .

o0 A\2n A\2n
— S Y 25n+6*ad Y —1\)" / 26n+ﬁ—ad
> gy [ =AY gy [

n=0
_ i(—l)" \2n p2Bn+p—a+l L
vt Cn+D126n+8—-—a+1
xﬁfaJrl 0 )\211 x26n

= Z(_l)n(2n+1)!n—a/(2ﬁ)+1/(2ﬁ) v te
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APl & I'(n—a/(28) +1/(28) +1/2) 2,280
=2 Tt (-a/@R) + 1R 32 N ) tE

L S (—af@8) @A) +1/2), (NP

F—a+12=(/2), <—a/<2/3>+1/<2/3)+3/2) nl

gf—etl 1 3 3 NP
:7ﬂ_a+11FQ< B+_ﬂ+ ﬁ+—ﬂ 1 >+C G(z)+C.

To prove (2.8), we use the asymptotic formula for the hypergeometric function ;F» in equation
(2.5), and proceed as in Lemma 2. O

Beside, we can show as above that if 5 > 1 and o < 8+ 1, then

sinh (\z?) ph—atl a 1 1 a 1 33 \a%
— Fl-——— 4=+ —— 4 — 4 = . 2.
/ o g\ttt Tty ) Te 29

Corollary 1. Let B=a. If a > 1, then

0

sin (Az®) 2\ Y T(1/2a)+1) /7
/Ade:G(O)_G(_OO):<X> T(3/2-1/(2a) 2 (2.10)

—00

+oo
sin(Az®) 2\ T(/20)+1) VT
/ ) dr = G+00) — G(0) = (X) T p T (2.11)
0
and
+o0o
sin (Az®) 2\ T'(1/(2a) +1)
/ )\Tdaz = G(+00) — G(—o0) = (X) T (3/2— 1/(2(1))%' (2.12)

Proof. If 8= a«, Theorem 1 gives

Lk 3t
. <<_> \r T (1/(2a) +1) ﬁcos(xxa)>:_<§>1/a r((1/(2a)+1) N

[ (3/2—1/(20)) || aX2 z2e-1 I (3/2—1/(20)) 2

G(—o0) = lim 561F2<

T——00

and
2x20¢
G(+oo):xgr+nwm1Fz<%;%+ e )
. ((_) f F(1/20)+1) o \/7_Tcos()\x°‘)> :<g>1/a r(1/(20) +1) 7
Am S T(3/2—1/(20) 2] ~ ax? a2 N TBR2-1Ea) 2
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Hence, by the FTC,

0
sin(Az®) B 2\ VY T(1/(2a) +1) 7
/ hga 48 = G0) = Gl=00) =0 (‘ (X) T(3/2—1/(2a)) T)

—00

2\ T(1/(20) +1) /7
- <X> T(3/2—1/(a) 2 (2.13)
+o00o
sin (Az%) 2\ T (1/(20) +1) 7
O/ a0 = GlHoe) —G(0) = (X) F(3/2—1/2a) 2 "
2\ T(1/(20) +1) /7
-(3) ren-vew T &14)
And combining (2.13) and (2.14) gives (2.12). O
Theorem 2. If > 1 and a < B+ 1, then the FTC gives
/ Sin}\(%ﬁ)d:c _ G(B) - G(A), (2.15)

A
for any A and any B, and where G is given in Theorem 1.
Proof. Equation (2.15) holds by Theorem 1, Corollary 1 and Lemma 2. Since the FTC
works for A = —oo and B =0 in (2.10), A=0 and B = 400 in (2.11) and A = —oo0 and B = 400
in (2.12) by Corollary 1 for any 8 = o > 1 and by Lemma 2 for § = o = 1, then it has to work

for other values of A, B € R and for 5 > 1 and o < 8 4 1 since the case with § = o > 1 is derived
from the case with > 1 and a < 8+ 1. O

Theorem 3. Let > 1, then the function

2
<)\m5/2) 5 2428
G(z) =In|z| — ~——24 oF} (1 1;2,2, - _—>7

65 Ty 4
where o F5 is a hypergeometric function [1] and X is an arbitrarily constant, is the antiderivative of
the function g(x) = % Thus,
. 2
Sig pr1 = %dw =In|z| — % o F3 (1,172,2, ;, @) +C.
Proof.
Sigg+1 = / g(w)de = / Smx/?ff / AzAT1 Z zfjgldx
= Z 2n+1 /wwnldw:/%C + 3 (—1)”(2;\7_2:1)!/3625"16136
n=1
= Injz| + Z DA 2?12Tz23)! 29652:1:22[; +C
=In|z| — )\szﬁ 3 X et +C

