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Abstract: We consider certain classes of functions with a restriction on the fractality of their graphs.

Modifying Lebesgue’s example, we construct continuous functions from these classes whose Fourier series diverge

at one point, i.e. the Fourier series of continuous functions from this classes do not converge everywhere.
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Let f be a 2π-periodic integrable function, and let

a0
2

+
∞
∑

k=1

(ak cos kx+ bk sin kx), (1)

where

ak =
1

π

∫ π

−π
f(t) cos kt dt, bk =

1

π

∫ π

−π
f(t) sin kt dt,

be the trigonometric Fourier series of the function f . Denote by Sn(f, x) the nth partial sum of (1).
It is known (see [1, Ch. 1, Sect. 39]) that if f has bounded variation on the period (f ∈ BV ), then
its Fourier series converges everywhere on R, and if, in addition, f is continuous on R, then the
Fourier series converges to f uniformly on R. Salem [2] (see also [1, Ch. 4, Sect. 5]) considered the
classes BVp of functions of bounded p-variation and proved that if f ∈ BVp, then the Fourier series
of f also converges everywhere on R. (Further generalizations of these results see in [3]).

The author [4] studied relations between the classes BVp and classes of continuous functions
with a restriction on the fractality of their graphs.

Definition 1. Let f : R → R be a bounded 2π-periodic function. By the modulus of fractality
of the function f , we call the function ν(f, ε) which, for all ε > 0, gives the minimal number of
closed squares with sides of length ε parallel to the coordinate axes that cover the graph of the
function f on [−π, π].

Definition 2. Let µ : (0,+∞) → R be a nonincreasing continuous function such that
lim
ε→0

µ(ε) = +∞. We define the functional class

Fµ := {f ∈ C2π : ν(f, ε) = O(µ(ε))}.

In the case µ(ε) = 1/εα, where 1 6 α 6 2, we will write Fα instead of F 1/εα .
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The following statements were proved in [4]:

BV = BV1 = F1 [4, Theorem 1]; (2)

BVp ⊂ F2−1/p, p > 1 [4, Theorem 2].

The latter is unimprovable; i.e., BVp+ε * F2−1/p for all ε > 0.
In the present paper, we study the pointwise behavior of the Fourier series of continuous functions

from Fµ.

Theorem 1. Let µ : (0,+∞) → R be a nonincreasing continuous function, let εµ(ε) be a

nonincreasing function, and let

lim
ε→+0

εµ(ε) = +∞. (3)

Then there exists a continuous function Fµ whose Fourier series does not converge everywhere.

P r o o f of Theorem 1. We will require that

ε−1 < µ(πε) 6 2ε−
3

2 , ε ∈ (0, 1]. (4)

By (3), the former inequality holds on an interval (0, δ) and, changing the function µ on the interval
( δ2 , 1), we will obtain the same class Fµ. The latter inequality can only reduce the class Fµ. Thus,
if we find a required function in the narrower class, it will belong to the wider class immediately.

To obtain a function f ∈ Fµ with divergent Fourier series, we modify Lebesgue’s example from
[1, Ch. 1, Sect. 46]. We start with defining an increasing sequence of natural numbers {ak} as follows.
Let a0 = 1. Suppose that the first k elements a0, a1, . . . , ak−1 have been already defined.

From inequalities (4), it follows that

a2k−1

ak−1
< 3µ

(

π

ak−1

)

and, for b > (6ak−1)
2,

b2

ak−1
> 3µ

(

π

b

)

.

Then, by continuity, there exists the smallest number a such that

a2

ak−1
= 3µ

(

π

a

)

.

As ak, we take the largest integer such that ak 6 a and the fraction ak/ak−1 is integer. It is not
hard to understand that ak belongs to [a− ak−1, a], and, in view of the inequalities

ak
ak−1

>
a− ak−1

ak−1
= 3µ

(

π

a

)

1

a
− 1 > 2, (5)

we conclude that ak > ak−1.
The definition of ak implies the inequality

1

ε2ak−1
6 3µ

(

πε
)

, ε ∈

[

1

ak
, 1

]

. (6)

The definition of ak, inequalities (5), and condition (3) imply that

ak
ak−1

→ +∞, k → +∞. (7)
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Consider the half-open intervals

Ik =

(

π

ak
,

π

ak−1

]

, k ∈ N.

