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THE 42D INTERNATIONAL S.B. STECHKIN’S

WORKSHOP-CONFERENCE ON FUNCTION THEORY

Vitalii V. Arestov† and Vitalii I. Berdyshev††

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences and

Ural Federal University, Ekaterinburg, Russia
†vitalii.arestov@urfu.ru, ††bvi@imm.uran.ru

Abstract: The paper is devoted to the description of the history and results of the 42d International

S.B.Stechkin’s Workshop on function theory, held in August 2017 in the Ilmen Nature Reserve near the town

of Miass, Chelyabinsk region.

Key words: The 42d International S.B. Stechkin’s Workshop on function theory.

From the sixties of the XX century onwards, at the Institute of Mathematics and Mechanics of
the Ural Branch of the Russian Academy of Sciences and at A.M. Gor’kii Ural State University, a
powerful scientific school on function theory has been formed, which works intensively till nowadays.
The founder of this school was Professor S.B. Stechkin—the organizer of the Institute and the
professor of the University, who passed away in 1995. A number of leading world experts in the
theory of functions and operators have grown up in this school: academicians V.I. Berdyshev
and S.V. Konyagin, corresponding member of the Russian Academy of Sciences Yu.N. Subbotin,
doctors of science, professors A.R. Alimov, N.Yu. Antonov, V.V. Arestov, A.G. Babenko, V.M. Bad-
kov, N.I. Chernykh, V.I. Ivanov, L.V. Taikov, S.A. Telyakovskii, I.G. Tsar’kov, A.Yu. Shadrin,
V.T. Shevaldin, A.S. Shvedov, V.A. Yudin, and dozens of candidates of science. Many of them
at present have positions both in the Institute and in the University. The scientific school has
a high reputation in the world. With the purpose of discussing research results and ways of
further scientific studies, in the beginning of the 1970th, annual summer scientific workshops-
conferences on function theory and approximation theory were organized. The organizer and the
all-time leader of most of them was Professor S.B. Stechkin, this tradition continues to the present.
During these workshops-conferences, not only new scientific results are presented but also open
problems of function theory and approximation theory and possible approaches to their solution
as well as forthcoming dissertations are discussed. The duration of these workshops allow their
participants to deliver as complete presentation of their research as they reasonably need. Talks
are accompanied with numerous revealing questions and remarks of other participants, which are
traditionally welcome. The atmosphere is friendly and homelike. Talks are usually given under the
open-air on a clearing in the wood. In addition to participants from Ekaterinburg (from Institute
of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and from
Ural Federal University), workshop-conferences traditionally accept leading scientists and their
students from Moscow (form Moscow State University, V.A. Steklov Mathematical Institute, and
other institutions), Novosibirsk, Ozersk, Saratov, Tula, and from other cities in Russia and abroad
(Azerbaijan, China, Kazakhstan, Ukrain, and others). A distinctive feature of Workshop-2017 was
a considerable number of new young participants which inspires hope for preserving the traditions
and inimitable spirit of Stechkin’s School. Detailed historical reviews on past workshops can be
found in [1–3].



4 Vitalii V. Arestov and Vitalii I. Berdyshev

Figure 1. The opening ceremony of S.B. Stechkin’s Workshop (August 2, 2017)

The 42d International S.B. Stechkin’s Workshop-Conference on function theory was held on
August 1–10, 2017. It was organized by the Krasovskii Institute of Mathematics and Mechanics of
the Ural Branch of the Russian Academy of Sciences and Ural Federal University (Ekaterinburg).
The conference venue was the shore of Ilmen lake in the Ilmen Nature Reserve near the city of
Miass, Chelyabinsk region.

Organizing Committee

Chairmen: V.V. Arestov and V.I. Berdyshev (Ekaterinburg, Russia)
Members: A.G. Babenko (Ekaterinburg, Russia), E.E. Berdysheva (Giessen, Germany),

N.I. Chernykh (Ekaterinburg, Russia), P.Yu. Glazyrina (Ekaterinburg, Russia), N.A.Il’yasov (Baku,
Azerbaijan), S.V. Konyagin (Moscow, Russia), Szilárd Révész (Budapest, Hungary), Yu.N. Sub-
botin (Ekaterinburg, Russia), M.Sh. Shabozov (Dushanbe, Tajikistan), S.I. Novikov (Ekaterinburg,
Russia).

Programming Committee: V.V. Arestov (chairman), N.Yu. Antonov, and M.V. Deikalova
(Ekaterinburg, Russia).

The Workshop-Conference was attended by 35 scientists from Moscow, Ekaterinburg, and for-
mer Soviet republics: Kazakhstan, Tadjikistan, Turkmenistan, and Ukraine, including one academi-
cian of the Russian Academy of Sciences, 8 doctors of science, 14 candidates of science, 9 students
and undergraduates, and 3 post-graduate students. They delivered 34 research talks on basic top-
ics of modern function theory and approximation theory, and on applications of approximation
methods to solving problems in other areas of mathematics:

– general problems of function theory;

– best approximation of functions and operators;

– extremal problems of function theory and approximation theory;
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– modern approximation methods: splines, wavelets, and their application to problems of data
compression and medicine;

– problems of navigation by geodesic fields;

– geometric problems of approximation theory;

– numerical analysis.

Several selected papers presented at the Workshop are published in this issue of the journal.

REFERENCES
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APPROXIMATION OF THE DIFFERENTIATION OPERATOR

ON THE CLASS OF FUNCTIONS ANALYTIC

IN AN ANNULUS1

Roman R. Akopyan

Ural Federal University and
Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,

Ekaterinburg, Russia
RRAkopyan@mephi.ru

Abstract: In the class of functions analytic in the annulus Cr := {z ∈ C : r < |z| < 1} with bounded Lp-

norms on the unit circle, we study the problem of the best approximation of the operator taking the nontangential

limit boundary values of a function on the circle Γr of radius r to values of the derivative of the function on the

circle Γρ of radius ρ, r < ρ < 1, by bounded linear operators from Lp(Γr) to Lp(Γρ) with norms not exceeding a

number N . A solution of the problem has been obtained in the case when N belongs to the union of a sequence

of intervals. The related problem of optimal recovery of the derivative of a function from boundary values of

the function on Γρ given with an error has been solved.

Key words: Best approximation of operators, Optimal recovery, Analytic functions.

Introduction

The paper is devoted to studying a number of related extremal problems for the differentiation
operator on the class of functions analytic in an annulus. Similar problems for the analytic
continuation operator and for the differentiation operator on the class of functions analytic in a
strip were solved earlier in [1] and [2], respectively. In the present paper, we follow the notation and
use some auxiliary statements from [1, 2].

Let Cr := {z ∈ C : r < |z| < 1} be the annulus centered at the origin of internal radius r and
external radius 1. We denote by A(Cr) the set of functions analytic in the annulus Cr. For a
function f ∈ A(Cr) and a number ρ, r < ρ < 1, we define the p-average of the function f on the
circle Γρ := {z ∈ C : |z| = ρ} by the equality

Mp(f, ρ) := ‖f‖Lp(Γρ) =











(

1

2π

∫ 2π

0
|f(ρeit)|p dt

)1/p

, 1 ≤ p < ∞,

max
{

|f(ρeit)| : t ∈ [0, 2π]
}

, p = ∞.

Let Hp = Hp(Cr) be the Hardy space of functions f ∈ A(Cr) such that

sup {Mp(f, ρ) : r < ρ < 1} < +∞.

As is well known, for an arbitrary function f ∈ Hp, nontangential limit boundary values exist almost
everywhere on the boundary Γr

⋃

Γ1. We denote these values by f(reit) and f(eit). These functions
belong to Lp(Γr) and Lp(Γ1), respectively.

1This work was supported by the Russian Foundation for Basic Research (project no. 15-01-02705),
the Program for State Support of Leading Scientific Schools of the Russian Federation (project no. NSh-
9356.2016.1), and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27,
2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
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In the Hardy space Hp, we consider the class Q = Qp
r of functions f whose boundary values on

the circle Γ1 satisfy the inequality Mp(f, 1) ≤ 1.
The problem of the best approximation of an unbounded linear operator by linear bounded

operators on a class of elements of a Banach space appeared in 1965 in investigations of Stechkin [4].
In his 1967 paper [4], he gave a statement of the problem, presented the first principal results, and
solved the problem for differentiation operators of small orders. Detailed information about studies of
Stechkin’s problem and related extremal problems can be found in Arestov’s review paper [3]. In the
present paper, we consider the problem of the best approximation of the (first-order) differentiation
operator for a function on the circle Γρ by linear bounded operators on the class Q of functions
analytic in the annulus Cr. The precise statement of the problem is as follows.

Problem 1. Let L(N) be the set of linear bounded operators from Lp(Γr) to Lp(Γρ) with norm
‖T‖ = ‖T‖Lp(Γr)7→Lp(Γρ) not exceeding a number N > 0. The quantity

U(T ) := sup
{

Mp(f ′ − Tf, ρ) : f ∈ Q
}

is the deviation of an operator T ∈ L(N) from the differentiation operator on the class Q. The
quantity

E(N) := inf {U(T ) : T ∈ L(N)} (0.1)

is the best approximation of the differentiation operator by the set of bounded operators L(N) on
the class Q. The problem is to calculate the quantity E(N) and to find an extremal operator at
which the infimum in (0.1) is attained.

Problem 1 is closely interconnected with a number of extremal problems. One of them is the
following problem of calculating the modulus of continuity of the differentiation operator on a class.

Problem 2. The function

ω(δ) = sup
{

Mp(f ′, ρ) : f ∈ Q, Mp(f, r) ≤ δ
}

(0.2)

of real variable δ ∈ [0,+∞) is called the modulus of continuity of the differentiation operator on the
class Q. The problem is to calculate the quantity ω(δ) and to find an extremal function (a sequence
of functions) at which the supremum in (0.2) is attained.

Define
∆(N) := sup {ω(δ)−Nδ : δ ≥ 0} , N > 0;

l(δ) := inf {E(N) +Nδ : N > 0} , δ ≥ 0.

The following statement, which connects (0.1) and (0.2), is a special case of Stechkin’s theorem [5].

Theorem A. The following inequalities hold:

E(N) ≥ ∆(N), N > 0; (0.3)

ω(δ) ≤ l(δ), δ ≥ 0. (0.4)

Definition (0.2) also implies that the sharp inequality

Mp(f ′, ρ) ≤ Mp(f, 1)ω

(

Mp(f, r)

Mp(f, 1)

)

is valid for functions from the space Hp(Cr).
Problems of recovering values of an operator on elements of a class lying in the domain of an

operator from some information about the elements of the class given with a known error arise in
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different areas of mathematics and have been well studied. The recovery is implemented by using
some set R of operators. As a rule, one of the following sets of mappings is taken for R: either
the set O of all single-valued mappings or the set B of bounded operators or the set L of linear
operators. Monograph [6] is devoted to various problems of optimal recovery, in particular, optimal
recovery of derivatives on classes of analytic functions.

Problems 1 and 2 are related to the following optimal recovery problem for the derivative of a
function analytic in an annulus from boundary values (on one of the boundary circles) given with
an error.

Problem 3. For a number δ ≥ 0 and an operator T ∈ R, define

U(T, δ) = sup
{

Mp(f ′ − Tg, ρ) : f ∈ Q, g ∈ Lp(Γr), M
p(f − g, r) ≤ δ

}

.

Then,

ER(δ) = inf {U(T, δ) : T ∈ R} (0.5)

is the value of the best (optimal) recovery of the differentiation operator (the derivative of an
analytic function) by recovery methods R on functions of the class Q from their boundary values
on Γr given with an error δ. The problem is to calculate the quantity E(δ) and to find an optimal
recovery method, i.e., an operator at which the infimum in (0.5) is attained.

The following theorem contains a refinement of inequality (0.4); this theorem is a special case
of a more general statement connecting the problem on the modulus of continuity of an operator
and Stechkin’s problem with optimal recovery problems (see [3]).

Theorem B. The following inequalities hold:

ω(δ) ≤ EO(δ) ≤ EL(δ) = EB(δ) ≤ l(δ), δ ≥ 0. (0.6)

1. Main results

We define a (convolution) operator T 1
n = T 1

n [ρ, r], n ∈ Z, from Lp(Γr) to Lp(Γρ) by the formula

(T 1
nf)(ρe

ix) = e−ix 1

2π

∫ 2π

0
Λ1
n(x− t)f(reit) dt (1.1)

with the kernel

Λ1
n(t) = r−neint λ1

n(t), λ1
n(t) = λ1

n,0 + 2
∞
∑

k=1

λ1
n,k cos kt, (1.2)

λ1
n,0 =

ρn−1

ln r
(n ln ρ+ 1), λ1

n,k = ρn−1 (n+ k)ρk − (n− k)ρ−k

rk − r−k
, k ∈ N.

The following two theorems are the main results of the present paper.

Theorem 1. Assume that the parameter N has the representation

N =
ρn−1 |n ln ρ+ 1|

rn| ln r|
,

in which n ∈ Z is such that

|n| ≥
π

ln2 r
sin−1

(

ln ρ

ln r
π

)

. (1.3)
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Then, quantity (0.1) satisfies the equality

E(N) =
ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

.

In this case, the operator T 1
n defined by (1.1) and (1.2) is extremal in problem (0.1).

Theorem 2. Let δn = rn, where n ∈ Z satisfies condition (1.3). Then, quantities (0.2) and

(0.5) satisfy the relations

ω(δn) = EO(δn) = EL(δn) = EB(δn) = nρn−1. (1.4)

In this case, the linear bounded operator T 1
n defined by (1.1) and (1.2) is an optimal recovery method

in problem (0.5). The functions fn(z) = czn, |c| = 1, are extremal in problem (0.2).

2. Auxiliary statements

In addition, we introduce a (convolution) operator V 1
n = V 1

n [ρ, r], n ∈ Z, from Lp(Γ1) to Lp(Γρ)
by the formula

(V 1
n f)(ρe

ix) = e−ix 1

2π

∫ 2π

0
V1
n(x− t)f(reit) dt (2.1)

with the kernel

V1
n(t) = eint µ1

n(t), µ1
n(t) = µ1

n,0 + 2
∞
∑

k=1

µ1
n,k cos kt, (2.2)

µ1
n,0 =

ρn−1

ln r

(

n ln
r

ρ
− 1

)

, µ1
n,k = ρn−1 (n+ k)(ρ/r)k − (n− k)(ρ/r)−k

r−k − rk
, k ∈ N.

Lemma 1. For an arbitrary function f from the class Q and n ∈ Z, we have the equality

f ′(ρeix) = (T 1
nf)(ρe

ix) + (V 1
n f)(ρe

ix), x ∈ [0, 2π]. (2.3)

P r o o f. The function f in the annulus Cr is representable as the sum of the Laurent series

f(z) =
+∞
∑

k=−∞

ϕk z
k, z ∈ Cr.

Then, from the definitions of operators (1.1)–(1.2) and (2.1)–(2.2), we obtain the relations

(T 1
nf)(ρe

ix) + (V 1
n f)(ρe

ix) =

+∞
∑

k=−∞

(λ1
n,kr

k + µ1
n,k)ϕn+k e

i(n+k−1)x.

Now, from the equality
λ1
n,kr

k + µ1
n,k = (n + k)ρn+k−1,

the assertion of Lemma 1 follows. �

Lemma 2. Let a number n ∈ Z satisfy condition (1.3). Then the functions λ1
n and µ1

n defined by

(1.2) and (2.2) are of the same sign, which remains unchanged on the period, i.e., λ1
n(x)µ

1
n(x) > 0,

x ∈ [0, 2π].
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P r o o f. We introduce the notation

g±(x, y) :=

eny sin

(

ln ρ

ln r
π

)

cosh
xπ

ln r
± cos

(

ln ρ

ln r
π

) , y = ln ρ/r.

For the functions g±, the following assertion is true [2, Lemma 3]. Condition (1.3) is necessary and

sufficient for the functions
∂g±
∂y

to maintain sign for arbitrary x ∈ R and 0 < y < ln 1/r. Moreover,

for the functions

Λ±(x) := −π ln−1 re−ny
+∞
∑

k=−∞

g±(x+ 2πk, y), y = ln ρ/r,

the following equalities hold [1, Lemma 1]:

Λ±(x) = λ±
0 + 2

∞
∑

k=1

λ±
k cos kx,

λ+
0 =

ln ρ

ln r
, λ+

k =
ρk − ρ−k

rk − r−k
, λ−

0 =
ln r/ρ

ln r
, λ−

k =
(ρ/r)k − (ρ/r)−k

r−k − rk
.

Hence, for the functions λ1
n и µ1

n defined by equalities (1.2) и (2.2), we have

λ1
n(x) =

∂

∂ρ
(ρnΛ+(x)) = −

πrn

ρ ln r

+∞
∑

k=−∞

∂

∂y
g+(x+ 2πk, y),

µ1
n(x) =

∂

∂ρ
(ρnΛ−(x)) = −

πrn

ρ ln r

+∞
∑

k=−∞

∂

∂y
g−(x+ 2πk, y).

If n ∈ Z satisfies condition (1.3), then the right-hand sides of these equalities have the same sign,
which remains unchanged on the period. Lemma 2 is proved. �

Corollary 1. Let n ∈ Z satisfy condition (1.3). Then the equality |λ1
n,0|+ |µ1

n,0| = nρn−1 holds.

P r o o f. The proof follows from Lemma 2 and the chain of relations

|λ1
n,0|+ |µ1

n,0| =

∣

∣

∣

∣

1

2π

∫ 2π

0
λ1
n(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2π

∫ 2π

0
µ1
n(t) dt

∣

∣

∣

∣

=

=

∣

∣

∣

∣

1

2π

∫ 2π

0
λ1
n(t) dt+

1

2π

∫ 2π

0
µ1
n(t) dt

∣

∣

∣

∣

= |λ1
n,0 + µ1

n,0| = nρn−1.

�

Lemma 3. Let n ∈ Z satisfy condition (1.3). Then, for the norm and the deviations of the

operator T 1
n given by relations (1.1), the following equalities hold:

‖T 1
n‖ =

ρn−1 |n ln ρ+ 1|

rn| ln r|
, (2.4)

U(T 1
n) =

ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

, (2.5)

U(T 1
n , r

n) = nρn−1. (2.6)
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P r o o f. Using the definition of the operator T 1
n and Lemma 2, we obtain the following upper

bound for the norm:

‖T 1
n‖ ≤ ‖Λ1

n‖L1(0,2π) =

∣

∣

∣

∣

1

2πrn

∫ 2π

0
λ1
n(t) dt

∣

∣

∣

∣

= r−n|λ1
n,0| =

ρn−1 |n ln ρ+ 1|

rn| ln r|
.

Now equality (2.4) follows from the lower bound due to the functions r−nfn(z) = cr−nzn, |c| = 1.

From equality (2.3) of Lemma 1, we obtain the representation

f ′(ρeix)− (T 1
nf)(ρe

ix) = (V 1
n f)(ρe

ix), x ∈ [0, 2π].

Then, from the definition of the deviation and taking into account that the inequality ‖f‖Lp(Γ1) ≤ 1
holds for functions f from the class Q , we obtain the estimate U(T 1

n) ≤ ‖V 1
n ‖. Arguing as in the first

part of the proof, we can obtain the equality ‖V 1
n ‖ = |µ1

n,0|. To complete the proof of equality(2.5),

we note that the deviation U(T 1
n) and the norm of the operator V 1

n are attained at the functions
fn(z) = czn, |c| = 1.

Finally, using the following standard reasoning, we show that equality (2.6) is true. For arbitrary
functions f ∈ Q and g ∈ Lp(Γr), we have

Mp(f ′ − T 1
ng, ρ) ≤ Mp(f ′ − T 1

nf, ρ) +Mp(T 1
n(f − g), ρ) ≤ U(T 1

n) + ‖T 1
n‖M

p(f − g, r).

Then the equalities (2.4) and (2.5) and Corollary 1 imply the upper estimate

U(T 1
n , r

n) ≤ U(T 1
n) + ‖T 1

n‖ r
n = |µ1

n,0|+ |λ1
n,0| = nρn−1.

To obtain a lower bound, it is sufficient to consider f(z) = fn(z) = czn and g ≡ 0. The lemma is
proved. �

Lemma 4. For an arbitrary n ∈ Z, the following inequalities hold:

ω(rn) ≥ nρn−1, (2.7)

∆

(

ρn−1 |n ln ρ+ 1|

rn| ln r|

)

≥
ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

. (2.8)

P r o o f. The function fn(z) = zn belongs to the class Q. Then the following inequality holds:

ω(rn) ≥ Mp(f ′
n, ρ) = nρn−1.

We have

∆(N) = sup {ω(δ) −Nδ : δ ≥ 0} ≥ ω(rn)−Nrn ≥ nρn−1 −Nrn.

Substituting

N =
ρn−1 |n ln ρ+ 1|

rn| ln r|

into the latter inequality and using Corollary 1, we obtain inequality (2.8). Lemma 4 is proved. �
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3. Proof of the main results

P r o o f of Theorem 1. Assume that the parameter N has the representation

N =
ρn−1 |n ln ρ+ 1|

rn| ln r|
,

in which n ∈ Z satisfies (1.3). Combining inequalities (0.3) from Theorem A, (2.8) from Lemma 4,
and equality (2.5) from Lemma 3, we obtain the chain of relations

ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

≤ ∆(N) ≤ E(N) ≤ U(T 1
n) =

ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

.

Hence,

E(N) =
ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

.

This means that the operator T 1
n is extremal in Problem 1. Theorem 1 is proved. �

P r o o f of Theorem 2. Let δn = rn, where n ∈ Z satisfies condition (1.3). Combining
inequalities (0.6) from Theorem B, (2.7) from Lemma 4, and equality (2.6) from Lemma 3, we
obtain the chain of relations

nρn−1 ≤ ω(δn) ≤ EO(δn) ≤ EL(δn) = EB(δn) ≤ U(T 1
n , δn) = nρn−1.

Hence,
ω(δn) = EO(δn) ≤ EL(δn) = EB(δn) = nρn−1.

This means that the (bounded linear) operator T 1
n is extremal in Problem 3. Theorem 2 is proved. �

4. Generalization of the extremal operator and Theorem 1

It is proved in Lemma 2 that, if n ∈ Z satisfies condition (1.3), then the continuous 2π-periodic
functions λ1

n and µ1
n do not vanish on [0, 2π], more precisely, λ1

n(t)µ
1
n(t) > 0, t ∈ [0, 2π]. This means

that there exists an interval In (of positive length) defined by the equality

In =
{

γ ∈ R : (λ1
n(t) + γ)(µ1

n(t)− γ) > 0, t ∈ [0, 2π]
}

.

The interval In = (γ−n , γ
+
n ) has the boundary points

γ−n = max
t∈[0,2π]

min{−λ1
n(t), µ

1
n(t)}, γ+n = min

t∈[0,2π]
max{−λ1

n(t), µ
1
n(t)}

related by the inequality γ−n < 0 < γ+n . Let Sn be the interval [γ−n , γ
+
n ].

We define a (convolution) operator T 1
n,γ = T 1

n,γ [ρ, r], n ∈ Z, from Lp(Γr) to Lp(Γρ) by the
formula

(T 1
n,γf)(ρe

ix) = e−ix 1

2π

∫ 2π

0
Λ1
n,γ(x− t)f(reit) dt (4.1)

with the kernel
Λ1
n,γ(t) = r−neint

(

λ1
n(t) + γ

)

. (4.2)

The following statement is a generalization of Theorem 1.
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Theorem 3. Assume that the parameter N has the representation

N =
1

rn

∣

∣

∣

∣

ρn−1(n ln ρ+ 1)

ln r
+ γ

∣

∣

∣

∣

,

in which n ∈ Z satisfies (1.3) and γ ∈ Sn. Then, quantity (0.1) satisfies the equality

E(N) =

∣

∣

∣

∣

ρn−1(n ln(r/ρ)− 1)

ln r
− γ

∣

∣

∣

∣

.

In this case, the operator T 1
n,γ defined by (4.1) and (4.2) is extremal in problem (0.1).

P r o o f. The theorem can be proved by the scheme of the proof of Theorem 1. �

Remark 1. In the case when n ∈ Z satisfies (1.3) and γ ∈ Sn, the operators T 1
n,γ defined by

(4.1) and (4.2) are also extremal in Problem 3. However, these operators do not give solutions of
this problem in new cases. More precisely, the equality U(T 1

n,γ , r
n) = nρn−1 holds.
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ON Λ-CONVERGENCE ALMOST EVERYWHERE
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Abstract: We consider one type of convergence of multiple trigonometric Fourier series intermediate between
the convergence over cubes and the λ-convergence for λ > 1. The well-known result on the almost everywhere
convergence over cubes of Fourier series of functions from the class L(ln+ L)d ln+ ln+ ln+ L([0, 2π)d) has been
generalized to the case of the Λ-convergence for some sequences Λ.

Key words: Trigonometric Fourier series, Rectangular partial sums, Convergence almost everywhere.

Suppose that d is a natural number, Td = [−π, π)d is a d-dimensional torus, and ϕ : [0,+∞) →
[0,+∞) is a nondecreasing function. Let ϕ(L)(Td) be the set of all Lebesgue measurable real-valued
functions f on the torus Td such that

∫

Td

ϕ(|f(t)|)dt < ∞.

Let f ∈ L(Td), k = (k1, k2, . . . , kd) ∈ Z
d, x = (x1, x2, . . . , xd) ∈ R

d, and kx = k1x1 + k2x2 + . . . +
kdxd. Denote by

ck =
1

(2π)d

∫

Td

f(t)e−ikt dt

the kth Fourier coefficient of the function f and by

∑

k∈Zd

cke
ikx (1)

the multiple trigonometric Fourier series of the function f .
Let n = (n1, n2, . . . , nd) be a vector with nonnegative integer coordinates, and let Sn(f,x) be

the nth rectangular partial sum of series (1):

Sn(f,x) =
∑

k=(k1,...,kd) : |kj |≤nj , 1≤j≤d

cke
ikx.

Denote by mesE the Lebesgue measure of a set E and let ln+ u = ln(u+ e), u ≥ 0.
In 1915, in the case d = 1, N.N. Luzin (see [1]) suggested that the trigonometric Fourier series of

any function from L2(T) converges almost everywhere. A.N. Kolmogorov [2] constructed an example
of a function F ∈ L(T) whose trigonometric series diverges almost everywhere and, later on [3], of a
function from L(T) with the Fourier series divergent everywhere on T. L. Carleson [4] proved that
Luzin’s conjecture is true: if f ∈ L2(T), then the Fourier series of the function f converges almost

1This work was supported by the Russian Science Foundation (project no. 14-11-00702).
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everywhere. R. Hunt [5] generalized the statement about the almost everywhere convergence of
the Fourier series to the class L(ln+ L)2(T), particularly, to Lp(T) with p > 1. P. Sjölin [6]
generalized it to the wider class L(ln+ L)(ln+ ln+ L)(T). In [7], the author showed that the condition
f ∈ L(ln+ L)(ln+ ln+ ln+ L)(T) is also sufficient for the almost everywhere convergence of the
Fourier series of the function f . At present, the best negative result in this direction belongs to
S.V. Konyagin [8]: if a function ϕ(u) satisfies the condition ϕ(u) = o(u

√

lnu/ ln lnu) as u → +∞,
then, in the class ϕ(L)(T), there exists a function with the Fourier series divergent everywhere
on T.

Let us now consider the case d ≥ 2, i.e., the case of multiple Fourier series. Let λ ≥ 1. A
multiple Fourier series of a function f is called λ-convergent at a point x ∈ T

d if there exists a limit

lim
min{nj :1≤j≤d}→+∞

Sn(f,x)

considered only for vectors n = (n1, n2, . . . , nd) such that 1/λ ≤ ni/nj ≤ λ, 1 ≤ i, j ≤ d. The
λ-convergence is called the convergence over cubes (the convergence over squares for d = 2) in the
case λ = 1 and the Pringsheim convergence in the case λ = +∞, i. e., in the case without any
restrictions on the relation between coordinates of vectors n.

N.R. Tevzadze [9] proved that, if f ∈ L2(T2), then the Fourier series of the function f converges
over cubes almost everywhere. Ch. Fefferman [10] generalized this result to functions from Lp(Td),
p > 1, d ≥ 2. P. Sjölin [11] showed that, if a function f is from the class L(ln+ L)d(ln+ ln+ L)(Td),
d ≥ 2, then its Fourier series converges over cubes almost everywhere. The author [12] (see also
[13]) proved the almost everywhere convergence over cubes of Fourier series of functions from the
class L(ln+ L)d(ln+ ln+ ln+ L)(Td). The best current result concerning the divergence over cubes
on a set of positive measure of multiple Fourier series of functions from ϕ(L)(Td), d ≥ 2, belongs
to S.V. Konyagin [14]: for any function ϕ(u) = o(u(ln u)d−1 ln lnu) as u → +∞, there exists a
function F ∈ ϕ(L)(Td) with the Fourier series divergent over cubes everywhere.

On the other hand, Ch. Fefferman [15] constructed an example of a continuous function of
two variables, i. e., a function from C(T2) whose Fourier series diverges in the Pringsheim sense
everywhere on T

2. M. Bakhbukh and E.M. Nikishin [16] proved that there exists F ∈ C(T2) such
that its modulus of continuity satisfies the condition ω(F, δ) = O

(

ln−1(1/δ)
)

as δ → +0 and its
Fourier series diverges in the Pringsheim sense almost everywhere. A.N. Bakhvalov [17] established
that, for m ∈ N and any λ > 1, there is a function F ∈ C(T2m) such that the Fourier series of F is
λ-divergent everywhere and the modulus of continuity of F satisfies the condition

ω(F, δ) = O
(

ln−m(1/δ)
)

, δ → +0. (2)

Later on, Bakhvalov [18] proved the existence of a function F ∈ C(T2m) satisfying condition (2)
and such that its Fourier series is λ-divergent for all λ > 1 simultaneously.

Let Λ = {λν}∞ν=1 be a nonincreasing sequence of positive numbers. Assume that

ΩΛ =

{

n = (n1, n2, . . . , nd) ∈ N
d :

1

1 + λni

≤ ni

nj
≤ 1 + λnj , 1 ≤ i, j ≤ d

}

.

We will say that a multiple Fourier series of a function f ∈ L(Td) is Λ-convergent at a point x ∈ T
d

if there exists a limit

lim
n∈ΩΛ,min{nj :1≤j≤d}→∞

Sn(f,x).

Let us note that, if λν ≡ λ − 1 for some λ > 1, then the condition of Λ-convergence turns into
the condition of λ-convergence defined above. And if λν → 0 as ν → ∞, then the condition of
Λ-convergence is weaker than the condition of λ-convergence for any λ > 1.
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The author proved [19] that, if a sequence Λ = {λν}∞ν=1 satisfies the condition ln2 λν = o(ln ν)
as ν → ∞, then there exists a function F ∈ C(T2) such that its Fourier series is Λ-divergent almost
everywhere on T

2.

In the present paper, we obtain the following statement that strengthens the result of [12].

Theorem 1. Assume that a nonincreasing sequence of positive numbers Λ = {λν}∞ν=1 satisfies

the condition

λν = O

(

1

ν

)

(3)

and a function ϕ : [0,+∞) → [0,+∞) is convex on [0,+∞) and such that ϕ(0) = 0, ϕ(u)u−1

increases on [u0,+∞), and ϕ(u)u−1−δ decreases on [u0,+∞) for some u0 ≥ 0 and any δ > 0. As-

sume that the trigonometric Fourier series of any function g ∈ ϕ(L)(T) converges almost everywhere

on T. Then, for any d ≥ 2, the Fourier series of any function f from the class ϕ(L)(ln+ L)d−1(Td)
is Λ-convergent almost everywhere on T

d.

Theorem 1 and the result of paper [7] imply the following statement.

Theorem 2. Let a nonincreasing sequence of positive numbers Λ = {λν}∞ν=1 satisfy condi-

tion (3), d ≥ 2. Then the Fourier series of any function f from the class

L(ln+ L)d(ln+ ln+ ln+ L)(Td)

is Λ-convergent almost everywhere on T
d.

P r o o f of Theorem 1. Let a sequence Λ = {λν}∞ν=1 and a function ϕ satisfy the conditions
of the theorem. Let ϕd(u) = ϕ(u)(ln+ u)d−1 for short. Without loss of generality, we can consider
only functions ϕd such that the functions ϕd(

√
u) are concave on [0,+∞). Otherwise, we can

consider the functions ϕd(u + ad) − bd (with appropriate constants ad and bd) instead of ϕd. The
corresponding class ϕd(L)(T

d) will be the same in this case.

Denote by Sn(f,x) the nth cubic partial sum of the Fourier series of the function f :

Sn(f,x) = Sn(f,x), where n = (n, . . . , n).

Suppose that

M(f,x) = sup
n∈N

|Sn(f,x)|,

MΛ(f,x) = sup
n∈ΩΛ

|Sn(f,x)|.

Under the conditions of the theorem (see [12, formula (3.1) and Lemma 3]), there are constants
Kd > 0 and yd ≥ 0 such that

mes
{

x ∈ T
d : M(f,x) > y

}

≤ Kd

y

(
∫

Td

ϕd(|f(x)|) dx + 1

)

, y > yd, f ∈ ϕd(L)(T
d). (4)

Using (4), we will prove that, for every y > yd and f ∈ ϕd(L)(T
d),

mes
{

x ∈ T
d : MΛ(f,x) > y

}

≤ Ad

y

(
∫

Td

ϕd(|f(x)|) dx + 1

)

(5)
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and, for every f ∈ ϕd+1(L)(T
d),

∫

Td

MΛ(f,x)dx ≤ Bd

(
∫

Td

ϕd+1(|f(x)|) dx + 1

)

, (6)

where Ad is independent of f and y; Bd is independent of f .

The proof is by induction on d. Consider the base case, i. e., d = 1: statement (5) immediately
follows from (4) because M(f,x) = MΛ(f,x) in the one-dimensional case. Similarly, (6) is a
consequence of [5, Theorem 2].

Let d ≥ 2. Suppose that statements (5) and (6) hold for d − 1 and let us show that the same
is true for d.

First, let us prove the validity of (5). Let n = (n1, n2, . . . , nd) ∈ ΩΛ. According to (3), there is
an absolute constant C > 0 such that λνν ≤ C for all natural numbers ν. Combining this with the
definition of ΩΛ, we obtain that, for all i, j ∈ {1, 2, . . . , d},

|ni − nj| ≤ C. (7)

Recall that, if n = (n1, n2, . . . , nd), then the following representation holds for the nth rectan-
gular partial sum of the Fourier series of the function f :

Sn(f,x) =
1

πd

∫

Td

d
∏

j=1

Dnj(tj)f(x1 + t1, . . . , xd + td) dt1 . . . dtd, (8)

where Dn(t) = sin((n + 1/2)t)/(2 sin(t/2)) is the one-dimensional Dirichlet kernel of order n. Let

us add to and subtract from the d-dimensional Dirichlet kernel
d
∏

j=1
Dnj (tj) of order n the sum

d
∑

k=2

( k
∏

j=1

Dn1(tj)
d
∏

j=k+1

Dnj(tj)

)

(here and in what follows, we suppose that all products
∏

with an upper index less than a lower
one are equal to 1). Rearranging the terms, we obtain

d
∏

j=1

Dnj (tj) =

d−1
∑

k=1

( k
∏

j=1

Dn1(tj)

d
∏

j=k+1

Dnj (tj)−
k+1
∏

j=1

Dn1(tj)

d
∏

j=k+2

Dnj(tj)

)

+

d
∏

j=1

Dn1(tj) =

=
d
∑

k=2

( k−1
∏

j=1

Dn1(tj)
d
∏

j=k+1

Dnj (tj)
(

Dnk(tk)−Dn1(tk)
)

)

+
d
∏

j=1

Dn1(tj).
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From this and (8), it follows that

Sn(f,x) =
d
∑

k=2

1

πd

∫

Td

( k−1
∏

j=1

Dn1(tj)
d
∏

j=k+1

Dnj (tj)
(

Dnk(tk)−Dn1(tk)
)

)

×

×f(x1 + t1, . . . , xd + td) dt1 . . . dtd +
1

πd

∫

Td

d
∏

j=1

Dn1(tj)f(x1 + t1, . . . , xd + td) dt1 . . . dtd =

=

d
∑

k=2

1

πd

∫

T

(

Dnk(tk)−Dn1(tk)
)

×

×
(
∫

Td−1

k−1
∏

j=1

Dn1(tj)

d
∏

j=k+1

Dnj(tj)f(x1+t1, . . . , xd+td) dt1 . . . dtk−1dtk+1 . . . dtd
)

dtk+Sn1(f,x).

(9)

Note that the latter term on the right hand side of (9) is the n1th cubic partial sum of the Fourier
series of the function f . By (7), for all k ∈ {2, 3, . . . , d} and t ∈ T, we have |Dnk(t)−Dn1(t)| ≤ C.
Combining this with (9), we obtain

|Sn(f,x)| ≤
d
∑

k=2

C

πd

∫

T

∣

∣

∣

∣

∫

Td−1

k−1
∏

j=1

Dn1(tj)
d
∏

j=k+1

Dnj (tj)×

×f(x1 + t1, . . . , xk−1 + tk−1, tk, xk+1 + tk+1, . . . , xd + td) dt1 . . . dtk−1dtk+1 . . . dtd
∣

∣

∣

∣

dtk + |Sn1(f,x)|.

Applying the definitions of MΛ(f,x) and M(f,x), from the latter estimate, we obtain

MΛ(f,x) ≤ M(f,x) +
C

π

d
∑

k=2

∫

T

sup
n=(n1,n2,··· ,nd)∈ΩΛ

∣

∣

∣

∣

1

πd−1

∫

Td−1

k−1
∏

j=1

Dn1(tj)

d
∏

j=k+1

Dnj (tj)×

×f(x1 + t1, . . . , xk−1 + tk−1, tk, xk+1 + tk+1, . . . , xd + td) dt1 . . . dtk−1dtk+1 . . . dtd
∣

∣

∣

∣

dtk =

= M(f,x) +
C

π

d
∑

k=2

Mk(f,x),

(10)

where Mk(f,x) denotes the kth term of the sum on the left hand side of the equality in (10). Let
k ∈ {2, 3, . . . , d}. Consider Mk(f,x). Denote by gk,tk the function of d − 1 variables that can be

obtained from the function f by fixing the kth variable tk:

gk,tk(t
1, . . . , tk−1, tk+1, . . . , td) = f(t1, . . . , tk−1, tk, tk+1, . . . , td), (t1, . . . , tk−1, tk+1, . . . , td) ∈ T

d−1.

Define Ω′
Λ as the set of mk = (m1, . . . ,mk−1,mk+1, . . . ,md) ∈ N

d−1 such that m = (m1, . . . ,md) ∈
ΩΛ. Note that, in view of the invariance of ΩΛ with respect to a rearrangement of variables, the
set Ω′

Λ is independent of k. Suppose that n′
k = (n1, . . . , n1, nk+1, . . . , nd) ∈ N

d−1. Then

1

πd−1

∫

Td−1

k−1
∏

j=1

Dn1(tj)
d
∏

j=k+1

Dnj (tj)×

×f(x1 + t1, . . . , xk−1 + tk−1, tk, xk+1 + tk+1, . . . , xd + td) dt1 . . . dtk−1dtk+1 . . . dtd =
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= Sn′

k

(

gk,tk , (x
1, . . . , xk−1, xk+1, . . . , xd)

)

and

Mk(f,x) =

∫

T

sup
n′

k
∈Ω′

Λ

∣

∣

∣
Sn′

k

(

gk,xk , (x1, . . . , xk−1, xk+1, . . . , xd)
)
∣

∣

∣
dxk.

Further,

mes
{

x ∈ T
d : Mk(f,x) > y

}

= 2πmes
{

(x1, . . . , xk−1, xk+1, . . . , xd) ∈ T
d−1 : Mk(f,x) > y

}

≤

≤ 2π

y

∫

Td−1

Mk(f,x) dx
1 . . . dxk−1dxk+1 . . . dxd =

=
2π

y

∫

Td

sup
n′

k
∈Ω′

Λ

∣

∣

∣
Sn′

k

(

gk,xk , (x1, . . . , xk−1, xk+1, . . . , xd)
)
∣

∣

∣
dx =

=
2π

y

∫

T

(
∫

Td−1

sup
n′

k
∈Ω′

Λ

∣

∣

∣

∣

Sn′

k

(

gk,xk , (x1, . . . , xk−1, xk+1, . . . , xd)
)

∣

∣

∣

∣

dx1 . . . dxk−1dxk+1 . . . dxd
)

dxk.

(11)

From this, applying the induction hypothesis (more precisely, statement (6) for the dimension d−1)
to the inner integral on the right hand part of (11), we obtain

mes
{

x ∈ T
d : Mk(f,x) > y

}

≤ 2π

y

∫

T

(

Bd−1

∫

Td−1

ϕd(|f(x)|) dx1 . . . dxk−1dxk+1 . . . dxd + 1
)

dxk ≤

≤ (2π)2Bd−1

y

(
∫

Td

ϕd(|f(x)|) dx + 1

)

. (12)

According to (10),

{

x ∈ T
d : MΛ(f,x) > y

}

⊂
{

x ∈ T
d : M(f,x) >

y

2

}

⋃

( d
⋃

k=2

{

x ∈ T
d : Mk(f,x) >

πy

2(d− 1)C

}

)

.

(13)
Combining (13), (4) and (12), we obtain (5) with the constant Ad = 2Kd + 8π(d − 1)2Bd−1C.

Now, we only need to prove the validity of statement (6). To this end, let us use statement (5)
proved above.