23 g(_l)n 2n+3)n+1
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3. Evaluation of the cosine integral and related integrals

Theorem 4. If 5> 1 and a < 28 + 1, then the function
3 2220

1 gl-@ \g2B—atl « 1 o
Rll,-—+—4+1— 4+ —+2 -, 2: —
23(, 2ﬁ+2ﬁ+’ 2ﬁ+2ﬁ+,2,,

@) =31T-a "2 -atl

4

)

where o F5 is a hypergeometric function [1] and X\ is an arbitrarily constant, is the antiderivative of

cos (\z?) Thus

the function g(x) = s
cos (Az?) 1 zlm> 1 \g?f-atl a 1 a 1 3 228
2 = < — = Fll,——+—+4l——t+—+2°"2-2" )4,

/ o TN a 22 —ari?\ bttt eyt )T

(3.16)

and for |xz| > 1,

Ag2B—atl a 1 a 1 3 220
g (L-ggt g g5t a5 T2 %
\/—)\ __+i+ 2 —a/ﬂ+1/ﬁ+2+ﬁx_a+1+icos()\x5) ’
23 26 23 A3 \23 gBta-1"
Proof. If >1and a<28+1,
cos ( )\xﬁ )2n
/g(a:)da: :/ /)\xa Z dx
1 1 [ AZn
— —d - —1)" 2anad
/)\3:0‘ x+>\/;( ) (271)!:'3 o
1 xl—a 1 o0 )\2n+2
_ - YA 2ﬁn+2ﬁfad
Al—a Anzo( ) (2n+2)!/”” v
1 11—« 0 2n 28n+268—a+1
i = N A i +C
T Al-a o 2n+2)!126n+28 —a+1
11—« 28—a+1
Al —« 203 :OF(2n+3)F(n—a/(2ﬁ)+1/(2ﬁ)+2)
et it & (1) (/@R 10+,  (NP)"
CAl-a 228-a+1 = (3/2), (2 (-a/(26) +1/(28) +2), n!
Lol 1 \g?P-atl a 1 a 1 3 N2g28
S =z Bll,—— 4 — 41— — 4029 2%
A —a 225—a+123<’ 28 g T g T Tt Ty >+C
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To prove (3.17), we use the asymptotic expression of 9F3 (a1, ag; by, be, bs; —z) for |z| > 1, where
ai, as, by, by and b3 are constants, and —7 < arg z < 7 . It can be obtained using formulas 16.11.1,
16.11.2 and 16.11.8 in [9] and is given by

o F3 (a1, a2;b1,b,b3; —2) =

R—1 -n
D(b)L ()T (bs) o, {Z (a1)nl'(a1 —a —n) (-2) +O(‘Z,R)}

I'(az) S (by —ay —n)T'(bg —a; —n)I'(bs3 —a; —n) n!
R—1
LO)T(62)C(%) (a2)nl'(a2 —a1 —n) (=2)" -
. NS e e O™
I'(ay) I'(by —ag —n)I'(by —ag —n)['(bg —ag —n) n!
F(bl) (b2)r(b3) 622’1/267”/2( —m)(a1+a2 —bi=be—bs+1/2)/ Zl Un, 7z7r) + O(| | S)
F(an)T () v 2 )
+F(b1)r(62)r(b3) €2Z1/2eiﬂ/2( )(OLIJFUL2 bL—b2— b3+1/2 = Hn (Zem)—n + O(|Z|_S)
I'(a1)T(az) VT £ ntl ’
(3.18)
where the coefficient p,, is given by formula 16.11.4 in [9].
W e N = 1+1b 1+2b 5 and by = 21
enow set 2 = ——, a1 =1, a2 = — Qﬁ % 1= Qﬁ 25 2= g and by =2in

(3.18) to obtain

a 1 a 1 3. A
B, oy, - 2 = 4029
23(7 2,8+25+7 2/8+25+’2” 4 >
Vil a 1 1 U 1 2\ To/BH1/B+2
~Yo = 2| — + X —— 4 — S 3.19
e\ 3T 312 g 2B+25+ pW: (3.19)
+3 a. 1 49 cos(Az?)
B\ TET) T
Hence, multiplying (3.19) with Az26=2+1/(28 — a 4 1) gives (3.17). O