Let {ki}
∞

i=0, k0 = 1, be an increasing sequence, on which, in what follows, two additional conditions
will be imposed. Let

ck =







√

1

ln ak/ak−1
, k ∈ {ki}

∞

i=0;

0, k /∈ {ki}
∞

i=0.

Finally, we define the function f on the interval [−π, π]:

f(x) = ck sin akx, x ∈ Ik,

f(0) = 0,

f(−x) = f(x).

We extend the function f to R periodically. The resulting function is continuous on each Ik and,
since ak/ak−1 is integer, is continuous and vanishes at the points ±π/ak. Thus, the function f is
continuous on [−π, π].

Since f has only a finite number of maxima and minima on [δ, π], δ > 0, it has bounded variation
on this interval (and on [−π,−δ] as well). Thus, its Fourier series converges at every x ∈ [−π, π]\{0}.

Consider now the sequence of partial sums of the Fourier series of f at the point x = 0. As is
known [1, Ch. 1, Sect. 32, formula (32.5)], for the function f, we have

Sk(x, f) =
1

π

∫ π

−π
f(x+ t)

sin kt

t
dt+ o(1);

hence, for x = 0,

Sk(0, f) =
1

π

∫ π

−π
f(t)

sin kt

t
dt+ o(1).

The function f is even; therefore,

Sk(0, f) =
2

π

∫ π

0
f(t)

sin kt

t
dt+ o(1).

Let us show that, after an appropriate choice of {ki},

Ji =

∫ π

0
f(t)

sin akit

t
dt → +∞, i → +∞.

Then Saki
(0, f) → +∞ as i → +∞, i.e., the Fourier series of f diverges at x = 0.

To estimate Ji, we divide it into three terms:

Ji =

∫ π/aki

0
f(t)

sin akit

t
dt+

∫ π/aki−1

π/aki

f(t)
sin akit

t
dt+

∫ π

π/aki−1

f(t)
sin akit

t
dt = J

′

i + J
′′

i + J
′′′

i . (8)

We have
∣

∣

∣

∣

sin akit

t

∣

∣

∣

∣

6 aki .

Hence,

|J
′

i | 6 max
06t6π/aki

|f(t)|aki
π

aki
= πcki+1

= o(1). (9)
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Suppose that k1, . . . , ki−1 have been already defined. Then the function f(t)/t is defined,
bounded, and continuous on

(

π/aki−1, π
]

. Extending this function by zero to [−π, π] and assuming
that ki are large enough (this is the first of two conditions on ki), we can make the Fourier coefficient
aki of the obtained function small enough; more precisely,

|J
′′′

i | =

∣

∣

∣

∣

∫ π

π/aki−1

f(t)

t
sin akit dt

∣

∣

∣

∣

6
1

i
. (10)

It remains to estimate J
′′

i . We have

J
′′

i =

∫ π/aki−1

π/aki

cki sin akit
sin akit

t
dt =

cki
2

∫ π/aki−1

π/aki

1− cos 2akit

t
dt

=
cki
2

ln
aki
aki−1

−
cki
2

∫ π/aki−1

π/aki

cos 2akit

t
dt.

According to the second mean value theorem, taking into account that the function 1/t is positive
and monotone, we find that

∣

∣

∣

∣

∫ π/aki−1

π/aki

cos 2akit

t
dt

∣

∣

∣

∣

6
aki
π

∣

∣

∣

∣

∫ ξ

π/aki

cos 2akit dt

∣

∣

∣

∣

6
aki
π

2

2aki
=

1

π
.

Thus,

J
′′

i =
cki
2

ln
aki
aki−1

+ o(1). (11)

Combining (8), (9), (10), and (11), and taking into account (7), we conclude that

Ji =
cki
2

ln
aki
aki−1

+ o(1) =
1

2

√

ln
aki
aki−1

+ o(1) → +∞.

Let us now estimate the modulus of fractality ν(f, ε). Denote by ν(f, ε)[a,b] the minimal number
of squares with sides of length ε parallel to the coordinate axes that cover the graph of the function
f on [a, b].