From (5), it follows that the majorant MΛ(f,x) is finite almost everywhere on T
d for all f ∈

ϕd(L)(T
d), in particular, for all f ∈ L2(T d). Applying Stein’s theorem on limits of sequences of

operators [20, Theorem 1], we see that the operator MΛ(f, · ) is of weak type (2, 2), i.e., there is a
constant A2

d > 0 such that, for all y > 0 and f ∈ L2(T d),

mes
{

x ∈ T
d : MΛ(f,x) > y

}

≤ A2
d

y2

∫

Td

|f(x)|2 dx. (14)

Similarly, from [20, Theorem 3], we can obtain the following refinement of statement (5): there is
a constant Ād > 0 such that, for all y ≥ ȳd/2 = Ād and f ∈ ϕd(L)(T

d),

mes
{

x ∈ T
d : MΛ(f,x) > y

}

≤
∫

Td

ϕd

(

Ād|f(x)|
y

)

dx ≤ Ād

y

∫

Td

ϕd(|f(x)|) dx. (15)
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Further, let f ∈ ϕd(L)(T
d) and y > 0. Suppose that

g(x) = gy(x) =

{

f(x), |f(x)| > y,

0, |f(x)| ≤ y;
h(x) = hy(x) = f(x)− g(x).

Define λf (y) = mes
{

x ∈ T
d : MΛ(f,x) > y

}

. Then

λf (y) ≤ mes
{

x ∈ T
d : MΛ(g,x) > y/2

}

+mes
{

x ∈ T
d : MΛ(h,x) > y/2

}

= λg(y/2) + λh(y/2).

From this, using the equality

∫

Td

MΛ(f,x) dx = −
∞
∫

0

y dλf (y) =

∞
∫

0

λf (y) dy

(see, for example, [21, Chapter 1, § 13, formula (13.6)]), we obtain

∫

Td

MΛ(f,x) dx ≤ ȳd(2π)
d +

∞
∫

ȳd

λf (y) dy ≤ ȳd(2π)
d +

∞
∫

ȳd

λg

(y

2

)

dy +

∞
∫

ȳd

λh

(y

2

)

dy. (16)

Taking into account that g ∈ ϕd(L)(T
d) and h ∈ L∞(Td) ⊂ L2(Td) and applying estimate (15) to

λg(y/2) and estimate (14) to λh(y/2), from (16), we obtain

∫

Td

MΛ(f,x) dx ≤ ȳd(2π)
d + 2Ād

∞
∫

ȳd

(

1

y

∫

Td

ϕd(|g(t)|) dt
)

dy + 4A2
d

∞
∫

ȳd

(

1

y2

∫

Td

|h(t)|2 dt
)

dy =

= ȳd(2π)
d + 2Ād

∞
∫

ȳd

(

1

y

∫

{t∈Td: |f(t)|>y}

ϕd(|f(t)|) dt
)

dy + 4A2
d

∞
∫

ȳd

(

1

y2

∫

{t∈Td: |f(t)|≤y}

|f(t)|2 dt
)

dy.

(17)
Applying Fubibi’s theorem to the integrals on the right hand side of (17), we conclude that

∫

Td

MΛ(f,x) dx ≤ 2Ād

∫

{t∈Td: |f(t)|>ȳd}

ϕd(|f(t)|)
( |f(t)|
∫

ȳd

dy

y

)

dt+

+ 4A2
d

∫

Td

|f(t)|2
( ∞
∫

|f(t)|

dy

y2

)

dt+ ȳd(2π)
d,

hence, statement (6) follows easily.

Finally, the Λ-convergence of the Fourier series of an arbitrary function from the class ϕd(L)(T
d)

can be obtained from (5) by means of standard arguments (see, for example, [12, Lemma 3]). The-
orem 1 is proved. �
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A CHARACTERIZATION OF EXTREMAL ELEMENTS
IN SOME LINEAR PROBLEMS1

Vitalii V. Arestov
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Ural Branch of the Russian Academy of Sciences and

Ural Federal University, Ekaterinburg, Russia
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Abstract: We give a characterization of elements of a subspace of a complex Banach space with the
property that the norm of a bounded linear functional on the subspace is attained at those elements. In
particular, we discuss properties of polynomials that are extremal in sharp pointwise Nikol’skii inequalities for
algebraic polynomials in a weighted Lq-space on a finite or infinite interval.

Key words: Complex Banach space, Bounded linear functional on a subspace, Algebraic polynomial,
Pointwise Nikol’skii inequality.

1. Bounded linear functionals in complex Banach spaces

1.1. Introduction. Statement of the problem

Let X = XC be a complex Banach space (more precisely, a Banach space over the field C of
complex numbers), let S(X) be its unit sphere, and let X∗ = X∗

C be the dual space of X, i.e., the
space of complex-valued bounded linear (over the field C of complex numbers) functionals F on X
with the norm

‖F‖X∗ = sup{|F (x)| : x ∈ X, ‖x‖X = 1}.
Let P be a (closed) subspace of X, and let ψ be a bounded linear functional on P . We denote

by
D(ψ;P ) = sup{|ψ(p)| : p ∈ P, ‖p‖X = 1} (1.1)

the norm of the functional ψ on the subspace P . In what follows, we assume that ψ 6≡ 0, so that
D(ψ; P ) > 0. The value D(ψ;P ) is the smallest possible (the best) constant in the inequality

|ψ(p)| ≤ D(ψ; P )‖p‖X , p ∈ P. (1.2)

Nonzero elements p of the subspace P with the property that inequality (1.2) turns into an
equality for them (if such elements exist) will be called extremal elements in this inequality. Ele-
ments p of the unit sphere S(P ) = S(X)∩P of the subspace P that solve problem (1.1), i.e., those
with the property that the supremum in (1.1) is attained at p, will be called extremal elements in
problem (1.1). We will use the same terminology also in other similar situations. It is clear that an
element % ∈ P is extremal in inequality (1.2) if and only if the element %/‖%‖X is extremal in prob-
lem (1.1). In this sense, extremal elements in problem (1.1) and inequality (1.2) coincide. The aim
of this papers is exactly to characterize extremal elements in inequality (1.2) or in problem (1.1),
which is the same.

1This work was supported by the Program of the Ural Branch of the Russian Academy of Sciences (project
no. 15-16-1-4)
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On the set
P [1](ψ) = {p ∈ P : ψ(p) = 1} (1.3)

of elements of P where the functional ψ takes the value 1, we consider the value

∆(ψ;P ) = inf{‖p‖X : p ∈ P [1](ψ)} (1.4)

which is the least deviation of class (1.3) from zero in X. It is clear that ∆(ψ; P ) = 1/D(ψ; P ).
Moreover, extremal elements in problem (1.4) and inequality (1.2) coincide. More precisely, each
extremal element of problem (1.4) is extremal in (1.2); conversely, if % is an extremal element
of inequality (1.2), then %/ψ(%) is extremal in (1.4). Thus, determining the sharp constant in
inequality (1.2) is equivalent to determining the least deviation (1.4) of class (1.3) from zero.

Value (1.4) can be interpreted as the best approximation of an arbitrary element ρ ∈ P [1](ψ)
in the space X by the annihilator

P (ψ) = P [0](ψ) = {p ∈ P : ψ(p) = 0} (1.5)

of the functional ψ in P , namely,

∆(ψ; P ) = inf{‖ρ− p‖X : p ∈ P (ψ)}. (1.6)

There is a rich theory developed to study problems of type (1.4) in real Banach spaces. This
theory is based on arguments of duality; see, e.g., [13, Ch. 2]. In order to use this approach in the
complex case, however, one needs in addition to discuss some questions of geometry of complex
spaces.

In papers [1–4] coauthored by the author of the present paper, the authors studied the Nikol’skii
inequality between the uniform norm of a polynomial and its norm in the space Lv

q = Lv
q(I) with a

weight υ and 1 ≤ q < ∞ on the set of algebraic polynomials Pn of degree at most n ≥ 1 on a finite
or infinite interval I. One of the steps in these investigations was the study of the sharp inequality

|pn(z0)| ≤ D ‖pn‖Lυ
q
, pn ∈ Pn, (1.7)

for an end point z0 of the interval I. Inequality (1.7) is a special case of (1.2) for X = Lv
q(I),

P = Pn, and ψ(pn) = pn(z0). Results of [1–4] related to inequality (1.7) motivated the author to
consider problem (1.2).

1.2. Main result

We will study problem (1.1) under the following two assumptions.

(R) Assume that the norm of any bounded linear functional φ on P , i.e., φ ∈ P ∗, is attained
at some point p = p(φ) ∈ P.

According to James’ theorem [11] (see also [10, p. 643], [17, Ch. 1, Sect. 2, Corollary 2.4]), this
property is equivalent to the reflexivity of the space P . Note that property (R) is fulfilled if the
subspace P is finite-dimensional.

If a functional F ∈ X∗, F 6= 0, attains its norm at an element x ∈ X, x 6= 0, and if F (x) > 0,
or—which is the same in this case—if

F (x) = ‖F‖X∗ ‖x‖X , (1.8)

we will say that the functional F possesses the N -property at the element x, or, shortly, the N [x]-
property. By the complex variant of the Hahn–Banach Theorem (cf. [8, Ch. II, Sect. 3, Theorem 11]
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or [12, Ch. III, Sect. 5.4]), a functional with this property always exists. However, it may be not
unique. In a complex Banach space, a functional F ∈ X∗ is called a supporting functional at a
point x (or, more precisely, a supporting or a tangent functional at a point x to the sphere S‖x‖(X)
of radius ‖x‖ with center at 0), if its real part f = Re F is a real supporting (tangent) functional,
see, e.g., [8, Ch. V, Sect. 9.4]. Indeed, for a functional F ∈ X∗ in a complex Banach space, the
properties that the functional possesses the N -property at a point x and that its real part is a
supporting functional are equivalent; we will discuss this below in Section 1.3. Starting from this
point, we will interpret the N [x]-property of a functional F ∈ X∗ as a property of the functional
F ∈ X∗ to be a supporting functional at the point x.

A point x ∈ S(X) is called a smooth point of the sphere S(X) if there exists only one supporting
functional at x. If every point of the unit sphere of a space is a smooth point, then the space is
called smooth. For details concerning smooth points of the unit sphere and, in general, of convex
closed sets in real Banach spaces see, e.g., [7, Ch. I, Sect. 2, Theorems 1, 2] and [6, Ch. VII,
Sect. 2]. The smoothness in complex Banach spaces has some special features; it will be discusses
in Section 1.3 below.

The second assumption is the following one.

(Γ) Assume that all points of the unit sphere S(P ) = S(X) ∩ P of the subspace P are smooth
points of the unit sphere S(X) of the space X.

Taking into account that problem (1.1) has the interpretation (1.4) in terms of approximations,
one may expect the following result.

Theorem 1. Assume that a Banach space X and its subspace P satisfy properties (R) and (Γ).
Then the norm of a bounded linear functional ψ on P is attained at an element % ∈ S(P ) if and
only if the supporting functional F = F [%] ∈ X∗ of the element % ∈ P vanishes on the set (1.5),
i.e.,

F [%](s) = 0 for all s ∈ P (ψ). (1.9)

Under the assumptions of the theorem, an extremal element with the property that the norm of
the functional ψ on P is attained at it always exists but it is not necessarily unique; see the example
after the proof of Theorem 4 in Section 2.2. To ensure the uniqueness of the extremal element, one
needs additional restrictions on the problem. For example, if the space X is strictly normed then
the extremal element is unique for every (bounded linear) functional on every subspace.

In the first section of the present paper, Theorem 1 will be proved and discussed. In the second
section, Theorem 1 will be applied to obtain a corresponding statement for the pointwise inequality

|pn(z)| ≤ D(z) ‖pn‖Lυ
q (I), pn ∈ Pn,

where z ∈ I. In papers [1–4], extremal polynomials of inequality (1.7) (in the case when z is
an end point of an interval) were characterized in terms that are formally different from those of
Theorem 1. We will show in Section 2.2 that, in fact, Theorem 2 from [3] and its analogs from
[1, 2, 4] follow from Theorem 1.

We will prove Theorem 1 using the natural arguments in terms of duality. However, the fact
that X is a complex Banach space causes additional difficulties. In particular, one needs to first
discuss the smoothness property for points of the unit sphere S(X) of a (complex) Banach space X.

1.3. Smoothness in complex Banach spaces

In real Banach spaces, a smooth point of the unit sphere can be for example characterized by
the fact that the norm of the space is Gateaux differentiable at this point. For a real Banach space,
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the strict convexity of the dual space is a sufficient condition for the smoothness of the original
space. The inverse statement does not hold in the general case. The smoothness of a space implies
the strict convexity of the dual space only for reflexive spaces. Details on these topics can be
found, e.g., in [7, Ch. I, Sect. 2, Theorems 1, 2] and [6, Ch. VII, Sect. 2]. In this section, we discuss
smoothness in complex Banach spaces. The author neither claims that the results are novel nor
that the ideas are original.

Let X = XC be a complex Banach space. We also may consider this space as a real Banach
space X = XR, i.e., a linear space over the field R of real numbers. Let X∗

R be the corresponding
dual (real) Banach space, i.e., the space of real-valued bounded linear (over the field R of real
numbers) functionals on XR.

The following statement is not new, cf. [8, Ch. II, Sect. 3, Theorem 11] or [9, Ch. 10, Sect. 1,
Lemma 1.1]. We will give it here in the form we need in what follows. Moreover, it is useful for
our purposes to give a proof of this statement.

Lemma 1. The formula
F (x) = f(x)− if(ix), x ∈ X, (1.10)

where F ∈ X∗
C and f ∈ X∗

R, sets a one-to-one correspondence between the spaces X∗
C and X∗

R.
Moreover, mapping (1.10) is an isometry, i.e.,

‖F‖X∗
C

= ‖f‖X∗
R
. (1.11)

P r o o f. For a complex functional F ∈ X∗
C, we consider its real part f = ReF ; it is a functional

from X∗
R. The functional F is uniquely determined by f = ReF by means of formula (1.10).

Indeed, define g = −ImF , then F (x) = f(x) − ig(x), x ∈ X. By the (complex) homogeneity of
the functional F , we have F (x) = −iF (ix) = −if(ix)+ g(ix), x ∈ X. Consequently, g(x) = f(ix),
which proves representation (1.10).

Conversely, let f ∈ X∗
R. Consider a (complex) functional F given by formula (1.10). Obviously,

F is additive. Next we will show that it is (complex) homogeneous. For a point x ∈ X and a
number ζ = α + iβ ∈ C, we have

F (ζx) = F ((α + iβ)x) = f((α + iβ)x)− if(i(α + iβ)x) =

= αf(x) + βf(ix)− iαf(ix) + iβf(x) = (α + iβ)f(x) + (β − iα)f(ix) =

= (α + iβ)(f(x)− if(ix)) = ζF (x).

Thus, we see that functional (1.10) is homogeneous.
It follows that formula (1.10) sets a one-to-one correspondence between the complex and the

real dual spaces X∗
C and X∗

R, respectively.
Now we show that (1.10) is an isometry, i.e., property (1.11) holds. The inequality ‖f‖X∗

R
≤

‖F‖X∗
C

is obvious. Further on, for an arbitrary point x ∈ X and real θ, we have

eiθF (x) = F
(
eiθx

)
= f

(
eiθx

)
− if

(
ieiθx

)
.

In particular, for θ = − arg(F (x)), the latter equality takes the form

|F (x)| = f
(
eiθx

)
− if

(
ieiθx

)
= f

(
eiθx

)
.

Consequently, |F (x)| ≤ ‖f‖X∗
R
‖x‖, x ∈ X, and therefore the estimate ‖F‖X∗

C
≤ ‖f‖X∗

R
holds. Thus,

(1.11) holds. This proves the lemma. ¤

All further statements in this section are in fact consequences of Lemma 1.
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Lemma 2. A complex functional F ∈ X∗
C attains its norm at a point x ∈ S(X) and F (x) > 0

if and only if its real part f = ReF has the same properties.

P r o o f. Suppose F is as described in the lemma. By (1.8) and (1.11), we have

‖F‖X∗
C

= ‖f‖X∗
R

= F (x) = f(x).

Consequently, f has the same properties as F . Conversely, suppose f has the described properties.
Then, by (1.11), we have

f(x) ≤
√

(f(x))2 + (f(ix))2 = |F (x)| ≤ ‖F‖X∗
C

= ‖f‖X∗
R
.

Consequently, f(x)=F (x)=‖F‖X∗
C
; hence, F (x)>0. Thus, F has the described properties, too. ¤

As we have mentioned above, a functional F ∈ X∗ in a complex Banach space is called a
supporting functional at a point x (to the sphere S‖x‖(X) of radius ‖x‖ with center at 0) if its
real part ReF is a (real) supporting functional, cf. [8, Ch. V, Sect. 9.4]. Due to Lemma 2, the
N -property of the functional F ∈ X∗ at a point x is equivalent to the property that F ∈ X∗ is a
supporting functional at this point.

Theorem 2. Assume that the space X∗ = X∗
C of complex bounded linear functionals in a

complex Banach space X is strictly convex. Then X is smooth.

P r o o f. Recall that a Banach space is called strongly convex if its unit sphere does not contain
any non-degenerate segments, see, e.g. [8, Ch. V, Sect. 11.7]. As we have mentioned above, the
statement of the theorem is well-known for real Banach spaces, cf. [7, Ch. I, Sect. 2, Theorems 1
and 2], [6, Ch. VII, Sect. 2].

Using Lemma 1, it is not difficult to see that X∗
C is strongly convex if and only if X∗

R is. Thus,
under the assumptions of the theorem, the space XR is smooth. This means that, at any point
x ∈ S(X), there is only one real bounded linear functional f whose norm is equal to 1 and is
attained at x, with f(x) > 0. By Lemma 1, this implies that, at every point x ∈ S(X), there is
only one functional F ∈ X∗

C with the unit norm and with the N -property at the point x. But this
means that the space X = XC is smooth. ¤

1.4. Proof of Theorem 1

Theorem 1 follows from the two auxiliary statements proved below. In what follows, we will
suppose without loss of generality that all supporting functionals F = F [x] at points x ∈ X, x 6= 0,
have the norm ‖F‖X∗ = 1.

1.4.1. Auxiliary statements

Lemma 3. Assume that a Banach space X and its subspace P satisfy properties (R) and (Γ).
Let % ∈ P , % 6≡ 0, be an extremal element of problem (1.1), and let F = F [%] ∈ S(X∗) be the
supporting functional at the element % ∈ P . Then the following representation holds:

ψ(p) = γ(P )F [%](p), p ∈ P, (1.12)

where γ(P ) is a constant with the property |γ(P )| = D(ψ, P ).
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P r o o f. The functional ψ is a bounded linear functional on the space P endowed with the
norm ‖ · ‖X , and the norm of this functional on P is equal to (1.1). By the Hahn–Banach theorem
(cf. [8, Ch. II, Sect. 3, Theorem 11] or [12, Ch. III, Sect. 5.4]), the functional ψ can be extended
to a functional on the whole space X with the same norm; we denote this extension by Ψ.

Since the functional Ψ is an extension of the functional ψ from P to X with the same norm, the
norm of the functional Ψ in the space X is attained at an extremal element % ∈ P of problem (1.1).
By property (Γ), the functional Ψ differs from the functional F = F [%] ∈ X∗ only by a constant
factor γ(P ):

Ψ(p) = γ(P )F [%](p), p ∈ X.

In particular, (1.12) holds. Taking p = % in (1.12), we see that |γ(P )| = D(ψ, P ). This proves
representation (1.12). ¤

Lemma 4. Assume that a Banach space X and its subspace P satisfy properties (R) and (Γ).
If an element % ∈ P , % 6≡ 0, or, more precisely, the supporting functional F = F [%] ∈ S(X∗) at the
element % has property (1.9), then % is an extremal element of problem (1.1).

P r o o f. Assume that an element % ∈ P , % 6≡ 0, has property (1.9); without loss of generality,
we may assume that ‖%‖X = 1. We consider the linear functional on the set P defined by the
formula

Ψ0(p) = F [%](p). (1.13)

For any p ∈ P , the element s = ψ(%)p− ψ(p)% belongs to the set P (ψ). Due to (1.9), we have

ψ(%)Ψ0(p)− ψ(p)Ψ0(%) = 0. (1.14)

By (1.8) and (1.13), we have Ψ0(%) = F [%](p) = 1. Thus, (1.14) can be rewritten as

ψ(p) = ψ(%)Ψ0(p), p ∈ P. (1.15)

We conclude that
|ψ(p)| = |ψ(%)| |Ψ0(p)| ≤ |ψ(%)| ‖p‖.

Consequently, D(ψ, P ) ≤ |ψ(%)|. Since ‖%‖X = 1, we have D(ψ, P ) ≥ |ψ(%)|. It follows that
D(ψ, P ) = |ψ(%)| and the element % is extremal in problem (1.1). ¤

1.4.2. Proof of Theorem 1

Formula (1.12) implies that an extremal element of problem (1.1) has property (1.9). According to
Lemma 4, the inverse statement holds. This proves Theorem 1. ¤

2. Bounded linear functionals on the set of algebraic polynomials
in spaces Lυ

q , 1 ≤ q < ∞

Assume that I is a finite or infinite closed interval of the real line and υ is a nonnegative function
that is integrable and almost everywhere nonzero on I; we will call such functions weights on I.
Denote by Lq = Lυ

q (I), 1 ≤ q < ∞, the space of (complex-valued) measurable functions f on I
such that the product |f |qυ is integrable on I; this is a Banach space with the norm

‖f‖Lυ
q (I) =

( ∫

I
|f(x)|qυ(x) dx

)1/q

, f ∈ Lυ
q (I).
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For q = ∞, we assume that Lυ∞(I) is the space L∞ = L∞(I) of essentially bounded functions on I
with the norm

‖f‖L∞(I) = ess sup {|f(t)| : t ∈ I}.
Let Pn = Pn(C) for n ≥ 0 be the set of algebraic polynomials (in one variable) of degree at

most n with complex coefficients. We will assume that Pn ⊂ Lυ
q (I); this condition is equivalent to

the fact that the function 1 + |x|n belongs to the space Lυ
q (I).

2.1. Arbitrary bounded linear functionals on the space of algebraic polyno-
mials

Assume that ψ is a linear functional on Pn. Since Pn is finite-dimensional, the functional ψ
on Pn is bounded and its norm

D(ψ; Pn)q = sup{|ψ(p)| : p ∈ Pn, ‖p‖Lυ
q (I) = 1} (2.1)

is attained at a certain polynomial %n = %ψ,Pn,q ∈ Pn with the property

‖%ψ,Pn,q‖Lq(I,υ) = 1.

In the study of extremal problems for polynomials, it is an important fact that the value Dn(ψ) =
D(ψ; Pn)q is the smallest possible (the best) constant in the inequality

|ψ(p)| ≤ Dn(ψ)‖p‖Lυ
q (I), p ∈ Pn. (2.2)

Inequality (2.2) turns into an equality at the polynomial %n, i.e., %n is extremal in (2.2). It is clear
that the polynomial c%n with an arbitrary constant c ∈ C is also extremal in (2.2). If all extremal
polynomials in inequality (2.2) have the form c%n, c ∈ C, we say that %n is the unique extremal
polynomial of inequality (2.2) (or of problem (2.1)). In what follows, we assume that ψ 6≡ 0; this
is equivalent to the fact that |ψ(%n)| = D(ψ; Pn) > 0.

Consider the annihilator
Pn(ψ) = {p ∈ Pn : ψ(p) = 0} (2.3)

of the functional ψ in the set Pn. This set is a subspace of Pn of codimension 1. This subspace
is formed by polynomials of the form

s = p− ψ(p)
ψ(%n)

%n, p ∈ Pn.

Theorem 3. Let 1 ≤ q < ∞. A polynomial %n = %ψ,Pn,q ∈ Pn which is extremal in inequal-
ity (2.2) exists. A polynomial %n ∈ Pn is extremal if and only if

∫

I
s(x)υ(x)|%n(x)|q−1sign %n(x)dx = 0 for all s ∈ Pn(ψ). (2.4)

In the case when 1 < q < ∞, this extremal polynomial is unique (up to a constant factor).

P r o o f. We check that all assumptions of Theorem 1 are fulfilled under the assumptions
of Theorem 3. The set Pn = Pn(C) of algebraic polynomials of degree at most n is a finite-
dimensional subspace of Lυ

q (I). This guarantees that property (R) holds.
Now let us verify property (Γ). We start with the case q = 1. The dual space of L = Lυ

1(I)
is the space L∞ = L∞(I) of essentially bounded functions on I. A functional Φ ∈ X∗ has the
representation

Φ(f) =
∫

I
f(t)φ(t)υ(t)dt, f ∈ Lυ

1(I), (2.5)

where φ ∈ L∞(I) and ‖Φ‖L∗ = ‖φ‖L∞(I).
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For a pair of functions φ ∈ L∞(I) and f ∈ Lυ
1(I), the inequality

∣∣∣∣
∫

I
f(t)φ(t)υ(t)dt

∣∣∣∣ ≤ ‖φ‖L∞(I)‖f‖Lυ
1 (I)

turns into an equality if and only if the following three conditions hold:
(1) the set

I(φ) = {t ∈ I : |φ(t)| = ‖φ‖L∞(I)}
where the absolute value of the function φ takes its maximum has a positive measure;

(2) the function f vanishes almost everywhere outside the set I(φ);
(3) the product fφ has the same sign almost everywhere on the set

Θf = {t ∈ I : f(t) 6= 0}.
Taking into account these observations, it is not difficult to conclude that a supporting functional

of a function f ∈ S(Lυ
1(I)) has the form (2.5), where the function φ satisfies the following conditions:

φ = sign f almost everywhere on Θf and |φ| ≤ 1 almost everywhere outside Θf .
Consequently, a function f ∈ S(Lυ

1(I)) is a smooth point of the unit sphere of the space Lυ
1(I)

if and only if f is nonzero almost everywhere on I; the supporting functional in this case has the
form (2.5) with the function φ = sign f . In particular, this property holds in the case if f is an
algebraic polynomial. Thus, under the assumptions of Theorem 3 for q = 1, property (Γ) holds.

For 1 < q < ∞, the dual space of Lq = Lυ
q (I) is Lq′ = Lυ

q′(I), 1/q + 1/q′ = 1. The space Lυ
q′(I)

with 1 < q′ < ∞ is uniformly convex; hence, the space Lυ
q (I) is smooth.

Thus, we have shown that all assumptions of Theorem 1 are fulfilled under the assumptions
of Theorem 3. Thus, also the statement of Theorem 1 holds. For 1 < q < ∞, the space Lυ

q (I) is
uniformly smooth, hence, the extremal polynomial in inequality (2.2) is unique. This proves the
theorem. ¤

2.2. Pointwise Nikol’skii inequality for algebraic polynomials on an interval

Let u be another, this time continuous weight on I. Along with Lυ
q (I), we consider the space

C = C(I, u) of complex-valued continuous functions f such that the product fu is bounded on I,
endowed the (uniform weighted) norm

‖f‖C(I,u) = sup{|f(x)u(x)| : x ∈ I}.
We will assume that Pn is contained not only in Lυ

q (I) but also in C(I, u); the latter is equivalent
to the fact that the function u(x)(1 + |x|n) is bounded on I.

Denote by M(n) = M(n, u, υ)q the best (the smallest possible) constant in the inequality

‖p‖C(I,u) ≤ M(n) ‖p‖Lυ
q (I), p ∈ Pn, (2.6)

on the set Pn. Inequality (2.6) is a special case of an inequality between different metrics, or the
Nikol’skii inequality. Such inequalities appeared for the first time in Nikol’skii’s paper [15] and,
shortly after that, in a paper by Szegő and Zygmund [18]. Similar inequalities and, more generally,
inequalities between the uniform norm and weighted integral norms of algebraic and trigonometric
polynomials and their derivatives have been studied over a period of more than 150 years, starting
with the works of Chebyshev and his students—the Markov brothers. Further information and
references on this topic can be found, e.g., in monographs [5, 14] and papers [2, 3, 16].

Along with (2.6), we consider the pointwise inequality

|pn(z)| ≤ Dn[z] ‖pn‖Lυ
q (I), pn ∈ Pn, (2.7)
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with the smallest possible constant Dn[z] = D(n, υ, q; z) for points z ∈ I. Such inequalities are of
independent interest, but they are also important in connection with inequality (2.6) since

M(n) = sup{Dn[z] u(z) : z ∈ I}.

In a number of important cases, the product Dn[z] u(z) takes its maximal value with respect to
z ∈ I at an end point of the interval I; see, e.g., [2–4, 16] and the references therein.

In the setup we consider in this section, (1.6) and (1.3) take the form

∆n[z] = inf{‖pn‖Lυ
q (I) : pn ∈ Pn[z]}, (2.8)

Pn[z] = {pn ∈ Pn : pn(z) = 1}.

Theorem 4. For 1 ≤ q < ∞, the following is true for an extremal polynomial in inequal-
ity (2.7).

(1) An extremal polynomial %n in inequality (2.7) exists, it has real coefficients, all its roots
are real, and its degree is at least n − 1. In the case when 1 < q < ∞, the extremal polynomial is
unique.

(2) A polynomial %n ∈ Pn is extremal in inequality (2.7) if and only if
∫

I
pn−1(x)(x− z)υ(x)|%n(x)|q−1sign %n(x)dx = 0 for all pn−1 ∈ Pn−1. (2.9)

P r o o f. Inequality (2.7) is a special case of inequality (2.2) for the functional ψ(p) = p(z),
p ∈ Pn. In this case, set (2.3) is formed by polynomials of the form s(x) = (x − z)pn−1(x),
pn−1 ∈ Pn−1. Therefore, condition (2.4) for an extremal polynomial %n in inequality (2.7) takes
the form (2.9). Thus, the second statement of Theorem 4 is proved. Without loss of generality, we
may assume that %n(z) = 1; for, consider %n/%n(z) instead of the polynomial %n, if necessary.

The polynomial %n is also a solution of problem (2.8). We will study some properties of the
polynomial %n using this fact. In general, the coefficients {ck}n

k=0 of the polynomial %n are complex,
namely, ck = ak + ibk, ak, bk ∈ R. We write %n in the form %n = un + ivn, where

un(x) = (Re %n)(x) =
n∑

k=0

akx
k, vn(x) = (Im %n)(x) =

n∑

k=0

bkx
k

are real polynomials (on R). Obviously, un(z) = %n(z) = 1; hence, un ∈ Pn[z]. If bk 6= 0 for at
least one k, 0 ≤ k ≤ n, then the strict inequality |un(x)| < |%n(x)| holds for all x ∈ I except for
zeros of the polynomial vn. Consequently, the strict inequality ‖un‖Lυ

q (I) < ‖%nn‖Lυ
q (I) holds for

the norms of these polynomials. The latter is a contradiction to the fact that the polynomial %n is
extremal in (2.8). This proves that the coefficients of the polynomial %n are real.

Assume that the polynomial %n has a zero ζ which is not real. Since the polynomial %n is real,
we conclude that ζ is also a zero of %n. Consequently, %n(x) = qn−2(x)|x − ζ|2, where qn−2 is a
polynomial of degree at most n− 2. The polynomial pn−1(x) = qn−2(x)(x− z) has degree at most
n− 1. The left-hand side of (2.9) is positive for this polynomial:

∫

I
pn−1(x)(x− z)υ(x)|%n(x)|q−1sign %n(x)dx =

=
∫

I
(x− z)2υ(x)|qn−2(x)|q|x− ζ|2(q−1)sign qn−2(x)dx > 0.

This contradicts property (2.9). Thus, the polynomial %n can have only real zeros.
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Finally, let us check that the exact degree of the polynomial %n is n or n − 1. Indeed, if %n

has degree at most n − 2, then the polynomial pn−1(x) = (x − z)%n(x) has degree at most n − 1.
The integral on the left-hand side of (2.9) is positive for this polynomial. This contradicts prop-
erty (2.9). The theorem is proved. ¤

Example. Consider the special case of problem (2.7) in the space L = L(−1, 1) of functions
that are integrable over the interval I = [−1, 1] with the unit weight, with n = 1 and z = 0. In
other words, we are interested in the sharp inequality

|p(0)| ≤ D‖p‖L, p ∈ P1. (2.10)

It is easy to verify that we have the formula

p(0) =
1
2

∫ 1

−1
p(t)dt, p ∈ P1.

Using this formula, it is straightforward that the best constant in inequality (2.10) is D = 1/2 and
that every polynomial of constant sign on (−1, 1) is extremal. Thus, an extremal polynomial in
inequality (2.7) may be not unique, may have (real) zeros outside the interval I, and may have the
exact degree n− 1.

For an end point z of the interval I, we are able to derive more information about the properties
of extremal polynomials in inequality (2.7) from Theorem 4. In this case, the product (x− z)υ(x)
on the left-hand side of (2.9) has constant sign on I. Therefore, using property (2.9), it is not
difficult to see that an extremal polynomial %n has degree exactly n, all n zeros of this polynomial
are simple and lie in the interior of the interval I. Property (2.9) implies also that the extremal
polynomial %n is unique for all 1 ≤ q < ∞. Indeed, let %n and ηn be two polynomials that
solve problem (2.8). The same property is true for their half-sum (%n + ηn)/2; therefore, we have
‖%n + ηn‖Lυ

q
= ‖%n‖Lυ

q
+ ‖ηn‖Lυ

q
. For 1 < q < ∞, it follows immediately that ηn = %n. For q = 1,

it only follows that the polynomials ηn and %n have the same sign almost everywhere on I. But
the zeros of these polynomials are simple and lie in the interior of the interval I; therefore, the
polynomials ηn and %n have the same set of zeros and, hence, it follows that these polynomials
coincide in the case when q = 1, too.

For a given weight υ and a given point z ∈ I, we define the weight

w(x) = |x− z| υ(x) (2.11)

on the interval I. We denote by %∗n = %∗n,w,q the polynomial of degree n ≥ 1 with the unit leading
coefficient that deviates the least from zero in the space Lw

q = Lw
q (I), i.e., is a solution of the

problem
min{‖pn‖Lw

q
: pn ∈ P1

n} = ‖%∗n‖Lw
q

on the set P1
n of polynomials of degree n with the leading coefficient equal to 1.

The polynomial %∗n can be characterized by the property that the function |%∗n|q−1sign %∗n is
orthogonal to the space Pn−1 (see, for example, [13, Ch. 3, Sect. 3.3, Theorems 3.3.1, 3.3.2]), i.e.,

∫

I
w(x) pn−1(x)|%∗n(x)|q−1sign %∗n(x) dx = 0, pn−1 ∈ Pn−1.

This property coincides with property (2.9). Therefore, the polynomials %n and %∗n differ only by a
constant factor. Thus, the following statement holds.
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Corollary 1. Let z be an end point of the interval I, 1 ≤ q < ∞, and n ≥ 1. The polynomial
%∗n of degree n with the unit leading coefficient that deviates the least from zero in the space Lw

q with
weight (2.11) is the unique extremal polynomial in inequality (2.7).

Special cases of this statement are given in [1, Theorem 1], [2, Theorem 2], [3, Theorem 2],
[4, Theorem 3]; they have been proved there by means of other arguments.
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Abstract: A new approach to analyze the nuclear gamma resonance (NGR) spectra is presented and justified
in the paper. The algorithm successively spots the Lorentz lines in the experimental spectrum by a certain
optimization procedures. In Mössbauer spectroscopy, the primary analysis is based on the representation of the
transmission integral of an experimental spectrum by the sum of Lorentzians. In the general case, a number of
lines and values of parameters in Lorentzians are unknown. The problem is to find them. In practice, before
the experimental data processing, one elaborates a model of the Mössbauer spectrum. Such a model is usually
based on some additional information. Taking into account physical restrictions, one forms the shape of the lines
which are close to the normalized experimental Mössbauer spectrum. This is done by choosing the remaining
free parameters of the model. However, this approach does not guarantee a proper model. A reasonable way to
construct a structural NGR spectrum decomposition should be based on its model-free analysis. Some model-
free methods of the NGR spectra analysis have been implemented in a number of known algorithms. Each
of these methods is useful but has a limited range of application. In fact, the previously known algorithms
did not react to hardly noticeable primary features of the experimental spectrum, but identify the dominant
components only. In the proposed approach, the difference between the experimental spectrum and the known
already determined part of the spectral structure defines the next Lorentzian. This method is effective for
isolation of fine details of the spectrum, although it requires a well-elaborated algorithmic procedure presented
in this paper.

Key words: Nuclear gamma resonance (NGR) spectra.

Introduction

In Mössbauer spectroscopy, the primary analysis of the NGR spectrum structure is based on
the representation of the transmission integral of an experimental spectrum f(x) by the following
sum of Lorentzians:

f(x) =

n∑

s=1

As

1 +
(x− xs

bs

)2 , As > 0, bs > 0, x ∈ R, (1)

where xs is the position of the maximum of the sth Lorentz line on the velocity scale, and 2bs is
its width. In the general case, the number n of lines and the values of parameters As, xs, and bs
are unknown. The problem is to find them for a given function f(x). The Mössbauer spectrum is
always measured in some bounded velocity range. The maximal number of lines in the spectrum
is limited by the number of probable positions of the Mössbauer atom in the crystal lattice and
by the nature of changes of the nuclear energy levels (e.g., isomer shift, quadropole splitting, or
hyperfine splitting).

For most of metallic alloys and oxide compounds, the evaluation of the structural parameters
of the Mössbauer spectrum is a mathematically difficult nonlinear problem.



34 Natalia V. Baidakova, Nikolai I. Chernykh, Valerii M. Koloskov, Yurii N. Subbotin

In practice, before the experimental data processing, one elaborates a model of the Mössbauer
spectrum. Such a model is usually based on some additional information on the concentration,
the structural state, and the charge state of Mössbauer atoms in the material. Then, taking into
account physical restrictions, one forms the shape of the lines which are close (in the sense of the
minimum of χ2-criterion) to the normalized experimental Mössbauer spectrum. This is done by
choosing the remaining free parameters of the model. However, this approach does not guarantee
a proper, physically approved model. A reasonable way to construct a structural NGR spectrum
decomposition should be based on its model-free analysis. This can be done directly by solving
problem (1) and by further improving the model based on the results of other methods [1].

Some model-free methods of the NGR spectra analysis have been implemented in algorithms
for the density distribution of hyperfine fields, for the density distribution of isomer shifts with lines
in the Lorentz or Gauss forms [2], and for filtering and reducing noises [3]. Each of these methods
is useful but has a limited range of application. In fact, the previously known algorithms did not
react to hardly noticeable primary features of the spectrum, but identify the dominant components
only. This is caused by the least squares methods which are applied to the whole experimental
spectrum without any analysis of its details. In the presented approach, the difference between the
experimental spectrum and the known part of the spectral structure defines the next Lorentzian.
This method is effective for isolation of fine details of the spectrum, although it requires (see [4])
a well-elaborated algorithmic procedure presented in this paper.

1. Results and discussion

Below we give a detailed description and a proof of the new algorithm for the Mössbauer spectra
analysis. Let

ϕs(x) =
Asb

2
s

b2s + (x− xs)2
,

ϕ(x) = ϕ(x, b) =
b

b2 + x2
, (2)

and let
Φs(t) = [ϕ ∗ ϕs]

be the convolution of the functions ϕs(x) and ϕ(x). Then

Φs(t) = Φs(t, b) =
Asbsπ(b+ bs)

(b+ bs)2 + (t− xs)2
, s = 1, 2, . . . , n (3)

and

max
t

∣∣∣
∂rΦs(t, b)

∂br

∣∣∣ =
πAsbsr!

(b+ bs)r+1
s = 1, 2, . . . , n, r ∈ N, (4)

where the maximum is attained for t = xs only. Equality (4) follows easily from the following
formula:

( ∂

∂p

)r( p

p2 + ξ2

)
=

( ∂

∂p

)r( 1

2(p − iξ)
+

1

2(p + iξ)

)
=

(−1)r

2

( r!

(p− iξ)r+1
+

r!

(p+ iξ)r+1

)
.

Indeed, this equality implies the relations

∣∣∣
( ∂

∂p

)r( p

p2 + ξ2

)∣∣∣ =
∣∣∣
(−1)r

2

( r!

(p − iξ)r+1
+

r!

(p + iξ)r+1

)∣∣∣

=
∣∣∣
(−1)r(r)!

2

( 1

ρr+1 exp(−iϕ(r + 1))
+

1

ρr+1 exp(iϕ(r + 1))

)∣∣∣
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=
∣∣∣
(−1)r(r)!

2
·
exp(iϕ(r + 1)) + exp(−iϕ(r + 1))

ρr+1 exp(iϕ(r + 1)− iϕ(r + 1))

∣∣∣

=
∣∣∣
(−1)r(r)!

2
·
cos((r + 1)ϕ) + i sin((r + 1)ϕ) + cos((r + 1)ϕ) − i sin((r + 1)ϕ)

ρr+1

∣∣∣

=
∣∣∣
(−1)r(r)! cos((r + 1)ϕ)

ρr+1

∣∣∣ =
∣∣∣
(−1)r(r)! cos((r + 1)ϕ)

(p2 + ξ2)(r+1)/2

∣∣∣ ≤
r!

pr+1
,

where p > 0, ρ = (p2 + ξ2)1/2, and ϕ = arg(p + iξ) (ϕ = 0 for ξ = 0), and the equality is attained
only at the point ξ = 0.

Furthermore, we assume that

0 < b1 < b2 < · · · < bn, a > 0, b > 0 (5)

and consider only derivatives of even order when the absolute value sign in (4) can be omitted,
since

Φs(t) = Φs(t, b) =
Asbsπp

p2 + ξ2
,

where p = b+ bs > 0, and ξ = t− xs.

Assertion. Under assumption (5), the convolution of the functions f(x) in (1) and ϕ(x) =
ϕ(x, b) in (2) has the following asymptotic behavior as a positive integer k tends to infinity :

(b+ a)2k+1

πa(2k)!
max

t

( ∂

∂b

)2k
[ϕ ∗ f ]

=
(b+ a)2k+1

a
·

A1b1
(b+ b1)2k+1

[1 + o(1)] →





∞, for a > b1,
A1, for a = b1,
0, for 0 < a < b1.