On the other hand, we can show as above that if 5> 1 and a < 28 + 1, then

cosh (A\z?) 1l 1 \p28-atl a 1 a 1 220

A e = < - Fl—— 4 —+4L——+—+2°22" )ic
/ o ST atagmarirt\h g g T g g T T )T

Theorem 5. Let 8 > 1, then the function

1 A oY 5. A
Glz) = ———— — 2 —_— F311,1;2,-,3;—
(x) 2)\,81’26 H|$|—|—65< > 2 3< tiaiD e A >’
where o F3 is a hypergeometric function [1] and X is an arbitrarily constant, is the antiderivative of
_ cos (\zP)
the function g(x) = 2T Thus,
2
, cos (\zP) 1 )\ A [ Az 5 228
C = | ——-dr =— — F311,1;2,-,3;— C.
13,26+1 / Ap28+1 X 2)\,81‘26 Infz|+ — 63 ( A G e T +

(3.20)

We also have,

Azf 1 \z28 3 2228
Ci[;,l:/de:—ln\x]— Zﬁ 2F3<, 72,2,2;—%)441. (3.21)
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Proof
) cos (Az?) [
Cisas = [ gt = [ L5 dx:/ WZ(_
n=0
o L 2Bn—2B-1
/Awﬂdmr /Z n=28=1 gy

)\2n+2

— _# _ _ _q\n__ 2Bn—1
= o)Bs28 AZ( b 2n+2)!/$ du

e}

1 dﬂf 2Bn—1
= —— — n d
NGB / Anz 2n—|—2 /x v

1

1 A \Zn
— AR | )\3 —1\" 2ﬁn+2[371d
g g el Z( ) 2n + 4)! /x v

ﬁ)2n

n=0
1 A 0 \2n 226n+28
R | 3 1)
ge gl ;)( V' ensoiznrs ¢
1 3,28 X T 1))2 _\2,.28\n
:_7_é1n|x|_)‘x (T (n+1)) (=A%z™) L C
20\px28 2 28 = T(2n+5)0 (n+2) n!

1 A A AN (D (1),  (—A22P/4)"
:_2Aﬁx2ﬁ_§m'x'+@<T> 2w 6,m,  w C

n=0
1 A (2P 5, Aa¥
= — =1 — | — F511,1;2,-,3;— C.
2)\5$2ﬁ 9 n‘x’+6ﬁ< 4 > 2 3( 1S g 4 >+
The proof of (3.21) is similar, we do not show it here. O

4. Evaluation of some integrals involving Si, 3 and Ci, g

. cos™ (Az”) . o
The integral Tdm, where n is a positive integer and § > 1,a < 28 + 1, can be
x

written in terms of (3.16) and then evaluated.

cos? ()\x )

Ezample 2. In this example, the integral [ dx is evaluated by linearizing cos? (Az?).

cos* (\zf) 1 [ cos (4 z?) 1 [ cos (2 z?) 3
€8 W) gy — = [ S8V g = [T ) g2 e =
/ Ax& o 8/ Ax& x+2/ Ax& x+8/:c
1 !

—« 1 \p2B8—a+l

o « 1 3
— - Bll——+—4+1—— +— 42,22 —4)2%%
SA1—a 42ﬁ—a+123<’ 58 Tag T Tgg T Ty s T

1 zl=® 1 \g?B-ofl a 1 1 3
— S Fll,——+—+1;— — 2—2—)\2 26 C.
T 1-a 225—a+123<’ 28 T T 2ﬁ+2ﬁ+ e +8+

< n A B
If 8 >1and a < 8+ 1, the integral fM

either in terms of (2.7) if n odd, and then evaluated.

dx, where n is a positive integer, can be written
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sin® (\2?)
Ezample 3. In this example, the integral [ 7dx is evaluated by linearizing sin® (\z?).

in3 B i B i B
/sm)\()\x )d 1/sm (3\x )d$+§/sm (A\x )dx

e xZ_Z Axre 4 Ar
1 gf-otl a 1 1 a 1 33 9x%?
:‘zﬂ—aﬂ”( 2625 7 a2 >
+§ﬂF< _|_i_|_1 g+i+§§ >\2 26>+C
41B8—a+12\ 28" 28 28 "2 " 2'2° 4

Ezample 4. Let us now evaluate the integrals [ sin (\/z#)dz and [ cos (A/zH)

1. The integral [sin(A\/z*)dz is evaluated using the substitution v = 1/2 and Theorem 1 if
u > 1. Then, we have

A sin (Au#) )\u“ ! 1 33 Ny
sin| — |de =— | ——>du=— __|__,_;_
xh u? 272 4
A(1/z)Pt 1 1 1 33 )\2
=Y R (b oie— 22 1.
1 1172 + 2M+22 T2 +C, pn>
(4.22)