If k1, . . . , ki−1 have been already defined, then the function f is defined on the interval
[π/aki−1

, π] and has bounded variation; hence, by (2),

ν(f, ε)[
π/aki−1

, π
] = O

(

1

ε

)

.

Condition (3) allows us to take ki such that, for πε ∈ (0, π/aki ],

ν(f, πε)[
π/aki−1

, π
] 6 µ(πε). (12)

This is the second condition on ki.

Let 0 < ε 6 1. Then there exists i ∈ N such that ε ∈ [1/aki+1
, 1/aki ]. Let us prove the inequality

ν(f, πε) 6 Cµ(πε) with some constant C. It follows from what is proved above that the required
inequality holds for the covering of the graph on [π/aki−1

, π]. The inequality also holds for the
intervals [π/aki+1−1, π/aki ] and [π/aki−1, π/aki−1

] where f is identically zero; hence,

ν(f, πε)[
π/aki+1−1, π/aki

] + ν(f, πε)[
π/aki−1, π/aki−1

] 6
π

ε
. (13)
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Covering the whole rectangle
[

0, π/aki+1−1

]

×[−cki , cki ] and using (6), we can obtain the estimate

ν(f, πε)[
0, π/aki+1−1

] 6

⌈

π

aki+1−1πε

⌉⌈

2cki
πε

⌉

6
8

aki+1−1πε2
6

24

π
µ
(

πε
)

; (14)

here and in what follows, ⌈x⌉ stands for the rounding of x upward.
It remains to cover the graph on the interval

[

π/aki , π/aki−1

]

where f(x) = cki sin akix.
We can divide this interval into Ni = 2aki/aki−1 − 2 intervals of monotonicity of f :
[

π/aki + π(n− 1)/2aki , π/aki + πn/2aki
]

, n = 1, . . . , Ni. Let us show that, to cover the graph
of f on each of these intervals, we need at most 8/πε squares. Using the definition of the length of
a curve, we can show that the length of the graph of f on these intervals is at most π/2aki + 2cki .
Squares with sides of length πε can cover the graph of a monotone function of length at least πε.
Hence,

ν(f, πε)[
π/aki+π(n−1)/2aki , π/aki+πn/2aki

] 6

⌈(

π

2aki
+ 2cki

)

1

πε

⌉

6
8

πε
.

From (6) and the monotonicity of εµ(ε), we obtain

ν(f, πε)[
π/aki , π/aki−1

] 6
4aki

πεaki−1
6

12µ

(

π

aki

)

πεaki
=

12µ

(

π

aki

)

π

aki
µ(πε)

π2εµ(πε)
6

12

π
µ(πε). (15)

Finally, by (12), (13), (14), and (15), we obtain the following estimate for the modulus of
fractality of f :

ν(f, πε) 6 2ν(f, πε)[0,π] 6 2

(

ν(f, πε)[
0, π/aki+1−1

] + ν(f, πε)
[π/aki+1−1, π/aki

]

+ν(f, πε)[
π/aki , π/aki−1

] + ν(f, πε)[
π/aki−1, π/aki−1

] + ν(f, πε)[
π/aki−1

, π
]

)

6 2

(

24

π
µ
(

πε
)

+
π

ε
+

12

π
µ(πε) + µ(πε)

)

= O
(

µ(πε)
)

,

i.e., f ∈ Fµ.
The theorem is proved.
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2. Salem R. Essais sur les séries trigonométriques. Actual. Sci. et Industr. Vol. 862, 1940.

3. Waterman D. On converges of Fourier series of functions of generalized bounded variation // Studia
Mathematica, 1972. Vol. 44. P. 107–117.

4. Gridnev M. L. About classes of functions with a restriction on the fractality of their graphs // CEUR-
WS Proceedings, 2017. Vol.1894: Proceedings of the 48th Intern. Youth School-Conf.: Modern Problems
in Mathematics and its Applications, Ekaterinburg, February 5–11, 2017. P. 167–173. http://ceur-
ws.org/Vol-1894/appr5.pdf [in Russian].