(6)

Indeed, from (1), (3), and (4), it follows that

(b+ a)2k+1

πa(2k)!
max

t

( ∂

∂b

)2k
[ϕ ∗ f ](t) = max

t

n∑

s=1

(b+ a)2k+1

πa(2k)!

( ∂

∂b

)2k
Φs(t, b). (7)

Therefore,

b1A1

a

( b+ a

b+ b1

)2k+1[
1−

n∑

s=2

Asbs
A1b1

(b+ b1
b+ bs

)2k+1]

≤
(b+ a)2k+1

πa(2k)!
max

t

( ∂

∂b

)2k
[ϕ ∗ f ](t)

≤
(b+ a)2k+1

a

[ Ab1
(b+ b1)2k

+
n∑

s=2

Asbs
(b+ b1)2k+1

]

=
b1A1

a

( b+ a

b+ b1

)2k+1[
1 +

n∑

s=2

Asbs
A1b1

(b+ b1
b+ bs

)2k+1]
.

(8)

Now, restrictions (5) and inequalities (8) imply (6).

Remarks. By the assertion, for large k, the left-hand side of (6) is close to the maximum of
the first term (s = 1) of the sum in (7) attained by (4) for s = 1 at the point t = x1. Hence, if
k is sufficiently large, we can approximate the value x1 by a maximum point of the left-hand side
of (7) which actually coincides with the left-hand side of (6).
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2. Numerical algorithm

Suppose that the function f(x) has a unique local maximum, i.e., there is only one point x1
such that

f(x1) = max
x

f(x).

We set
A1 = f(x1)

and find the parameter b1 and points
x̃1 = x1 − b1,

and
x̃2 = x1 + b1

from the condition

max
x

∣∣∣f(x)−
A1b

2
1

b21 + (x− x1)2

∣∣∣ = inf
c
max
x

∣∣∣f(x)−
A1c

2

c2 + (x− x1)2

∣∣∣.

Alternatively, they can be found by keeping the value of the half-width of f(x) and using the
following simple formulas:

f(x̃l) =
1

2
A1 (l = 1, 2),

x1 =
1

2
(x̃1 + x̃2),

b1 =
1

2
(x̃2 − x̃1) for x̃2 > x̃1.

If the difference f(x)−ϕ1(x) is small enough, i.e., is comparable with the accuracy of the evaluation
of the function f(x), the algorithm terminates by setting f(x) = ϕ1(x).

Otherwise, or, if there are several points of local maxima of f(x), a different process is applied.
This process is based on the asymptotic behavior of (6) and is described below.

For arbitrary a > 0, and b > 0, and for sufficiently large k, it is needed to find a point of
maximum of the left-hand side of (6) and the maximum value. Further, let us consider this point

as an approximate value for x1. After that values a
(1)
1 , and a

(1)
2 and a positive integer k(1) are found

such that the left-hand side of (6) is greater than A = max
x

f(x) for k = k(1) and a = a
(1)
2 and is

smaller than ε for k = k(1) and a = a
(1)
1 , where ε is an admissible error for computing A1 from the

right-hand side of (6). Next, the segment [a
(1)
1 , a

(1)
2 ] is divided into two equal parts. One of these

parts, which satisfies assumptions analogous to those for [a
(1)
1 , a

(1)
2 ] for some k(2) (≥ k(1)), is taken

as the next segment [a
(2)
1 , a

(2)
2 ]. After several iterations, we eventually obtain a number k(ν) and a

segment [a
(ν)
1 , a

(ν)
2 ], whose length is less than a given error δ > 0

(
a
(ν)
2 −a

(ν)
1 = (a

(1)
2 −a

(1)
1 )/2ν < δ

)
.

Since b1 ∈ [a
(l)
1 , a

(l)
2 ] (l = 1, 2, . . . , ν), we can set

b1 ≈ a(ν) =
a
(ν)
1 + a

(ν)
2

2

with error at most δ.
As follows from assertions (6)–(8), the equality

(b+ a)2ν+1

πa(2ν)!
max

t

∂2ν

∂b2ν
[ϕ ∗ f ] =

A1b1(b+ a)2ν+1

a(b+ b1)2ν+1

[
1 + θ

n∑

s=2

Asbs
A1b1

(b+ b1
b+ bs

)2ν+1]
(9)
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holds for all sufficiently large ν, where

θ = θν , |θ| < 1,

a = (a
(ν)
1 + a

(ν)
2 )/2 = b1 + δ, 0 ≤ δ < c/2ν , c = a

(1)
2 − a

(1)
1 .

Taking the logarithm of both sides of equality (9) implies that

ln
[(b+ a)2ν+1

πa(2ν)!
max

t

∂2ν

∂b2ν
[ϕ ∗ f ]

]

= ln
b1
a

+ (2ν + 1) ln
b+ a

b+ b1
+ ln

[
1 + θ

n∑

s=2

Asbs
A1b1

(b+ b1
b+ bs

)2ν+1]
+ lnA1.

(10)

Hence,

∣∣∣ ln
b1
a

∣∣∣ =
∣∣∣ ln

b1 +O( 1
2ν )

b1

∣∣∣ =
∣∣∣ ln

(
1 +O

( 1

2ν

))∣∣∣ = O
( 1

2ν

)
,

∣∣∣(2ν + 1) ln
b+ a

b+ b1

∣∣∣ = (2ν + 1)
∣∣∣ ln

(
1 +O

( 1

2ν

))∣∣∣ = O
( ν

2ν

)
,

∣∣∣ ln
[
1 + θν

n∑

s=2

Asbs
A1b1

(b+ b1
b+ bs

)2ν+1]∣∣∣ ≤ l|θν |

n∑

s=2

Asbs
A1b1

(b+ b1
b+ bs

)2ν+1
≤ Cn

(b+ b1
b+ b2

)2ν+1
= Cnq

2ν+1.

Therefore, these values are small for large ν, and then the approximate equality

A1 ≈ A
(ν)
1 =

(b+ aν)
2ν+1

πaν(2ν)!
max

t

( ∂2ν

(∂b)2ν
[ϕ ∗ f ](t)

)

holds. Once the parameters x1, b1, and A1 are found, we can introduce the function

f1(x) = f(x)− ϕ1(x) = f(x)−
A1b

2
1

b21 + (x− x1)2
,

repeat the same operations for this function as we did for f(x), and find x2, b2, and A2. Then these
iterations must be continued until the number An+1 becomes small enough.

Let us remark that, although the algorithm uses the differentiation of the convolution of the
experimental function f(x) with the function ϕ(x, b), first, one can differentiate the integrand and

then compute the convolution
[(

∂rϕ
/
∂br

)
∗ f

]
. This order is preferable, because the numeri-

cal integration is a more regular operation than the incorrect numerical differentiation, and the
derivatives of ϕ(x, b) are expressed analytically.

Let us now write explicitly the positive (see (9)) argument of the logarithm in the left-hand
side of (10) whose maximum is to be found. Starting, as above, from the formula

b

b2 + x2
=

1

2

( 1

b− ix
+

1

b+ ix

)
,
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we can to conclude that

(b+ a)2ν+1

πa(2ν)!
max

t

∂2ν

(∂b)2ν
(ϕ ∗ f)(t)

=
(b+ a)2ν+1

2πa
max

t

∂2ν

(∂b)2ν

∞∫

−∞

f(t− x)
b

b2 + x2
dx

=
(b+ a)2ν+1

2πa
max

t

∞∫

−∞

f(t− x)
[ 1

(b− ix)2ν+1
+

1

(b+ ix)2ν+1

]
dx

=
(b+ a)2ν+1

πa(2ν)!
max

t

∞∫

−∞

f(t− x)
[ (b+ ix)2ν+1 + (b− ix)2ν+1

(b2 + x2)2ν+1

]
dx

=
(b+ a)2ν+1

πa
max

t

∞∫

−∞

f(t− x)
[ 1

(b2 + x2)2ν+1

] [ 2ν+1

2
]∑

s=0

(−1)sC2s
k+1x

2sbk+1−2s dx.

(11)

Let us now describe a different way for computing b1 and A1 which is somewhat simpler, but
involves a larger number of calculations of maxima. Let

Hr(t) = Hr(t, b) =
∂r

∂br

∞∫

−∞

f(t− x)
b dx

b2 + x2
.

If r = 2k − 1 and the conditions of the assertion are satisfied, then, similar to (6), the following
relations can be derived for H2k−1 as k → ∞:

(b+ a)2k

πa(2k − 1)!
max

t

[
(−1)

∂2k−1

(∂b)2k−1
[ϕ ∗ f ](t)

]
=

(b+ a)2k

a
·

A1b1
(b+ b1)2k

(1 + o(1)).

Combining this with (6), one can find approximate values for b1 and A1 (in this order) from
the formulas

b1 = 2k
maxt |H2k−1(t)|

maxtH2k(t)
− b+ o(1),

A1 =
(b+ b1)

2k+1 maxtH2k(t)

πb1(2k)!
+ o(1).

By choosing large k, all small values denoted as o(1) can be neglected.

3. Conclusion

In this paper, the new mathematical method is described for analysis of experimental data
obtained for Mössbauer spectroscopy. This method allows to find the spectral decomposition of the
integral transmission as a finite sum of Lorentzians with the accuracy of calculation of their number
and determinations of their parameters according to a given accuracy of experimental data.
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Abstract: Let A be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert
space H. We give an upper estimate for the best approximation of the operator A by bounded linear operators
with a prescribed norm in the space H on the class Q2 = {x ∈ D(A2) : ‖A2x‖ ≤ 1}, where D(A2) denotes the
domain of A2.
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1. Introduction

Let H be a Hilbert space with the inner product (·, ·) and the norm ‖ · ‖, and let A be the
infinitesimal generator of a strongly continuous contraction semigroup in H. For the definition
and properties of the infinitesimal generator of a semigroup in a Banach space see, e.g., [6, §14.2].
Note that a strongly continuous contraction semigroup is also called a contraction semigroup of the
class C0 ([8, 9]). For an operator F on the space H, D(F ) denotes the domain of F . We denote
by I the identity operator.

In this paper, we study the so-called Stechkin’s problem of the best approximation of the
operator A by bounded linear operators with a prescribed norm on the class of elements x ∈ D(A2)
such that ‖A2x‖ ≤ 1. We give an upper estimate for the best approximation of the operator A.

The problem we consider is a special case of the general problem of the best approximation of
an unbounded operator by linear bounded ones on a certain class of elements in a Banach space.
This problem first appeared in Stechkin’s work in 1965–1967 [11]. The problem was studied by a
number of authors (see surveys [1], [2], monograph [4], paper [3], and the bibliography therein).

Stechkin formulated this problem in a general setting as follows. Let X, Y be two Banach
spaces, let A be a linear operator (in general, unbounded) from X to Y , and let Q ⊆ D(A) be a
certain class of elements from the domain D(A) of the operator A. We denote by B(N) the set of

1This work was supported by the Russian Foundation for Basic Research (project no. 15-01-02705),
the Program for State Support of Leading Scientific Schools of the Russian Federation (project no. NSh-
9356.2016.1), and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August
27, 2013, between the Ministry of Education and Science of the Russian Federation and the Ural Federal
University).
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linear bounded operators from X to Y with the norm ‖T‖X→Y ≤ N . The best approximation of
the operator A by linear bounded operators T ∈ B(N) on the class Q is

EN (A;Q) = inf {U(A,T,Q) : T ∈ B(N)},

where

U(A,T,Q) = sup {‖Ax − Tx‖Y : x ∈ Q}

is the deviation of the operator T from the operator A on the class Q.
One of the most important cases of the problem formulated above is when the class Q is defined

in the following way. Let Z be a Banach space and B be a linear operator from X to Z such that
D(B) ⊆ D(A). The class Q is then defined as Q = {x ∈ X : ‖Bx‖Z ≤ 1}.

Stechkin [11] suggested an estimate from below for the best approximation EN (A;Q) in terms
of the modulus of continuity of the operator A on the class Q defined by

Φ(δ) = sup {‖Ax‖Y : x ∈ Q, ‖x‖X ≤ δ}, δ > 0.

Namely, Stechkin showed that

EN (A;Q) ≥ sup {Φ(δ) −Nδ : δ > 0}. (1.1)

In particular, when B = An, the problem EN (Ak;Q) turned out to be closely connected to the
exact constants in the Kolmogorov-type inequalities of the form

‖Akx‖ ≤ C‖x‖n−k

n ‖Anx‖ k

n , x ∈ D(An), (1.2)

with n, k ∈ N, 0 < k < n, and a certain constant C that depends on n and k.
If A is the differentiation operator, inequalities (1.2) are inequalities between the norms of

the derivatives of a function. Such inequalities have been studied by a large number of authors
(see [1], [2], [4] and the bibliography therein). Here we only mention that Hardy, Littlewood and
Pólya [7, Chapter VII, §7.8] obtained the exact inequality

‖f ′‖2 ≤ 2‖f‖‖f ′′‖ (1.3)

in the space L2(0,∞) on the class of functions f ∈ L2(0,∞) such that f ′ is locally absolutely
continuous on (0,∞), and f ′′ ∈ L2(0,∞).

In 1971, Kato [9] proved the following result which can be considered as a generalization of (1.3).
Let A be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert
space H. Then

‖Ax‖2 ≤ 2‖x‖‖A2x‖, x ∈ D(A2).

In this paper, we study Stechkin’s problem of the best approximation of the infinitesimal gen-
erator A of a strongly continuous contraction semigroup by bounded linear operators on the class

Q2 = {x ∈ D(A2) : ‖A2x‖ ≤ 1} (1.4)

in a Hilbert space. Namely, we estimate

EN (A;Q2) = inf{U(T ) : T ∈ B(N)}, (1.5)

where

U(T ) = U(A,T,Q2) = sup{‖Ax − Tx‖ : x ∈ Q2}. (1.6)
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2. The main result

The main result of the paper is the following statement.

Theorem 1. The best approximation (1.5) of the infinitesimal generator A of a strongly con-

tinuous contraction semigroup in a Hilbert space on the class Q2 defined in (1.4) satisfies the

inequality

EN (A;Q2) ≤
1

N
.

It is known that the infinitesimal generator A of a strongly continuous contraction semigroup
in a Banach space possesses the following properties:

1) The domain D(A) of the operator A is dense (see, e.g., [6, Lemma 14.5, p. 411]).

2) The resolvent set ρ(A) of the operator A contains the right half-plane {λ ∈ C| ℜλ > 0}.
Moreover, ‖(A−λI)−1‖ ≤ (ℜλ)−1 for all λ ∈ C with ℜλ > 0 (e.g., [6, Theorem 14.7, p. 412]).

Furthermore, if A is the infinitesimal generator of a strongly continuous contraction semigroup
in a Hilbert space, we have additionally:

3) The operator A is upper semibounded, with the upper bound 0, i.e.,

ℜ(Ax, x) ≤ 0

for x ∈ D(A) [6, Lemma 14.9, p. 416].

The following lemma is not new. However, we will formulate and prove it for the sake of
completeness.

Lemma 1. Let A be the infinitesimal generator of a strongly continuous contraction semigroup

in a Hilbert space H and c > 0. Then the operator

Bc = (cI +A)(cI −A)−1

is densely defined and bounded (and thus can be extended to the whole space H by continuity).
Moreover,

‖Bc‖ ≤ 1.

Remark. The operator Bc is the Cayley transform of the operator A in the terminology of
Kato [9], see also [10, p. 545].

P r o o f. Since c > 0, the operator (cI−A)−1 is defined everywhere on H and bounded. Since
A is the infinitesimal generator of a strongly continuous contraction semigroup, the operator −A
is m-accretive (see [10, Chapter IX, §1.4 as well as Problem 1.18, both p. 485]). Therefore, the
domain D(A) of the operator A is equal to the range R((cI − A)−1) of the operator (cI − A)−1

which is dense in H (see [10, Chapter V, §3.10, p. 279]). Thus, Bc is densely defined.
Now we estimate the norm of Bc. For x ∈ D(A) we have

‖cx+Ax‖2 = c2‖x‖2 + ‖Ax‖2 + 2cℜ(Ax, x),
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‖cx−Ax‖2 = c2‖x‖2 + ‖Ax‖2 − 2cℜ(Ax, x).

It follows immediately that

‖(cI +A)x‖ ≤ ‖(cI −A)x‖. (2.1)

Now take y ∈ D((cI −A)−1). Applying (2.1) to x = (cI −A)−1y ∈ D(A), we obtain

‖(cI +A)(cI −A)−1y‖ ≤ ‖y‖,

and thus ‖Bc‖ ≤ 1. �

Now we are ready to prove Theorem 1.

P r o o f. We will construct a concrete approximating operator T in problem (1.5) and estimate
its norm and its deviation (1.6) from the operator A on the class Q2.

Note that all the operators we consider commute on the set D(A2).

The restriction of the operator A to the set D(A2) (which we will denote by the same symbol)
can be represented as

A =
N

2
(BN − I)− 1

2N
(BN + I)A2.

Put T : H → H,

T =
N

2
(BN − I).

Then, for the restriction of the operator A− T to D(A2), we have

A− T = − 1

2N
(BN + I)A2.

We estimate the norm of the operator T as follows:

‖T‖ =
N

2
‖BN − I‖ ≤ N

2
(‖BN‖+ ‖I‖) = N. (2.2)

For the deviation U(T ) of the operator T from the operator A, we obtain that

U(T ) = sup
x∈Q2

‖(A− T )x‖ ≤ sup
x∈Q2

1

2N
‖BN + I‖ · ‖A2x‖ ≤ 1

N
. (2.3)

It follows immediately from (2.2) and (2.3) that

EN (A;Q2) ≤ U(T ) ≤ 1

N
.

�

3. Approximation of the differentiation operator in the space L2(0,∞)

An important concrete case of problem (1.5) is the problem of the best approximation of the
differentiation operator Df = f ′ by bounded linear operators in the Hilbert space L2(0,∞) of
real-valued functions whose squares are integrable on (0,∞) on the class Q(2) defined as follows:
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Q(2) is the class of functions f ∈ L2(0,∞) such that f ′ is locally absolutely continuous on [0,∞),
f ′′ ∈ L2(0,∞), and ‖f ′′‖ ≤ 1. Problem (1.5) takes in this case the form

EN (D;Q(2)) = inf
T∈B(N)

sup
f∈Q(2)

‖f ′ − Tf‖. (3.1)

It took about 20 years of research to solve the problem completely. Stechkin’s inequality (1.1) and
inequality (1.3) of Hardy, Littlewood and Pólya provide the lower bound

EN (D;Q(2)) ≥ 1

2N
.

One of the first upper bounds for (3.1)

EN (D;Q(2)) ≤ 1√
3N

was obtained by using a concrete approximating operator by the first named author in 1996 [5].
Problem (3.1) was fully solved only in 2014 by Arestov and the second named author [3] . Namely,
they showed that

EN (D;Q(2)) =
1

2N
.

In this section, we discuss what the statement of Theorem 1 means in the concrete case (3.1)
of problem (1.5). The approximating operator T used in Theorem 1 is

T =
N

2
(BN − I) = NA(NI −A)−1. (3.2)

Below we will describe this operator in the special case. We consider and calculate its norm ‖T‖
and its deviation U(T ) from the operator A = D on the class Q(2).

It is not difficult to see that the operator T in the concrete case can be represented as follows.
Let W be the class of functions y ∈ L2(0,∞) such that y is locally absolutely continuous on [0,∞)
and y′ ∈ L2(0,∞). For f ∈ L2(0,∞), we consider the differential equation

−y′ +Ny = f, y ∈ W. (3.3)

For each function f ∈ L2(0,∞), equation (3.3) has a unique solution which is a real-valued function
from L2(0,∞). The operator T is defined as

Tf = Ny′, (3.4)

where y is the solution of the differential equation (3.3).

Integrating by parts and taking into account that lim
t→∞

y(t) = 0, we obtain (see [3] for details)

that

‖f‖2 =
∞∫

0

(−y′(t) +Ny(t))2dt =

∞∫

0

(y′(t))2dt+N2

∞∫

0

(y(t))2dt+Ny2(0).

It follows from (3.4) that ‖Tf‖2 = N2
∞∫
0

(y′(t))2dt. Thus, we immediately obtain

‖Tf‖2 ≤ N2‖f‖2, (3.5)
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which gives the estimate ‖T‖ ≤ N . Now we show that indeed ‖T‖ = N . Consider the family of
functions yK = e−Kt, K > 0. Let fK be the corresponding right-hand side of equation (3.3). Take
an arbitrary 0 < α < 1. We have

αN2‖fK‖2 − ‖TfK‖2 = αN2

∞∫

0

(−y′K(t) +NyK(t))2dt−N2

∞∫

0

(y′K(t))2dt

=
N2

2K
(α(K +N)2 −K2).

This expression is negative for all 0 < α <
K2

(N +K)2
which yields ‖TfK‖2 > αN2‖fK‖2. Let-

ting K go to infinity (with fixed N) we let α approach 1, and thus obtain ‖T‖ ≥ N . Conse-
quently, ‖T‖ = N .

Note that inequality (3.5) is a strict inequality if y 6= 0 and, consequently, f 6= 0. In other
words, the norm of the operator T is not attained.

It can be shown similarly that the norm of the operator V = − 1

2N
(BN + I) is equal to 1/N .

Since the domain D(D2) of the operator D2 is dense in L2(0,∞), it follows that the deviation of
the operator T from the differentiation operator D on the class Q(2) is equal to 1/N .

Thus, the approximating operator (3.2) gives the estimate EN (D;Q(2)) ≤ 1

N
in the general

case (1.5) as well as in the concrete case (3.1).
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Abstract: We consider certain classes of functions with a restriction on the fractality of their graphs.

Modifying Lebesgue’s example, we construct continuous functions from these classes whose Fourier series diverge

at one point, i.e. the Fourier series of continuous functions from this classes do not converge everywhere.
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Let f be a 2π-periodic integrable function, and let

a0
2

+
∞
∑

k=1

(ak cos kx+ bk sin kx), (1)

where

ak =
1

π

∫ π

−π
f(t) cos kt dt, bk =

1

π

∫ π

−π
f(t) sin kt dt,

be the trigonometric Fourier series of the function f . Denote by Sn(f, x) the nth partial sum of (1).
It is known (see [1, Ch. 1, Sect. 39]) that if f has bounded variation on the period (f ∈ BV ), then
its Fourier series converges everywhere on R, and if, in addition, f is continuous on R, then the
Fourier series converges to f uniformly on R. Salem [2] (see also [1, Ch. 4, Sect. 5]) considered the
classes BVp of functions of bounded p-variation and proved that if f ∈ BVp, then the Fourier series
of f also converges everywhere on R. (Further generalizations of these results see in [3]).

The author [4] studied relations between the classes BVp and classes of continuous functions
with a restriction on the fractality of their graphs.

Definition 1. Let f : R → R be a bounded 2π-periodic function. By the modulus of fractality
of the function f , we call the function ν(f, ε) which, for all ε > 0, gives the minimal number of
closed squares with sides of length ε parallel to the coordinate axes that cover the graph of the
function f on [−π, π].

Definition 2. Let µ : (0,+∞) → R be a nonincreasing continuous function such that
lim
ε→0

µ(ε) = +∞. We define the functional class

Fµ := {f ∈ C2π : ν(f, ε) = O(µ(ε))}.

In the case µ(ε) = 1/εα, where 1 6 α 6 2, we will write Fα instead of F 1/εα .

1This work was supported by the Russian Science Foundation (project no. 14-11-00702).
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The following statements were proved in [4]:

BV = BV1 = F1 [4, Theorem 1]; (2)

BVp ⊂ F2−1/p, p > 1 [4, Theorem 2].

The latter is unimprovable; i.e., BVp+ε * F2−1/p for all ε > 0.
In the present paper, we study the pointwise behavior of the Fourier series of continuous functions

from Fµ.

Theorem 1. Let µ : (0,+∞) → R be a nonincreasing continuous function, let εµ(ε) be a

nonincreasing function, and let

lim
ε→+0

εµ(ε) = +∞. (3)

Then there exists a continuous function Fµ whose Fourier series does not converge everywhere.

P r o o f of Theorem 1. We will require that

ε−1 < µ(πε) 6 2ε−
3

2 , ε ∈ (0, 1]. (4)

By (3), the former inequality holds on an interval (0, δ) and, changing the function µ on the interval
( δ2 , 1), we will obtain the same class Fµ. The latter inequality can only reduce the class Fµ. Thus,
if we find a required function in the narrower class, it will belong to the wider class immediately.

To obtain a function f ∈ Fµ with divergent Fourier series, we modify Lebesgue’s example from
[1, Ch. 1, Sect. 46]. We start with defining an increasing sequence of natural numbers {ak} as follows.
Let a0 = 1. Suppose that the first k elements a0, a1, . . . , ak−1 have been already defined.

From inequalities (4), it follows that

a2k−1

ak−1
< 3µ

(

π

ak−1

)

and, for b > (6ak−1)
2,

b2

ak−1
> 3µ

(

π

b

)

.

Then, by continuity, there exists the smallest number a such that

a2

ak−1
= 3µ

(

π

a

)

.

As ak, we take the largest integer such that ak 6 a and the fraction ak/ak−1 is integer. It is not
hard to understand that ak belongs to [a− ak−1, a], and, in view of the inequalities

ak
ak−1

>
a− ak−1

ak−1
= 3µ

(

π

a

)

1

a
− 1 > 2, (5)

we conclude that ak > ak−1.
The definition of ak implies the inequality

1

ε2ak−1
6 3µ

(

πε
)

, ε ∈

[

1

ak
, 1

]

. (6)

The definition of ak, inequalities (5), and condition (3) imply that

ak
ak−1

→ +∞, k → +∞. (7)
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Consider the half-open intervals

Ik =

(

π

ak
,

π

ak−1

]

, k ∈ N.

Let {ki}
∞

i=0, k0 = 1, be an increasing sequence, on which, in what follows, two additional conditions
will be imposed. Let

ck =







√

1

ln ak/ak−1
, k ∈ {ki}

∞

i=0;

0, k /∈ {ki}
∞

i=0.

Finally, we define the function f on the interval [−π, π]:

f(x) = ck sin akx, x ∈ Ik,

f(0) = 0,

f(−x) = f(x).

We extend the function f to R periodically. The resulting function is continuous on each Ik and,
since ak/ak−1 is integer, is continuous and vanishes at the points ±π/ak. Thus, the function f is
continuous on [−π, π].

Since f has only a finite number of maxima and minima on [δ, π], δ > 0, it has bounded variation
on this interval (and on [−π,−δ] as well). Thus, its Fourier series converges at every x ∈ [−π, π]\{0}.

Consider now the sequence of partial sums of the Fourier series of f at the point x = 0. As is
known [1, Ch. 1, Sect. 32, formula (32.5)], for the function f, we have

Sk(x, f) =
1

π

∫ π

−π
f(x+ t)

sin kt

t
dt+ o(1);

hence, for x = 0,

Sk(0, f) =
1

π

∫ π

−π
f(t)

sin kt

t
dt+ o(1).

The function f is even; therefore,

Sk(0, f) =
2

π

∫ π

0
f(t)

sin kt

t
dt+ o(1).

Let us show that, after an appropriate choice of {ki},

Ji =

∫ π

0
f(t)

sin akit

t
dt → +∞, i → +∞.

Then Saki
(0, f) → +∞ as i → +∞, i.e., the Fourier series of f diverges at x = 0.

To estimate Ji, we divide it into three terms:

Ji =

∫ π/aki

0
f(t)

sin akit

t
dt+

∫ π/aki−1

π/aki

f(t)
sin akit

t
dt+

∫ π

π/aki−1

f(t)
sin akit

t
dt = J

′

i + J
′′

i + J
′′′

i . (8)

We have
∣

∣

∣

∣

sin akit

t

∣

∣

∣

∣

6 aki .

Hence,

|J
′

i | 6 max
06t6π/aki

|f(t)|aki
π

aki
= πcki+1

= o(1). (9)
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Suppose that k1, . . . , ki−1 have been already defined. Then the function f(t)/t is defined,
bounded, and continuous on

(

π/aki−1, π
]

. Extending this function by zero to [−π, π] and assuming
that ki are large enough (this is the first of two conditions on ki), we can make the Fourier coefficient
aki of the obtained function small enough; more precisely,

|J
′′′

i | =

∣

∣

∣

∣

∫ π

π/aki−1

f(t)

t
sin akit dt

∣

∣

∣

∣

6
1

i
. (10)

It remains to estimate J
′′

i . We have

J
′′

i =

∫ π/aki−1

π/aki

cki sin akit
sin akit

t
dt =

cki
2

∫ π/aki−1

π/aki

1− cos 2akit

t
dt

=
cki
2

ln
aki
aki−1

−
cki
2

∫ π/aki−1

π/aki

cos 2akit

t
dt.

According to the second mean value theorem, taking into account that the function 1/t is positive
and monotone, we find that

∣

∣

∣

∣

∫ π/aki−1

π/aki

cos 2akit

t
dt

∣

∣

∣

∣

6
aki
π

∣

∣

∣

∣

∫ ξ

π/aki

cos 2akit dt

∣

∣

∣

∣

6
aki
π

2

2aki
=

1

π
.

Thus,

J
′′

i =
cki
2

ln
aki
aki−1

+ o(1). (11)

Combining (8), (9), (10), and (11), and taking into account (7), we conclude that

Ji =
cki
2

ln
aki
aki−1

+ o(1) =
1

2

√

ln
aki
aki−1

+ o(1) → +∞.

Let us now estimate the modulus of fractality ν(f, ε). Denote by ν(f, ε)[a,b] the minimal number
of squares with sides of length ε parallel to the coordinate axes that cover the graph of the function
f on [a, b].

If k1, . . . , ki−1 have been already defined, then the function f is defined on the interval
[π/aki−1

, π] and has bounded variation; hence, by (2),

ν(f, ε)[
π/aki−1

, π
] = O

(

1

ε

)

.

Condition (3) allows us to take ki such that, for πε ∈ (0, π/aki ],

ν(f, πε)[
π/aki−1

, π
] 6 µ(πε). (12)

This is the second condition on ki.

Let 0 < ε 6 1. Then there exists i ∈ N such that ε ∈ [1/aki+1
, 1/aki ]. Let us prove the inequality

ν(f, πε) 6 Cµ(πε) with some constant C. It follows from what is proved above that the required
inequality holds for the covering of the graph on [π/aki−1

, π]. The inequality also holds for the
intervals [π/aki+1−1, π/aki ] and [π/aki−1, π/aki−1

] where f is identically zero; hence,

ν(f, πε)[
π/aki+1−1, π/aki

] + ν(f, πε)[
π/aki−1, π/aki−1

] 6
π

ε
. (13)
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Covering the whole rectangle
[

0, π/aki+1−1

]

×[−cki , cki ] and using (6), we can obtain the estimate

ν(f, πε)[
0, π/aki+1−1

] 6

⌈

π

aki+1−1πε

⌉⌈

2cki
πε

⌉

6
8

aki+1−1πε2
6

24

π
µ
(

πε
)

; (14)

here and in what follows, ⌈x⌉ stands for the rounding of x upward.
It remains to cover the graph on the interval

[

π/aki , π/aki−1

]

where f(x) = cki sin akix.
We can divide this interval into Ni = 2aki/aki−1 − 2 intervals of monotonicity of f :
[

π/aki + π(n− 1)/2aki , π/aki + πn/2aki
]

, n = 1, . . . , Ni. Let us show that, to cover the graph
of f on each of these intervals, we need at most 8/πε squares. Using the definition of the length of
a curve, we can show that the length of the graph of f on these intervals is at most π/2aki + 2cki .
Squares with sides of length πε can cover the graph of a monotone function of length at least πε.
Hence,

ν(f, πε)[
π/aki+π(n−1)/2aki , π/aki+πn/2aki

] 6

⌈(

π

2aki
+ 2cki

)

1

πε

⌉

6
8

πε
.

From (6) and the monotonicity of εµ(ε), we obtain

ν(f, πε)[
π/aki , π/aki−1

] 6
4aki

πεaki−1
6

12µ

(

π

aki

)

πεaki
=

12µ

(

π

aki

)

π

aki
µ(πε)

π2εµ(πε)
6

12

π
µ(πε). (15)

Finally, by (12), (13), (14), and (15), we obtain the following estimate for the modulus of
fractality of f :

ν(f, πε) 6 2ν(f, πε)[0,π] 6 2

(

ν(f, πε)[
0, π/aki+1−1

] + ν(f, πε)
[π/aki+1−1, π/aki

]

+ν(f, πε)[
π/aki , π/aki−1

] + ν(f, πε)[
π/aki−1, π/aki−1

] + ν(f, πε)[
π/aki−1

, π
]

)

6 2

(

24

π
µ
(

πε
)

+
π

ε
+

12

π
µ(πε) + µ(πε)

)

= O
(

µ(πε)
)

,

i.e., f ∈ Fµ.
The theorem is proved.
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Abstract: We discuss some results on the convergence of minimizers and minimum values of integral and
more general functionals on sets of functions defined by bilateral constraints in variable domains. We consider
the case of regular constraints, i.e., constraints lying in the corresponding Sobolev space, and the case where the
lower constraint is zero and the upper constraint is an arbitrary nonnegative function. The first case concerns
a larger class of integrands and requires the positivity almost everywhere of the difference between the upper and
lower constraints. In the second case, this requirement is absent. Moreover, in the latter case, the exhaustion
condition of an n-dimensional domain by a sequence of n-dimensional domains plays an important role. We
give a series of results involving this condition. In particular, using the exhaustion condition, we prove a certain
convergence of sets of functions defined by bilateral (generally irregular) constraints in variable domains.
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Introduction

This paper is mainly based on the talk given by the author at the International S.B. Stechkin
Summer Workshop-Conference on Function Theory, Miass, Russia, August 1–10, 2017.

The problems considered in the paper are related to the following general problem. Let {Ws} be
a sequence of Banach spaces, and let, for every s ∈ N, Is :Ws → R and Vs ⊂Ws, Vs 6= ∅. Let, for
every s ∈ N, us be a minimizer of Is on Vs. The questions are, what are general conditions under
which the sequence {us} converges in a certain sense to an element and this limit element minimizes
a functional I on a set V , and how are the functional I and the set V related to the sequences
{Is} and {Vs} ? Problems of this kind are studied in the framework of homogenization theory.
There is a special kind of convergence of functionals that helps to solve the mentioned problems.
This is the Γ-convergence. There are many works devoted to the study of this convergence. The
Γ-convergence of functionals with the same domain of definition was studied, for instance, in [1–3].
In the simplest case, the definition of Γ-convergence is as follows.

Definition 1. Let, for every s ∈ N, fs : R → R, and let f : R → R. We say that the
sequence {fs} Γ-converges to the function f if the following conditions are satisfied:

(a) for every x ∈ R, there exists a sequence {ys} ⊂ R such that ys → x and fs(ys) → f(x);

(b) for every x ∈ R and every sequence {xs} ⊂ R such that xs → x, we have the inequality
lim inf
s→∞

fs(xs) > f(x).

The Γ-convergence of ordinary real functions and functionals defined on Banach spaces has
some interesting properties that distinguish it from other kinds of convergence of the corresponding
mappings. Among various properties of the Γ-convergence, we only mention its variational property
that describes the relation of this convergence of functionals to the convergence of their minimizers
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and minimum values. A simple version of the variational property of the Γ-convergence is the
following proposition.

Proposition 1. Let, for every s ∈ N, fs : R → R, and let f : R → R. Assume that the

sequence {fs} Γ-converges to the function f . Let, for every s ∈ N, xs be a minimizer of fs on R.

Assume that xs → x. Then x minimizes f on R and fs(xs) → f(x).

P r o o f. Since xs → x, by condition (b) in Definition 1, we have

lim inf
s→∞

fs(xs) > f(x). (1)

Now, let y ∈ R. By virtue of condition (a) in Definition 1, there exists a sequence {ys} ⊂ R such
that

fs(ys) → f(y). (2)

Since, for every s ∈ N, xs minimizes fs on R, we have

∀s ∈ N, fs(xs) 6 fs(ys). (3)

Relations (2) and (3) imply that
lim sup
s→∞

fs(xs) 6 f(y). (4)

From (1) and (4), we derive that x minimizes f on R and fs(xs) → f(x). We note that the latter
limit relation follows from inequality (1) and from inequality (4) with y = x. �

Here, we have restricted ourselves only to a simplest version of the variational property of the
Γ-convergence, having shown how both conditions (a) and (b) in Definition 1 work. The considered
case is very simple not only due the fact that we dealt with functions defined on R but also because
of the assumption that the minimizers of these functions are global. In the case of minimizers on
sets defined by certain constraints, the situation is more complicated, and not always the ”global”
Γ-convergence (i.e., the convergence of the kind described in Definition 1 with a Γ-realizing sequence
{ys} taken in the whole corresponding space) can be used for the study of the convergence of such
minimizers.

There are analogues of the above definition of Γ-convergence for functionals defined on a Banach
space (in particular, on a Lebesgue or Sobolev space). In this connection, see, for instance, [2, 4].
The notion of Γ-convergence of functionals with varying domain of definition (in particular, of func-
tionals Is : W

m,p(Ωs) → R with taking into account the structure of domains Ωs) was introduced
and studied, for instance, in [5–7].

Next, note that, in the study of the convergence of minimizers us of functionals Is : Ws → R,
a connection of the spaces Ws with a space W plays an important role. Often, this connection
is expressed as the requirement that there exists a sequence of operators ls : Ws → W with cer-
tain properties. In particular, these properties should provide the following property: for every
sequence vs ∈Ws such that sup

s∈N
‖vs‖Ws < +∞, the sequence {lsvs} is bounded in W . Under appro-

priate and in some sense natural conditions on the functionals Is, for the sequence of minimizers
us ∈ Ws of the functionals Is, the inequality sup

s∈N
‖us‖Ws < +∞ holds. Therefore, if there exists

a sequence ls :Ws →W with the above mentioned property, then the sequence {lsus} is bounded.
Consequently, if the space W is reflexive, there exist an increasing sequence {sj} ⊂ N and an
element u ∈W such that lsjusj → u weakly in W . Actually, this is the first step in the study of the
convergence of the sequence of minimizers us ∈ Ws of the functionals Is. The described idea with
the operators ls is realized in the justification of the results stated below for functionals defined
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on the Sobolev spaces W 1,p(Ωs), where {Ωs} is a sequence of domains contained in a bounded
domain Ω of Rn. Essentially, the mentioned idea goes back to [8]. In this connection, see also [5–7].

The main content of this paper is organized as follows. In Section 1, we state the initial
assumptions and the necessary definitions. In Section 2, we present our results on the convergence
of minimizers and minimum values of integral and more general functionals on sets of functions
defined by bilateral constraints in variable domains. We consider the case of regular constraints,
i.e., constraints lying in the corresponding Sobolev space (see [9]), and the case where the lower
constraint is zero and the upper constraint is an arbitrary nonnegative function (in this connection,
see [10]). In both cases, a certain connection of the spacesW 1,p(Ωs) with the spaceW 1,p(Ω) and the
Γ-convergence of functionals defined on the spaces W 1,p(Ωs) to a functional defined on W 1,p(Ω) are
essentially used. At the same time, some other conditions on the involved domains, integrands, and
constraints are also important for our convergence results. On the whole, the conditions providing
these results are discussed in Section 3, where a special attention is paid to the so-called exhaustion
condition of the domain Ω by the domains Ωs. This condition is the requirement that, for every
increasing sequence {mj} ⊂ N, the measure of the union of all the domains Ωmj is equal to the
measure of the domain Ω. We also consider the notion of H-convergence of sequences of sets
Us ⊂W 1,p(Ωs) to a set U ⊂W 1,p(Ω) and show the importance of the exhaustion condition for the
H-convergence of sets of functions defined by irregular bilateral constraints.

1. Assumptions and definitions

Let n ∈ N, n > 2, let Ω be a bounded domain of Rn, and let p > 1. Let {Ωs} be a sequence of
domains of Rn contained in Ω.

It is easy to see that if v ∈W 1,p(Ω) and s ∈ N, then v|Ωs ∈W 1,p(Ωs).

Definition 2. If s ∈ N, then qs : W 1,p(Ω) → W 1,p(Ωs) is the mapping such that, for every
function v ∈W 1,p(Ω), we have qsv = v|Ωs .

Definition 3. We say that the sequence of spaces W 1,p(Ωs) is strongly connected with the
space W 1,p(Ω) if there exists a sequence of linear continuous operators ls : W 1,p(Ωs) → W 1,p(Ω)
such that:

(a) the sequence of norms ‖ls‖ is bounded;

(b) for every s ∈ N and for every v ∈W 1,p(Ωs), we have qs(lsv) = v a.e. in Ωs.

The prototype of the notion in Definition 3 is the condition of strong connectedness of
n-dimensional domains introduced in [8].

Definition 4. Let, for every s ∈ N, Is : W
1,p(Ωs) → R, and let I : W 1,p(Ω) → R. We say that

the sequence {Is} Γ-converges to the functional I if the following conditions are satisfied:

(a) for every function v ∈ W 1,p(Ω), there exists a sequence ws ∈ W 1,p(Ωs) such that
‖ws − qsv‖Lp(Ωs) → 0 and Is(ws) → I(v);

(b) for every function v ∈ W 1,p(Ω) and for every sequence vs ∈ W 1,p(Ωs) such that
‖vs − qsv‖Lp(Ωs) → 0, we have lim inf

s→∞
Is(vs) > I(v).

Next, let c1, c2 > 0, and let, for every s ∈ N, µs ∈ L1(Ωs) and µs > 0 in Ωs. We assume that
the sequence of norms ‖µs‖L1(Ωs) is bounded.