The integral [ sin (A\/z*)dx is evaluated using the substitution u = 1/z and Theorem 3 if

u=1. Then, we have

. 9)2 2,2
/sin é dw:—/Sm()\u)alu:—ln\u]—i—M oF3 1,172,2,57 Au
x u? 6 20 4

(M (22))? oo D N
TQFZS 151a2a2’2a 42 +C

=In|z| +

2. Making the substitution u = 1/ and applying Theorem 4 gives

A 5 (Aut 1 ! 1 1 3, Au
/cos — dwz—/Mdu:——k “ o F 1,———|—1;——+2,—,2;—L
v 2u—1 21 21 2 4

TH u?
A(1/x)2 1 1 3 A2
= — ol —— 41—+ 2, =, 2:— C, 1.
T+ 2Iu_1 2473 ) 2,U+ ) 2,Uf+ ,2’7 42H + :U‘>
(4.23)

Making the substitution v = 1/x and applying Theorem 5, then for = 1, we have

A cos (Au) 1 A A’ 5 22
de = — Ajul = 2 (22) oy (1,1:2,2)3;
/cos( )dw / du = 2)\24- |ul 6(4) 23(777273 I

T u?
P2 A/ A2 5 A2
=2 e -2(Z2) oy (1.1:2,2 3. —
o gl 6<4x> 23(”’2’3’ 42>+C

5. Evaluation of exponential (Ei) and logarithmic (Li) integrals

Theorem 6. If 5 > 1, then for any constant X,

P A B
/6 dx:ln]x\—|—%2Fg(1,1;2,2;)\m5)+0,
X
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and e
Ae? 5y (1,152, 2 AaP) ~ —2 + & 5 > (5.24)
Proof.
)\mB 0 n.Bn—1
1 dx =\
= " = ——dr =1 2?1
oo )\n—f—l ﬁn—f—ﬁ

ln|x|—|—z ln|x|—|—z e

n+1
=1 A+ C
nym\+ 3 Z NOESNY n+2)(x) +

Az (1)n(1) m) Az
=1 nom C=1 o F(1,1;2,2,02%) 4+ C.
nle|+ 52(2)n(2)n O =l TRl 152, 2007)

To derive the asymptotic expression of Az 9F(1,1;2,2; )\xﬁ), |z| > 1, we use the asymptotic

expression of the hypergeometric function 9Fb (aq,ag;by,be;2) for |z| > 1, where z € C, and
aj,az,by and by are constants. It can be obtained using formulas 16.11.1, 16.11.2 and 16.11.7 in [9]

and is given by
oF (a1, az; b1, b2;2) =

DTG ey [N (@)aD(@m —az—m)  (zeFm)7 _
- D(ap) S {nzo I'(by —a; —n)I'(bg — a1 — n), n! + O R)}
L'(by)T(b T\ —ao = Q nF az —air—n zeii” -n _ (525)
T <F1(>a1<) 2) (etin) {no - (o) L o a2>_ n)n< 7o R)}
S—1
+II:((23£EZQ2)) o7 yo1taz—b1—bz {no %an + O(‘Z’S)} 7

where the coefficient pu,, is given by formula 16.11.4. And the upper or lower signs are chosen
according as z lies in the upper (above the real axis) or lower half-plane (below the real axis).
Setting z = Ax®, a1 = 1,a3 = 1,b; = 2 and by = 2 in (5.25) yields
\z?

—2 e

)\mﬁ

Hence,
A\ oF5(1,1;2,2; M) ~ -2+ —— 2P

|z > 1.
O

This ends the proof.
Ezample 5. The random attenuation capacity of a channel or fading capacity [11] can now be

evaluated in terms of the natural logarithm In and the hypergeometric function o F5 as
1 1
2 1/P
Clading = Elloga(1 + PIHP)] = g5/ [Em (00) = B ( Fﬂ

1 1 1
= 1n2€ |:1I1P+ Iz ) <1,1,2,2, P>:|
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Ezample 6. One can now evaluate feAeBzd:U in terms of 9 F5 using the substitution u = e*, and

obtain

" uf A B A Bz
/eAeB dac:/6 du:lnu+%2F2(1,1;2,2;)\uﬁ)+0:x+ 65 2F3(1,1:2,2;0e") + C.
u