Let, for every s ∈ N, fs : Ωs × R
n → R be a function satisfying the following conditions: for

every ξ ∈ R
n, the function fs(·, ξ) is measurable on Ωs; for almost every x ∈ Ωs, the function

fs(x, ·) is convex on R
n; for almost every x ∈ Ωs and for every ξ ∈ R

n, we have

c1|ξ|
p − µs(x) 6 fs(x, ξ) 6 c2|ξ|

p + µs(x). (5)
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In view of the assumptions on the functions fs and µs, for every s ∈ N and for every
v ∈W 1,p(Ωs), the function fs(x,∇v) is summable on Ωs.

Definition 5. If s ∈ N, then Fs :W
1,p(Ωs) → R is the functional such that, for every function

v ∈W 1,p(Ωs), we have

Fs(v) =

∫

Ωs

fs(x,∇v)dx.

By virtue of the conditions on the functions fs, for every s ∈ N, the functional Fs is convex and
locally bounded. Therefore, for every s ∈ N, the functional Fs is weakly lower semicontinuous.

Let c3, c4 > 0, and let, for every s ∈ N, Gs : W
1,p(Ωs) → R be a weakly continuous functional.

We assume that, for every s ∈ N and for every v ∈W 1,p(Ωs),

Gs(v) > c3‖v‖
p
Lp(Ωs)

− c4. (6)

Obviously, for every s ∈ N, the functional Fs+Gs is weakly lower semicontinuous. Moreover, in
view of (5) and (6) and the boundedness of the sequence of norms ‖µs‖L1(Ωs), there exist positive
constants c5 and c6 such that, for every s ∈ N and for every v ∈W 1,p(Ωs), we have

(Fs +Gs)(v) > c5‖v‖
p
W 1,p(Ωs)

− c6. (7)

Thus, in view of the known results on the existence of minimizers of functionals (see, for
instance, [11]), if s ∈ N and Us is a sequentially weakly closed set in W 1,p(Ωs), then there exists
a minimizer of the functional Fs +Gs on the set Us.

2. Variational problems with bilateral constraints

First, we consider the case of regular bilateral constraints.
Let ϕ,ψ ∈W 1,p(Ω), and let ϕ 6 ψ a.e. in Ω. We define

V (ϕ,ψ) = {v ∈W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω},

and let, for every s ∈ N,

Vs(ϕ,ψ) = {v ∈W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs}.

It is easy to see that the set V (ϕ,ψ) is nonempty, closed, and convex. Similarly, for every s ∈ N,
the set Vs(ϕ,ψ) is nonempty, closed, and convex.

Clearly, for every s ∈ N, there exists a function belonging to the set Vs(ϕ,ψ) and minimizing
the functional Fs +Gs on this set.

Theorem 1. Assume that the following conditions are satisfied:

(∗1) the embedding of W 1,p(Ω) into Lp(Ω) is compact;

(∗2) the sequence of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω);

(∗3) for every sequence of measurable sets Hs ⊂ Ωs such that measHs → 0, we have
∫

Hs

µs dx→ 0;

(∗4) the sequence {Fs} Γ-converges to a functional F :W 1,p(Ω) → R;

(∗5) there exists a functional G : W 1,p(Ω) → R such that, for every function v ∈ W 1,p(Ω) and

for every sequence vs ∈W 1,p(Ωs) with the property ‖vs − qsv‖Lp(Ωs) → 0, we have Gs(vs) → G(v);
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(∗6) ψ − ϕ > 0 a.e. in Ω.

Let, for every s ∈ N, us be a function in Vs(φ,ψ) minimizing the functional Fs + Gs on

the set Vs(ϕ,ψ). Then there exist an increasing sequence {sj} ⊂ N and a function u ∈ V (ϕ,ψ)
such that u minimizes the functional F + G on the set V (ϕ,ψ), ‖usj − qsju‖Lp(Ωsj

) → 0, and

(Fsj +Gsj )(usj ) → (F +G)(u).

Essentially, a similar result was obtained in [12] but under stronger assumptions on the func-
tionals Fs and Gs and under the condition ψ − ϕ > α a.e. in Ω, where α > 0. In this connection,
see also [13, Theorem 2.9].

Concerning the proof of Theorem 1, we note the following. First, using operators ls :W
1,p(Ωs) →

W 1,p(Ω) described in Definition 3 and defining the functions ũs = min{max{lsus, ϕ}, ψ}, we find
that there exist an increasing sequence {sj} ⊂ N and a function u ∈ W 1,p(Ω) such that ũsj → u
strongly in Lp(Ω) and almost everywhere in Ω. Then we obtain the inclusion u ∈ V (ϕ,ψ), the
limit relation ‖usj − qsju‖Lp(Ωsj )

→ 0, and, by virtue of conditions (∗4) and (∗5) of Theorem 1, the

inequality lim inf
s→∞

(Fsj + Gsj )(usj ) > (F + G)(u). The next and most important step is to estab-

lish, for every function v ∈ V (ϕ,ψ), the existence of a sequence ws ∈ Vs(ϕ,ψ) with the following
properties: ‖ws − qsv‖Lp(Ωs) → 0 and

lim sup
s→∞

Fs(ws) 6 F (v). (8)

The construction of such a sequence involves the function v and a Γ-realizing sequence {vs} for v,
i.e., a sequence vs ∈ W 1,p(Ωs) such that ‖vs − qsv‖Lp(Ωs) → 0 and Fs(vs) → F (v), which exists
in view of condition (∗4) of Theorem 1. Moreover, it involves the difference ψ − ϕ. Using the
limit relation ‖vs − qsv‖Lp(Ωs) → 0 and condition (∗6) of Theorem 1, we find that, for a sequence
{σs} ⊂ (0, 1] converging to 0, meas{|vs − qsv| > σsqs(ψ − ϕ)} → 0. This is a key moment in the
proof of inequality (8). For further details leading to the required properties of the function u,
see [9, Section 2].

We now proceed to the case of irregular bilateral constraints. More precisely, we consider
the case where the lower constraint is zero and the upper constraint is an arbitrary nonnegative
function. Thus, in contrast to the previous case, the upper constraint can be irregular and both
constraints can coincide on a set of positive measure. This is due to an additional condition on
the domains Ωs and a stronger condition on the functions µs as compared to condition (∗3) of
Theorem 1.

Let ψ : Ω → R and ψ > 0 a.e. in Ω. We define

V (ψ) = {v ∈W 1,p(Ω) : 0 6 v 6 ψ a.e. in Ω},

and let, for every s ∈ N,

Vs(ψ) = {v ∈W 1,p(Ωs) : 0 6 v 6 ψ a.e. in Ωs}.

It is easy to see that the set V (ψ) is nonempty, closed, and convex. Moreover, for every s ∈ N,
the set Vs(ψ) is nonempty, closed, and convex.

Obviously, for every s ∈ N, there exists a function belonging to the set Vs(ψ) and minimizing
the functional Fs +Gs on this set.

Theorem 2. Assume that conditions (∗1), (∗2), (∗4), and (∗5) of Theorem 1 are satisfied. In

addition, suppose that the following conditions are satisfied:

(∗′) for every increasing sequence {mj} ⊂ N, we have meas
(

Ω \
∞
⋃

j=1
Ωmj

)

= 0;
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(∗′′) ‖µs‖L1(Ωs) → 0;

Let, for every s ∈ N, us be a function in Vs(ψ) minimizing the functional Fs + Gs on the

set Vs(ψ). Then there exist an increasing sequence {sj} ⊂ N and a function u ∈ V (ψ) such that u
minimizes the functional F +G on the set V (ψ), ‖usj − qsju‖Lp(Ωsj )

→ 0, and (Fsj +Gsj )(usj ) →

(F +G)(u).

As for the proof of Theorem 2, we give the following remarks. Since, in general, the function ψ is
irregular, we cannot use functions like the above functions ũs in the proof of Theorem 1. Therefore,
using operators ls : W

1,p(Ωs) → W 1,p(Ω) described in Definition 3, first, we find that there exist an
increasing sequence {sj} ⊂ N and a function u ∈ W 1,p(Ω) such that lsjusj → u strongly in Lp(Ω)
and almost everywhere in Ω. Then, to prove that u ∈ V (ψ), along with the inclusions us ∈ Vs(ψ),
we use condition (∗′) of Theorem 2 which effectively works in this situation. Similarly to the proof
of Theorem 1, the most important step in the proof of Theorem 2 is to establish, for every function
v ∈ V (ψ), the existence of a sequence ws ∈ Vs(ψ) such that ‖ws−qsv‖Lp(Ωs) → 0 and inequality (8)
holds. The construction of such a sequence involves the function v and a Γ-realizing sequence {vs}
for v but does not involve the constraint ψ. To prove inequality (8), we essentially use condition (∗′′)
of Theorem 2 and the fact that meas({|vs− qsv| > σsqsv}∩{v > 0}) → 0, where {σs} is a sequence
in [0, 1) such that σs → 0. For details, see the proof of Theorem 3.1 in [10].

The next result describes a situation where we have the convergence of the whole sequence of
minimizers and of the whole sequence of minimum values.

Theorem 3. Assume that conditions (∗1), (∗2), (∗4), and (∗5) of Theorem 1 are satisfied,

and the functional G is strictly convex on the set V (ψ). In addition, suppose that conditions (∗′)
and (∗′′) of Theorem 2 are satisfied. Let, for every s ∈ N, us be a function in Vs(ψ) minimizing

the functional Fs +Gs on the set Vs(ψ). Then there exists a unique function u ∈ V (ψ) minimizing

the functional F +G on the set V (ψ) and the following relations hold : ‖us − qsu‖Lp(Ωs) → 0 and

(Fs +Gs)(us) → (F +G)(u).

3. Comments to the conditions of Theorems 1–3

As is known (see, for instance, [14, Chapter 6]), condition (∗1) of Theorem 1 is satisfied if Ω is
a Lipschitz domain. In particular, bounded convex domains are Lipschitz domains. A more general
requirement guaranteeing the fulfillment of condition (∗1) is that Ω is an extension domain (see,
for instance, [15, Chapter 1]).

Condition (∗2) of Theorem 1 is satisfied, in particular, if the domains Ωs have a certain perfo-
rated structure. In this regard, see, for instance, [16, Section 2].

As far as conditions (∗3) and (∗4) of Theorem 1 are concerned, we note the following. In the
case where the functions µs take a constant value independent of s, theorems on conditions for the
Γ-convergence of the integral functionals Fs with the integrands fs satisfying condition (5) follow
from the results of [17, 18], where the Γ-convergence of integral functionals defined on the spaces
Wm,p(Ωs) with an arbitrary m ∈ N was studied. In this case, the sequence {Fs} Γ-converges to an
integral functional defined on the space W 1,p(Ω), in particular, if the domains Ωs have a periodic
perforated structure and all the integrands fs coincide with the same integrand having a certain
regularity (see [17]). Obviously, in the specified case for the functions µs, the sequence of norms
‖µs‖L1(Ωs) is bounded and condition (∗3) of Theorem 1 is satisfied. In the more general case where
µs ∈ L1(Ωs) and µs > 0 in Ωs for every s ∈ N and, in addition, the inequality

lim sup
s→∞

∫

Q∩Ωs

µs dx 6

∫

Q∩Ω

µdx (9)
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holds for a function µ ∈ L1(Ω), µ > 0 in Ω, and for every open cube Q of Rn, a theorem on the
Γ-compactness of the sequence {Fs} can be proved similarly to the corresponding results in [19,
20]. Obviously, in this case, the sequence of norms ‖µs‖L1(Ωs) is bounded. We also note that
there are examples of sequences of nonnegative functions µs ∈ L1(Ωs) for which condition (9) and
condition (∗3) of Theorem 1 are satisfied but there is no function µ∗ : Ω → R such that, for every
s ∈ N, µs 6 µ∗ a.e. in Ωs. Such examples can be given with the use of the functions constructed
in [21].

In connection with condition (∗5) of Theorem 1, we give the following example.

Example 1. Let a ∈ Lp/(p−1)(Ω). Let β1 ∈ (0, 1), let β2 > 0, and let Φ : [0,+∞) → R be a
continuous function such that

∀ η ∈ [0,+∞), |Φ(η)| 6 β1|η|
p + β2. (10)

For every s ∈ N, we define the functional Gs :W
1,p(Ωs) → R by

Gs(v) =

∫

Ωs

{|v|p + av}dx+Φ(‖v‖Lp(Ωs)), v ∈W 1,p(Ωs).

In view of (10), for every s ∈ N and for every v ∈W 1,p(Ωs), inequality (6) holds with constants c3
and c4 depending only on p, β1, β2, and ‖a‖Lp/(p−1)(Ω). We also note that if conditions (∗1) and (∗2)
of Theorem 1 are satisfied, then, for every s ∈ N, the functional Gs is weakly continuous. Next,
assume that the following condition is satisfied:

(∗) there exists a nonnegative bounded measurable function b : Ω → R such that, for every

open cube Q ⊂ Ω, we have meas(Q ∩ Ωs) →

∫

Q
b dx.

Now, let G : W 1,p(Ω) → R be the functional such that, for every function v ∈W 1,p(Ω), we have

G(v) =

∫

Ω

b{|v|p + av}dx+Φ(‖b1/pv‖Lp(Ω)). (11)

Using condition (∗) and the continuity of the function Φ, we find that, for the sequence of func-
tionals Gs, condition (∗5) of Theorem 1 is satisfied.

We remark that if the domain Ω is Lipschitz and the domains Ωs have a certain periodically
perforated structure, then conditions (∗1) and (∗2) of Theorem 1 are satisfied along with condi-
tion (∗) in which the function b takes a constant positive value. Obviously, for such a function b,
the functional G defined by (11) is strictly convex if the function Φ is nondecreasing and convex.

We emphasize the importance of condition (∗6) of Theorem 1 for its conclusion. In [9], we
gave an example where all the conditions of Theorem 1 are satisfied except for condition (∗6) but
the conclusion of this theorem does not hold on the whole. We note that, in this example, for
an arbitrary pre-assigned positive ε, the measure of the set where the lower and upper constraints
coincide does not exceed ε. Here is a simple example where condition (∗6) of Theorem 1 is satisfied.

Example 2. Let Ω = {x ∈ R
n : |x| < 1}, and let, for every x ∈ Ω, we have ϕ(x) = 0 and

ψ(x) = |x|2(1 − |x|2). In view of these assumptions, we have ϕ,ψ ∈
◦

W 1,p(Ω) and ϕ 6 ψ in Ω. In
addition, for every x ∈ Ω \ {0}, (ψ−ϕ)(x) > 0. Thus, condition (∗6) of Theorem 1 is satisfied. We

observe that, in the case considered here, we have V (ϕ,ψ) = {v ∈
◦

W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}.
Hence, for p = 2, the set V (ϕ,ψ) has the same form as the set defined by bilateral constraints
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in [22]. We also note that if ω is a domain of Rn such that ω ⊂ Ω and the origin is contained in ω,
then there is no number δω > 0 such that ψ−ϕ > δω a.e. in ω. We remark in this connection that
it was shown in [22] that the G-convergence of a sequence of linear continuous divergence operators

As :
◦

W 1,2(Ω) → W−1,2(Ω) to an operator A :
◦

W 1,2(Ω) → W−1,2(Ω) of the same form implies
the weak convergence of solutions of variational inequalities with the operators As and the set of

constraints K(ψ1, ψ2) = {v ∈
◦

W 1,2(Ω) : ψ1 6 v 6 ψ2 a.e. in Ω} to the solution of the corresponding
variational inequality with the operator A and the same set of constraints. At the same time, it
was assumed in [22] that ψ1, ψ2 ∈ L2(Ω) and, for every subdomain ω ⊂⊂ Ω, there exist a number

δω > 0 and functions ψω
1 , ψ

ω
2 ∈

◦

W 1,2(Ω) such that ψ1 6 ψω
1 6 ψω

2 6 ψ2 in Ω and ψω
2 − ψω

1 > δω

in ω. Obviously, the functions ϕ and ψ defined at the beginning of this example do not satisfy the
assumption given in [22].

We now discuss condition (∗′) of Theorem 2. This condition is essential for the conclusion of
Theorem 2. In [10], we construct an example where all the conditions of Theorem 2 are satisfied
except for condition (∗′) but the conclusion of this theorem does not hold. We call condition (∗′) of
Theorem 2 the exhaustion condition of the domain Ω by the domains Ωs. This condition plays an
important role in the study of the convergence of solutions of variational problems with irregular
unilateral and bilateral constraints in variable domains. In this regard, in addition to the present
paper, see [23, 24]. We used the same exhaustion condition earlier in [6] for the investigation of
both a convergence of sets in variable Sobolev spaces and the coercivity of the Γ-limit of functionals
defined on these spaces. Below, we show how such questions are solved for sequences of sets
Us ⊂W 1,p(Ωs) and the functionals Fs +Gs. Before we do this, let us give some useful results.

Proposition 2. Condition (∗′) of Theorem 2 is equivalent to the following condition:

if v ∈ L1(Ω) and lim inf
s→∞

∫

Ωs

|v|dx = 0, then v = 0 a.e. in Ω. (12)

P r o o f. Assume that condition (∗′) of Theorem 2 is satisfied. Let v ∈ L1(Ω), and let

lim inf
s→∞

∫

Ωs

|v|dx = 0.

Fixing an arbitrary ε > 0, we find that there exists an increasing sequence {sj} ⊂ N such that

∀j ∈ N,

∫

Ωsj

|v|dx 6
ε

2j
. (13)

Setting Ω′ =
∞
⋃

j=1
Ωsj , by condition (∗′) of Theorem 2, we have meas(Ω \ Ω′) = 0. Then

∫

Ω

|v|dx =

∫

Ω′

|v|dx 6

∞
∑

j=1

∫

Ωsj

|v|dx.

This and (13) imply that
∫

Ω

|v|dx 6 ε.



Convergence of solutions of bilateral problems 59

Hence, in view of the arbitrariness of ε, we conclude that v = 0 a.e. in Ω. Thus, condition (12) is
satisfied.

Conversely, assume that condition (12) is satisfied. Let {mj} be an increasing sequence in N.

Setting E0 = Ω \
∞
⋃

j=1
Ωmj , we suppose that measE0 > 0. Let χ : Ω → R be the characteristic

function of the set E0. Obviously, χ ∈ L1(Ω) and

∫

Ωmj

χdx = 0 for every j ∈ N. Therefore,

lim inf
s→∞

∫

Ωs

χdx = 0.

Then, by condition (12), we have χ = 0 a.e. in Ω. Hence, there exists a set E ⊂ Ω of measure zero
such that, for every x ∈ Ω \E, we have χ(x) = 0. Then, fixing x ∈ E0 \E, we obtain χ(x) = 0. On
the other hand, by the definition of the function χ, we have χ(x) = 1. The obtained contradiction
proves that measE0 = 0. Thus, condition (∗′) of Theorem 2 is satisfied. �

Proposition 3. Let condition (∗′) of Theorem 2 be satisfied. Then the following condition is

satisfied:

if v ∈W 1,p(Ω) and lim inf
s→∞

‖qsv‖Lp(Ωs) = 0, then v = 0 a.e. in Ω. (14)

P r o o f. Let v ∈W 1,p(Ω) and lim inf
s→∞

‖qsv‖Lp(Ωs) = 0. Setting w = |v|p, we have

w ∈ L1(Ω), lim inf
s→∞

∫

Ωs

w dx = 0. (15)

Since, by assumption, condition (∗′) of Theorem 2 is satisfied, we deduce from Proposition 2 that
condition (12) is satisfied. The latter condition along with (15) implies that w = 0 a.e. in Ω.
Hence, v = 0 a.e. in Ω. Thus, condition (14) is satisfied. �

Proposition 4. Let condition (∗1) of Theorem 1 be satisfied, and assume that there exists

a sequence of linear continuous operators ls : W 1,p(Ωs) → W 1,p(Ω) such that the sequence of

norms ‖ls‖ is bounded and, for every s ∈ N and for every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e.

in Ωs. Let, for every s ∈ N, ws ∈ W 1,p(Ωs). Assume that the sequence of norms ‖ws‖W 1,p(Ωs) is

bounded. Then there exist an increasing sequence {sj} ⊂ N and a function w ∈ W 1,p(Ω) such that

lsjwsj → w weakly in W 1,p(Ω), lsjwsj → w a.e. in Ω, and ‖wsj − qsjw‖Lp(Ωsj )
→ 0.

P r o o f. The properties of the operators ls along with the boundedness of the sequence of
norms ‖ws‖W 1,p(Ωs) imply that the sequence {lsws} is bounded in W 1,p(Ω) and

∀s ∈ N, qs(lsws) = ws a.e. in Ωs. (16)

Since the space W 1,p(Ω) is reflexive and the sequence {lsws} is bounded in W 1,p(Ω), there exist
an increasing sequence {s̄k} ⊂ N and a function w ∈ W 1,p(Ω) such that ls̄kws̄k → w weakly
in W 1,p(Ω). Hence, by condition (∗1) of Theorem 1, we have ls̄kws̄k → w strongly in Lp(Ω).
Therefore, there exists an increasing sequence {sj} ⊂ {s̄k} such that lsjwsj → w a.e. in Ω. It is
clear that lsjwsj → w weakly inW 1,p(Ω) and lsjwsj → w strongly in Lp(Ω). The latter convergence
along with (16) implies that ‖wsj − qsjw‖Lp(Ωsj

) → 0. �



60 Alexander A. Kovalevsky

Proposition 5. Let condition (∗1) of Theorem 1 be satisfied, and assume that there exists

a sequence of linear continuous operators ls : W 1,p(Ωs) → W 1,p(Ω) such that the sequence of

norms ‖ls‖ is bounded and, for every s ∈ N and for every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e.

in Ωs. In addition, assume that condition (∗′) of Theorem 2 is satisfied. Let, for every s ∈ N,

ws ∈W 1,p(Ωs), and let w ∈W 1,p(Ω). Assume that the sequence of norms ‖ws‖W 1,p(Ωs) is bounded

and ‖ws − qsw‖Lp(Ωs) → 0. Then lsws → w weakly in W 1,p(Ω).

P r o o f. The properties of the operators ls imply that the sequence {lsws} is bounded
in W 1,p(Ω) and

∀s ∈ N, qs(lsws) = ws a.e. in Ωs. (17)

Assume that the sequence {lsws} does not converge weakly to w in W 1,p(Ω). Then there exist a
functional g ∈ (W 1,p(Ω))∗, a number ε > 0, and an increasing sequence {s̄k} ⊂ N such that

∀k ∈ N, |〈g, ls̄kws̄k〉 − 〈g,w〉| > ε. (18)

Since the space W 1,p(Ω) is reflexive and the sequence {lsws} is bounded in W 1,p(Ω), there exist an
increasing sequence {sj} ⊂ {s̄k} and a function w0 ∈W 1,p(Ω) such that

lsjwsj → w0 weakly in W 1,p(Ω). (19)

Hence, by condition (∗1) of Theorem 1, we have lsjwsj → w0 strongly in Lp(Ω). Then, in view
of (17), we have ‖wsj − qsjw0‖Lp(Ωsj )

→ 0. This and the assumption that ‖ws − qsw‖Lp(Ωs) → 0

imply that ‖qsj(w − w0)‖Lp(Ωsj )
→ 0. Consequently, lim inf

s→∞
‖qs(w − w0)‖Lp(Ωs) = 0. From this

equality, condition (∗′) of Theorem 2, and Proposition 3, we derive that w = w0 a.e. in Ω. Then, in
view of (19), we have lsjwsj → w weakly in W 1,p(Ω). However, this contradicts (18). The obtained
contradiction proves that lsws → w weakly in W 1,p(Ω). �

The following definition essentially is a particular case of Definition 5 in [6].

Definition 6. Let, for every s ∈ N, Us be a nonempty set inW 1,p(Ωs), and let U be a nonempty
set inW 1,p(Ω). We say that the sequence {Us} H-converges to the set U if the following conditions
are satisfied:

(a) for every function v ∈ U , there exists a sequence ws ∈ Us such that sup
s∈N

‖ws‖W 1,p(Ωs) < +∞

and ‖ws − qsv‖Lp(Ωs) → 0;

(b) for every sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞, there exist an increasing

sequence {sj} ⊂ N and a function v ∈ U such that ‖vsj − qsjv‖Lp(Ωsj )
→ 0.

Proposition 6. Let condition (∗′) of Theorem 2 be satisfied. Then a sequence of nonempty

sets Us ⊂W 1,p(Ωs) may H-converge to only one nonempty set U ⊂W 1,p(Ω).

P r o o f. Assume that a sequence of nonempty sets Us ⊂W 1,p(Ωs) H-converges to nonempty
sets U ⊂ W 1,p(Ω) and V ⊂ W 1,p(Ω). Let w ∈ U . Since the sequence {Us} H-converges to the
set U , there exists a sequence ws ∈ Us such that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws−qsw‖Lp(Ωs) → 0.

Since the sequence {Us} H-converges to the set V , for the sequence {ws}, there exist an increasing
sequence {sj} ⊂ N and a function v ∈ V such that ‖wsj −qsjv‖Lp(Ωsj )

→ 0. This convergence along

with the convergence ‖ws−qsw‖Lp(Ωs) → 0 implies that ‖qsj(v−w)‖Lp(Ωsj
) → 0. Then, taking into

account condition (∗′) of Theorem 2 and Proposition 3, we find that w = v a.e. in Ω. Therefore,
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in view of the inclusion v ∈ V , we have w ∈ V . Consequently, U ⊂ V . In the same way, we prove
that V ⊂ U . Thus, U = V . �

Remark 1. In the proof of Proposition 6, concerning the considered sets inW 1,p(Ω), we implicitly
assumed that functions equivalent to elements of these sets belong to the same sets.

Proposition 7. Assume that the embedding ofW 1,p(Ω) into Lp(Ω) is compact and the sequence

of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω). Then the sequence {W 1,p(Ωs)}
H-converges to the set W 1,p(Ω).

P r o o f. Let v ∈ W 1,p(Ω). For every s ∈ N, we set ws = qsv. Obviously, for every s ∈ N, we
have ws ∈W 1,p(Ωs). It is also easy to see that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws − qsv‖Lp(Ωs) → 0.

Next, taking a sequence vs ∈ W 1,p(Ωs) such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞, in view of the assump-

tions of this proposition, we deduce from Proposition 4 that there exist an increasing sequence
{sj} ⊂ N and a functon v ∈ W 1,p(Ω) such that ‖vsj − qsjv‖Lp(Ωsj )

→ 0. Now, by Definition 6, we

conclude that the sequence {W 1,p(Ωs)} H-converges to the set W 1,p(Ω). �

We note that condition (∗′) of Theorem 2 is essential for the conclusion of Proposition 6. This
is justified by the following simple example.

Example 3. Assume that Ω is a Lipschitz domain. Then the embedding of W 1,p(Ω) into
Lp(Ω) is compact. Let B be a closed ball in R

n such that B ⊂ Ω, and assume that, for every
s ∈ N, Ωs = Ω \ B. In view of the known extension results for Sobolev spaces (see, for instance,
[25, Theorem 7.25]), there exists a linear continuous operator l : W 1,p(Ω\B) →W 1,p(Ω) such that,
for every function v ∈ W 1,p(Ω \ B), we have lv = v in Ω \ B. Setting, for every s ∈ N, ls = l, we
find that the sequence {ls} has all the properties described in Definition 3. Therefore, the sequence
of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω). Thus, Proposition 7 implies that
the sequence {W 1,p(Ωs)} H-converges to the set W 1,p(Ω). Now, let y and r be the center and the
radius of the ball B, respectively, and let B0 = {x ∈ R

n : |x− y| 6 r/2}. We define

U = {v ∈W 1,p(Ω) : v = 0 a.e. in B0}.

It is easy to see that, for every function v ∈ U , there exists a sequence ws ∈ W 1,p(Ωs) such that
sup
s∈N

‖ws‖W 1,p(Ωs) < +∞ and ‖ws−qsv‖Lp(Ωs) → 0. Next, we fix an arbitrary sequence vs ∈W
1,p(Ωs)

such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞. Since the sequence {W 1,p(Ωs)} H-converges to the set W 1,p(Ω),

there exist an increasing sequence {sj} ⊂ N and a function v ∈W 1,p(Ω) such that

‖vsj − qsjv‖Lp(Ωsj )
→ 0. (20)

Let ϕ be a function in C∞
0 (Ω) such that 0 6 ϕ 6 1 in Ω, ϕ = 1 in B0, and ϕ = 0 in Ω \B. We have

vϕ ∈ W 1,p(Ω). Then, since ϕ = 1 in B0, we have v − vϕ ∈ U . Moreover, taking into account that
ϕ = 0 in Ω\B, we derive from (20) that ‖vsj − qsj(v− vϕ)‖Lp(Ωsj )

→ 0. Now, we conclude that the

sequence {W 1,p(Ωs)} H-converges to the set U . Obviously, U 6= W 1,p(Ω). It remains to observe

that Ω \
∞
⋃

s=1
Ωs = B. Hence, meas

(

Ω \
∞
⋃

s=1
Ωs

)

> 0. Consequently, condition (∗′) of Theorem 2 is

not satisfied.

We now proceed to a more delicate question on the H-convergence of sets defined by bilateral
constraints.
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Proposition 8. Assume that conditions (∗1) and (∗2) of Theorem 1 and condition (∗′) of

Theorem 2 are satisfied. Let ϕ,ψ : Ω → R, and let ϕ 6 ψ a.e. in Ω. Let, for every s ∈ N,

Us = {v ∈ W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs}, and let U = {v ∈ W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}.
Assume that the set U is nonempty. Then the sequence {Us} H-converges to the set U .

P r o o f. Let v ∈ U . For every s ∈ N, we set ws = qsv. Obviously, for every s ∈ N, we have
ws ∈ Us. It is also easy to see that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws − qsv‖Lp(Ωs) → 0.

Next, we fix an arbitrary sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞. Since con-

dition (∗2) of Theorem 1 is satisfied, there exists a sequence of linear continuous operators ls :
W 1,p(Ωs) → W 1,p(Ω) such that the sequence of norms ‖ls‖ is bounded and, for every s ∈ N and for
every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e. in Ωs. Then, taking into account that condition (∗1)
of Theorem 1 is satisfied, we derive from Proposition 4 that there exist an increasing sequence
{sj} ⊂ N and a function w ∈W 1,p(Ω) such that lsjvsj → w a.e. in Ω and ‖vsj − qsjw‖Lp(Ωsj )

→ 0.

Let us show that ϕ 6 w 6 ψ a.e. in Ω. Since, for every s ∈ N, we have vs ∈ Us, there exists
a set E′ ⊂ Ω of measure zero such that, for every s ∈ N and for every x ∈ Ωs \ E

′, we have
ϕ(x) 6 vs(x) 6 ψ(x). In addition, by the properties of the operators ls, there exists a set E′′ ⊂ Ω
of measure zero such that, for every s ∈ N and for every x ∈ Ωs \E

′′, we have (lsvs)(x) = vs(x). It
is clear that

s ∈ N, x ∈ Ωs \ (E
′ ∪ E′′) =⇒ ϕ(x) 6 (lsvs)(x) 6 ψ(x). (21)

Since lsjvsj → w a.e. in Ω, there exists a set E′′′ ⊂ Ω of measure zero such that

∀x ∈ Ω \ E′′′, (lsjvsj)(x) → w(x). (22)

Next, for every k ∈ N, we set E(k) = Ω \
∞
⋃

j=k

Ωsj . In view of condition (∗′) of Theorem 2, for every

k ∈ N, we have measE(k) = 0. Therefore, setting E =
∞
⋃

k=1

E(k), we have measE = 0. Now, let

x ∈ Ω \ (E′ ∪ E′′ ∪ E′′′ ∪ E). We fix an arbitrary ε > 0. Since x ∈ Ω \ E′′′, by (22), we have
(lsjvsj)(x) → w(x). Consequently, there exists k ∈ N such that

j ∈ N, j > k =⇒ |(lsjvsj)(x) − w(x)| 6 ε. (23)

Since x ∈ Ω \ E, there exists j ∈ N, j > k, such that x ∈ Ωsj . Then we derive from (21) and (23)
that ϕ(x)− ε 6 w(x) 6 ψ(x) + ε. Hence, in view of the arbitrariness of ε, we obtain the inequality
ϕ(x) 6 w(x) 6 ψ(x). Therefore, ϕ 6 w 6 ψ a.e. in Ω. Then w ∈ U . Thus, we have established that,
for every sequence vs ∈ Us such that sup

s∈N
‖vs‖W 1,p(Ωs) < +∞, there exist an increasing sequence

{sj} ⊂ N and a function w ∈ U such that ‖vsj − qsjw‖Lp(Ωsj )
→ 0.

We now conclude that the sequence {Us} H-converges to the set U . �

We note that condition (∗′) of Theorem 2 is essential for the conclusion of Proposition 8. This
is justified by the following example.

Example 4. Assume that the domain Ω and the sequence of domains Ωs are the same as
in Example 3. Then conditions (∗1) and (∗2) of Theorem 1 are satisfied but condition (∗′) of
Theorem 2 is not satisfied. Let ϕ : Ω → R be the function such that, for every x ∈ Ω, ϕ(x) = 0.
Moreover, let ψ : Ω → R be the function such that

ψ(x) =

{

0 if x ∈ B,

1 if x ∈ Ω \B.
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Obviously, ϕ 6 ψ in Ω. Let, for every s ∈ N, Us = {v ∈ W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs},
and let U = {v ∈ W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}. Clearly, the set U is nonempty. Thus, all
the conditions of Proposition 8 are satisfied except for condition (∗′) of Theorem 2. At the same
time, the sequence {Us} does not H-converge to the set U . In fact, suppose that the sequence {Us}
H-converges to the set U . Then, taking the sequence vs ∈ W 1,p(Ωs) such that, for every s ∈ N,
vs = 1 in Ωs, we find that there exist an increasing sequence {sj} ⊂ N and a function v ∈ U such

that ‖vsj − qsjv‖Lp(Ωsj )
→ 0. Hence, v = 1 a.e. in Ω \ B. Therefore, v − 1 ∈

◦

W 1,p(Ω). Moreover,

since v ∈ U , we have v = 0 a.e. in B. Thus, |∇v| = 0 a.e. in Ω. Then, fixing a number r such

that 1 < r < min{p, n} and taking into account that v − 1 ∈
◦

W 1,r(Ω), we apply the corresponding
Sobolev inequality for the function v − 1 and find that v = 1 a.e. in Ω. However, this contradicts
the fact that v = 0 a.e. in B. The obtained contradiction proves that the sequence {Us} does not
H-converge to the set U .

Although, in the general case, condition (∗′) of Theorem 2 is essential for the H-convergence
of sets defined by bilateral constraints, in the case of regular constraints, this condition does not
play any role for the H-convergence of the corresponding sets. We demonstrate this by proving the
following result.

Proposition 9. Assume that conditions (∗1) and (∗2) of Theorem 1 are satisfied. Let ϕ,ψ ∈
W 1,p(Ω), and let ϕ 6 ψ a.e. in Ω. Let, for every s ∈ N, Us = {v ∈W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs},
and let U = {v ∈ W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}. Then the sequence {Us} H-converges to the

set U .

P r o o f. As in the proof of Proposition 8, we establish that, for every function v ∈ U , there
exists a sequence ws ∈ Us such that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws − qsv‖Lp(Ωs) → 0.

Next, we fix an arbitrary sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞. In view of

condition (∗2) of Theorem 1, there exists a sequence of linear continuous operators ls :W
1,p(Ωs) →

W 1,p(Ω) such that the sequence of norms ‖ls‖ is bounded and

∀s ∈ N, qs(lsvs) = vs a.e. in Ωs. (24)

It is easy to see that the sequence {lsvs} is bounded in W 1,p(Ω). For every s ∈ N, we set

zs = min{max{lsvs, ϕ}, ψ}.

We have {zs} ⊂ U and the sequence {zs} is bounded in W 1,p(Ω). Moreover, using (24) and the
inclusions vs ∈ Us, we establish that

∀s ∈ N, qszs = vs a.e. in Ωs. (25)

Using the reflexivity of the space W 1,p(Ω), the boundedness of the sequence {zs} in W 1,p(Ω), and
condition (∗1) of Theorem 1, we find that there exist an increasing sequence {sj} ⊂ N and a
function v ∈W 1,p(Ω) such that

zsj → v strongly in Lp(Ω) (26)

and zsj → v a.e. in Ω. The latter limit relation along with the inclusion {zsj} ⊂ U implies
that v ∈ U . Finally, we derive from (25) and (26) that ‖vsj − qsjv‖Lp(Ωsj )

→ 0. Thus, we have

established that, for every sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞, there exist an

increasing sequence {sj} ⊂ N and a function v ∈ U such that ‖vsj − qsjv‖Lp(Ωsj
) → 0.
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We now conclude that the sequence {Us} H-converges to the set U . �

Remark 2. Concerning some notions of convergence of sets lying in the same space, see, for
instance, [26, 27]. Our notion of H-convergence of sets lying generally in variable spaces differs
from the notions of convergence of sets in the sense of Kuratowski [26, Section 29] and in the sense
of Mosco [27, Definition 1.1] even in the case of sets belonging to the same space.

We give one more result involving condition (∗′) of Theorem 2.

Proposition 10. Let conditions (∗1), (∗2), (∗4), and (∗5) of Theorem 1 be satisfied. In addi-

tion, let condition (∗′) of Theorem 2 be satisfied. Then there exist positive constants b1 and b2 such

that, for every function v ∈W 1,p(Ω), we have (F +G)(v) > b1‖v‖
p
W 1,p(Ω)

− b2.

P r o o f. By condition (∗2) of Theorem 1, there exists a sequence of linear continuous operators
ls : W 1,p(Ωs) → W 1,p(Ω) such that the sequence of norms ‖ls‖ is bounded and, for every s ∈ N

and for every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e. in Ωs. We set λ = sup
s∈N

‖ls‖. It is not

difficult to find that λ is a real number such that λ > 1. Next, let v ∈ W 1,p(Ω). By virtue of
condition (∗4) of Theorem 1, there exists a sequence ws ∈W 1,p(Ωs) such that ‖ws− qsv‖Lp(Ωs) → 0
and Fs(ws) → F (v). The first of these limit relations and condition (∗5) of Theorem 1 imply that
Gs(ws) → G(v). Thus,

(Fs +Gs)(ws) → (F +G)(v). (27)

In view of (7), we have

∀s ∈ N, (Fs +Gs)(ws) > c5‖ws‖
p
W 1,p(Ωs)

− c6. (28)

This along with (27) implies that the sequence of norms ‖ws‖W 1,p(Ωs) is bounded. Now, since condi-
tion (∗1) of Theorem 1 and condition (∗′) of Theorem 2 are satisfied, we deduce from Proposition 5
that lsws → v weakly in W 1,p(Ω). Therefore,

lim inf
s→∞

‖lsws‖W 1,p(Ω) > ‖v‖W 1,p(Ω). (29)

Moreover, we have
∀s ∈ N, ‖lsws‖W 1,p(Ω) 6 λ‖ws‖W 1,p(Ωs). (30)

From (27)–(30), we derive that (F +G)(v) > c5λ
−p‖v‖p

W 1,p(Ω)
− c6. �

We observe that condition (∗′) of Theorem 2 is essential for the conclusion of Proposition 10.
In this regard, see [10, Example 4.3].

We complete the exposition of the results related to condition (∗′) of Theorem 2 with the
following proposition.

Proposition 11. Assume that c > 0 and, for every open set H of Rn such that H ⊂ Ω, we
have lim inf

s→∞
meas(H ∩ Ωs) > cmeasH. Then condition (∗′) of Theorem 2 is satisfied.

Concerning the proof of this result, see, for instance, [10]. We also remark that the condition
of Proposition 11 is satisfied in the case where the domains Ωs have a perforated structure of the
same kind as the structure of the domains considered in [16, Section 2].

Finally, we note that condition (∗′′) of Theorem 2 is also important for the conclusion of this
theorem. In this regard, see [10, Example 4.4]. Obviously, condition (∗′′) of Theorem 2 is satisfied
if all the functions µs are zero in the corresponding domains or if, for instance, for every s ∈ N, we
have µs = αsµ|Ωs , where {αs} ⊂ [0,+∞), αs → 0, and µ is a nonnegative function in L1(Ω).
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4. Conclusion

In this paper, we have formulated and have discussed some results on the convergence of
sequences of minimizers and minimum values of functionals Fs + Gs : W 1,p(Ωs) → R on sets
of functions defined by bilateral constraints in domains Ωs. These domains are assumed to be
contained in a bounded domain Ω of Rn. The functionals Fs are integral and convex, and their
integrands satisfy the bilateral estimate c1|ξ|

p − µs(x) 6 fs(x, ξ) 6 c2|ξ|
p + µs(x) for almost every

x ∈ Ωs and for every ξ ∈ R
n, where c1 and c2 are positive constants and µs are nonnegative func-

tions such that the sequence of norms ‖µs‖L1(Ωs) is bounded. The functionals Gs are assumed to
be weakly continuous on the corresponding Sobolev spaces. They are generally not integral and
play a subordinate role.

We have considered two cases: the case of regular constraints, i.e., constraints lying in the
Sobolev space W 1,p(Ω), and the case where the lower constraint is zero and the upper constraint is
an arbitrary nonnegative function. In both cases, a certain connection of the spaces W 1,p(Ωs) with
the spaceW 1,p(Ω), the Γ-convergence of the functionals Fs, and a convergence of the functionals Gs

are essentially used. At the same time, each of these cases has a distinctive feature. In the first
case, it is required that the difference between the upper and lower constraints be positive almost
everywhere. In the second case, this requirement is absent. However, in the latter case, it is
assumed that ‖µs‖L1(Ωs) → 0 and it is required that the exhaustion condition of the domain Ω by
the domains Ωs be satisfied.

We have given a series of results involving the exhaustion condition. In particular, we have
obtained an equivalent statement of this condition and, using it, have proved the H-convergence of
sets of functions defined by bilateral (generally irregular) constraints in the domains Ωs.
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ON INTERPOLATION BY ALMOST
TRIGONOMETRIC SPLINES1
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Abstract: The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh
by the linear differential operator L2n+2(D) = D2(D2 + 12)(D2 + 22) · · · (D2 + n2) with n ∈ N are reproved
under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of
approximation by such interpolating periodic splines are obtained.

Key words: Splines, Interpolation, Approximation, Linear differential operator.

Introduction

Let D = d/dx, n ∈ N, and let

L2n+2(D) = D2(D2 + 12)(D2 + 22) · · · (D2 + n2) (0.1)

be the (2n + 2)th-order linear differential operator with constant real coefficients. We denote the
characteristic polynomial of L2n+2(D) by p2n+2, and let T2n+2 = {0, 0,±i, . . . ,±in} be the set
of its zeros, with each zero repeated according to its multiplicity, where i is the imaginary unit.
The kernel of the differential operator (0.1) is the linear space spanned by the system of functions
{1, x, sin x, cos x, . . . , sinnx, cosnx}.

Denote by T the circumference considered as the interval [0, 2π] with identified ends, and let
‖ · ‖Lp(T) = ‖ · ‖p (1 ≤ p ≤ ∞) with the usual modification in the case p = ∞.

We associate with the differential operator L2n+2(D) the standard class of differentiable func-
tions

W∞(L2n+2) = {f ∈ C(2n+1)(T) : f (2n+1) is abs. cont., ‖L2n+2(D)f‖∞ ≤ 1}.

Let N ∈ N and h = π/N . Denote by ∆N = {jh : j = 0, 1, . . . , 2N − 1} the uniform mesh on
[0, 2π) which can be extended on R if required; h is the step of the mesh.

We say that a 2π-periodic function s2n+2 is a periodic almost trigonometric spline with knots
at the points of ∆N if s2n+2 satisfies the following conditions:

1) s2n+2 ∈ C(2n)(T),

2) L2n+2(D)s2n+2(x) = 0 ∀x ∈ (jh, (j + 1)h), j ∈ Z.

The set of all almost trigonometric splines is denoted by S(L2n+2,∆N ).
Almost trigonometric splines are a special case of the large family of L-splines defined by linear

differential operators (see [2], [3], [8], and others).

The term “almost trigonometric spline” is explained by the fact that such a spline is formed
by functions which differ from trigonometric polynomials for only one addend ax, where a is some

1This work was supported by the Program “Modern problems in function theory and applications” of the
Ural Branch of RAS (project no. 15–16–1–4).
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constant. This term is not standard, and we use it only not to specify every time by what differential
operator the considered splines are defined.

We interpolate at the knots of the mesh ∆N by elements from S(L2n+2,∆N ); i.e., for every
bounded 2N -periodic sequence y = {yν : ν ∈ Z}, yν = yν+2N , we consider the interpolation
problem: to find s ∈ S(L2n+2,∆N ) such that s(νh) = yν , ν ∈ Z.

For interpolation by polynomial splines, the existence, uniqueness and estimates of the error of
approximation in many classes of functions are well-known (see, for instance, [1, Ch. V], [11], [12],
[13], and references therein).

The existence and uniqueness of periodic interpolating L-splines corresponding to an arbitrary
linear differential operator with constant real coefficients were established in [10]. As far as almost
trigonometric splines are concerned the result in [10] means that if N > n, then for every bounded
2N -periodic interpolated sequence, there exists a unique interpolating almost trigonometric spline.

In the present paper, we give another proof of this result and observe such an important feature
that the inequality N > n cannot be replaced by a weaker one (Theorem 1). After this, for N > n,
we obtain a sharp estimate of the error of pointwise approximation by periodic interpolating almost
trigonometric splines in the class of functions W∞(L2n+2) (Theorem 2).

Theorem 1. If N > n, then, for every bounded 2N -periodic sequence {yν}ν∈Z, yν = yν+2N ,

there exists a unique s ∈ S(L2n+2,∆N ) such that s(νh) = yν , ν ∈ Z.

If N ≤ n, then periodic interpolating almost trigonometric spline cannot exist.

Let N > n. We set

An(x) =
x(x− h)

4(n!)2
+ 2

n
∑

ν=1

(−1)ν sin
νx

2
sin

ν(x− h)

2

ν2 (n− ν)! (n+ ν)! cos
νh

2

(0.2)

for 0 ≤ x ≤ h and extend An(x) to the whole real line by the equality An(x + h) = −An(x) for
x ∈ R\[0, h].

We show that An ∈ C(2n+1)(T). In the class W∞(L2n+2), the deviation from the periodic
interpolating almost trigonometric splines is estimated by this function.

Theorem 2. If N > n, then, for every function f ∈ W∞(L2n+2), the inequality

|f(x)− s(f)(x)| ≤ 2|An(x)| (0.3)

holds at any point x ∈ R. The inequality turns into an equality for f(x) = 2An(x).

For interpolation by periodic polynomial splines, inequality (0.3) was proved by Tikhomirov [12].
For N > 3n−1n, inequality (0.3) is a particular case of the author’s result [3]. For periodic trigono-
metric splines, the corresponding result was established by Nguen [5], [6, Ch. 2, §6].

1. Auxiliary results

First, we study the properties of the function An(x).

Lemma 1. If N > n, then

A(j)
n (x) |x=h= −A(j)

n (x) |x=0, j = 1, 3, . . . , 2n+ 1,

and

A(j)
n (x) |x=h= A(j)

n (x) |x=0= 0, j = 0, 2, . . . , 2n.
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P r o o f. By easy calculations, we verify that An(h) = An(0) = 0 and A′
n(x) |x=h=

−A′
n(x) |x=0. Further,

A′′
n(x) |x=h = A′′

n(x) |x=0 =
1

2(n!)2
−

n
∑

ν=1

(−1)ν−1

(n − ν)! (n+ ν)!
.

Using the known identity [7, Ch.IV, § 4.2.1, eq. 4], we obtain

n
∑

ν=1

(−1)ν−1

(n− ν)! (n + ν)!
=

n−1
∑

m=0

(−1)m+n−1

m! (2n −m)!
=

(−1)n−1

(2n)!

n−1
∑

m=0

(−1)m
(

2n

m

)

=
1

2(n!)2
.

From this, it follows that A′′
n(x) |x=h= A′′

n(x) |x=0= 0.
For j = 3, 4, . . . , 2n + 1, we have

A(j)
n (x) =

n
∑

ν=1

(−1)ν−1νj−2 cos(ν(x− h/2) + πj/2)

(n− ν)! (n+ ν)! cos(νh/2)
.

For j = 2k + 1 (k = 1, 2, . . . , n), easy calculations yield

A(2k+1)
n (x) |x=h= −A(2k+1)

n (x) |x=0 = (−1)k
n
∑

ν=1

(−1)ν−1 ν2k−1 tan(νh/2)

(n− ν)! (n + ν)!
.

For j = 2k (k = 2, 3, . . . , n), we obtain

A(2k)
n (x) |x=h = A(2k)

n (x) |x=0 = (−1)k
n
∑

ν=1

(−1)ν−1 ν2k−2

(n− ν)! (n+ ν)!

=
(−1)n+k

(2n)!

n−1
∑

m=0

(−1)m(n−m)2k−2

(

2n

m

)

= 0.

Here, we used the identity [7, Ch.IV, § 4.2.2, eq. 34]. The lemma is proved. �

We now extend the function An(x) from [0, h] to the whole real line by setting An(x + h) =
−An(x). Lemma 1 gives that An belongs to C(2n+1)(R) and is 2π-periodic.

Lemma 2. If N > n, then L2n+2(D)(2An(x)) = sign sinNx, x ∈ R.

P r o o f. Let 0 ≤ x ≤ h. Since

sin
νx

2
sin

ν(x− h)

2
= Aν cos νx+Bν sin νx+ Cν , ν = 1, 2, . . . , n,

where Aν , Bν and Cν are independent of x, the sum on the right-hand side of (0.2) vanishes by the
differential operator D(D2 + 12)(D2 + 22) · · · (D2 + n2). Taking into account that the factors on
the right-hand side of (0.1) can be rearranged, we obtain

D2(D2 + 12) · · · (D2 + n2)

(

x(x− h)

2(n!)2

)

=
1

2(n!)2
(D2 + 12) · · · (D2 + n2)(x(x− h))′′ = 1.

For x ∈ R\[0, h], we use the equality An(x+ h) = −An(x). �

The next statement is a special case of a result proved in [9] for an arbitrary linear differential
operator with constant real coefficients.
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Lemma 3. If N > n, then x = 0 is the unique zero of An(x) in [0, h) and this zero is simple.

P r o o f. By Lemma 1, An(0) = 0. Moreover, the function An(x) coincides, up to a nonzero
constant, with some function Pn(x) introduced in [9]. It was proved in [9] that if N > n, then
Pn(x) has a unique zero in [0, h) and this zero is simple. Therefore, An(x) has the same property. �

To prove our two theorems, we also need the periodic analog of the Rolle theorem on the
relation between the number of zeros of a smooth function ϕ(x) and the number of sign changes of
D(D2 + 12)(D2 + 22) · · · (D2 + n2)ϕ(x) on T.

We say that a continuous function f changes sign at some point t0 if the inequality
f(t0 − ε)f(t0 + ε) < 0 holds for all sufficiently small ε > 0. If f has a jump at the point t0,
then, instead of f(t0 − ε) and f(t0 + ε), we write lim

t→t0−0
f(t) and lim

t→t0+0
f(t), respectively. Denote

by Z(f,T) the number of zeros of the function f on T, and by ν(f,T) the number of sign changes
of f 6≡ 0 on T (the number of sign changes of f ≡ 0 is not defined). The number ν(f,T) is always
even. We denote by G(T) the set of 2π-functions of bounded variation with a finite number of
jumps on the period and absolutely continuous on all intervals of continuity. We also denote by
Gm(T) the set of 2π-periodic functions whose derivatives of order m− 2 are absolutely continuous
on T and f (m−1) ∈ G(T). Let Tn be the set of trigonometric polynomials of order at most n.

Lemma 4. For every function f ∈ G2n+1(T)\Tn, the following inequality holds:

ν
(

D(D2 + 12)(D2 + 22) · · · (D2 + n2)f,T
)

≥ Z(f,T).

This result was established by Nguen [5] (see also [6]) and is the periodic analog of the Rolle
theorem for the trigonometric differential operator.

Note that the periodic analog of the Rolle theorem in the form of Lemma 4 exists not for any
linear differential operator. More detailed information on some results and open problems in this
area can be found in [4] and references therein.

2. Proofs of Theorems

We now pass directly to the proofs of Theorems 1 and 2.

P r o o f of Theorem 1. Let N > n. We prove that if s ∈ S(L2n+2,∆N ) and s(jh) = 0
∀j ∈ Z, then s ≡ 0. After this, the existence and uniqueness of the interpolating periodic almost
trigonometric spline for every interpolated periodic sequence is a simple consequence of the Kramer
theorem for the corresponding system of linear algebraic equations.

Suppose that there exist s1, s2 ∈ S(L2n+2,∆N ) such that sk(jh) = 0 ∀j ∈ Z (k = 1, 2) and
s1 6≡ s2. This means that there is a point x∗ 6∈ ∆N such that s1(x∗) 6= s2(x∗). Let s1(x∗) 6= 0 and
C = s2(x∗)/s1(x∗). Then the function ϕ(x) = Cs1(x)− s2(x) has the following properties:

1) ϕ ∈ S(L2n+2,∆N );
2) ϕ(jh) = 0, j = 0, 1, . . . , 2N − 1;
3) ϕ(x∗) = 0.

Thus, ϕ(x) has at least 2N + 1 zeros on the period. From Lemma 4, we have

ν(D(D2 + 12)(D2 + 22) · · · (D2 + n2)ϕ,T) ≥ 2N + 1.

But D(D2 +12)(D2 +22) · · · (D2 +n2)ϕ(x) is a piecewise constant function with possible jumps at
the points of the mesh ∆N . Therefore, this function cannot change sign more than 2N times on T.
We have a contradiction from which it easily follows that s1 ≡ s2 ≡ 0.



On interpolation 71

The inequality N > n cannot be replaced by a weaker one. Indeed, if N = n, then the function
sinnx interpolates the sequence y ≡ 0 at the points of ∆N . This function lies in the kernel of the
linear differential operator (0.1) and can be interpreted as an element of the space S(L2n+2,∆N ).
Theorem 1 is proved. �

P r o o f of Theorem 2 is based on the ideas of [12]. Let N > n. Suppose that (0.3) fails; i.e.,
there exist a point x∗ ∈ [0, 2π) and a function f ∈ W∞(L2n+2) such that the inequality

|f(x∗)− s(f)(x∗)| > 2|An(x∗)|

holds. Define δ(x) = f(x)−s(f)(x). This function is zero at the points of the mesh ∆N . According
to Lemma 3, the function An(x) vanishes at the same points. From these facts, we have x∗ 6∈ ∆N .
Therefore, there is a number λ, 0 < |λ| < 1, such that λδ(x∗) = 2An(x∗).

We now introduce the function ∆(x) = λδ(x) − 2An(x). It is zero at all points of the set
∆N ∪{x∗} and possibly also at some other points. Therefore Z(∆(x),T) ≥ 2N +1. It is clear that
∆ ∈ G2n+1(T)\Tn. We denote L2n+1(D) = D(D2 + 12)(D2 + 22) · · · (D2 + n2), apply Lemma 4,
and obtain

ν (L2n+1(D)∆(x),T) ≥ 2N + 1. (2.1)

From (0.1) and the definition of almost trigonometric splines, we have the equalities L2n+1(D)δ(x) =
L2n+1(D)f(x) − cj on every interval [jh, (j + 1)h), j = 0, 1, . . . , 2N − 1, where cj are constants.
Using the Lagrange finite increments formula and the inequality |λ| < 1, we obtain

|L2n+1(D)(λδ(t′))− L2n+1(D)(λδ(t′′))| < |L2n+1(D)f(t′)− L2n+1(D)f(t′′)|

= |L2n+2(D)f(ξ)| · |t′ − t′′| ≤ |t′ − t′′|

on an arbitrary subinterval [t′, t′′] ⊂ [jh, (j + 1)h) for every interpolated function of our class.
From (0.2), it follows that L2n+1(D)(2An(x)) = x − h/2 ∀x ∈ [0, h). Hence, |t′ − t′′| =
|L2n+1(D)(2An(t

′))− L2n+1(D)(2An(t
′′))|. Thus,

|L2n+1(D)(λδ(t′))−L2n+1(D)(λδ(t′′))| < |L2n+1(D)(2An(t
′))− L2n+1(D)(2An(t

′′))|.

It is easy to see that if |a| < |b|, then sign(b − a) = sign b. Applying this fact, we come to
the conclusion that the function L2n+1(D)∆(x) changes sign no more than once in every interval
[jh, (j + 1)h). If L2n+1(D)∆(x) changes sign at the point jh (this is possible if the function is
discontinuous at jh), then L2n+1(D)∆(x) preserves sign in one of two adjacent intervals ((j−1)h, jh)
or (jh, (j + 1)h). Thus, we arrive at the inequality

ν (L2n+1(D)∆(x),T) ≤ 2N.

The obtained inequality contradicts to (2.1). The simple observation that inequality (0.3) turns
into an equality for f = 2An completes the proof. �

Corollary 1. If N > n, then

sup
f∈W∞(L2n+2)

‖f − s(f)‖p = 2‖An‖p, 1 ≤ p < ∞,

and

sup
f∈W∞(L2n+2)

‖f − s(f)‖∞ =

∣

∣

∣

∣

∣

∣

∣

h2

8(n!)2
+ 4

n
∑

ν=1

(−1)ν sin2
νh

4

ν2 (n − ν)! (n+ ν)! cos
νh

2

∣

∣

∣

∣

∣

∣

∣

.
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We now consider separately the case n = 1, i.e., the case of L-splines corresponding to the dif-
ferential operator L4(D) = D2(D2 + 1). They belong piecewise to the space span{1, t, sin t, cos t}.
These splines generalize the well-known cubic splines and have many applications in numerical
analysis for the shape preserving approximation, the description of curves and their parametriza-
tion, and other problems (see, for instance, [14], [15], [16], and references therein). In particular
(see [15]) these splines are attractive from a geometrical point of view, because they are able to
provide parameterizations of conic sections with respect to the arc length so that equally spaced
points in the parameter domain correspond to equally spaced points on the described curve.

The restriction on the grid step is the least strong here: h ≤ π/2, and the ”minimal” equidistant
grid on the period is {0, π/2, π, 3π/2}. Theorem 1 gives the existence and uniqueness of spline
interpolants for N ≥ 2. According to Corollary 1, the error of approximation in the class W∞(L4)
is

sup
f∈W∞(L4)

‖f − s(f)‖∞ =

∣

∣

∣

∣

∣

∣

1 +
π2

8N2
−

1

cos
π

2N

∣

∣

∣

∣

∣

∣

.

3. Conclusion

We established that, for 2π-periodic L-splines corresponding to the differential operator (0.1)
on the equidistant mesh with the step h = π/N , the restriction N > n provides the existence and
uniqueness of the L-spline interpolant as well as the exact estimates of the error of approximation.
This restriction is final, i.e., cannot be replaced by a weaker one.
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Abstract: In this paper, we consider the problem of mean-square approximation of complex variables
functions which are regular in the unit disk of the complex plane. We obtain sharp estimates of the value of
the best approximation by algebraic polynomials in terms of K-functionals. Exact values of some widths of the
specified class of functions are calculated.
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Introduction and preliminary facts

We consider the problem of mean-square approximation by Fourier sums of complex functions
f which are regular in a simply connected domain D ⊂ C and belong to the space L2 := L2(D)
with the finite norm

‖f‖ := ‖f‖L2(D) =

(

1

π

∫∫

(D)
|f(z)|2dσ

)1/2

,

where the integral is understood in the Lebesgue sense and dσ is an element of area.
The study of the mean-square approximation of functions in the domain D ⊂ C is closely related

to the theory of orthogonal functions. A sequence of complex functions {ϕk(z)} (k = 0, 1, 2, ...) is
called an orthogonal system on the domain D if

1

π

∫∫

(D)
ϕk(z)ϕl(z)dσ = 0, k 6= l.

Such a sequence of functions is called orthonormal system if

1

π

∫∫

(D)
ϕk(z)ϕl(z)dσ = δk,l,

where δk,l = 0, k 6= l, and δk,k = 1, k ∈ N. If f ∈ L2, then the numbers

ak(f) =
1

π

∫∫

(D)
f(z)ϕk(z)dσ (1)

are called the Fourier coefficients of the function f with respect to the orthonormal system {ϕk(z)}
(k = 0, 1, 2, ...). We associate with a given function f its Fourier series with respect to the specified
orthogonal system:

f(z) ∼
∞
∑

k=0

ak(f)ϕk(z). (2)

Let

Sn−1(f, z) =

n−1
∑

k=0

ak(f)ϕk(z)
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be the partial sum of order n of the series (2). We form a linear combination of the first n functions
of the system {ϕk(z)}:

pn−1(z) =

n−1
∑

k=0

dkϕk(z),

where dk ∈ C are arbitrary complex coefficients. We call this linear combination a generalized
polynomial. It is well known (see, for example, [1], p.263) that

En−1(f) = inf {‖f − pn−1‖ : dk ∈ C}

= ‖f − Sn−1(f)‖ =

{

∞
∑

k=n

|ak(f)|2
}1/2

,
(3)

where ak(f) are the Fourier coefficients of the function f defined by (1).
In the case of the mean approximation of complex functions in a simply connected domain

D ⊂ C by Fourier series with respect to an orthogonal system of functions {ϕk(z)}∞k=0 on D, the
problem of finding the exact constant in the Jackson-Stechkin inequality was studied in [2]. Recall
that Jackson-Stechkin inequalities are inequalities in which the value of the best approximation of
a function by a finite dimensional subspace of a given normed space is estimated by the modulus
of smoothness of the function itself or some its derivative. In this paper, we use the same methods
as in [2, 3, 5, 15].

We study in more detail the case where D is the unit disk U := {z ∈ C : |z| < 1}. In this case,
it is clear that the system of functions ϕk(z) = zk(k = 0, 1, 2, ...) is orthogonal in the disk U :

1

π

∫∫

(U)
ϕk(z)ϕl(z)dσ =

1

π

∫ 1

0

∫ 2π

0
rk+l+1ei(k−l)tdrdt = 0, k 6= l.

However, this system is not orthonormal, since

1

π

∫∫

(U)
|ϕk(z)|2dσ =

1

π

∫ 1

0

∫ 2π

0
r2k+1drdt =

1

k + 1
.

Therefore, the system of functions ϕ∗
k(z) =

√
k + 1zk (k = 0, 1, 2, ...) is orthonormal. We denote by

A(U) the set of all functions f analytic in U . The Maclaurin series of such a function has the form

f(z) =
∞
∑

k=0

ck(f)z
k, (4)

where ck(f) are the Maclaurin coefficients of f . We note that

‖f‖2 =
∞
∑

k=0

|ck(f)|2
k + 1

, E2
n−1(f) =

∞
∑

k=n

|ck(f)|2
k + 1

. (5)

It was proved in the monograph [1] that the Fourier series of a function f with respect to the
orthonormal system ϕ∗

k(z) =
√
k + 1zk, k = 0, 1, 2, ..., coincides with the series (4) for f ∈ A(U);

i.e.,

f(z) =
∞
∑

k=0

ak(f)ϕ
∗
k(z) =

∞
∑

k=0

ck(f)z
k. (6)

Therefore, the series (6) can be differentiated term by term any number of times and, according to
the Weierstrass theorem [6, p.107], for any r ∈ N, we get

f (r)(z) =

∞
∑

k=r

ck(f)k(k − 1) · · · (k − r + 1)zk−r :=

∞
∑

k=r

αk,rck(f)z
k−r, (7)
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where

αk,r := k(k − 1) · · · (k − r + 1), k ∈ N, r ∈ Z+, k ≥ r.

We denote by L
(r)
2 := L

(r)
2 (U) (L

(0)
2 := L2(U)) the class of all functions f ∈ L2 such that

f (r) ∈ L2 (r ∈ Z+, f
(0) ≡ f).

1. Sharp estimates of the value of the best approximation by means of

K-functionals

In this section, we prove some sharp inequalities relating the value En−1(f) of the best approx-

imation of functions in the class L
(r)
2 and Peetre K-functionals. The definition and some properties

of Peetre K-functionals are given in [7]. The direct and inverse theorems of the theory of approx-
imation by means of K-functionals were proved in [8, 9]. We define the K-functional constructed

by the spaces L2 and L
(m)
2 as follows:

Km(f, tm)2 := K
(

f, tm;L2;L
(m)
2

)

= inf
{

‖f − g‖2 + tm · ‖g(m)‖2 : g ∈ L
(m)
2

}

, (8)

where m ∈ N and 0 < t ≤ 1. We note that a weak equivalence of the K-functional defined by (8)
and a special generalized modulus of continuity of order m was established in [8].

Theorem 1. Let n,m ∈ N and r ∈ Z+ be arbitrary numbers such that n ≥ r +m. Then the

following equality holds:

sup
f∈L

(r)
2

f /∈Pr

√

(n+ 1)/(n − r + 1) · αn,rEn−1(f)

Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

) = 1. (9)

P r o o f. Using (7), we easily find that

E2
n−r−1(f

(r)) =

∞
∑

k=n

α2
k,r

|ck(f)|2
k − r + 1

, r ∈ Z+. (10)

Taking into account equality (10), we obtain

E2
n−1(f) =

∞
∑

k=n

|ck(f)|2
k + 1

=

∞
∑

k=n

k − r + 1

(k + 1)α2
k,r

· α2
k,r ·

|ck(f)|2
k − r + 1

≤ max
k∈N
k≥n

{

k − r + 1

(k + 1)α2
k,r

}

·
∞
∑

k=n

α2
k,r

|ck(f)|2
k − r + 1

=
n− r + 1

n+ 1
· 1

α2
n,r

·E2
n−r−1

(

f (r)
)

.

(11)

Now, for an arbitrary function f ∈ L
(r)
2 , we write

En−1(f) ≤
√

n− r + 1

n+ 1
· 1

αn,r
En−r−1

(

f (r)
)

≤
√

n− r + 1

n+ 1
· 1

αn,r
‖f (r) − Sn−r−1(g)‖, (12)
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where Sn−r−1(g) is the partial sum of order n − r of the Fourier series of an arbitrary function

g ∈ L
(m)
2 . In view of (2) and (11), we get

‖g − Sn−r−1(g)‖ = En−r−1(g) ≤
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m
En−r−m−1

(

g(m)
)

≤
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

∥

∥

∥
g(m)

∥

∥

∥
.

(13)

It follows from inequalities (12) and (13) that

En−1(f) ≤
√

n− r + 1

n+ 1
· 1

αn,r

{

‖f (r) − g‖+ ‖g − Sn−r−1(g)‖
}

≤
√

n− r + 1

n+ 1
· 1

αn,r

{

‖f (r) − g‖+
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

∥

∥

∥
g(m)

∥

∥

∥

}

.

(14)

Now, we note that the left-hand side of inequality (14) does not depend on g ∈ L
(m)
2 . Therefore,

passing to the infimum over all functions g ∈ L
(m)
2 on the right-hand side of (14) and using the

definition (8) of K, we get

En−1(f) ≤
√

n− r + 1

n+ 1
· 1

αn,r
Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

.

This implies the following upper bound:

sup
f∈L

(r)
2

f /∈Pr

√

(n+ 1)/(n − r + 1) · αn,rEn−1(f)

Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)
≤ 1, (15)

where Pr is the subspace of complex algebraic polynomials of degree at most r.
To obtain a lower bound of the extremal characteristic on the left-hand side of (15), in (8),

we put f(z) := pn(z), where pn(z) is an arbitrary complex algebraic polynomial in Pn. Since the

function g(z) ≡ 0 belongs to the class L
(m)
2 , we obtain from (8) the upper bound

Km(pn; t
m)2 ≤ ‖pn‖.

Since the function g(z) := pn(z) also belongs to the class L
(m)
2 , we find from (8) that

Km(pn; t
m)2 ≤ tm‖p(m)

n ‖.

Thus, the last two relations imply that, for any element pn(z) ∈ Pn,

Km(pn; t
m)2 ≤ min

{

‖pn‖; tm‖p(m)
n ‖

}

. (16)

We consider the function f0(z) = zn. Since

f
(r+m)
0 = n(n− 1) · · · (n− r + 1) · · · (n− r −m+ 1)zn−r−m = αn,r · αn−r,mzn−r−m,

according to (16), we have

K
(

f
(r)
0 ;

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m
‖f (r+m)

0 ‖

=

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m
· αn,r · αn−r,m√

n− r −m+ 1
=

αn,r√
n− r + 1

.
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Using the obtained inequality and the second equality in (5), we establish that

sup
f∈L

(r)
2

f∈Pr

√

(n+ 1)/(n − r + 1) · αn,rEn−1(f)

Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≥
√

(n + 1)/(n − r + 1) · αn,rEn−1(f0)

Km

(

f
(r)
0 ,

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

) ≥ 1.

(17)

We obtain equality (9) by comparing the upper bound (15) with the lower bound (17). The theorem
is proved.

2. Exact values of n-widths of a class of functions

We assume that S is the unit ball in the space L2, Λn ⊂ L2 is an n-dimensional subspace,
and Λn ⊂ L2 is a subspace of codimension n. Let L : L2 → Λn be a continuous linear operator,
let L⊥ : L2 → Λn be a continuous linear projection operator, and let M be a convex centrally
symmetric subset of L2. The quantities

bn(M, L2) = sup {sup {ε > 0; εS ∩ Λn+1 ⊂ M} : Λn+1 ⊂ L2} ,

dn(M, L2) = inf {sup {inf {‖f − g‖ : g ∈ Λn} : f ∈ M} : Λn ⊂ L2} ,

δn(M, L2) = inf {inf {sup {‖f − Lf‖ : f ∈ M} : LL2 ⊂ Λn} : Λn ⊂ L2} ,

dn(M, L2) = inf {sup {‖f‖2,γ : f ∈ M ∩ Λn} : Λn ⊂ L2} ,

Πn(M, L2) = inf
{

inf
{

sup
{

‖f − L⊥f‖ : f ∈ M

}

: L⊥L2 ⊂ Λn

}

: Λn ⊂ L2

}

are called, respectively, the Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of the
subset M in the space L2. These widths are monotone with respect to n, and the following relation
holds (see, for example, [10, 11]):

bn(M, L2) ≤ dn(M, L2) ≤ dn(M, L2) = δn(M, L2) = Πn(M, L2). (18)

We recall (see, for example, [12, p. 25]) that a nondecreasing function Ψ on R+ is called a
k-majorant if the function t−kΨ(t) is nonincreasing in R+, Ψ(0) = 0, and Ψ(t) → 0 as t → 0. For
k = 1, the function Ψ is simply called a majorant.

Let W
(r)
2 (Km,Ψ), r ∈ Z+,m ∈ N, be the class of all functions f ∈ L

(r)
2 whose derivatives f (r)

satisfy the condition

Km(f (r), tm) ≤ Ψ(tm), 0 < t < 1.

In this definition, Ψ is a majorant, L
(0)
2 ≡ L2, and W

(0)
2 (Km,Ψ) = W2(Km,Ψ). For any subset

M ⊂ L2, we define

En−1(M)L2 := sup {En−1(f) : f ∈ M} .

We note that, in the Bergman space, values of widths of some classes of analytic functions in a
disk were calculated, for example, in [13–19].
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Theorem 2. Let Ψ be the majorant defining the class W
(r)
2 (Km,Ψ), m ∈ N, and r ∈ R+.

Then, for any natural number n ≥ m+ r, we have

λn

(

W
(r)
2 (Km,Ψ), L2

)

= En−1

(

W
(r)
2 (Km,Ψ)

)

=

√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

,
(19)

where λn(·) is any of the n-widths bn(·), dn(·), dn(·), δn(·), and Πn(·).

P r o o f. Let n be a natural number such that n ≥ m+ r. In view of the definition of the class
W

(r)
2 (Km,Ψ), relations (15) and (18) imply that

λn

(

W
(r)
2 (Km,Ψ), L2

)

≤ dn

(

W
(r)
2 (Km,Ψ), L2

)

≤ En−1

(

W
(r)
2 (Km,Ψ)

)

≤
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

.
(20)

To find the corresponding lower bound, in view of (18), it suffices to estimate the Bernstein

n-width of the class W
(r)
2 (Km,Ψ). On the set Pn ∩ L2, we define the ball

Mn+1 :=

{

pn ∈ Pn : ‖pn‖ ≤
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)}

.

Now, we note that, in view of formula (7) and the identity αk,r+m = αk,r αk−r,m, for an arbitrary
pn(z) =

∑n
k=0 ak(pn)z

k ∈ Pn, the following equality holds:

p(r+m)
n (z) =

n
∑

k=r+m

ak(pn)αk,r+mzk−r−m :=
n
∑

k=r+m

ak(pn)αk,r · αk−r,mzk−r−m.

Hence, using the Parseval equality and the inequality αk,r ≤ αn,r, k ≤ n, we obtain the Bernstein
type inequality

‖p(r+m)
n ‖ =

{

n
∑

k=r+m

|ak(pn)|2α2
k,r · α2

k−r,m

}1/2

≤ αn,r · αn−r,m‖pn‖. (21)

By definition, for the majorant Ψ and for any 0 < τ1 ≤ τ2 ≤ 1, we have the inequality τ1Ψ(τ2) ≤
τ2Ψ(τ1). Therefore, for any 0 < t1 ≤ t2 ≤ 1, setting τ1 = tm1 and τ2 = tm2 , we obtain

t−m
1 Ψ(tm1 ) ≥ t−m

2 Ψ(tm2 ). (22)

We now show that Mn+1 ⊂ W
(r)
2 (Km,Ψ). Thus, we need to prove that, for any polynomial

pn ⊂ Mn+1,

Km(p(r)n , tm) ≤ Ψ(tm), 0 < t ≤ 1.

Since, by assumption, m,n ∈ N, r ∈ Z+, and n ≥ m+ r, we consider two cases:

0 < t ≤
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m
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and
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

≤ t ≤ 1.

First, assume that

0 < t ≤
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

.

In this case, using inequality (22) with

t1 = t, t2 =

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

and applying (12) and (21), for any pn ∈ Mn+1, we obtain

Km(p(r)n , tm)2 ≤ tm · ‖p(r+m)
n ‖ ≤ tm · αn,r · αn−r,m‖pn‖

≤ tm · αn,r · αn−r,m ·
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ tm · αn−r,m ·
√

n− r + 1

n− r −m+ 1
·Ψ
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ Ψ(tm).

(23)

Now, let
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

≤ t ≤ 1.

Then using (16) and the Bernstein type inequality

‖p(r)n ‖ ≤ αn,r · ‖pn‖

and taking into account that the majorant Ψ is nondecreasing, we find that

Km(p(r)n , tm)2 ≤ ‖p(r)n ‖2 ≤ αn,r‖pn‖2

≤ αn,r

√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤
√

n− r + 1

n+ 1
·Ψ
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ Ψ(tm).

(24)

The definition of the classW
(r)
2 (Km,Ψ) along with (23) and (24) implies thatMn+1 ⊂ W

(r)
2 (Km,Ψ).

Then, taking into account the definition of the Bernstein n-width and (18), we obtain

λn

(

W
(r)
2 (Km,Ψ), L2

)

≥ bn

(

W
(r)
2 (Km,Ψ), L2

)

≥ bn(Mn+1;L2) ≥
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

.
(25)

Comparing the upper bound (20) and the lower bound (25), we get the required equality (19). The
theorem is proved.
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Abstract: Let ϕ be a positive definite and continuous function on R, and let µ be the corresponding Bochner
measure. For fixed ε, τ ∈ R, ε 6= 0, we consider a linear operator Aε,τ generated by the function ϕ:

Aε,τ (f)(t) :=

∫
R

e−iuτf(t + εu)dµ(u), t ∈ R, f ∈ C(T).

Let J be a convex and nondecreasing function on [0,+∞). In this paper, we prove the inequalities

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p ,

∫
T

J (|Aε,τ (f)(t)|) dt ≤

∫
T

J (ϕ(0)|f(t)|) dt

for p ∈ [1,∞] and f ∈ C(T) and obtain criteria of extremal function. We study in more detail the case in which
ε = 1/n, n ∈ N, τ = 1, and ϕ(x) ≡ eiβxψ(x), where β ∈ R and the function ψ is 2-periodic and positive definite.
In turn, we consider in more detail the case where the 2-periodic function ψ is constructed by means of a finite
positive definite function g. As a particular case, we obtain the Bernstein–Szegő inequality for the derivative in
the Weyl–Nagy sense of trigonometric polynomials. In one of our results, we consider the case of the family of
functions g1/n,h(x) := hg(x) + (1− 1/n− h)g(nx), where n ∈ N, n ≥ 2, −1/n ≤ h ≤ 1− 1/n, and the function
g ∈ C(R) is even, nonnegative, decreasing, and convex on (0,+∞) with supp g ⊂ [−1, 1]. This case is related to
the positive definiteness of piecewise linear functions. We also obtain some general interpolation formulas for
periodic functions and trigonometric polynomials which include the known interpolation formulas of M. Riesz,
of G. Szegő, and of A.I. Kozko for trigonometric polynomials.

Key words: Positive definite function, Trigonometric polynomial, Weyl–Nagy derivative, Bernstein–Szegő
inequality, Interpolation formula.

1. Introduction

The role of positive definite functions in obtaining sharp inequalities for trigonometric polyno-
mials and entire functions is well known (see, for instance, Boas [6, Ch. 11], Timan [22, Sect. 4.8],
Lizorkin [13], Gorin [9], and Trigub and Belinsky [23]). For instance, the classical Bernstein in-
equality max |f ′(x)| ≤ nmax |f(x)| for trigonometric polynomials of degree at most n is related to
the positive definiteness of the function (1− |x|)+. A historical survey of such inequalities and the
methods of their proof are given in the works by Gorin [9], Arestov and Glazyrina [5], Gashkov [8],
and Vinogradov [25]. In the present paper, we obtain sharp inequalities for continuous periodic
functions and, in particular, for trigonometric polynomials. These inequalities are related to posi-
tive definite functions. As consequences, we obtain generalizations of Bernstein–Szegő inequalities.
We give criteria and descriptions of extremal functions in these inequalities.

A complex-valued function f : R → C is called positive definite on R (f ∈ Φ(R)) if, for any
m ∈ N, any set of points {xk}

m
k=1 ⊂ R, and any complex numbers {ck}

m
k=1 ⊂ C, the following

inequality holds:
m∑

k,j=1

ckcjf(xk − xj) > 0.

It is easy to verify that, for any β ∈ R, the function f(x) = eiβx is positive definite. For a function in
Φ(R), the continuity at zero is equivalent to the continuity on R. If f, g ∈ Φ(R), then |f(x)| ≤ f(0),
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f(−x) = f(x), |f(x+y)−f(x)|2 ≤ 2f(0)(f(0)−Ref(y)), x, y ∈ R, and f̄ , Re f , fg ∈ Φ(R). In 1932,
S. Bochner and, independently, A. Khinchin proved the following criterion of positive definiteness.

Theorem 1 (Bochner–Khinchin). The inclusion f ∈ Φ(R) ∩ C(R) holds if and only if there

exists a finite nonnegative Borel measure µ on R such that

f(x) =

∫

R

eixtdµ(t), x ∈ R.

The proof of this theorem can be found, for instance, in [2, 7, 19, 23, 24]. As a direct consequence,
we obtain the following criterion of positive definiteness in terms of nonnegativity of the Fourier
transform: if f ∈ C(R) ∩ L1(R), then f ∈ Φ(R) ⇐⇒ f̂(t) ≥ 0, t ∈ R, where

f̂(t) :=

∫

R

e−itxf(x)dx, t ∈ R.

Using this criterion, it is not difficult to see that the functions (1−|x|)+, e
−|x|, and e−x

2

are positive
definite.

We denote by C(T), T := [−π, π], the class of 2π-periodic continuous functions f : R → C. For
f ∈ C(T), we define

‖f‖∞ := sup{|f(t)| : t ∈ T} and ‖f‖p :=

(∫

T

|f(t)|pdt

)1/p

, 1 ≤ p <∞.

Let ϕ ∈ Φ(R) ∩ C(R), and let µ be the corresponding finite nonnegative Borel measure on R

such that

ϕ(x) =

∫

R

eixudµ(u), x ∈ R.

For fixed ε, τ ∈ R, ε 6= 0, we consider the linear operator Aε,τ generated by the function ϕ:

Aε,τ (f)(t) :=

∫

R

e−iuτf(t+ εu)dµ(u), t ∈ R, f ∈ C(T). (1.1)

The function Aε,τ (f)(t) is continuous on R and 2π-periodic. Therefore, Aε,τ : C(T) → C(T). In
this paper, we prove the inequalities

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p,

∫

T

J (|Aε,τ (f)(t)|) dt ≤

∫

T

J (ϕ(0)|f(t)|) dt,

where 1 6 p 6 ∞, f ∈ C(T), and J is a convex nondecreasing function on [0,+∞). In addition, we
obtain some criteria of extremal function in these inequalities (see Theorems 2 and 4 and Remark 2).
We study in more detail the case in which ε = 1/n, n ∈ N, τ = 1, and ϕ(x) ≡ eiβxψ(x), where β ∈ R

and ψ is a 2-periodic function of the class Φ(R) ∩C(R) (see Theorem 5 and Remarks 4 and 5). In
turn, we consider in more detail the case where a 2-periodic function ψ is constructed by means of
a finite function g ∈ Φ(R)∩C(R) (Theorem 6). As a particular case, we obtain the Berstein–Szegő
inequality for the Weyl–Nagy derivative of trigonometric polynomials (Remark 7). In Theorem 8,
we consider the case of the family of functions g1/n,h(x) := hg(x) + (1 − 1/n − h)g(nx), where
n ∈ N, n ≥ 2, −1/n ≤ h ≤ 1 − 1/n, and the function g ∈ C(R) is even, nonnegative, decreasing,
and convex on (0,+∞) with supp g ⊂ [−1, 1]. This case is related to the positive definiteness of
piecewise linear functions [15]. In Theorem 9 and Corollary 3, we obtain general interpolation
formulas for periodic functions which include the known interpolation formulas of M. Riesz, of
G. Szegő, and of A.I. Kozko [11] for trigonometric polynomials (see Remark 8).
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2. Auxiliary facts of measure and integration theory

We recall some well-known facts which are used in the paper to describe extremal functions. In
this section, a measure µ is a nonnegative countably additive function defined on a σ-algebra γ with
identity element Ω. For p ∈ (0,+∞), the class Lp(Ω, γ, µ) is the set of all γ-measurable functions
f : Ω → C such that

‖f‖p :=

( ∫

Ω

|f(u)|p dµ(u)

)1/p

< +∞.

The class L∞(Ω, γ, µ) is the set of all γ-measurable functions f : Ω → C for which there exists
K = K(f) < +∞ such that |f(u)| ≤ K for µ-almost every u ∈ Ω. For f ∈ L∞(Ω, γ, µ), the norm
is defined by the formula

‖f‖∞ := inf{K : |f(u)| ≤ K for µ-almost all u ∈ Ω}.

For convenience, we assume that Lp(Ω, γ, µ) = Lp(Ω, µ) = Lp(Ω).