Theorem 7. The logarithmic integral is given by

[ dt 1
Li= [ & =n | =2) +InaaFa(1, 12,2 In ) — InpaFo(1, 12,2 In ), p> 1.
Int ln,u
And for x > p,
dt 1
/— Lo (2 — 2 npeFh(1,1:2,2:1In p). (5.26)
| Inx In p
m

P r o o f. Making the substitution v = Inz and using (4.22) gives

T Inz
1
1nx / —du = [Inu+usF(1,1;2,2;u)]
M hl;l/

1
=In <1nx> +InzoF5(1,1;2,2;lnx) — InpoFo(1,1;2,2;1n p).
n g

Now setting z =Inz,a1 =1, a2 =1, by = 2 and by = 2 in (5.24) or in (4.23) yields

-2 x
F5(1,1:2,2:1 ~N—t— 1.
2 2(7 ) 4y 7nx) IDCC+(1HCC)2’ T >
This gives

Inzofy(1,1:2,2 ) ~ —2+ ——, 2> 1.
Inx

Hence for x > p,

x
dt 1
R <ﬂ> —2—InpqoFr(1,1;2,2;1n p).
In p

0

We importantly note that Theorem 7 adds the term In (Inz/lnp) —2 — InpoF5(1,1;2,2;1In u)
to the known asymptotic expression of the logarithmic integral in mathematical literature,
Li~ z/Inz [1, 9]. And this term is negligible if x ~ O(10°) or higher.

We can now slightly improve the prime number Theorem [3] as following,

Corollary 2. Let w(x) denotes the number of primes small than or equal to x and pn > 1. Then
for x> pu,

1
m(z) — — ~1In <ﬂ> —2—InpaFa(1,1;2,2;1In p).
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The proof follows directly from equation (5.26) in Theorem 7.

Ezample 7. One can now evaluate [ In(Inz)dz using integration by parts.

1
/ln (Inz)dxr =zln(Inx) — l—daz

nz
=zln(lnz) —In(Inz) —InxeFs(1,1;2,2;Inz) + C.

Theorem 8. For 8> 1 and o < 8+ 1, we have

AzP 11—« B—a+1
e 1z T a 1 a 1
Bigo= | “—dr =< B(1,- 1,2, — 2: A c,
', /)\xax Al—a+ﬁ—a+122< grpthieTg et ””)
and for |z| > 1,
Agf-atl < 1 )
B1,-24 110242 +2 Az
B—a+172\" BB 8B (5.2
)\F + 1\ ~o/BH1/B+1 el . 1 e’ ’
p B 5 A B AB afta=1’
We also have,
e 1
: _ _ A . B
Ewﬂ_;,_l—/)\xBJrld:C— 2 +in(z)) + 2 25 . (1,1,2,2,)\:6 )+C. (5.28)
Proof
’\xﬁ (AzB)™ dx 1 > (Azf)m
Fig o = — [ E - — S
18, / /)\xaz xa+ )\xa/; n!
1zle 1A 1glme X an ghnipodl
_ = - N Bn—ad [ C
Al—a—i_)\;n!/x * Al—a—i_nzo(n—i—l)!ﬁn—i—ﬂ—a—i—l—i_
1 gl-a  ph-atl X F<”‘B+B+1> n
T Al-a I3 a 1 (Axﬁ) +C
B n=0Fn+2F<n——+—+2
(n+2) 573
W (-2 4+ 241
1 pl-a pB—a+1 i n 3B n(xﬁ)” o
A -« ﬁ—a—l—ln:O(Q) (_g+l+2> n!
"\ B B n
1 gl gh-atl 1 a 1
= F(1 S L2 —— -+ 2P )+ O
A —a @ B- 22<’ EA Bk 5+6+’x>+
. a 1 a 1
Now setting a1 =1, a9 = —— + — +1,b; =2, by = —— + — + 2 and z = \z¥ in (5.25) gives,
g B g B
1 1
o Fy (1,—%+B+1;2,—%+B+2;m5>
(5.29)

o 1 1 o 1 L\ /BB e
~— 1) —— (-4 242)(— A
(ﬁ*ﬁ*)AM+ <5+6+><MQ pPerEE
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AgB—otl
7 arl gives (5.27). The proof of (5.28) is similar to that
— o