Proposition 1. Let (Ω, γ, µ) be a measurable space with measure. If f ∈ L1(Ω, µ), then
∣∣∣∣
∫

Ω

f(u) dµ(u)

∣∣∣∣ ≤
∫

Ω

|f(u)| dµ(u)

and the inequality turns into an equality if and only if the equality f(u) = eiθ|f(u)| holds for some

θ ∈ R and for µ-almost all u ∈ Ω.

P r o o f. See, for instance, [18, Theorems 1.33 and 1.39]. Obviously, for some β ∈ R, we have
∣∣∣∣
∫

Ω

f(u) dµ(u)

∣∣∣∣ = eiβ
∫

Ω

f(u) dµ(u) =

∫

Ω

eiβf(u) dµ(u) =

∫

Ω

Re(eiβf(u)) dµ(u) ≤

∫

Ω

|f(u)| dµ(u)

and the inequality turns into an equality if and only if Re(eiβf(u)) = |f(u)| for µ-almost all u ∈ Ω
or if and only if eiβf(u) = |f(u)| for µ-almost all u ∈ Ω. �

Proposition 2. Assume that J is a convex function on R, (Ω, γ, µ) is a measurable space with

finite measure, µ(Ω) > 0, and f is a real-valued function in L1(Ω, µ). Then

J

(
1

µ(Ω)

∫

Ω

f(u) dµ(u)

)
≤

1

µ(Ω)

∫

Ω

J(f(u)) dµ(u). (2.1)

If the function J is strictly convex at the point α =
∫
Ω f(u) dµ(u)/µ(Ω), then equality in (2.1) is

attained if and only if f(u) = α for µ-almost all u ∈ Ω.

For a proof of this result, see, for instance, [12, Sect. 2.2].
The next proposition will be needed only in Remark 3.

Proposition 3. Let (Ω, γ, µ) be a measurable space with measure. Then:
(i) if, for some q > 0, we have f ∈ Lp(Ω) for all p ∈ [q,+∞) and lim inf

p→+∞
‖f‖p < +∞, then

f ∈ L∞(Ω) and ‖f‖∞ ≤ lim inf
p→+∞

‖f‖p;

(ii) if, for some q > 0, we have f ∈ L∞(Ω) ∩ Lq(Ω), then f ∈ Lp(Ω) for all p ∈ [q,+∞) and

‖f‖∞ = lim
p→+∞

‖f‖p.
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P r o o f. (i) We take a sequence {pn}, n ∈ N, such that pn > 0, pn → +∞, and ‖f‖pn →
c := lim inf

p→+∞
‖f‖p ≥ 0. For an arbitrary σ > c, we define ε := (σ − c)/2 > 0. Then there exists

a number n(σ) such that the inequality ‖f‖pn ≤ c+ ε = (σ + c)/2 < σ holds for all n > n(σ). The
Chebyshev inequality implies that

µ({x ∈ Ω : |f(x)| ≥ σ}) ≤

(
‖f‖pn
σ

)pn
→ 0, n→ +∞.

Therefore, |f(x)| < σ for µ-almost all x ∈ Ω and, hence, ‖f‖∞ ≤ c.
(ii) If ‖f‖q = 0, the required assertion is obvious. Let ‖f‖q > 0. Then, for any p > q, the

inequality ‖f‖p ≤ ‖f‖
(p−q)/p
∞ ‖f‖

q/p
q holds. This inequality and assertion (i) yield

lim sup
p→+∞

‖f‖p ≤ ‖f‖∞ ≤ lim inf
p→+∞

‖f‖p ≤ lim sup
p→+∞

‖f‖p .

�

3. Sharp Lp-inequalities for periodic functions

Equality (1.1) implies the inequality

|Aε,τ (f)(t)| ≤

∫

R

|f(t+ εu)|dµ(u), f ∈ C(T), t ∈ R. (3.1)

Obviously, ‖Aε,τ (f)‖∞ 6 ϕ(0)‖f‖∞.
If 1 6 p < ∞, then inequality (3.1) along with the Minkowski inequality [12, Theorem 2.4]

yields

‖Aε,τ (f)‖p =

(∫

T

|Aε,τ (f)|
p dt

) 1

p

6

(∫

T

(∫

R

|f(t+ εu)|dµ(u)

)p

dt

) 1

p

6

∫

R

(∫

T

|f(t+ εu)|pdt

) 1

p

dµ(u) = ϕ(0)‖f‖p.

It follows from the Fubini theorem that the Fourier series of the function Aε,τ (f)(t) has the form

Aε,τ (f)(t) ∼
∑

k∈Z

ϕ(εk − τ)ck(f)e
ikt, f ∈ C(T), (3.2)

where ck(f) are the Fourier coefficients of the function f :

ck(f) =
1

2π

π∫

−π

f(t)e−ikt dt, k ∈ Z .

Let us find sufficient conditions for the equality

‖Aε,τ (f)‖p = ϕ(0)‖f‖p. (3.3)

If |ϕ(εs − τ)| = ϕ(0) for some s ∈ Z, then equality (3.3) holds for the polynomial f(t) = ceist,
c ∈ C, since, in this case, Aε,τ (f)(t) = ϕ(εs − τ)ceist. If τ/ε ∈ Z, this condition is satisfied
for s = τ/ε.
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If, for some s,m ∈ Z, s 6= m, we have

|ϕ(εs − τ)| = |ϕ(εm− τ)| = ϕ(0), (3.4)

then equality (3.3) holds for the polynomial f(t) = ceist + νeimt, c, ν ∈ C, since, in this case,

Aε,τ (f)(t) = ϕ(εs − τ)ceist + ϕ(εm− τ)νeimt.

We only need to take into account that, for any δ, α ∈ R, the following equalities hold:
∥∥∥ceist + eiδνeimt

∥∥∥
p
=

∥∥∥ceis(t+α) + eiδνeim(t+α)
∥∥∥
p
=

∥∥∥ceist + ei(δ+mα−sα)νeimt
∥∥∥
p
.

In particular, the latter equality holds for α = δ/(s −m).
If τ 6= 0, |ϕ(−2τ)| = ϕ(0), ε = τ/n, and n ∈ N, then condition (3.4) is satisfied for s = n and

m = −n. Hence, ‖Aτ/n,τ (f)‖p = ϕ(0)‖f‖p for the polynomial f(t) = ceint + νe−int with c, ν ∈ C.
Thus, we have proved the following theorem.

Theorem 2. Assume that ϕ ∈ Φ(R) ∩ C(R), τ, ε ∈ R, and ε 6= 0. Then:
1) the operator Aε,τ acts from C(T) to C(T), is a multiplier, and satisfies the inequality

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p, 1 6 p 6 ∞, f ∈ C(T); (3.5)

2) if, for some s ∈ Z, the condition |ϕ(εs − τ)| = ϕ(0) is satisfied, then equality in (3.5) is

attained at the polynomials f(t) = ceist, c ∈ C. If τ/ε ∈ Z, this condition is satisfied for s = τ/ε.

If, for some s,m ∈ Z, s 6= m, condition (3.4) is satisfied, then equality in (3.5) is attained at

the polynomials f(t) = ceist + νeimt, c, ν ∈ C.

If τ 6= 0 and |ϕ(−2τ)| = ϕ(0), then equality in (3.5) for ε = τ/n, n ∈ N, is attained at the

polynomials f(t) = ceint + νe−int, c, ν ∈ C.

Remark 1. In connection with the conditions in Theorem 2, the following simple property
of positive definite functions is useful: if ϕ ∈ Φ(R) and, for some y, δ ∈ R, y 6= 0, we have
ϕ(y) = ϕ(0)eiδy , then ϕ(x) ≡ f(x)eiδx, where f ∈ Φ(R) and f is periodic with period |y| > 0.
Indeed, the function f(x) ≡ ϕ(x)e−iδx is the product of two positive definite functions. Therefore,
f ∈ Φ(R) and, hence, for any x ∈ R, we have

|f(x+ y)− f(x)|2 ≤ 2f(0)(f(0) −Ref(y)).

Since f(y) = ϕ(y)e−iδy = ϕ(0) = f(0) ≥ 0, we have f(x + y) − f(x) = 0 for all x ∈ R.
If, in addition, ϕ ∈ C(R), then the Bochner measure of the function ϕ is discrete and concen-
trated at the points tk = 2πk/|y|+δ, k ∈ Z, and µ({tk}) = ck(f) ≥ 0, k ∈ Z (see Theorem 3 below).

Remark 2. When p = ∞, inequality (3.5) turns into an equality at some function f ∈ C(T)
(see inequality (3.1) and Proposition 1) if and only if the equality f(ξ + εu) = ei(uτ+β)‖f‖∞ holds
for some ξ, β ∈ R and µ-almost all u ∈ R.

When p = 1, inequality (3.5) turns into an equality at some function f ∈ C(T) (see inequa-
lity (3.1) and Proposition 1) if and only if, for any t ∈ R, there exists a number β(t) ∈ R such
that the equality f(t+ εu) = ei(uτ+β(t))|f(t+ εu)| holds for µ-almost all u ∈ R. This implies that
if a function f ∈ C(T) is extremal in inequality (3.5) with p = 1, then any function of the form
cf(t)g(t), where c ∈ C, g ∈ C(T), and g(t) ≥ 0 for all t ∈ R, is also extremal.

When p ∈ (1,∞), inequality (3.5) turns into an equality at some function f ∈ C(T) if and
only if, for any t ∈ R and µ-almost all u ∈ R, the equality f(t + εu) = eiuτ c(t) holds, where
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c(t) = Aε,τ (f)(t)/ϕ(0) ∈ C(T) (for such p, see Theorem 4 below for J(t) = tp).

Remark 3. If 1 ≤ p <∞, the class C(T) is everywhere dense in Lp(T) (the Lebesgue measure
is taken as a measure). Therefore, inequality (3.5) implies that the multiplier Aε,τ : C(T) → C(T)
defined by formula (3.2) is extended to the multiplier Aε,τ : Lp(T) → Lp(T), 1 ≤ p <∞, and

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p, 1 6 p <∞, f ∈ Lp(T). (3.6)

Hence, Aε,τ : L∞(T) → L∞(T) and inequality (3.6) holds with p = ∞. We only need to use the
well-known facts from measure and integration theory (see Proposition 3).

4. Periodic positive definite functions

The following description of periodic functions of the class Φ(R)∩C(R) is well known (see, for
instance, [7, Theorem 1.7.5] and [10, Sect. II.1]).

Theorem 3. If ψ ∈ C(R) and ψ is 2T -periodic with T > 0, then ψ ∈ Φ(R) if and only if

ck(ψ) ≥ 0, k ∈ Z, where

ck(ψ) :=
1

2T

T∫

−T

ψ(x)e−iπkx/T dx, k ∈ Z.

In this case, the function ψ is expanded into the absolutely convergent Fourier series

ψ(x) =
∑

k∈Z

ck(ψ)e
iπkx/T , x ∈ R.

Corollary 1. Assume that f ∈ Φ(R) ∩ C(R), supp f ⊂ [−1, 1], and a 2-periodic function

ψ(x) coincides with the function f(x) for x ∈ [−1, 1]. Then ψ ∈ Φ(R) ∩ C(R) and ψ(x − 1) =
f(x− 1) + f(x+ 1) for x ∈ [−2, 2].

P r o o f. Since ψ(±1) = f(±1) = 0, we have ψ ∈ C(R) and

2ck(ψ) =

1∫

−1

f(x)e−iπkxdx = f̂(πk) ≥ 0, k ∈ Z.

Therefore, ψ ∈ Φ(R) ∩ C(R). Since supp f ⊂ [−1, 1], we obviously have

ψ(x− 1) =
∑

k∈Z

f(x− 1 + 2k), x ∈ R.

Only terms with k = 0 and k = 1 remain in this sum for x ∈ [−2, 2]. �

5. Sharp integral inequalities for periodic functions

Let ϕ ∈ Φ(R) ∩ C(R) and ϕ(0) > 0. Assume that J is a convex nondecreasing function
on [0,+∞). Then J is continuous on [0,+∞) and can be extended to R with preservation of
convexity (for instance, by defining J(t) := J(0) for t < 0 or by means of the even extension).
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Successively using the monotonicity and the Jensen inequality (see, for instance, [12, Sect. 2.2] or
Proposition 2), for f ∈ C(T), we derive from inequality (3.1) that

J

(
1

ϕ(0)
|Aε,τ (f)(t)|

)
≤ J

(
1

ϕ(0)

∫

R

|f(t+ εu)|dµ(u)

)

≤
1

ϕ(0)

∫

R

J (|f(t+ εu)|) dµ(u), t ∈ R.

(5.1)

We integrate the left-hand and right-hand sides of inequality (5.1) with respect to t ∈ T. Applying
the Fubini theorem and taking into account the periodicity of f , we obtain

∫

T

J

(
1

ϕ(0)
|Aε,τ (f)(t)|

)
dt ≤

∫

T

J (|f(t)|) dt.

In view of the arbitrariness of f , it is convenient to write the latter inequality in the form
∫

T

J (|Aε,τ (f)(t)|) dt ≤

∫

T

J (ϕ(0)|f(t)|) dt. (5.2)

Inequality (5.2) also holds if ϕ(0) = 0, since, in this case, ϕ(x) ≡ 0 and, hence, Aε,τ (f)(t) ≡ 0 for
any f ∈ C(T). Thus, we obtain the following theorem.

Theorem 4. Assume that ϕ ∈ Φ(R) ∩C(R), τ, ε ∈ R, ε 6= 0, and J is a convex nondecreasing

function on [0,+∞). Then:

1) The operator Aε,τ generated by the function ϕ by formula (1.1) satisfies inequality (5.2) for

any function f ∈ C(T).

2) If the condition |ϕ(εs− τ)| = ϕ(0) holds for some s ∈ Z, then equality in (5.2) is attained at

the polynomials f(t) = ceist, c ∈ C. If τ/ε ∈ Z, then this condition holds for s = τ/ε.
If condition (3.4) holds for some s,m ∈ Z, s 6= m, then equality in (5.2) is attained at the

polynomials f(t) = ceist + νeimt, c, ν ∈ C.

If τ 6= 0, |ϕ(−2τ)| = ϕ(0), ε = τ/n, and n ∈ N, then equality in (5.2) is attained at the

polynomials f(t) = ceint + νe−int, c, ν ∈ C.

3) If the function J is strictly convex at any point of the interval (0,+∞) and ϕ(0) > 0, then
inequality (5.2) turns into an equality at some function f ∈ C(T) if and only if, for any t ∈ R and

µ-almost all u ∈ R, the equality e−iuτf(t+ εu) = c(t) holds, where c(t) = Aε,τ (f)(t)/ϕ(0) ∈ C(T).

P r o o f. Only the latter statement needs to be proved. The sufficiency is obvious. Let us
prove the necessity. Let inequality (5.2) turn into an equality for some function f ∈ C(T). Then
inequalities (5.1) turn into equalities for all t ∈ R. Let

α(t) :=
1

ϕ(0)

∫

R

|f(t+ εu)|dµ(u), t ∈ R.

Obviously, α(t) ≥ 0 for all t ∈ R. If α(t) = 0, then f(t+ εu) = 0 for µ-almost all u ∈ R and, in this
case, c(t) = 0. If α(t) > 0, then |f(t+ εu)| = α(t) for µ-almost all u ∈ R (see Proposition 2). Since
the function J strictly increases on [0,+∞), inequality (3.1) also turns into an equality for all t ∈ R.
Therefore, for some β(t) ∈ R and µ-almost all u ∈ R, we have the equality (see Proposition 1)

e−iuτf(t+ εu) = eiβ(t)|e−iuτf(t+ εu)| = eiβ(t)α(t) = c(t).
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This implies that Aε,τ (f)(t) = ϕ(0)c(t), t ∈ R. �

For ε = 1/n, n ∈ N, and τ = 1, we can distinguish the case where the condition on the extremal
function in Theorem 4 is more clear.

Theorem 5. Let ϕ(x) ≡ eiβxψ(x), where β ∈ R, and let ψ be a 2-periodic function in Φ(R) ∩
C(R). Let J be a convex nondecreasing function on [0,+∞). Then the operator A1/n,1, n ∈ N,

generated by the function ϕ by formula (1.1) for ε = 1/n and τ = 1 satisfies the inequality
∫

T

J
(
|A1/n,1(f)(t)|

)
dt ≤

∫

T

J (ψ(0)|f(t)|) dt, f ∈ C(T). (5.3)

Inequality (5.3) turns into an equality, in particular, at every function f ∈ C(T) whose Fourier

series has the form

f(t) ∼
∑

m∈Z

dme
in(2m+1)t. (5.4)

If the function J is strictly convex at any point of the interval (0,+∞) and ψ(0) > 0, then

inequality (5.3) turns into an equality at some function f ∈ C(T) if and only if the functions

(−1)sf
(
t+ πs

n

)
are identical on R for all s = 0, . . . , 2n − 1 such that µs(n,ψ) > 0, where

µk(n,ψ) =
∑

m∈Z

ck+2nm(ψ), k ∈ Z, (5.5)

and ck(ψ) ≥ 0, k ∈ Z, are the Fourier coefficients of the function ψ. If, in addition, the inequalities

µs(n,ψ) > 0 and µs+1(n,ψ) > 0 hold for some s ∈ Z, then inequality (5.3) turns into an equality

only at functions f ∈ C(T) whose Fourier series has the form (5.4).

P r o o f. In our case, ϕ ∈ Φ(R) ∩ C(R) and ϕ(0) = ψ(0). Therefore, inequality (5.3) follows
immediately from inequality (5.2).

Since the function ψ belongs to Φ(R) ∩ C(R) and is 2-periodic, its Fourier coefficients ck(ψ),
k ∈ Z, are nonnegative and ψ is expanded into an absolutely convergent Fourier series. Then the
function ϕ is also expanded into an absolutely convergent series:

ϕ(x) =
∑

k∈Z

ck(ψ)e
i(πk+β)x, x ∈ R.

It follows from this representation that the Bochner measure µ of the function ϕ is concentrated at
the points tk = πk + β, k ∈ Z, and µ({tk}) = ck(ψ), k ∈ Z. Therefore, for any f ∈ C(T), we have

A1/n,1(f)(t) = e−iβ
∑

k∈Z

(−1)kf

(
t+

tk
n

)
ck(ψ), t ∈ R.

Taking into account the periodicity of f , it is convenient to divide the terms in this sum into disjoint
groups in which the summation index has the form k + 2nm with m ∈ Z and k = 0, . . . , 2n − 1.
Then

A1/n,1(f)(t) = e−iβ
2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n,ψ), t ∈ R, (5.6)

where the numbers µk(n,ψ) are defined by formula (5.5). For these numbers, the following equalities
hold:

2n−1∑

k=0

µk(n,ψ) =
∑

k∈Z

ck(ψ) = ψ(0); µk(n,ψ) = µk+2n(n,ψ), k ∈ Z. (5.7)
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If a function f belongs to C(T) and its Fourier series has the form (5.4), then, obviously,
(−1)sf (t+ πs/n) ≡ f(t) for all s ∈ Z. Therefore, for such functions, we have A1/n,1(f)(t) ≡

e−iβψ(0)f (t+ β/n) and inequality (5.3) turns into an equality.
If the function J is strictly convex at any point of the interval (0,+∞) and ψ(0) > 0, then

Theorem 4 implies that inequality (5.3) turns into an equality at some function f ∈ C(T) ⇐⇒ the
functions (−1)sf (t+ (πs+ β)/n) are identical on R for all s ∈ Z such that µ({ts}) = cs(ψ) > 0
⇐⇒ the functions (−1)sf (t+ πs/n) are identical on R for all s = 0, . . . , 2n − 1 such that
µs(n,ψ) > 0. The latter equivalence is a consequence of the following properties: (1) the functions
of this family with numbers s ∈ Z and s+ 2nm, m ∈ Z, are identical; (2) ck(ψ) ≥ 0, µk(n,ψ) ≥ 0,
k ∈ Z, and µk(n,ψ) > 0 ⇐⇒ ck+2nm(ψ) > 0 for some m ∈ Z.

Assume that inequality (5.3) turns into an equality at some function f ∈ C(T). If, in addition,
the inequalities µs(n,ψ) > 0 and µs+1(n,ψ) > 0 hold for some s ∈ Z, then, by what has been
proved,

(−1)sf
(
t+

πs

n

)
≡ (−1)s+1f

(
t+

π(s+ 1)

n

)
.

Then, for the Fourier coefficients of the function f , we have the equalities ck(f) = −eikπ/nck(f),
k ∈ Z. If ck(f) 6= 0 for some k ∈ Z, then k = n(2m + 1) for some m ∈ Z. This means that the
Fourier series of the function f has the form (5.4). The theorem is proved. �

Remark 4. Let ϕ(x) ≡ eiβxψ(x), where β ∈ R, and assume that a 2-periodic function ψ
belongs to Φ(R) ∩ C(R) and satisfies the inequality ψ(0) > 0. Then the operator A1/n,1, n ∈ N,
satisfies the inequality (see (5.3) for J(t) = tp, 1 ≤ p <∞, or (3.5) for ε = 1/n, τ = 1)

‖A1/n,1(f)‖p 6 ψ(0)‖f‖p, 1 6 p 6 ∞, f ∈ C(T). (5.8)

This inequality turns into an equality, for instance, at every function f ∈ C(T) whose Fourier series
has the form (5.4), since, for such functions, A1/n,1(f)(t) ≡ e−iβψ(0)f (t+ β/n). When 1 < p <∞,
only functions of the form (5.4) are extremal in inequality (5.8) if the inequalities µs(n,ψ) > 0 and
µs+1(n,ψ) > 0 hold for some s ∈ Z (see Theorem 5 for J(t) = tp). We state criteria for a function
to be extremal when p = ∞ and p = 1. Taking into account Remark 2 and the fact that the
Bochner measure µ of the function ϕ is concentrated at the points tk = πk + β, k ∈ Z, and
µ({tk}) = ck(ψ) ≥ 0, k ∈ Z (see the proof of Theorem 5), we obtain:

1) When p = ∞, inequality (5.8) turns into an equality at some function f ∈ C(T) if and only
if, for some η, δ ∈ R, the equality

(−1)sf(η + πs/n) = eiδ‖f‖∞ (5.9)

holds for all s = 0, . . . , 2n − 1 such that µs(n,ψ) > 0. This condition is satisfied not only for
functions of the form (5.4). For instance, for s = 0, . . . , 2n, we set f(πs/n) := (−1)sM and, at the
remaining points t ∈ [0, 2π], we define f so that it is continuous on [0, 2π] with the only condition
|f(t)| ≤ |M |. For such a function f , inequality (5.8) with p = ∞ turns into an equality.

If µs(n,ψ) > 0 for s = 0, . . . , 2n − 1, then only polynomials of the form f(t) = ceint + νe−int,
c, ν ∈ C, are extremal among trigonometric polynomials of degree at most n for which inequal-
ity (5.8) with p = ∞ turns into an equality. Indeed, if f is an extremal polynomial of degree at
most n, then condition (5.9) is satisfied for s = 0, . . . , 2n − 1 and, hence, for all s ∈ Z. Then one
can use the arguments of [1, Sect. 84, p. 189] for entire functions in the class Bσ with σ = n.

2) When p = 1, inequality (5.8) turns into an equality at some function f ∈ C(T) if and only
if, for any t ∈ R, there exists a number δ(t) ∈ R such that the identity

(−1)sf
(
t+

πs

n

)
≡ eiδ(t)

∣∣∣f
(
t+

πs

n

)∣∣∣ (5.10)
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holds for all s = 0, . . . , 2n − 1 such that µs(n,ψ) > 0. This implies that if a function f ∈ C(T)
is extremal in inequality (5.8) with p = 1, then any function of the form cf(t)g(t), where c ∈ C,
g ∈ C(T), and g(t) ≥ 0 for all t ∈ R, is also extremal. In particular, functions of the form h(t)g(t)
are extremal if the function h ∈ C(T) has the form (5.4), g ∈ C(T), and g(t) ≥ 0 for all t ∈ R.
In some sense, the converse statement holds: if the inequalities µs(n,ψ) > 0 and µs+1(n,ψ) > 0
hold for some s ∈ Z, a function f ∈ C(T) is extremal in inequality (5.8) with p = 1, and f(t) 6= 0
for almost all t ∈ R (with respect to the Lebesgue measure), then the function h(t) := f(t)/|f(t)|
belongs to L∞(T) and has the form (5.4) (see the proof of Theorem 5).

We note the following well-known fact. If a function f ∈ C(T) is extremal in inequality (5.8)
with p = 1, then condition (5.10) implies that the function

g(u) :=

∫

T

f(t+ u)e−iδ(t) dt ∈ C(T)

is extremal in inequality (5.8) with p = ∞. Indeed, for all s = 0, . . . , 2n− 1 such that µs(n,ψ) > 0,
we have ‖f‖1 = (−1)sg(πs/n) ≤ ‖g‖∞ ≤ ‖f‖1 and, hence, (−1)sg(πs/n) = ‖g‖∞.

If µs(n,ψ) > 0 for s = 0, . . . , 2n − 1, then only polynomials of the form f(t) = ceint + νe−int,
c, ν ∈ C, are extremal among trigonometric polynomials of degree at most n for which inequal-
ity (5.8) with p = 1 turns into an equality. Indeed, if f is an extremal trigonometric polynomial
of degree at most n, then condition (5.10) is satisfied for s = 0, . . . , 2n − 1. Then one can use the
Riesz interpolation formula [16, 17] (see also [28, Ch. X, Sect. 3, (3.11)])

f ′
(
t+

π

2n

)
≡

2n∑

s=1

(−1)s−1f
(
t+

πs

n

)
as, where all as > 0 and

2n∑

s=1

as = n,

which implies the equality ‖f ′‖1 = n‖f‖1. Therefore, f(t) = ceint + νe−int, c, ν ∈ C (see [3, Corol-
lary 6]).

Remark 5. If, in Theorem 5, the function J is convex and strictly increasing on [0,+∞) and
µs(n,ψ) > 0 for all s = 0, . . . , 2n − 1 (this implies that ψ(0) > 0), then only polynomials of the
form f(t) = ceint + νe−int, c, ν ∈ C, are extremal among trigonometric polynomials of degree at
most n for which inequality (5.3) turns into an equality. Indeed, if inequality (5.3) turns into an
equality at some function f ∈ C(T), then the corresponding inequalities (5.1) and (3.1) turn into
equalities for any t ∈ R and, hence, inequality (5.8) with p = 1 turns into an equality at f . Then
we need to use the last statement in Remark 4.

In conclusion of this section, we note that the integral inequalities (5.2) for the class of trigono-
metric polynomials and for different differential operators and Szegő compositions were studied
by many authors, in particular, by A. Zygmund, V.V. Arestov, V.I. Ivanov, E.A. Storozhenko,
V.G. Krotov, P. Oswald, and A.I. Kozko. In this case, not only convex functions J were considered.
A history of this question was described in great detail in the paper by Arestov [4].

6. Generalization of Bernstein–Szegő inequalities

We denote by Fn, n ∈ N, the set of trigonometric polynomials

f(t) :=
∑

|k|≤n

cke
ikt =

a0
2

+

n∑

k=1

(ak cos kt+ bk sin kt), ck = ck(f) ∈ C,



92 Viktor P. Zastavnyi

of degree at most n with coefficients in C, where ak := ck+ c−k and bk := i(ck− c−k), k ≥ 0. There
are several different definitions of fractional derivative. The following operator for r > 0 and β ∈ R

presumably first appeared in the paper by Sz.-Nagy [21, equality (2) for m = 1, λ(k) = kr]. For
f ∈ Fn, we define

f (r,β)(t) :=
∑

|k|≤n

|k|reiβ signkcke
ikt =

n∑

k=1

kr (ak cos (kt+ β) + bk sin (kt+ β)) .

For β = rπ/2, we obtain the Weyl derivative which, for r ∈ N, coincides with the usual derivative
of order r. Often, this operator is called the Weyl–Nagy derivative.

Let J be a convex and nondecreasing function on [0,+∞). Kozko proved (see [11, Theorem 1,
Corollary 1]) that if 1 ≤ p ≤ ∞, then, for any n ∈ N, r ≥ 1, and β ∈ R, the following inequalities
hold: ∫

T

J
(
|f (r,β)(f)(t)|

)
dt ≤

∫

T

J (nr|f(t)|) dt, f ∈ Fn, (6.1)

‖f (r,β)‖p ≤ nr‖f‖p, f ∈ Fn. (6.2)

For the usual derivative, i.e., when r = 1 and β = π/2, inequality (6.2) was proved by Bernstein
in the case p = ∞. For r = 1 and β ∈ R, inequality (6.2) was obtained by Szegő [20] in the case
p = ∞ and inequality (6.1) was proved by Zygmund [28, Ch. X, Sect. 3, (3.25)] (his proof for real
polynomials is also true for polynomials in Fn). This and the identity

f (r+1,β)(t) ≡
(
f (r,β)(t)

)(1,0)
, r > 0, β ∈ R,

imply the validity of inequality (6.2) for any r ∈ N. Inequality (6.2) for p = ∞, r ≥ 1, β = −rπ/2,
and β = 0 (the case of the Riesz derivative) was proved by Lizorkin [13, Theorems 2, 2′].

Obviously, inequalities (6.1) and (6.2) turn into equalities for the polynomials f(t) = ceint +
νe−int, c, ν ∈ C. Szegő [20, p. 66] proved that, in inequality (6.2) with p = ∞, there are no
other extremal polynomials in the case r = 1 and β 6= qπ, q ∈ Z (see also arguments in [1,
Sect. 84, p. 189]). If, in addition, the function tJ ′(t) is strictly increasing on (0,+∞), then, in
inequalities (6.1) and (6.2) for 1 ≤ p < ∞, n ∈ N, r ≥ 1, and β ∈ R, there are no other extremal
polynomials at least in the following cases (see [3, Corollary 6], [5, Theorems 1,2]): (1) in the case of
the usual derivative of order r ∈ N; (2) n = 1, r ≥ 1, and β ∈ R or n ≥ 2, r ≥ ln(2n)/ ln(n/(n−1)),
and β ∈ R.

For r = 1 and β 6= qπ, q ∈ Z, in inequalities (6.2) and (6.1) (if, in addition, the function J(t)
is strictly increasing on (0,+∞)), only polynomials of the form f(t) = a cosnt+ b sinnt, a, b ∈ R,
are extremal in the class of real trigonometric polynomials. This result is due to Zygmund [28,
Ch. X, Sect 3, (3.24), (3.25)].

Other cases in which inequality (6.2) holds, when r < 1 or 0 ≤ p < 1, were considered in the
paper by Arestov and Glazyrina [5], where these inequalities are called Bernstein–Szegő inequalities
and a complete history of such inequalities is given.

Inequalities more general than (6.1) and (6.2) are obtained from Theorem 5 under an appro-
priate choice of the function ψ. The method of construction of the function ψ described below is
essentially contained in the paper by Lizorkin [13].

Assume that g ∈ Φ(R) ∩ C(R), supp g ⊂ [−1, 1], and β ∈ R. We consider the auxiliary
function F (x) := g(−x)e−iβx, x ∈ R. Obviously, F ∈ Φ(R)∩C(R) and suppF ⊂ [−1, 1]. Using the
function F , we construct the 2-periodic function ψ ∈ Φ(R)∩C(R) (see Corollary 1). For x ∈ [−2, 2],
we have

ψ(x− 1) = F (x− 1) + F (x+ 1) = g(1 − x)e−iβ(x−1) + g(−1 − x)e−iβ(x+1).
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Then

ψ(x− 1) = e−iβx
{
g(1 − |x|)eiβ , 0 ≤ x ≤ 2;
g(|x| − 1)e−iβ , −2 ≤ x ≤ 0.

Taking into account that the real and imaginary parts of a positive definite function are even and
odd functions, respectively, we obtain the equality ψ(x− 1) = e−iβxeiβ signxg0(x), |x| ≤ 2, where

g0(x) = Re g(1− |x|) + i sign x Im g(1 − |x|), |x| ≤ 2.

Obviously, the function ϕ(x) := eiβxψ(x) belongs to Φ(R) ∩ C(R) and

ϕ(x− 1) =e−iβg0(x)e
iβ signx = e−iβ(Re g(1 − |x|) + i signx Im g(1 − |x|))eiβ signx, |x| ≤ 2. (6.3)

Consider the operator A1/n,1 generated by the function ϕ by formula (1.1) for ε = 1/n and τ = 1.
We can apply Theorem 5 and Remarks 4 and 5 to this operator. It should be taken into account
that ψ(0) = g(0) and ck(ψ) = ĝ(−β − kπ)/2, k ∈ Z. For polynomials f ∈ F2n, the operator A1/n,1

has the following form (see (3.2) and (6.3)):

A1/n,1(f)(t) ≡ e−iβ
∑

|k|≤2n

(
Re g

(
1−

|k|

n

)
+ i sign k Im g

(
1−

|k|

n

))
eiβ signkck(f)e

ikt.

We introduce one more parameter. Obviously, for any θ ∈ [−1, 1], the function

gθ(x) := ((1 + θ)g(x) + (1− θ)g(−x))/2 = Re g(x) + iθ Im g(x), x ∈ R,

also belongs to the class Φ(R)∩C(R) and supp gθ ⊂ [−1, 1]. Therefore, all the above arguments are
applicable to the function gθ as well. It should be taken into account that, for the corresponding
function ψθ, we have ψθ(0) = gθ(0) = g(0) and

ck(ψθ) = ((1 + θ)ĝ(−β − kπ) + (1− θ)ĝ(β + kπ))/4, k ∈ Z.

For the function ϕθ(x) := eiβxψθ(x) ∈ Φ(R)∩C(R), we consider the corresponding operator A1/n,1

with ε = 1/n and τ = 1 (see (1.1)). We state the results obtained in Theorem 5 and Remarks 4
and 5 for the following operator defined on polynomials f ∈ F2n:

Dg,β
n,θ(f)(t) := A1/n,1(f)(t) ≡

e−iβ
∑

|k|≤2n

(
Re g

(
1−

|k|

n

)
+ iθ sign k Im g

(
1−

|k|

n

))
eiβ sign kck(f)e

ikt.
(6.4)

Theorem 6. Assume that g ∈ Φ(R) ∩ C(R), supp g ⊂ [−1, 1], g(0) > 0, β ∈ R, θ ∈ [−1, 1],
and 1 ≤ p ≤ ∞. Let J be a convex nondecreasing function on [0,+∞). Then:

1) For any n ∈ N, we have

∫

T

J
(
|Dg,β

n,θ(f)(t)|
)
dt ≤

∫

T

J (g(0)|f(t)|) dt, f ∈ F2n, (6.5)

‖Dg,β
n,θ(f)‖p ≤ g(0)||f ||p, f ∈ F2n. (6.6)

Inequalities (6.5) and (6.6) turn into equalities, for instance, for polynomials of the form f(t) =
ceint + νe−int, c, ν ∈ C.

2) If the function J is strictly convex at any point of the interval (0,+∞), then inequality (6.5) or
inequality (6.6) with p ∈ (1,∞) turns into an equality at some polynomial f ∈ F2n if and only if the
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functions (−1)sf (t+ πs/n) are identical on R for all s = 0, . . . , 2n− 1 such that µs(n, g, β, θ) > 0,
where, for k ∈ Z,

4µk(n, g, β, θ) = (1 + θ)
∑

m∈Z

ĝ(−β − (k + 2nm)π) + (1− θ)
∑

m∈Z

ĝ(β + (k + 2nm)π). (6.7)

If, in addition, for some s ∈ Z, the inequalities µs(n, g, β, θ) > 0 and µs+1(n, g, β, θ) > 0 hold, then

inequality (6.5) or inequality (6.6) with p ∈ (1,∞) turns into an equality only at the polynomials

f(t) = ceint + νe−int, c, ν ∈ C.

3) When p = ∞, inequality (6.6) turns into an equality at some polynomial f ∈ F2n if and only

if, for some η, δ ∈ R, the equality (−1)sf(η + πs/n) = eiδ‖f‖∞ holds for all s = 0, . . . , 2n− 1 such

that µs(n, g, β, θ) > 0.

If µs(n, g, β, θ) > 0 for s = 0, . . . , 2n − 1, then only polynomials of the form f(t) = ceint +
νe−int, c, ν ∈ C, are extremal among trigonometric polynomials of degree at most n for which

inequality (6.6) with p = ∞ turns into an equality.

4) When p = 1, inequality (6.6) turns into an equality at some polynomial f ∈ F2n if and

only if, for any t ∈ R, there exists a number δ(t) ∈ R such that the identity (−1)sf (t+ πs/n) ≡
eiδ(t) |f (t+ πs/n)| holds for all s = 0, . . . , 2n − 1 such that µs(n, g, β, θ) > 0.

If a polynomial f ∈ Fq, 1 ≤ q < 2n, is extremal in inequality (6.6) with p = 1, then any

polynomial of the form cf(t)g(t), where c ∈ C, g ∈ F2n−q, and g(t) ≥ 0 for all t ∈ R, is also

extremal. In particular, polynomials of the form (ceint + νe−int)g(t), where c, ν ∈ C and g is an

arbitrary nonnegative trigonometric polynomial of degree at most n, are extremal in inequality (6.6)
with p = 1.

5) If µs(n, g, β, θ) > 0 for all s = 0, . . . , 2n − 1 and the function J is strictly increasing

on (0,+∞), then only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are extremal

among trigonometric polynomials of degree at most n for which inequality (6.5) or inequality (6.6)
with p = 1 turns into an equality.

Remark 6. If q ∈ Z and q = 2nl + r, where l, r ∈ Z and 0 ≤ r ≤ 2n− 1, then

µk(n, g, β + πq, θ) =

{
µk+r(n, g, β, θ), 0 ≤ k ≤ 2n− 1− r,
µk+r−2n(n, g, β, θ), 2n− r ≤ k ≤ 2n − 1, r ≥ 1.

Remark 7. Inequalities (6.1) and (6.2) follow from inequalities (6.5) and (6.6) if, for g, we
take the function gr(x) = (1− |x|)r+ which is positive definite for r ≥ 1 (the Pólya property). Since

gr(1 − |x|) = |x|r for |x| ≤ 1, we have Dgr,β
n,θ (f)(t) ≡ e−iβf (r,β)(t)/nr for any polynomial f ∈ Fn,

n ∈ N. In our case, the values (6.7) are independent of θ and such that

µk(n, gr, β) =
∑

m∈Z

ĝr(β + (k + 2nm)π))/2, k ∈ Z .

It is well known that, for r > 1, the Fourier transform ĝr(t) is positive for all t ∈ R (see, for
instance, [27, Lemma 7, n = λ = δ = 1]). Therefore, µs(n, gr, β) > 0 for all r > 1, β ∈ R, n ∈ N,
and s ∈ Z.

For r = 1, the Fourier transform of the function g1 is easily calculated and is equal to ĝ1(t) =
2(1 − cos t)/t2. Obviously, ĝ1(t) = 0 only for t = 2qπ with q ∈ Z, q 6= 0. Therefore, if β 6= qπ,
q ∈ Z, then µs(n, g1, β) > 0 for all n ∈ N and s ∈ Z.

If β = 0 and n ∈ N, then: (1) µs(n, g1, 0) > 0 for s = 0 and for all odd s ∈ [1, 2n − 1];
(2) µs(n, g1, 0) = 0 for all even s ∈ [2, 2n − 1] if n ≥ 2. In this case, the number of positive values
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among µs(n, g1, 0), s = 0, . . . , 2n− 1, is n+1 and the remaining are zero. The latter property also
holds for any β = πq with q ∈ Z (see Remark 6).

Thus, only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are extremal in inequali-
ties (6.1) and (6.2) under conditions (A1) and (B1) or (A2) and (B2), where

(A1) r > 1 and β ∈ R; or r = 1, β ∈ R, and n = 1; or r = 1, β 6= πq, q ∈ Z, and n ≥ 2;

(B1) the function J is strictly increasing on (0,+∞) for (6.1) or 1 ≤ p ≤ ∞ for (6.2);

(A2) r = 1, β = πq with q ∈ Z, and n ≥ 2;

(B2) the function J is strictly convex on (0,+∞) for (6.1) or 1 < p <∞ for (6.2).

The case where r = 1, β = πq with q ∈ Z, n ≥ 2, and p = 1 or p = ∞ has not been studied.

7. Case of piecewise linear functions

In [15], the following R.M. Trigub problem on the positive definiteness of piecewise linear func-
tions was solved. For given α ∈ (0, 1) and h ∈ R, the function fα,h : R → C is defined as follows:
(1) the function fα,h is even; (2) fα,h(x) = 0 for x > 1, the function fα,h is linear on each of the
intervals [0, α] and [α, 1], fα,h(0) = 1, fα,h(α) = h, and fα,h(1) = 0. For any fixed α ∈ (0, 1), it is re-
quired to find the set of all h ∈ R such that the piecewise linear function fα,h is positive definite on R.
If 0 ≤ h ≤ 1 − α, then the continuous even function fα,h(x) is convex on (0,+∞), fα,h(+∞) = 0,
and, hence, it is positive definite by the Pólya theorem (see, for instance, [14, Theorem 4.3.1]).
A complete description of such h ∈ R is given in the following theorem.

Theorem 7 [15]. Let α ∈ (0, 1) and h ∈ R. Then fα,h ∈ Φ(R) if and only if m(α) ≤ h ≤ 1−α,
where m(α) = 0 if 1/α 6∈ N and m(α) = −α if 1/α ∈ N.

From Theorem 7, we obtain the following sufficient condition for the positive definiteness.

Corollary 2. If a function g ∈ C(R) is even, nonnegative, decreasing, and convex on (0,+∞),
then, for α ∈ (0, 1), 1/α ∈ N, and −α ≤ h ≤ 1−α, the function gα,h(x) := hg(x)+(1−α−h)g(x/α)
belongs to the class Φ(R).

The nontrivial case here is when −α ≤ h < 0.

P r o o f. The function g is represented in the form (see, for instance, [26])

g(x) =

+∞∫

0

(1− |sx|)+ dµ(s), x ∈ R,

where µ is a nonnegative finite Borel measure on [0,+∞). Obviously,

gα,h(x) = (1− α)

+∞∫

0

fα,h(sx) dµ(s), x ∈ R.

For the specified α and h, we have fα,h ∈ Φ(R). Hence, gα,h ∈ Φ(R) (see, for instance,
[27, Lemma 1]). �

One can use the positive definite function gα,h given in Corollary 2 to obtain new sharp in-
equalities for trigonometric polynomials.
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Let a function g ∈ C(R) be even, nonnegative, decreasing, and convex on (0,+∞), and let
supp g ⊂ [−1, 1]. Assume that n ∈ N, n ≥ 2, and −1/n ≤ h ≤ 1 − 1/n. Let g1/n,h(x) :=
hg(x)+ (1 − 1/n − h)g(nx), x ∈ R. It follows from Corollary 2 that g1/n,h ∈ Φ(R) ∩ C(R). Since
supp g ⊂ [−1, 1], we have supp g1/n,h ⊂ [−1, 1]. Therefore, for the function g1/n,h, we can construct
operator (6.4) which does not depend on the parameter θ, since Im(g1/n,h) ≡ 0. It is not difficult
to verify that, for polynomials f ∈ F2n, the following equality holds:

D
g1/n,h,β

n,0 (f)(t) = hDg,β
n,0(f)(t) + (1− 1/n − h)g(0)Rβn(f)(t), (7.1)

where

Rβn(f)(t) := e−iβ
∑

|k|=n

eiβ sign kck(f)e
ikt =

e−iβ

π

π∫

−π

cos(nx− β)f(t+ x) dx. (7.2)

We note that g1/n,h(0) = (1− 1/n)g(0). In addition, if g(x) = (1− |x|)r+, r ≥ 1, then Dgr,β
n,θ (f)(t) ≡

e−iβf (r,β)(t)/nr for any polynomial f ∈ Fn. We write Theorem 6 for the operator (7.1) and restrict
ourselves only to inequality (6.6).

Theorem 8. Let a function g ∈ C(R) be even, nonnegative, decreasing, and convex on

(0,+∞), and let supp g ⊂ [−1, 1]. Assume that n > 2, −1/n ≤ h ≤ 1 − 1/n, β ∈ R, and

1 6 p 6 ∞. Then, for any polynomial f ∈ F2n, we have
∥∥∥hDg,β

n,0(f) + (1− 1/n− h)g(0)Rβn(f)
∥∥∥
p
6 (1− 1/n)g(0)‖f‖p. (7.3)

If r ≥ 1, then, for any polynomial f ∈ Fn, we have
∥∥∥hf (r,β)/nr + (1− 1/n− h)eiβRβn(f)

∥∥∥
p
6 (1− 1/n)‖f‖p. (7.4)

Inequalities (7.3) and (7.4) turn into equalities for polynomials of the form f(t) = ceint + νe−int,
c, ν ∈ C.

Without proof, we note that if the function g in Theorem 8 is not piecewise linear on [0,+∞)
with equidistant nodes, then only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are
extremal in inequality (7.3) with p ∈ (1,∞). When p = 1 or p = ∞, a similar conclusion holds,
but for the class of trigonometric polynomials of degree at most n. If r > 1, then only polynomials
of the form f(t) = ceint + νe−int, c, ν ∈ C, are extremal in inequality (7.4).

8. Interpolation formulas for periodic functions

If the trigonometric series on the right-hand side of relation (3.2) converges uniformly on T,
then one can put the sign of equality in this relation and the obtained equality can be regarded as
some interpolation formula. We explain this with the example of the following theorem.

Theorem 9. Assume that n ∈ N, a 2-periodic function ψ belongs to Φ(R)∩C(R), β ∈ R, and

the numbers µk(n,ψ) are defined by formula (5.5). Then the identity

∑

k∈Z

eiβk/nψ

(
k

n
− 1

)
ck(f)e

ikt ≡

2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n,ψ) (8.1)

holds for any function f ∈ C(T) such that the series on the left converges uniformly on T. Moreover,

µ0(n,ψ) + . . . + µ2n−1(n,ψ) = ψ(0), ck(ψ) ≥ 0, k ∈ Z, µk(n,ψ) ≥ 0, k = 0, . . . , 2n − 1, and

µk(n,ψ) = 0 for some k = 0, . . . , 2n− 1 if and only if ck+2nm(ψ) = 0 for all m ∈ Z.
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P r o o f. Consider operator (1.1) for the function ϕ(x) ≡ eiβxψ(x). Under the conditions of
the theorem, we can put the sign of equality in relation (3.2) for ε = 1/n and τ = 1. Therefore,
the left-hand side of equality (5.6) can be replaced by the sum of the series in (3.2). We obtain
identity (8.1) with accuracy up to the factor e−iβ. The specified properties of the numbers µk(n,ψ)
follow from (5.5) and (5.7). �

Corollary 3. Assume that g ∈ Φ(R) ∩ C(R), supp g ⊂ [−1, 1], β ∈ R, and n ∈ N. Then, for

any polynomial f ∈ F2n, the following equality holds:

∑

|k|≤2n

(
Re g

(
1−

|k|

n

)
+ i sign k Im g

(
1−

|k|

n

))
eiβ sign kck(f)e

ikt

=
2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n, g, β), t ∈ R,

(8.2)

where µk(n, g, β) =
∑
m∈Z

ĝ(−β − (k + 2nm)π)/2, k ∈ Z, and
2n−1∑
k=0

µk(n, g, β) = g(0).

P r o o f. Let ψ be a 2-periodic function, and let ψ(x) = g(−x)e−iβx for x ∈ [−1, 1]. Then
ψ ∈ Φ(R) ∩ C(R) and

ψ(x− 1) = e−iβxeiβ signx(Re g(1 − |x|) + i sign x Im g(1 − |x|)), |x| ≤ 2.

It remains to take into account that ck(ψ) = ĝ(−β − kπ)/2, k ∈ Z. �

Remark 8. We note that if, for g, we take the function gr(x) = (1−|x|)r+, r ≥ 1, then, in (8.2),
we obtain the interpolation formula of A.I. Kozko [11] (and of M. Riesz and of G. Szegő for r = 1)
for the Weyl–Nagy derivative:

f (r,β)(t) = nr
2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n, gr, β), t ∈ R, f ∈ Fn;

2n−1∑

k=0

µk(n, gr, β) = 1,

where µk(n, gr, β) > 0 for all n ∈ N, k = 0, . . . , 2n−1, β ∈ R, and r > 1. These coefficients are also
positive for r = 1 if n = 1 and β ∈ R or if n ≥ 2 and β 6= qπ, q ∈ Z. If r = 1, n ≥ 2, and β = πq
with q ∈ Z, then, the number of positive coefficients among µk(n, g1, β), k = 0, . . . , 2n− 1, is n+1
and the remaining are zero (see Remark 7). For r = 1, these coefficients are easily calculated. Since
ĝ1(t) = 2(1− cos t)/t2, we have

µk(n, g1, β) =
1−(−1)k cos β

4n2

∑

m∈Z

1
(
β + kπ

2n
+mπ

)2=
1−(−1)k cos β

2n2
(
1− cos

β+kπ

n

) > 0, β 6= qπ, q ∈ Z,

For β = qπ with q ∈ Z, we can restrict ourselves to the case β = 0 (see Remark 6): µ2k(n, g1, 0) = 0
for k = 1, . . . , n− 1 (if n ≥ 2), µ0(n, g1, 0) = 1/2, and

µ2k−1(n, g1, 0) =
1

n2
(
1− cos

(2k − 1)π

n

) > 0, k = 1, . . . , n.
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Remark 9. It is not difficult to see that all the arguments in the proof of Theorem 9 remain
in force also in the case where the 2-periodic continuous function ψ is expanded in an absolutely
convergent Fourier series (without the assumption of nonnegativity of the Fourier coefficients ck(ψ)).
Therefore, the following statement holds: Assume that a 2-periodic function ψ ∈ C(R) is expanded
into an absolutely convergent Fourier series and β ∈ R. Then equality (8.1) holds for any function

f ∈ C(T) such that the series on the left in (8.1) converges uniformly on T.

9. Conclusion

In conclusion, we point out some problems which, in our opinion, have not been solved yet.

1) To prove or disprove that only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are
extremal in the Berstein–Szegő inequality (6.2) for r = 1 and β = 0 (the case of the derivative
of the adjoint polynomial) when p = ∞ or p = 1. When p = ∞, this case was distinguished in
the paper by Szegő [20, p. 66]. We note that the arguments in the monographs by Zygmund [28,
Ch. X, Sect. 3, (3.24)] and Akhiezer [1, Sect. 84, p. 189] corresponding to this case are not correct,
since some coefficients in the interpolation formulas are zero (see [28, Ch. X, Sect. 3, (3.22)] for
α = π/2 and [1, Sect. 84, p. 188, (II)] for α = 0).

2) Let n ∈ N, and let, for a trigonometric polynomial f ∈ Fn, condition (5.9) or (5.10) be
satisfied for all integers s = 0, . . . , 2n − 1. Then f(t) = ceint + νe−int, c, ν ∈ C (see Remark 4).
The question is, which values of s can be left to have the same conclusion? This is a more general
problem than the previous one.

3) To prove or disprove that if, for some s ∈ Z, inequalities µs(n,ψ) > 0 and µs+1(n,ψ) > 0
hold and a function f ∈ C(T) is extremal in inequality (5.8) with p = 1, then f(t) = h(t)g(t),
where the function h belongs to L∞(T) and has the form (5.4), g ∈ C(T), and g(t) ≥ 0 for t ∈ R.
This is true if, in addition, f(t) 6= 0 for almost all t ∈ R with respect to the Lebesgue measure (see
Remark 4 for the case p = 1).
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7. Bisgaard T.M., Sasvári Z. Characteristic functions and moment sequences: positive definiteness in
probability. New York: Nova Sci. Publishers, 2000.



Positive definite functions and sharp inequalities 99

8. Gashkov S.B. Bernstein’s inequality, Riesz’s identity and Euler’s formula for the sum of reciprocal
squares // Mat. Pros., Ser. 3, 2014. Vol. 18. P. 143–171.

9. Gorin E.A. Bernstein inequalities from the operator theory point of view // Vestnik Kharkov. Univ.
Prikl. Mat. Mekh.,1980. Vol. 45. P. 77–105.
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Abstract: Ultrafilters and maximal linked systems (MLS) of a lattice of sets are considered. Two following
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Introduction

In connection with the supercompactness property, maximal linked systems (MLS) of closed
sets in a topological space (TS) are investigated (see [1–4]; in particular, we note the important
statement of [3] about supercompactness of metrizable compactums). The space of «closed» MLS
with topology of the Wallman type is a superextension of the initial TS.

Now, following [5], we consider more general approach. Namely, we suppose that a lattice of
subsets of arbitrary nonempty set is given. Then, MLS of sets of this lattice are investigated. In
particular, the lattice of closed sets in a TS can be used. Then, we obtain the above-mentioned
variant of [1–4]. But, many other realizations are possible. For example, we can consider an algebra
of sets as variant of the above-mentioned lattice. Note by the way, that in this case the Stone topology
on the ultrafilter space is very natural. Since in many respects, MLS are similar to ultrafilters, the
Stone equipment is submitted natural and for space of MLS. So, the idea of emploument of the two
types of topologies arises: we keep in mind the Wallman and Stone variants.

We recall that ultrafilters were used as generalized elements in problems connected with attaina-
bility under constraints of asymptotic character (see, for example, [6–8]). Now, we seek to explore
spaces which are comprehending for ultrafilters. In this article, it is established that the space of
MLS is comprehending in this sense. In addition, it is logical to consider two characteristic types of
topologies both for ultrafilters and for MLS. And what is more, we obtain two bitopological spaces
(as a bitopological space, we consider every set equipped with two comparable topologies; in this
connection, we note monograph [9]).

The case when two above-mentioned topologies coincide, we consider as degenerate. In the
following, characteristic cases of such degeneracy are established (a variant of non-degenerate
realization of bitopological space specified also). We indicate important types of lattices for which
above-mentioned constructions are realized sufficiently understandably.
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1. General notions and designations

We use the standard set-theoretical symbolics (quatifiers, connectives and so on); ∅ is anempty

set and
△
= is the equality by definition. We call a set by a family in the case when every element of

this set is a set also. We take the axiom of choice.
For every objects x and y, we denote by {x; y} the set containing x and y and not containing

no other elements. If h is an object, then we suppose that {h}
△
= {h;h}. Of course, sets are objects.

Therefore, by [10, ch. II, §3], for every objects u and v, we suppose that (u, v)
△
=

{
{u}; {u; v}

}

receiving the ordered pair with first element u and second element v. If z is an arbitrary ordered
pair, then by pr1(z) and pr2(z) we denote the first and second elements of z respectively; of course,
z =

(
pr1(z),pr2(z)

)
and pr1(z) and pr2(z) are defined uniquely.

If X is a set, then by P(X) we denote the family of all subsets of X and suppose that Fin(X) is

the family of all finite nonempty subsets of X; of course. Fin(X) ⊂ P ′(X), where P ′(X)
△
= P(X)\{∅}

is the family of all nonempty subsets of X. In addition, a family can be used as X. For every
nonempty family X, we suppose that

{∪}(X)
△
=

{ ⋃

X∈X

X : X ∈ P(X)
}
, {∩}(X)

△
=

{ ⋂

X∈X

X : X ∈ P ′(X)
}
,

{∪}♯(X)
△
=

{ ⋃

X∈K

X : K ∈ Fin(X)
}
, {∩}♯(X)

△
=

{ ⋂

X∈K

X : K ∈ Fin(X)
}
;

(1.1)

of course, every family of (1.1) is contained in P
( ⋃
X∈X

X
)

and contains X. For any set M and

M ∈ P ′
(
P(M)

)
,

CM[M]
△
= {M \M : M ∈ M} ∈ P ′

(
P(M)

)
. (1.2)

In addition (see (1.2)), for any set S and a family S ∈ P ′
(
P(S)

)
, the equality S = CS

[
CS[S]

]
is

realized. If A is a nonempty family and B is a set, then

A|B
△
= {A ∩B : A ∈ A} ∈ P ′

(
P(B)

)
(1.3)

is trace of A on the set B. Usually, in (1.3), the variant A ∈ P ′
(
P(A)

)
and B ∈ P(A), where A is

a set, is considered.
For any sets A and B, by BA the set of all mappings from A into B is denoted. Under f ∈ BA

and a ∈ A, by f(a), f(a) ∈ B, the value of f at the point a is denoted. For f ∈ BA and C ∈ P(A),

we suppose that f1(C)
△
= {f(x) : x ∈ C}; of course, f1(C) ⊂ B and

(C 6= ∅) ⇒
(
f1(C) 6= ∅

)
.

Special families. In given item, we fix a set I (the case I = ∅ is not excluded). In the form of

π[I]
△
= {I ∈ P ′

(
P(I)

)
| (∅ ∈ I)&(I ∈ I)&(A ∩B ∈ I ∀A ∈ I ∀B ∈ I)}, (1.4)

we have the family of all π-systems of subsets of I with «zero» and «unit». In terms of

(LAT)[I]
△
=

{
L ∈ P ′

(
P(I)

)
| (∅ ∈ L)&

(
∀A ∈ L ∀B ∈ L (A ∪B ∈ L)&(A ∩B ∈ L)

)}
(1.5)

(the family of all lattices of subsets of I), we define (see (1.4)) the basic family

(LAT)0[I]
△
= {I ∈ (LAT)[I]| I ∈ I} = {I ∈ π[I]|A ∪B ∈ I ∀A ∈ I ∀B ∈ I} (1.6)
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of all lattices of subsets of I with «zero» and «unit». In addition, by

(alg)[I]
△
= {A ∈ π[I]| I \A ∈ A ∀A ∈ A} (1.7)

the family of all algebras of subsets of I is defined. Moreover, by

(top)[I]
△
= {τ ∈ π[I]

∣∣ ⋃

G∈G

G ∈ τ ∀G ∈ P ′(τ)} = {τ ∈ (LAT)0[I]
∣∣ ⋃

G∈G

G ∈ τ ∀G ∈ P ′(τ)} (1.8)

and (analogously)

(clos)[I]
△
=

{
F ∈ P ′

(
P(I)

)
| (∅ ∈ F)&(I ∈ F)&(A ∪B ∈ F ∀A ∈ F ∀B ∈ F)&

( ⋂

F∈F ′

F ∈ F ∀F ′ ∈ P ′(F)
)}

=
{
F ∈ (LAT)0[I]

∣∣ ⋂

F∈F ′

F ∈ F ∀F ′ ∈ P ′(F)
} (1.9)

we define the families of all open and closed [11] topologies on I respectively. So, by (1.7)– (1.9) we
obtain many useful examples of lattices of the family (1.6). Yet one particular case of a lattice of
subsets of I is connected with σ-topologies of A.D. Alexandroff [12]:

(σ − top)[I]
△
= {τ ∈ π[I]

∣∣ ⋃

k∈N

Gk ∈ τ ∀ (Gk)k∈N ∈ τN} ⊂ (LAT)0[I],

where as usually N
△
= {1; 2; . . .}. Of course, under A ∈ (alg)[I], in the form of (I,A), we obtain

a measurable space with algebra of sets. If τ ∈ (top)[I], then (I, τ) is a topological space (TS).
In addition, we use the notions T1- and T2-space (see [13, Ch.1]). Moreover, we use compactness
[13, Ch.3] and other notions relating to general topology; see [13]. In particular, under τ ∈ (top)[I],
by (τ−comp)[I] the family of all compact in (I, τ) subsets of I is denoted; (τ−comp)[I] ∈ P ′

(
P(I)

)
.

We note the obvious property

L ∪ {I} ∈ (LAT)0[I] ∀L ∈ (LAT)[I]. (1.10)

Of course, in (1.10) we have an insignificant transformation of initial lattice.
Let

π̃0[I]
△
= {L ∈ π[I]| ∀L ∈ L ∀x ∈ I \ L ∃Λ ∈ L : (x ∈ Λ)&(Λ ∩ L = ∅)}.

Moreover, let

(Cen)[L]
△
= {Z ∈ P ′(L)|

⋂

Z∈K

Z 6= ∅ ∀K ∈ Fin(Z)} ∀L ∈ π[I].

Bases and subbases. For brevity of desingnations, until end of this section, we fix a nonempty
set X and use (1.1). Then,

(BAS)[X]
△
=

{
B ∈ P ′

(
P(X)

)∣∣ (X =
⋃

B∈B

B
)
&
(
∀B1 ∈ B ∀B2 ∈ B

∀x ∈ B1 ∩ B2 ∃B3 ∈ B : (x ∈ B3)&(B3 ⊂ B1 ∩B2)
)} (1.11)

is the family of all open bases of topologies on X. Under B ∈ (BAS)[X], we obtain that {∪}(B) ∈
(top)[X]. Then, for τ ∈ (top)[X]

(τ − BAS)0[X]
△
= {B ∈ (BAS)[X]| τ = {∪}(B)}
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is the family of all bases of TS (X, τ). In addition,

(p− BAS)[X]
△
= {X ∈ P ′

(
P(X)

)
| {∩}♯(X) ∈ (BAS)[X]} =

{
X ∈ P ′

(
P(X)

)
|X =

⋃

X∈X

X
}

is the family of all open subbases of topologies on X. For any X ∈ (p− BAS)[X], we obtain that
{∪}

(
{∩}♯(X)

)
∈ (top)[X]. Finally, under τ ∈ (top)[X], we suppose that

(p− BAS)0[X; τ ]
△
= {X ∈ (p− BAS)[X]| {∩}♯(X) ∈ (τ − BAS)0[X]};

so, we obtain the family of all open subbases of TS (X, τ). It is useful to introduce one auxiliary
construction of [6]:

(op− BAS)∅[X]
△
= {B ∈ (BAS)[X]| ∅ ∈ B};

moreover, it is logical to consider the following family:

(p− BAS)∅[X]
△
= {X ∈ (p− BAS)[X]| {∩}♯(X) ∈ (op− BAS)∅[X]}.

If τ ∈ (top)[X], then we suppose that

(p− BAS)0∅[X; τ ]
△
= {X ∈ (p− BAS)0[X; τ ]| ∅ ∈ {∩}♯(X )},

(p− BAS)0∅[X; τ ] ⊂ (p− BAS)∅[X].

Of course, under B ∈ (BAS)[X], we obtain that B ∪ {∅} ∈ (op− BAS)∅[X] and {∪}(B ∪ {∅}) =
{∪}(B). So, we were introduce an unessential transformation of open bases; the goal of such
transformation was indicated in [6, §1].

Now, we consider closed bases and subbases. Let

(cl− BAS)[X]
△
=

{
B ∈ P ′

(
P(X)

)
| (X ∈ B)&(

⋂

B∈B

B = ∅)&

&
(
∀B1 ∈ B ∀B2 ∈ B ∀x ∈ X \ (B1 ∪ B2) ∃B3 ∈ B : (B1 ∪ B2 ⊂ B3)&(x /∈ B3)

)}
;

so, we introduce the family of all closed bases of topologies on X. Of course, {∩}(B) ∈ (clos)[X]
for B ∈ (cl− BAS)[X]. Under τ ∈ (top)[X], we suppose that

(cl− BAS)0[X; τ ]
△
= {B ∈ (cl− BAS)[X]|CX [τ ] = {∩}(B)};

then, the family of all closed bases of TS (X, τ) is defined. Now, we introduce the family of all closed
subbases of topologies on X :

(p− BAS)cl[X]
△
= {X ∈ P ′

(
P(X)

)
| {∪}♯(X ) ∈ (cl− BAS)[X]}.

Respectively, in the form

(p− BAS)0cl[X; τ ]
△
= {X ∈ (p− BAS)cl[X]| {∪}♯(X ) ∈ (cl− BAS)0[X; τ ]},

we obtain the family of all closed subbases of TS (X, τ). In addition,

(
{∪}

(
{∩}♯(S)

)
∈ (top)[X] ∀S ∈ (p− BAS)[X]

)
&

(
{∩}

(
{∪}♯(S)

)
∈ (clos)[X] ∀S ∈ (p− BAS)cl[X]

)
.



104 Chentsov A.G.

Recall following useful duality relations:

(
CX [B] ∈ (op− BAS)∅[X] ∀B ∈ (cl− BAS)[X]

)
&
(
CX [B] ∈ (cl− BAS)[X]

∀B ∈ (op − BAS)∅[X]
)
.

(1.12)

We note also [6, (1.20)] and some simple corollaries of [6, (1.17)]:

(
CX [{∩}(B)] = {∪}(CX [B]) ∈ (top)[X] ∀B ∈ (cl − BAS)[X]

)
&
(
{∩}(CX [B]) =

CX [{∪}(B)] ∈ (clos)[X] ∀B ∈ (op − BAS)∅[X]
)
.

(1.13)

In connection with (1.12) and (1.13), it is useful to note that under β ∈ (BAS)[X]

β ∪ {∅} ∈ (op− BAS)∅[X] : {∪}(β) = {∪}(β ∪ {∅}).

Now, consider some analogs concerning to subbases. In particular,

(p− BAS)∅[X] = {X ∈ (p− BAS)[X]| ∅ ∈ {∩}♯(X)}. (1.14)

In terms of (1.14), we obtain the next analog of (1.12):

(
CX [X] ∈ (p− BAS)∅[X] ∀X ∈ (p− BAS)cl[X]

)
&(

CX [X ] ∈ (p− BAS)cl[X] ∀X ∈ (p− BAS)∅[X]
)
.

(1.15)

As a corollary, from (1.15), it follows that ∀ τ ∈ (top)[X]

(
CX [X] ∈ (p− BAS)0∅[X; τ ] ∀X ∈ (p− BAS)0cl[X; τ ]

)
&

(
CX [X ] ∈ (p− BAS)0cl[X; τ ] ∀X ∈ (p− BAS)0∅[X; τ ]

)
.

(1.16)

A special family of lattices. By (1.10) we can consider lattices from (LAT)[X]. Now, we
introduce the family

(↓ −LAT)0[X]
△
=

{
L ∈ (LAT)[X]| (X /∈ L)&({x} ∈ L ∀x ∈ X)&

( ⋂

L∈L′

L ∈ L ∀L′ ∈ P ′(L)
)
}.

(1.17)
It is possible to consider elements of (1.17) as lattices of «small» subsets of X. It is obvious that

L ∪ {X} ∈ (clos)[X] ∀L ∈ (↓ −LAT)0[X]. (1.18)

The relation (1.18) assumes an amplification. For this, we introduce

(
(D − top)[X]

△
= {τ ∈ (top)[X]| {x} ∈ CX [τ ] ∀x ∈ X}

)
&

(
(D − clos)[X]

△
= {F ∈ (clos)[X]| {x} ∈ F ∀x ∈ X}

)
;

(1.19)

of course, under t ∈ (D − top)[X], in the form of (X, t), we have a T1-space. In addition, open and
closed topologies from (1.19) are situated in the natural duality. From (1.17) and (1.19), we obtain
that

L ∪ {X} ∈ (D − clos)[X] ∀L ∈ (↓ −LAT)0[X]. (1.20)

So, under L ∈ (↓ −LAT)0[X], we obtain that

τ0L[X]
△
= CX [L ∪ {X}] = CX [L] ∪ {∅} ∈ (D − top)[X]
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realizes the initial lattice L ∪ {X} as the lattice CX

[
τ0L[X]

]
of closed sets in T1-space:

L ∪ {X} = CX

[
τ0L[X]

]
; (1.21)

in addition, (X, τ0L[X]) is not T2-space and

τ0L[X] 6= P(X). (1.22)

Recall that L ∪ {X} ∈ (LAT)0[X] ∀L ∈ (↓ −LAT)0[X]. Now, we consider some examples.

Example 1.1. Suppose that X is equipped with a pseudometric

ρ : X ×X → [0,∞[

(here, [0,∞[
△
= {ξ ∈ R| 0 6 ξ}, where R is real line); so, (X, ρ) is a pseudometric space, X 6= ∅. Let

Bρ(X, ε)
△
= {y ∈ X| ρ(x, y) 6 ε} ∀x ∈ X ∀ ε ∈ [0,∞[.

We suppose that

B♯(X, ρ)
△
= {H ∈ P(X)| ∃x ∈ X ∃ ε ∈ [0,∞[: H ⊂ Bρ(x, ε)} =

= {H ∈ P(X)| ∃x ∈ X ∃ ε ∈]0,∞[: H ⊂ Bρ(x, ε)},

where ]0,∞[
△
= {ξ ∈ R| 0 < ξ}. Of course, B♯(X, ρ) is the family of ρ-bounded subsets of X.

We suppose that X /∈ B♯(X, ρ). So, the pseudometric ρ is unbounded (in particular, real line R

with the metric-modulus can be used as (X, ρ)). Then,

B♯(X, ρ) ∈ (↓ −LAT)0[X]. (1.23)

The proof of (1.23) is obvions (see (1.17)). We note only that B♯(X, ρ) = {∩}
(
B♯(X, ρ)

)
. �

Example 1.2. Fix a topology τ ∈ (top)[X] for which (X, τ) is a T2-space (of course, X 6= ∅). We
suppose that

X /∈ (τ − comp)[X].

So, T2-space (X, τ) is noncompact. Then

(τ − comp)[X] ∈ (↓ −LAT)0[X]. (1.24)

We consider the scheme of the proof of (1.24). In addition, we recall some known properties. So, at
first, we show that

(τ − comp)[X] ∈ (LAT)[X] (1.25)

(we check this understandable property). We recall that ∅ ∈ (τ − comp)[X] and

{x} ∈ (τ − comp)[X] ∀x ∈ X. (1.26)

So, (τ − comp)[X] ∈ P ′
(
P(X)

)
. Let A ∈ (τ − comp)[X] and B ∈ (τ − comp)[X]. Then A ∪ B ∈

(τ − comp)[X] by definition of the compactness property. Consider A∩ B. By separability of (X, τ)
we have that

(A ∈ CX [τ ])&(B ∈ CX [τ ]); (1.27)
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as a corollary, A ∩ B ∈ CX [τ ]. If θ
△
= τ |A, then by transitivity of the operation of passage to a

subspace of TS we have the equality

τ |A∩B = θ|A∩B, (1.28)

where (A, θ) is a compact TS. By (1.27) A ∩ B ∈ CA[θ] and, as a corollary,

A ∩ B ∈ (θ − comp)[A].

So, (A ∩ B, θ|A∩B) is a compact TS. Using (1.28), we obtain that (A ∩ B, τ |A∩B) is a compact TS.
Therefore, A∩ B ∈ (τ − comp)[X]. Since the choice of A and B was arbitrary, it is established that
∀A ∈ (τ − comp)[X] ∀B ∈ (τ − comp)[X]

(
A ∪ B ∈ (τ − comp)[X]

)
&
(
A ∩ B ∈ (τ − comp)[X]

)
. (1.29)

So, by (1.5) and (1.29) we obtain that (τ − comp)[X] ∈ (LAT)[X]. We recall (1.26). Finally, let
T ∈ P ′

(
(τ − comp)[X]

)
. Then, in particular, T ∈ P ′

(
P(X)

)
and we have the set

T
△
=

⋂

T∈T

T ∈ P(X). (1.30)

By separability of (X, τ) T ⊂ CX [τ ] and (see (1.30)) T ∈ CX [τ ]. In addition, T 6= ∅. Choose

T ∈ T ; then T ∈ (τ − comp)[X] and T ∈ P(T). We note that t
△
= τ |T ∈ (top)[T] and TS (T, t) is

a compactum. In addition, T ∈ CT[t] (indeed, (T, t) is a closed subspace of (X, τ)). As a corollary,
T ∈ (t − comp)[T]; therefore, t|T realizes compactum (T, t|T). But, by transitivity we obtain that
t|T = τ |T. So, (T, τ |T) is compactum; as a corollary T ∈ (τ − comp)[X]. Since the choice of T was
arbitrary, we establish (see (1.30)) that

⋂

K∈C

K ∈ (τ − comp)[X] ∀ C ∈ P ′
(
(τ − comp)[X]

)
. (1.31)

Therefore (see (1.17), (1.26), (1.29), and (1.31)), we obtain (1.24).

Example 1.3. Consider the case of infinite set X and suppose that (FIN)[X]
△
= Fin(X) ∪ {∅}

(the family of all finite subsets of X.) Of course, in our case

X /∈ (FIN)[X].

We show that (FIN)[X] ∈ (↓ −LAT)0[X]. Indeed, (FIN)[X] ∈ (LAT)[X] by obvious properties
of finite sets. Moreover, {x} ∈ (FIN)[X] ∀x ∈ X. Let F ∈ P ′

(
(FIN)[X]

)
. Then, F 6= ∅ and

F ⊂ (FIN)[X]. We choose F ∈ F . Then, in particular, F ∈ (FIN)[X]. Since

F
△
=

⋂

F∈F

F ⊂ F,

we have the obvious inclusion F ∈ (FIN)[X]. Since the choice of F was arbitrary, we obtain that

⋂

H∈H

H ∈ (FIN)[X] ∀H ∈ P ′
(
(FIN)[X]

)
.

So, the required property (FIN)[X] ∈ (↓ −LAT)0[X] is established. Now, we note that

τ0(FIN)[X][X] = CX

[
(FIN)[X]

]
∪{∅} ∈ (top)[X]
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is known cofinite topology and

(FIN)[X] ∪ {X} = CX

[
τ0(FIN)[X][X]

]

is the family of closed sets in this topology.

Example 1.4. Let X, X 6= ∅, be uncountable set. Consider the family ω[X] of all no more than

countable subsets of X. In addition, ω[X] = (count)[X]∪ {∅}, where (count)[X]
△
= {f1(N) : f ∈ XN}

under N = {1; 2; . . .} and f̃1(N) = {f̃(k) : k ∈ N} for f̃ ∈ XN. Then, ω[X] ∈ (↓ −LAT)0[X]. The
corresponding proof is similar to previous example. �

Coverings and linked families. Recall that X is a nonempty set. If X ∈ P ′
(
P(X)

)
, then

(COV)[X| X ]
△
=

{
X ∈ P ′(X )|X =

⋃

X∈X

X
}

(1.32)

is the family of all coverings of X by sets from X . Let

(link)[X]
△
= {X ∈ P ′

(
P(X)

)
|A ∩ B 6= ∅ ∀A ∈ X ∀B ∈ X}. (1.33)

Then, the family of all linked systems of subsets of X is introduced. Moreover, suppose that

(link)0[X]
△
= {E ∈ (link)[X]| ∀ S ∈ (link)[X] (E ⊂ S) ⇒ (E = S)}. (1.34)

We obtain the family of all MLS of subsets of X. In the following, we consider MLS containing in
a given family. So, under X ∈ P ′

(
P(X)

)

(X− link)[X]
△
= {E ∈ (link)[X]| E ⊂ X} ∈ P

(
(link)[X]

)
(1.35)

and by analogy with (1.34)

(X− link)0[X]
△
= {E ∈ (X− link)[X]| ∀ Ẽ ∈ (X− link)[X] (E ⊂ Ẽ) ⇒ (E = Ẽ)}. (1.36)

In (1.36), we obtain the family of all MLS containing in the family X.

Proposition 1. If X ∈ P ′
(
P(X)

)
, E ∈ (link)[X], and X ∩ E 6= ∅, then

X ∩ E ∈ (X− link)[X]. (1.37)

P r o o f. Fix X and E with above-mentioned properties. In particular, X ∩ E ∈ P ′
(
P(X)

)
.

Let U ∈ X ∩ E and V ∈ X ∩ E . Then, in particular, U ∈ E and V ∈ E . By (1.33) we obtain that
U ∩ V 6= ∅. Since the choice of U and V was arbitrary, we have the property

X ∩ E ∈ P ′
(
P(X)

)
: A ∩ B 6= ∅ ∀A ∈ X ∩ E ∀B ∈ X ∩ E .

By (1.33) X ∩ E ∈ (link)[X]. Then (see (1.35)), (1.37) is fulfilled. �

Supercompactness. If τ ∈ (top)[X], then we suppose that

(
(p,bin)− cl

)
[X; τ ]

△
=

{
X ∈ (p− BAS)0cl[X; τ ]|

⋂

X∈X

X 6= ∅ ∀X ∈ (X− link)[X]
}

(1.38)
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((1.38) is the family of all closed binary subbases of TS (X, τ)); it is obvious that
∀κ∈(p−BAS)0cl[X; τ ]

(
κ ∈

(
(p,bin)− cl

)
[X; τ ]

)
⇔

(
∀C ∈ (COV)

[
X|CX [κ]

]
∃C1 ∈ C ∃C2 ∈ C : X = C1 ∪ C2

)
. (1.39)

In addition, we suppose that

(
(SC)− top

)
[X]

△
=

{
τ ∈ (top)[X] |

(
(p,bin)− cl

)
[X; τ ] 6= ∅

}
; (1.40)

in addition,
(
(SC)− top

)
[X] is the family of all supercompact topologies on X. Under τ ∈

(
(SC)−

top)[X], we obtain supercompact TS (X, τ); moreover, if (X, τ) is a T2-space, then (X, τ) is called
supercompactum. Every supercompact TS is compact. Then, under τ ∈

(
(SC) − top)[X], in the

form of (X, τ), we obtain (in particular) a compact TS.

2. Maximal linked systems and ultrafilters: general properties

In the following, a nonempty set E is fixed. We consider families from P ′
(
P(E)

)
. In addition,

we use (1.4)– (1.10).

Filters and ultrafiltres. In the following, we fix L ∈ π[E] (later, with respect to L, additional
conditions will overlap). We consider (E,L) as widely understood measurable space. Then,

F
∗(L)

△
= {F ∈ P ′(L\{∅})| (A∩B ∈ F ∀A ∈ F ∀B ∈ F)&

(
∀F ∈ F ∀L ∈ L (F ⊂ L) ⇒ (L ∈ F)

)
}

(2.1)
is the family of all filters of (E,L). Maximal filters are called ultrafilters (u/f). Then

F
∗
0(L)

△
= {U ∈ F

∗(L)| ∀ F ∈ F
∗(L) (U ⊂ F) ⇒ (U = F)} = {U ∈ F

∗(L)| ∀L ∈ L

(L ∩ U 6= ∅ ∀U ∈ U) ⇒ (L ∈ U)} = {U ∈ (Cen)[L]| ∀ V ∈ (Cen)[L] (U ⊂ V) ⇒ (U = V)}
(2.2)

is the nonempty family of all u/f of (E,L). If x ∈ E, then

(L − triv)[x]
△
= {L ∈ L|x ∈ L} ∈ F

∗(L)

is trivial (fixed) filter corresponding to the point x. It is known [14, (5.9)] that

(
(L − triv)[x] ∈ F

∗
0(L) ∀x ∈ E

)
⇔ (L ∈ π̃0[E]). (2.3)

We suppose that ΦL(L)
△
= {U ∈ F

∗
0(L)|L ∈ U} ∀L ∈ L. Then, how easy check,

(UF)[E;L]
△
= {ΦL(L) : L ∈ L} ∈ π[F∗

0(L)]. (2.4)

From (1.11) and (2.4), the inclusion (UF)[E;L] ∈ (BAS)[F∗
0(L)] follows. In addition, topology

T
∗
L[E]

△
= {∪}

(
(UF)[E;L]

)
= {G ∈ P

(
F
∗
0(L)

)
| ∀ U ∈ G ∃U ∈ U : ΦL(U) ⊂ G} ∈ (top)[F∗

0(L)]

realizes [14] zero-dimensional T2-space

(
F
∗
0(L),T

∗
L[E]

)
. (2.5)

Everywhere in the future, we suppose that

L ∈ (LAT)0[E]. (2.6)
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By (1.5) and (2.6) we obtain that ΦL(L1 ∪ L2) ∈ P
(
F
∗
0(L)

)
is defined under L1 ∈ L and L2 ∈ L; in

addition [6], ΦL(L1 ∪ L2) = ΦL(L1) ∪ ΦL(L2). And what is more, in our case (under (2.6))

(UF)[E;L] ∈ (LAT)0[F
∗
0(L)]. (2.7)

Remark 2.1. From (2.4) and (2.7), the following singularity is noticcable: for (UF)[E;L],
properties of L are repeated. In this connection, we recall [6, (9.6)]:

(
L ∈ (alg)[E]

)
=⇒

(
(UF)[E;L] ∈ (alg)[F∗

0(L)]
)
. �

Returning to general case of (2.6), we note that (see [6, (6.7)])

(UF)[E;L] ∈ (cl− BAS)[F∗
0(L)]; (2.8)

(2.8) permit to define yet one topology. Indeed, by (2.8)

{∩}
(
(UF)[E;L]

)
∈ (clos)[F∗

0(L)].

As a corollary, we obtain that

T
0
L[E]

△
= CF∗

0
(L)

[
{∩}

(
(UF)[E;L]

)]
∈ (top)[F∗

0(L)]. (2.9)

In addition, topology (2.9) converts [6, Section 6] F∗
0(L) in a compact T1-space

(
F
∗
0(L),T

0
L[E]

)
. (2.10)

We consider (2.5) as analog of Stone space and (2.10) as analog of Wallman space (the space of
Wallman extension). In addition (see [15, Proposition 4.1])

T
0
L[E] ⊂ T

∗
L[E]. (2.11)

With regard to (2.11), we consider triplet
(
F
∗
0(L),T

0
L[E],T∗

L[E]
)

(2.12)

as a bitopological space (BTS); in this connection, see [9]. We do not discuss inessential differences
with constructions of [9] and follow to above-mentioned interpretation of (2.12). So,

(UF)[E;L] ∈ (BAS)[F∗
0(L)] ∩ (cl− BAS)[F∗

0(L)] (2.13)

generates BTS (2.12). It is useful to note the important particular case; namely, if L ∈ (alg)[E],
then (2.5) is a zero-dimensional compactum or rather the Stone space.

Maximal linked systems. Now, we consider the families (L − link)[E] and (L − link)0[E]. It
is obvious that F

∗(L) ⊂ (L − link)[E] and

F
∗
0(L) ⊂ (L − link)0[E]. (2.14)

Moreover, easy to check that

(L − link)0[E] = {E ∈ (L − link)[E]| ∀L ∈ L (L ∩ Σ 6= ∅ ∀Σ ∈ E) =⇒ (L ∈ E)} (2.15)

(we use the maximality property). With employment of the Zorn lemma, we obtain that

∀ E1 ∈ (L − link)[E] ∃ E2 ∈ (L − link)0[E] : E1 ⊂ E2. (2.16)

Finally, we note the following corollary of maximality of MLS: ∀ E ∈ (L− link)0[E] ∀Σ ∈ E ∀L ∈ L

(Σ ⊂ L) =⇒ (L ∈ E). (2.17)

Therefore, we obtain that
E ∈ E ∀ E ∈ (L − link)0[E]. (2.18)

The property (2.14) is complemented by the following equality:

F
∗
0(L) = {U ∈ (L − link)0[E]|A ∩ B ∈ U ∀A ∈ U ∀B ∈ U} ∈ P ′

(
(L − link)0[E]

)
.
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3. Maximal linked systems; topology of the Wallman type

We recall that (2.14)–(2.18) are fulfilled under L = P(E) (the lattice of all subsets of E). In
addition, (link)[E] =

(
P(E) − link

)
[E] and (link)0[E] =

(
P(E) − link

)
0
[E] (see (1.34)). As variant

of (1.36) and (2.15), we obtain that

(link)0[E] = {E ∈ (link)[E]| ∀ S ∈ (link)[E] (E ⊂ S) ⇒ (E = S)} =

= {E ∈ (link)[E]| ∀L ∈ P(E) (L ∩ Σ 6= ∅ ∀Σ ∈ E) ⇒ (L ∈ E)},
(3.1)

(link)0[E] 6= ∅. From (2.18), we obtain that

E ∈ E ∀ E ∈ (link)0[E]. (3.2)

By (2.16) we obtain that

∀ E1 ∈ (link)[E] ∃ E2 ∈ (link)0[E] : E1 ⊂ E2. (3.3)

Now, we return to arbitrary fixed lattice (2.6). Using (3.1), we consider one property of MLS for
lattice (2.6). But, at first, we note one simple corollary of Proposition 1.