of (3.20). O

Hence, multiplying (5.29) with

Theorem 9. For any constants o, 5 and A,

. L1 +1 o 1 .33 A
142 5 5 5 25 27 27 4 -
1[ ( a 1 1 a 1 a 1 ,
oo |1, —=+—5+1;2,— + +21)\x>+2F2<1,—— —+1;2,——+—+2;—2)\x6>},
2 g B BB g B g B
(5.30)
or
. N + a 1 .33 AN
102 2ﬁ 25 28 Tty )"
1 [ ( a 1 a 1 1 a 1
B (L, ==+ =+ 1;2,—= + = +2; )\x>+2Fg< - 172,——+—+2;—Am5>}.
2 g B BB "B g B
(5.31)
P r oo f. Using Theorem 8, we obtain
: B ixe? _ _—ixaf
/sm()\x )daz _ i e e de
¢ 2% ¢
1 Azf-etl [ < a 1
=7 |22 (L ——-+ -+ 12— + + 250\ > (5.32)
2-a+1 BB BB
a 1 «@
+2F2<, vl oo i >]+C.
BB BB
Hence, comparing (2.7) with (5.32) gives (5.30). Or on the other hand,
3 B AP _ —\zf B—a+1
z/smh()\x )dx:/e e dr — Ax "
& e b—a+1
[F<1 LIPS L S N >+F<1 S PP A>}+C
21472 s T o ) 3 4 €T 242 y T o ) 3 4 —AL .
g B g B g B BB
(5.33)
Hence, comparing (2.9) with (5.33) gives (5.31). O

Theorem 10. For any constants a, 8 and A,

ix?ﬁfoﬂrl P ) a N 1 N ) a N N 5 3 5 )\2.%.25 xﬁfaJrl
- @ @@ [ — N e p— —_— — C— = X
W—a+122\ "2 g T 2 T T g B—a+1

[QFQ <1,—%—%+1;2, g+;+2 iz >— o Fy (1,—%+%+1;2, g+;+2 —idx >]
(5.34)



Some non-elementary integrals of sine, cosine and exponential integrals type 41

Or,
p2h-atl e 1 a 1 3 2,28
Uy N T S PR i ¢
26-a+1” 3(’ AT T Y R R >
B—a+1 1 1
xr le% o
= |,F 1,————+1;2,——+—+2;Ax5> 5.35
ﬂ—a+1{2 2( 8 B 3B ( )
1 1
+2F2(17_%+B+1§27_%+B+2;—)\x5>}.

We prove Theorem 10 as Theorem 9 using Theorems 4 and 8.

6. Conclusion

Siga = [[sin(A\2?)/(Azx®)]dz, B > 1, @ < B+ 1, and Cig, = [[cos (\zP)/(Ax®)]dz, B > 1,
a < 28 + 1, were expressed in terms of the hypergeometric functions 1F> and oF3 respectively,
and their asymptotic expressions for |z| > 1 were obtained (see Theorems 1,2, 3, 4 and 5). Once
derived, formulas for the hyperbolic sine and hyperbolic cosine integrals were readily deduced from
those of the sine and cosine integrals.

On the other hand, the exponential integral Eig , = f(e”ﬂ Jx¥)dx, B > 1, a < B+ 1, and the
logarithmic integral [ dz/Inz were expressed in terms of the hypergeometric function o F5, and their
asymptotic expressions for |z| > 1 were also obtained (see Theorems 6, 7 and 8). Therefore, their
corresponding definite integrals can now be evaluated using the FTC rather than using numerical
integration.

Using the Euler and hyperbolic identities Sig , and Cig , were expressed in terms of Eig . And
hence, some expressions of the hypergeometric functions 1 F» and 9 F3 in terms of o Fo were derived
(see Theorems 9 and 10).

The evaluation of the logarithmic integral [ dz/Inz in terms of the function 2 F and its asymp-
totic expression o F for || > 1 allowed us to add the term In (Inz/In ) —2—1In p 2 F(1, 152, 2;In p),
u > 1, to the known asymptotic expression of the logarithmic integral, which is Li = f; dt/Int ~
x/Inz [1, 9], so that it is given by Li = ff dt/Int ~ x/Inz+In(Ilnz/Inp)—2—InpoFo(1,1;2,2;1n p)
in Theorem 7. Beside, this leads to Corollary 2 which is an improvement of the prime number The-
orem [3].

In addition, other non-elementary integrals which can be written in terms of Eig; and [ dz/Inz
and then evaluated were given as examples. For instance, using substitution, the [ A dr was
written in terms of Eig; and therefore evaluated in terms of o F5, and using integration by parts,
the non-elementary integral [In(lnz)dz was written in terms of [ dz/Inz and therefore evaluated
in terms of o F5.
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