Proposition 2. The following property takes place:

E ∩ L ∈ (L − link)[E] ∀ E ∈ (link)0[E]. (3.4)

P r o o f. Let S ∈ (link)0[E]. Using (2.6), consider the family S ∩ L. By (1.4), (1.6), (2.6) and
(3.2) E ∈ S ∩ L. So, S ∩ L 6= ∅ and by Proposition 1 S ∩ L ∈ (L − link)[E]. �

Proposition 3. If E ∈ (L − link)0[E], then

∃S ∈ (link)0[E] : E = S ∩ L.

P r o o f. Fix E ∈ (L− link)0[E]. Then, in particular, E ∈ (L− link)[E] and ∀ C ∈ (L− link)[E]

(E ⊂ C) =⇒ (E = C). (3.5)

By (1.35) E ∈ (link)[E] and E ⊂ L. Then (see (3.3)), for some MLS V ∈ (link)0[E]

E ⊂ V. (3.6)

In addition, by Proposition 2
V ∩ L ∈ (L − link)[E]. (3.7)

From (3.6), the inclusion E ⊂ V ∩ L is realized. By (3.5) and (3.7) we obtain the equality

E = V ∩ L.

So, V ∈ (link)0[E] : E = V ∩ L. �

We suppose by analogy with [4, 4.10] that

(L − link)0[E|L]
△
= {E ∈ (L − link)0[E]|L ∈ E} ∀L ∈ L. (3.8)

Of course, we have the following particular cases:

(
(L − link)0[E| ∅] = ∅

)
&
(
(L − link)0[E|E] = (L − link)0[E]

)
(3.9)
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(here and later, we follow to [5]). Using (3.8) and (3.9), we obtain that

C∗
0[E;L]

△
= {(L − link)0[E|L] : L ∈ L} ∈ P ′

(
P
(
(L − link)0[E]

))
; (3.10)

in addition, ∅ ∈ C∗
0[E;L] and (L− link)0[E] ∈ C∗

0[E;L]. The basic properties of the family (3.10) are
considered later. Now, we pass to equipment by topology of the Wallman type. For this, we note
that

CE[L] = {E \ L : L ∈ L} ∈ (LAT)0[E]. (3.11)

In the form of (3.11), we obtain the lattice dual with respect to L.

Remark 3.1 . We recall (see [5]) that L = CE[L] under L ∈ (alg)[E]. So, for the particular case,
when (E,L) is a measurable space with algebra of sets, the dual lattice (3.11) coincides with L. �

Under Λ ∈ CE[L], we suppose that

(L − link)0op[E|Λ]
△
= {E ∈ (L − link)0[E]| ∃Σ ∈ E : Σ ⊂ Λ}; (3.12)

of course, we can consider that Λ = E \ L, where L ∈ L. In this connection, we note that

(L − link)0op[E|E \ L] = (L − link)0[E] \ (L − link)0[E|L] ∀L ∈ L. (3.13)

Of course, by (3.11) ∅ ∈ CE[L] and E ∈ CE[L]; in addition,

(
(L − link)0op[E| ∅] = ∅

)
&
(
(L − link)0op[E|E] = (L − link)0[E]

)
.

As a corollary, we obtain that by statements of Section 1

C0
op[E;L]

△
= {(L − link)0op[E|Λ] : Λ ∈ CE[L]} ∈ (p− BAS)∅

[
(L − link)0[E]

]
. (3.14)

As a corollary, in the form of {∩}♯(C
0
op[E;L]) ∈ (op − BAS)∅

[
(L − link)0[E]

]
, we obtain an open

base and
T0(E| L)

△
= {∪}

(
{∩}♯(C

0
op[E;L])

)
∈ (top)

[
(L − link)0[E]

]
. (3.15)

So, we have the following TS (
(L − link)0[E], T0(E| L)

)
. (3.16)

Of course, {∩}♯(C
0
op[E;L]) ∈

(
T0(E| L)− BAS

)
0

[
(L − link)0[E]

]
and, as a corollary,

C0
op[E;L] ∈ (p− BAS)0∅

[
(L − link)0[E];T0(E| L)

]
. (3.17)

In addition, by (3.13) the following equality is realized:

C∗
0[E;L] = C(L−link)0[E]

[
C0
op[E;L]

]
. (3.18)

From (3.17) and (3.18), by duality we obtain (see (1.16)) that

C∗
0[E;L] ∈ (p− BAS)0cl

[
(L − link)0[E];T0(E| L)

]
. (3.19)

From (3.17) and (3.19), we have dual construction for TS (3.16). In addition, (3.17) and (3.19) are
open and closed subbases of this TS respectively. By (3.18) self these subbases are situated in a
duality. Now, we note the statements of [5] connected with supercompactness of TS (3.16). At first,
we recall the notion of closed binary subbases. Namely, by (1.38)

(
(p,bin)− cl

)[
(L − link)0[E];T0(E| L)

]
=

{
L ∈ (p− BAS)0cl

[
(L − link)0[E];T0(E| L)

]∣∣
⋂

L∈λ

L 6= ∅ ∀λ ∈ (L − link)
[
(L − link)0[E]

]} (3.20)
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is the family of all closed binary subbases. We recall that by (1.40)
(
T0(E| L) ∈

(
(SC)−top

)[
(L−link)0[E]

])
⇔

((
(p,bin)− cl

)[
(L−link)0[E];T0(E| L)

]
6= ∅

)
. (3.21)

In [5], the following statement was established: C∗
0[E;L] ∈

(
(p,bin)− cl

)[
(L− link)0[E];T0(E| L)

]
.

From (3.21), we obtain that

T0(E| L) ∈
(
(SC)− top

)[
(L − link)0[E]

]
. (3.22)

So, (3.16) is a supercompact TS. With employment of (1.39), (3.18), and the above-mentioned
property of C∗

0[E;L], we have the following statement:

∀ C ∈ (COV)
[
(L − link)0[E]|C0

op[E;L]
]
∃C1 ∈ C ∃C2 ∈ C : (L − link)0[E] = C1 ∪ C2. (3.23)

Of course, for (3.23), we use the property

C0
op[E;L] = C(L−link)0[E]

[
C∗
o[E;L]

]
(3.24)

(indeed, (3.24) is obvious corollary of (3.18)). We consider (3.15) as a topology of Wallman type.
We note two obvious property. Namely, for Λ1 ∈ CE[L] and Λ2 ∈ CE[L]

(Λ1 ∩ Λ2 = ∅) ⇒
(
(L − link)0op[E|Λ1] ∩ (L − link)0op[E|Λ2] = ∅

)
.

Moreover, we have the following property of isotonicity: under Λ1 ∈ CE[L] and Λ2 ∈ CE[L]

(Λ1 ⊂ Λ2) ⇒
(
(L − link)0op[E|Λ1] ⊂ (L − link)0op[E|Λ2]

)
.

Now, we consider the corresponding equipment for the set of u/f of the lattice L. For Λ ∈ CE[L],
we obtain that

F̃C[L|Λ]
△
= (L − link)0op[E|Λ] ∩ F

∗
0(L) = {U ∈ F

∗
0(L)| ∃U ∈ U : U ⊂ Λ} ∈ P

(
F
∗
0(L)

)
. (3.25)

Of course, F̃C[L|E \ L] is defined under L ∈ L. It is obvious that

F̃C[L]
△
= {F̃C[L|Λ] : Λ ∈ CE [L]} = CF∗

0
(L)

[
(UF)[E;L]

]
. (3.26)

In (3.26), the following equality is used: namely, under L ∈ L, F̃C[L|E \L] = F
∗
0(L) \ΦL(L). Using

simple corollary of (2.8) and (3.26), we obtain that F̃C[L] ∈ (BAS)[F∗
0(L)] (see (1.12)). In addition,

by (1.13), (2.8), and (3.26)
T

0
L[E] = {∪}(F̃C[L]). (3.27)

So, we obtain the following property (see [5]): namely,

F̃C[L] ∈ (T0
L[E]− BAS)0[F

∗
0(L)]. (3.28)

In (3.27) and (3.28), we have analog of (3.15) and (3.17) respectively; in addition, it is useful to
note that ∅ = F̃C[L| ∅] ∈ F̃C[L] (we use (3.11)) and therefore

F̃C[L] ∈ (op − BAS)∅[F
∗
0(L)].

On the other hand, by (3.14), (3.25) and (3.26)

F̃C[L] = C0
op[E;L]|F∗

0
(L). (3.29)

From (3.29), we obtain the following statement of [5]: (2.10) is a subspace of TS (3.16). Namely

T
0
L[E] = T0(E| L)|F∗

0
(L). (3.30)

As a corollary, we obtain the useful property: the set F
∗
0(L) is compact in TS (3.16):

F
∗
0(L) ∈

(
T0(E| L) − comp

)[
(L − link)0[E]

]
. (3.31)

Now, the following statement is obvious.
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Proposition 4. If (3.16) is T2-space, then F
∗
0(L) is closed in this space:

F
∗
0(L) ∈ C(L−link)0[E][T0(E| L)].

In connection with Proposition 4, we note the known property concerning to [4, 4.16] (see too
[16, p. 65]).

We note that, for every E ∈ (L − link)0[E], the following equality is realized:

⋂

Σ∈E

(L − link)0[E|Σ] = {E};

as a corollary, by (3.19) we obtain that

{E} ∈ C(L−link)0[E][T0(E| L)].

So, we have the following statement of [5].

Proposition 5. By (3.16) a supercompact T1-space is realized.

Of course, if (3.16) is a T2-space, then it is a supercompactum. We note that by the maximality
property ∀ E1 ∈ (L − link)0[E] ∀ E2 ∈ (L − link)0[E]

(E1 6= E2) ⇐⇒
(
(E1 \ E2 6= ∅)&(E2 \ E1 6= ∅)

)
.

Moreover, it is obvious that ∀ E1 ∈ (L − link)0[E] ∀ E2 ∈ (L − link)0[E]

(E1 6= E2) ⇐⇒ (∃Σ1 ∈ E1 ∃Σ2 ∈ E2 : Σ1 ∩ Σ2 = ∅). (3.32)

4. Maximal linked systems as elements of zero-dimensional T2-space

and bitopological structure

In this section, we introduce TS analogous to (2.5). Elements of this new TS are MLS. We recall
that by (1.14), (3.8), (3.10), and (3.9)

C∗
0[E;L] ∈ (p− BAS)∅

[
(L − link)0[E]

]
. (4.1)

From (4.1), the obvious property {∩}♯(C
∗
0[E;L]) ∈ (op − BAS)∅

[
(L − link)0[E]

]
follows. As a

corollary,

T∗(E| L)
△
= {∪}

(
{∩}♯(C

∗
0[E;L])

)
∈ (top)

[
(L − link)0[E]

]
. (4.2)

So, by (4.2) we obtain the required TS

(
(L − link)0[E],T∗(E| L)

)
. (4.3)

For this TS, by (4.2) we have the inclusion

C∗
0[E;L] ∈ (p− BAS)0∅

[
(L − link)0[E];T∗(E| L)

]
. (4.4)

So, we obtain the following statement

C∗
0[E;L] ∈ (p− BAS)0∅

[
(L − link)0[E];T∗(E| L)

]
∩
(
(p,bin)− cl)

[
(L − link)0[E];T0(E| L)

]
. (4.5)

We obtain some analog of (2.13). So, the family C∗
0[E;L] «serves» both topology T∗(E| L) and

topology T0(E| L). But, now we focus on consideration of TS (4.3).
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It is easy proved that ∀L1 ∈ L ∀L2 ∈ L

(L1 ∩ L2 = ∅) ⇐⇒
(
(L − link)0[E|L1] ∩ (L − link)0[E|L2] = ∅

)
; (4.6)

in (4.5), we use the property analogous to (3.3). We use (4.6) for verification of separability of the
TS (4.2). For this, we introduce the next notion: if E1 and E2 are nonempty families, then

(Dis)[E1; E2]
△
= {z ∈ E1 × E2|pr1(z) ∩ pr2(z) = ∅}. (4.7)

Of course, in (4.7), we can use arbitrary MLS from (L− link)0[E] as E1 and E2. Then, by (4.6) and
(4.7)

(L − link)0[E|pr1(z)] ∩ (L − link)0[E|pr2(z)] = ∅

∀ E1 ∈ (L − link)0[E] ∀ E2 ∈ (L − link)0[E] ∀ z ∈ (Dis)]E1; E2].
(4.8)

If (X, τ) is TS and x ∈ X, then N0
τ (x)

△
= {G ∈ τ |x ∈ G}. We confine ourselves to employment

of open neighborhoods. Of course, by (3.10) and (4.2) we obtain the following obvious property: if
E ∈ (L − link)0[E] and Σ ∈ E , then

(L − link)0[E|Σ] ∈ N0
T∗(E|L)(E). (4.9)

We note that by (3.32), for E1 ∈ (L − link)0[E] and E2 ∈ (L − link)0[E] \ {E1}, the property

(Dis)[E1; E2] 6= ∅

is realized (see (4.7)). As a corollary, by (4.8) and (4.9) ∀ E1 ∈ (L − link)0[E]
∀ E2 ∈ (L − link)0[E] \ {E1} ∃G1 ∈ N0

T∗(E|L)(E1) ∃G2 ∈ N0
T∗(E|L)(E2) :

G1 ∩ G2 = ∅. (4.10)

So, (4.3) is a T2-space. Moreover, we note that by (2.15)

(L − link)0[E|L] = {E ∈ (L − link)0[E]|L ∩ Σ 6= ∅ ∀Σ ∈ E} ∀L ∈ L. (4.11)

On the other hand, from (4.11) the following property (see [5]) is extracted:

(L − link)0[E|L] ∈ T∗(E| L) ∩ C(L−link)0[E][T∗(E|L)] ∀L ∈ L. (4.12)

From (3.10) and (4.12), we obtain that

C∗
0[E;L] ⊂ T∗(E| L) ∩ C(L−link)0[E][T∗(E| L)]. (4.13)

Using axioms of TS, from (4.13), we obtain that

{∩}♯(C
∗
0[E;L]) ⊂ T∗(E| L) ∩ C(L−link)0[E][T∗(E|L)], (4.14)

where {∩}♯(C
∗
0[E;L]) ∈ (BAS)

[
(L − link)0[E]

]
and by (4.2)

{∩}♯(C
∗
0[E;L]) ∈

(
T∗(E| L)− BAS

)
0

[
(L − link)0[E]

]
. (4.15)

Proposition 6. In the form of (4.3) a zero-dimensional T2-space is realized.
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The corresponding proof (see [5]) is immediate combination of (4.10), (4.14), and (4.15) (see [13,
6.2]).

We note the following obvious property (see (3.8) and definitions of Section 2)

ΦL(L) = (L − link)0[E|L] ∩ F
∗
0(L) ∀L ∈ L. (4.16)

Therefore, by (2.4), (3.10), and (4.16) we obtain the equality

(UF)[E;L] = C∗
0[E;L]|F∗

0
(L).

As a corollary, the following important property (see [5]) is realized:

T
∗
L[E] = T∗(E| L)|F∗

0
(L). (4.17)

From (4.17), we obtain the next statement: (2.5) is a subspace of the TS (4.3). So, by (3.30) and
(4.17) (

T
0
L[E] = T0(E| L)|F∗

0
(L)

)
&
(
T

∗
L[E] = T∗(E| L)|F∗

0
(L)

)
. (4.18)

In (4.18), we have the natural connection for topological equipments of the spaces of MLS and u/f.
In addition, by [5, Proposition 6.5]

T0(E| L) ⊂ T∗(E| L). (4.19)

So, by (4.19) we obtain the following BTS

(
(L − link)0[E],T0(E| L),T∗(E| L)

)
. (4.20)

Of course, by (4.18) we can consider BTS (2.12) as a subspace of BTS (4.20).

5. Ultrafilters of separable lattice of sets

In present section, we suppose that

L ∈ (LAT)0[E] ∩ π̃0[E]. (5.1)

By (5.1) we obtain the case of separable lattice. Using (2.3) and (5.1), we obtain that

(L − triv)[x] ∈ F
∗
0(L) ∀x ∈ E. (5.2)

By (5.2) we can introduce operator

x 7−→ (L − triv)[x] : E −→ F
∗
0(L) (5.3)

denoted by (L−triv)[·]. Of course, (5.3) is an immersion of E into F
∗
0(L). Therefore, we can consider

sets-images

(L − triv)[·]1(A)
△
= {(L − triv)[x] : x ∈ A} ∈ P

(
F
∗
0(L)

)
∀A ∈ P(E). (5.4)

We note that by (2.11) and (5.4) the inclusions

cl
(
(L − triv)[·]1(A),T∗

L[E]
)
⊂ cl

(
(L − triv)[·]1(A),T0

L[E]
)

∀A ∈ P(E) (5.5)

are realized. By [5, Proposition 6.6] we have the system of equalities

cl
(
(L − triv)[·]1(L),T∗

L[E]
)
= cl

(
(L − triv)[·]1(L),T0

L[E]
)
= ΦL(L) ∀L ∈ L. (5.6)
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We recall [17, (4.7)] that ∀L1 ∈ L ∀L2 ∈ L

(L1 ⊂ L2) ⇐⇒
(
ΦL(L1) ⊂ ΦL(L2)

)
. (5.7)

As an obvious corollary, for L1 ∈ L and L2 ∈ L

(L1 = L2) ⇐⇒
(
ΦL(L1) = ΦL(L2)

)
.

Proposition 7. If L1 ∈ L and L2 ∈ L, then

(L1 ⊂ L2) ⇐⇒
(
(L − link)0[E|L1] ⊂ (L − link)0[E|L2]

)
. (5.8)

P r o o f. By [5, (2.15)] we have implication

(L1 ⊂ L2) =⇒
(
(L − link)0[E|L1] ⊂ (L − link)0[E|L2]

)
. (5.9)

Let (L − link)0[E|L1] ⊂ (L − link)0[E|L2]. We prove that L1 ⊂ L2. Indeed, suppose the contrary:
let

L1 \ L2 6= ∅. (5.10)

With employment of (5.10), we choose x∗ ∈ L1 \L2. Then, (L− triv)[x∗] ∈ F
∗
0(L) and, in particular

(see (2.14)),

(L − triv)[x∗] ∈ (L − link)0[E]. (5.11)

In addition, by the choice of x∗ we obtain (see Section 2) that L1 ∈ (L − triv)[x∗]. Then, by (3.8)
and (5.11)

(L − triv)[x∗] ∈ (L − link)0[E|L1].

Therefore, (L− triv)[x∗] ∈ (L− link)0[E|L2] (we use our supposition). Using (3.8), we obtain that
L2 ∈ (L − triv)[x∗] and, as a corollary, x∗ ∈ L2. But, this inclusion contradicts to the choice of
x∗ (recall that x∗ /∈ L2). The obtained contradiction proves the required inclusion L1 ⊂ L2. So,
implication (

(L − link)0[E|L1] ⊂ (L − link)0[E|L2]
)
=⇒ (L1 ⊂ L2) (5.12)

is established. From (5.9) and (5.12), we obtain (5.8). �

Corollary 1. If L1 ∈ L and L2 ∈ L, then

(L1 = L2) ⇐⇒
(
(L − link)0[E|L1] = (L − link)0[E|L2]

)
.

The corresponding proof is obvious (see Proposition 7). So, mapping

L 7−→ (L − link)0[E|L] : L −→ C∗
0[E;L]

is a bijection from L onto C∗
0[E;L] (see (3.10) and Corollary 1). We note that from (5.6) the next

density property follows:

cl
(
(L − triv)[·]1(E),T∗

L[E]
)
= cl

(
(L − triv)[·]1(E), T0

L[E]
)
= F

∗
0(L); (5.13)

in (5.13), we use the obvious equality ΦL(E) = F
∗
0(L).
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6. Some additions

In this sections, at first, we consider questions meaningful of a duality for families C∗
0[E;L] and

C0
op[E;L]. For this, we recall that (see Section 3)

C∗
0[E;L] ∈ (p− BAS)0cl

[
(L − link)0[E];T0(E| L)

]
. (6.1)

As a corollary, by (4.4) and (6.1) we have the property

C∗
0[E;L] ∈ (p− BAS)0

[
(L − link)0[E];T∗(E| L)

]
∩ (p− BAS)0cl

[
(L − link)0[E];T0(E| L)

]
. (6.2)

Proposition 8. The family C0
op[E;L] is a closed subbase of the TS (4.3):

C0
op[E;L] ∈ (p− BAS)0cl

[
(L − link)0[E];T∗(E| L)

]
. (6.3)

P r o o f. We recall (3.24). So, by (4.5) we have the following statement

C∗
0[E;L] ∈ (p− BAS)0∅

[
(L − link)0[E];T∗(E| L)

]
: C0

op[E;L] = C(L−link)0[E]

[
C∗
0[E;L]

]
.

Then, by (1.16) we obtain (6.3). �

From (3.17) and Proposition 8 we have the following property

C0
op[E;L] ∈ (p− BAS)0

[
(L − link)0[E];T0(E| L)

]
∩ (p− BAS)0cl

[
(L − link)0[E];T∗(E| L)

]
. (6.4)

In (6.2) and (6.4), we obtain a duality of subbases.

7. Bitopological space of closed ultrafilters and maximal linked systems

We recall (5.6). Then, by this property the topologies T
0
L[E] and T

∗
L[E] are similar (later, we

show that in many cases the above-mentioned topologies are equal). But, now we consider the
variant of the set lattice for which the above-mentioned topologies differ typically. Namely, we fix
τ ∈ (D − top)[E]; so, τ ∈ (top)[E] for which (E, τ) is a T1-space and (in this section) we suppose
that

L = CE[τ ]. (7.1)

Under (7.1), we call u/f of the set F∗
0(L) as closed u/f. Analogously, for MLS of (L− link)0[E], under

(7.1), we use the term closed MLS. In addition, in our case by (5.1) and (7.1)

CE[τ ] ∈ (LAT)0[E] ∩ π̃0[E]. (7.2)

Of course, CE[τ ] ∈ (D− clos)[E]. By (7.2) we have the separable lattice (7.1). Indeed, {x} ∈ CE[τ ]
under x ∈ E (really, by (1.19) (E, τ) is a T1-space). So, in our case, by (2.3) and (5.2)

(L − triv)[x] ∈ F
∗
0(CE[τ ]) ∀x ∈ E. (7.3)

Of course, by (7.1) and (7.2) we can use statements of Section 5. In particular, by (5.6), (7.1), and
(7.2)

cl
(
(CE [τ ]−triv)[·]1(F ),T∗

CE [τ ][E]
)
= cl

(
(CE [τ ]−triv)[·]1(F ),T0

CE [τ ][E]
)
= ΦCE [τ ](F ) ∀F ∈ CE[τ ].

(7.4)
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At the same time, we have (see [5, § 7]) the property

cl
(
(CE [τ ]− triv)[·]1(A),T0

CE [τ ][E]
)
= ΦCE [τ ]

(
cl(A, τ)

)
∀A ∈ P(E). (7.5)

So, by (7.5) the following statement is realized: TS (2.10) «feels» subsets of E accurate to closure.
We recall [5, (7.3)]: for A ∈ P(E) and x∗ ∈ cl(A, τ) \ A

(CE [τ ]− triv)[x∗] ∈ cl
(
(CE [τ ]− triv)[·]1(A),T0

CE [τ ][E]
)
\cl

(
(CE [τ ]− triv)[·]1(A),T∗

CE [τ ][E]
)
. (7.6)

With employment of (7.6), we obtain (see [5, (7.4)]) in our case

CE[τ ] =
{
A ∈ P(E)| cl

(
(CE[τ ]− triv)[·]1(A),T0

CE [τ ][E]
)
= cl

(
(CE[τ ]− triv)[·]1(A),T∗

CE [τ ][E]
)}

.
(7.7)

Finally, by [5, Theorem 7.1] we obtain the following implication:

(
τ 6= P(E)

)
=⇒ (T0

CE [τ ][E] 6= T
∗
CE [τ ][E]). (7.8)

So, for (7.1) and nondiscrete T1-space (E, τ), BTS (2.12) is nondegenerate. From (4.18) and (7.8),
we obtain that (

τ 6= P(E)
)
=⇒

(
T0(E|CE [τ ]) 6= T∗(E|CE [τ ])

)
. (7.9)

We use (7.8) and (7.9) in connection with lattices of the family (1.17).

8. Some particular cases

In this section, we fix a lattice
L̃ ∈ (↓ −LAT)0[E]. (8.1)

Then, by (1.18) we obtain that L̃ ∪ {E} ∈ (clos)[E] and (in particular) L̃ ∪ {E} ∈ (LAT)0[E]. In
addition,

τ0
L̃
[E] = CE[L̃ ∪ {E}] = CE[L̃] ∪ {∅} ∈ (D − top)[E] (8.2)

realizes the following T1-space:
(E, τ0

L̃
[E]). (8.3)

We recall that (see Section 1), for (8.2) and (8.3), the following property takes place: (8.3) is not
T2-space. From (8.2), we have the equality

L̃ ∪ {E} = CE

[
τ0
L̃
[E]

]
(8.4)

(see (1.21)). In addition, by (1.22) we obtain that

τ0
L̃
[E] 6= P(E). (8.5)

We recall that by (1.20) L̃ ∪ {E} ∈ (D − clos)[E]. In addition,
(
T0(E| L̃∪ {E}) ∈ (top)

[(
(L̃∪ {E})−link

)
0
[E]

])
&
(
T∗(E| L̃∪ {E}) ∈ (top)

[(
(L̃∪ {E})−link

)
0
[E]

])
.

(8.6)
In the form of the triplet

((
(L̃ ∪ {E}) − link

)
0
[E],T0(E| L̃ ∪ {E}),T∗(E| L̃ ∪ {E})

)
, (8.7)

we obtain a BTS. Of course, (8.7) is a variant of BTS (4.20). By (7.9), (8.4), and (8.5) we obtain
that

T0(E| L̃ ∪ {E}) 6= T∗(E| L̃ ∪ {E}). (8.8)
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So, by (8.8) the BTS (8.7) is non-degenerate. Moreover, we have topologies

(
T

0
L̃∪ {E}

[E] ∈ (top)[F∗
0(L̃ ∪ {E})]

)
&
(
T

∗
L̃∪ {E}

[E] ∈ (top)[F∗
0(L̃ ∪ {E})]

)
.

In addition, in the form of the triplet

(
F
∗
0(L̃ ∪ {E}),T0

L̃∪ {E}
[E],T∗

L̃∪ {E}
[E]

)
(8.9)

we have BTS. Of course, (8.9) is a variant of BTS (2.12). By (7.8), (8.4), and (8.5) we obtain that

T
0
L̃∪ {E}

[E] 6= T
∗
L̃∪ {E}

[E]. (8.10)

So, by (8.10) the BTS (8.9) is non-degenerate. We recall that, in Section 1, the concrete examples
of the realization of (8.9) and (8.10) were identified (see Examples 1.1–1.4). Now, we consider yet
one example of such type.

Example 8.1. Let ⊑ be a direction on the (nonempty) set E. So, we consider the case of nonempty
directed set (E,⊑). Suppose that

(⊑ −Ma)E [Y ]
△
= {z ∈ E| y ⊑ z ∀ y ∈ Y } ∀Y ∈ P(E).

Then M[E;⊑]
△
= {Y ∈ P(E)| (⊑ −Ma)E[Y ] 6= ∅} is the family of all majorized subsets of E. Since

E 6= ∅, we have the obvious property ∅ ∈ M[E;⊑] (moreover, by the choice of ⊑ we obtain that
{x; y} ∈ M[E;⊑] ∀x ∈ E ∀ y ∈ E). From properties of directed sets, the statement M[E;⊑ ] ∈
(LAT)[E] is realized. It is obvious that {x} ∈ M[E;⊑] ∀x ∈ E. Finally,

⋂

H∈H

H ∈ M[E;⊑] ∀H ∈ P ′(M[E;⊑]).

As a corollary, by (1.17) we obtain the implication

(E /∈ M[E;⊑]) =⇒ (M[E;⊑] ∈ (↓ −LAT)0[E]).

So, under E /∈ M[E;⊑], in the form of M[E;⊑], we obtain yet one variant of the family of
(↓ −LAT)0[E] : M[E;⊑] ∈ (↓ −LAT)0[E]. �

9. Measurable space with algebra of sets

Recall that by (1.6) and (1.7) (alg)[E] ⊂ (LAT)0[E]. Using this property, in the present section,
we consider the case

L ∈ (alg)[E]. (9.1)

By (9.1) we have that (in the present section) (E,L) is a measurable space with algebra of sets. We
recall Remark 2.1: in the form of (

F
∗
0(L), (UF)[E;L]

)
,

a measurable space with algebra of sets is realized also. Moreover, we have BTS (2.12). But, by
[6, Proposition 9.2] this BTS is degenerate:

T
0
L[E] = T

∗
L[E]. (9.2)

By (9.2) we obtain the following equality of TS:

(
F
∗
0(L),T

0
L[E]

)
=

(
F
∗
0(L),T

∗
L[E]

)
; (9.3)
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of course, (9.3) is a nonempty zero-dimensional compactum. Moreover, by (9.1)

L = CE[L]. (9.4)

Therefore, the sets (L − link)0op[E|L], L ∈ L, are defined. In addition,

(L − link)0op[E|L] = (L − link)0[E|L]

under L ∈ L. We recall that, under Λ ∈ L, the inclusion E \ Λ ∈ L is realized; and what is more,
by (3.13)

(L − link)0[E|E \ Λ] = (L − link)0[E] \ (L − link)0[E|Λ].

As a simple corollary, in our case, the equality

C∗
0[E;L] = C0

op[E;L]

is realized. Therefore, by (3.15) and (4.2)

T0(E| L) = T∗(E| L). (9.5)

So, by (9.5) we have the following important property: TS

(
(L − link)0[E],T0(E| L)

)
=

(
(L − link)0[E],T∗(E| L)

)
(9.6)

is a nonempty supercompactum. In particular, (9.6) is a nonempty compactum.

Proposition 9. The set F∗
0(L) is closed in TS (9.6):

F
∗
0(L) ∈ C(L−link)0[E][T0(E| L)]. (9.7)

The corresponding proof follows from Proposition 4 (indeed, for (9.6) we have the separability
property). In connection with Proposition 9, we recall (3.31).

10. Open maximal linked systems

In this section, we suppose that
L = τ, (10.1)

where τ ∈ (top)[E]. So, (E,L) = (E, τ) is a TS. We consider the lattice of open sets. In this
connection, we recall (see [15, Section 8]) that

T
0
τ [E] = T

∗
τ [E]. (10.2)

Of course, in the form of (
F
∗
0(τ),T

0
τ [E]

)
=

(
F
∗
0(τ),T

∗
τ [E]

)
, (10.3)

we obtain a nonempty zero-dimensional compactum of open u/f (using (10.1), we consider u/f
consisting of open sets as open u/f). On the other hand, by (10.1) we can consider MLS consisting
of open sets. We call such MLS open also (recall that (top)[E] ⊂ (LAT)0[E]). By [5, Proposition 9.1]

(τ − link)0[E] \ (τ − link)0[E|G] = (τ − link)0[E|E \ cl(G, τ)] ∀G ∈ τ.

With employment of this property, in [5, Proposition 9.2], the equality

T0(E| τ) = T∗(E| τ) (10.4)
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was established. By (10.4) we obtain that
(
(τ − link)0[E],T0(E| τ)

)
=

(
(τ − link)0[E],T∗(E| τ)

)
(10.5)

is a zero-dimensional supercompactum. In addition, by Proposition 4

F
∗
0(τ) ∈ C(τ−link)0[E][T0(E| τ)];

so, F∗
0(τ) is the closed in the supercompactum (10.5). We obtain that compactum (10.3) is a closed

subspace of the supercompactum (10.5).

11. Conclusion

We reviewed two BTS. In the first case point of BTS are MLS and, in the second case, similar
points are u/f of a set lattice. It is established that the second BTS can be considered as a subspace of
the first BTS. We indicated the natural variants of our lattice for which the above-mentioned BTS
are degenerate and, opposite, the variants with degeneracy of the corresponding BTS is absent.
Our consideration is connected with ideas of supercompactness and superextension of a TS. For
degenerate BTS the corresponding space of MLS is a supercompactum. Under consideration of the
lattice of closed MLS, we obtain a non-degenerate BTS typically.
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Abstract: In this article, we investigate the oscillation behavior of the solutions of the third-order nonlinear
differential equation with neural type of the form

(

a1(t)
(

a2(t)Z
′(t)

)

′

)

′

+ q(t)f
(

x(σ(t))
)

= 0, t ≥ t0 > 0,

where Z(t) := x(t) + p(t)xα(τ(t)). Some new oscillation results are presented that extend those results given in
the literature.
AMS Subject Classification: 34C10, 34K11.
Key words: Oscillation, Non-linear, Neutral differential equation, Third order.

1. Introduction

Consider the third order non-linear neutral delay differential equation

(

a1(t)
(

a2(t)Z
′(t)
)′
)′

+ q(t)f(x(σ(t))) = 0, t ≥ t0 > 0, (E)

where Z(t) := x(t) + p(t)xα(τ(t)) and 0 < α ≤ 1 is a ratio of odd positive integers. Throughout
this paper, without further mention, let

(A1) ai(t) ∈ C([t0,+∞)), ai(t) > 0 for i = 1, 2 and p(t), q(t) ∈ C([t0,+∞)), q(t) > 0;

(A2) τ(t) ∈ C([t0,+∞)), τ(t) ≤ t, σ(t) ∈ C([t0,+∞)), σ(t) ≤ t;

(A3) f is nondecreasing and uf(u) ≥ k > 0 for u 6= 0 and lim
t→+∞

τ(t) = lim
t→+∞

σ(t) = ∞.

By a solution of equation (E) we mean a nontrivial real valued function x(t) ∈ C([Tx,∞)), Tx ≥
t0, which has the property Z ′(t) ∈ C1([Tx,∞)), a2(t)Z

′(t) ∈ C1([Tx,∞)), a1(t)(a2(t)Z
′(t))′ ∈

C1([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only those solutions x(t) of (E) which
satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. A solution of (E) is called oscillatory if it has
arbitrarily large zeros on [Tx,∞) and otherwise, it is said to be non-oscillatory. Equation (E) is
called almost oscillatory if all its solutions are oscillatory or convergent to zero asymptotically.

In the last years, a great deal of interest in oscillatory properties of neutral functional differential
equations has been shown, we refer the reader to [1–8] and the references cited therein. A number
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of authors including B. Bacuĺıková and J. Džurina [10], T. Candan and Dahiya [11, 12], Graef
et al. [7], and E. Thandapani and Li [8] have studied the oscillatory behavior of solutions of third
order neutral differential equations in the form of equation (E) when α = 1.

Recently, Lin and Tang [13] explored the oscillation of first-order neutral differential equation
with a super-linear neutral term

[x(t)− p(xα(t− τ)]′ + q(t)

m
∏

j=1

|x(t− σj)|
βj sgn[x(t− σj)] = 0,

where α > 1. Ravi P. Agarwal et al. [14] concerned with oscillation of a certain class of second-order
differential equations with a sub-linear neutral term

(

a(t) [x(t) + p(t)xα(τ(t))]′
)′
+ q(t)x(σ(t)) = 0, t ≥ t0 > 0,

where 0 < α ≤ 1 is a ratio of odd positive integers and E. Thandapani et al. [9] established sufficient
conditions for the oscillation of all solutions of a nonlinear differential equation

(

a(t) [x(t) + p(t)xα(τ(t))]′
)′
+ q(t)xβ(σ(t)) = 0, t ≥ t0 > 0,

where α and β are ratio of odd positive integers. The above observation shows that this paper
extend the results in third order.

This article presents the further investigation of the oscillations of (E). The following two cases:

∫ ∞

t0

1

a1(t)
dt = ∞,

∫ ∞

t0

1

a2(t)
dt = ∞, (1.1)

∫ ∞

t0

1

a1(t)
dt < ∞,

∫ ∞

t0

1

a2(t)
dt = ∞, (1.2)

are studied.
The paper is organized as follows. In Section 2, we present sufficient conditions for the oscillation

of all solutions of (E) and in Section 3, we provide some examples to illustrate the main results.
In the following, all functional inequalities considered in this paper are assumed to hold even-

tually, that is, they are satisfied for all t large enough. Without loss of generality, we can deal only
with the positive solutions of (E).

2. Main result

In this section, we state and prove our main results for the equation (E). For convenience, we
use the notations

p∗(t) =

(

1−
p(σ(t))

M1−α

)

, Θ(t) =

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ t

t1

du

a1(u)

(2.1)

Theorem 1. Let 0 ≤ p(t) ≤ p1 ≤ 1. If (1.1) holds and it there exists a positive function

φ ∈ C1([t0,∞),R), such that for all sufficiently large t3 > t2 > t1 ≥ t0 we have

lim sup
t→∞

∫ t

t3

(

φ(s)kq(s)p∗(s)Θ(s)−
a1(s)(φ

′(s))2

4φ(s)

)

ds = ∞ (2.2)
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and

∫ ∞

t0

1

a2(v)

∫ ∞

v

1

a1(u)

[
∫ ∞

u
q(s)ds

]

du dv = ∞ (2.3)

holds for all constants M > 0, then (E) is almost oscillatory.

P r o o f. Suppose that x(t) is a positive solution of (E). By condition (1.1), there exist two
possible cases:

(1) Z(t) > 0, Z ′(t) > 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0,

(2) Z(t) > 0, Z ′(t) < 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0, for t ≥ t1, t1 is large enough.

Assume Z(t) satisfying property (1), then

(

a1(t)
(

a2(t)Z
′(t)
)′
)′

= −q(t)f(x(σ(t))) ≤ −kq(t)x(σ(t)) < 0.

If there exists t ≥ t1 such that Z(t) > 0, Z(σ(t)) > 0, Z ′(t) > 0, then Z(t) is monotonically
increasing, there exists a constant M > 0 such that Z(t) ≥ M and by the definition of Z we have

x(t) = Z(t)− p(t)xα(σ(t)) ≥ Z(t)− p(t)Zα(σ(t)) ≥

(

1−
p(σ(t))

M1−α

)

Z(t) = p∗(t)Z(t), (2.4)

where p∗(t) is defined in (2.1). Let

ω(t) = φ(t)
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)
, (2.5)

ω(t) > 0 for t ≥ t1. Differentiating (2.5), we obtain

ω′(t) = φ′(t)
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)
+ φ(t)

(a1(t)(a2(t)Z
′(t))′)′

a2(t)Z ′(t)

−φ(t)
a1(t)(a1(t)(a2(t)Z

′(t))′)(a2(t)Z
′(t))′

(a2(t)Z ′(t))2
.

Since (a1(t)(a2(t)Z
′(t))′)′ < 0, then a1(t)(a2(t)Z

′(t))′ is decreasing, so

a2(t)Z
′(t) ≥

∫ t

t1

a1(s)(a2(s)Z
′(s))′

a1(s)
ds ≥ a1(t)(a2(t)Z

′(t))′
∫ t

t1

ds

a1(s)
,

which implies that

(

a2(t)Z
′(t)

∫ t
t1
ds/a1(s)

)′

≤ 0. (2.6)

Thus,

Z(t) = Z(t2) +

∫ t

t2

a2(s)Z
′(s)

∫ s

t1

du

a1(u)

∫ s

t1

du

a1(u)

a2(s)
ds ≥

a2(t)Z
′(t)

∫ t

t1

du

a1(u)

∫ t

t2

∫ s

t1

du

a1(u)

a2(s)
ds, (2.7)
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for t ≥ t2 ≥ t1.
It follows from (E), (2.4), and (2.5) that

ω′(t) ≤
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

Z(σ(t))

a2(t)Z ′(t)
,

that is,

ω′(t) ≤
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

Z(σ(t))

a2(σ(t))Z ′(σ(t))

a2(σ(t))Z
′(σ(t))

a2(t)Z ′(t)
.

From (2.6) and (2.7) follows

ω′(t) ≤
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ σ(t)

t1

du

a1(u)

∫ σ(t)

t1

du

a1(u)
∫ t

t1

du

a1(u)

=
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ t

t1

du

a1(u)

≤ −

[

ω(t)
√

φ(t)a1(t)
−

1

2

√

a1(t)

φ(t)
φ′(t)

]2

− φ(t)q(t)kp∗(t)Θ(t) +
a1(t)(φ

′(t))2

4φ(t)
,

which implies

ω′(t) ≤ −φ(t)q(t)kp∗(t)Θ(t) +
a1(t)(φ

′(t))2

4φ(t)
.

Integrating the last inequality from t3 (> t2) to t we obtain

∫ t

t3

(

φ(s)q(s)kp∗(s)Θ(s)−
a1(s)(φ

′(s))2

4φ(s)

)

ds ≤ ω(t3).

Letting t → ∞, it contradicts to (2.2).

Assume the case (2) holds. Using the similar proof of [10, Lemma 2], we can get limt→∞ x(t) = 0
due to condition (2.3). �

Theorem 2. Let 0 ≤ p(t) ≤ p1 ≤ 1. If (1.2) holds and there exists a positive function

ϕ ∈ C1([t0,∞),R), such that for all sufficiently large t3 > t2 > t1 ≥ t0, one has (2.2) and (2.3). If

lim sup
t→∞

∫ t

t2

(

δ(s)q(s)kp∗(s)

(

∫ σ(s)

t1

dv

a2(v)

)

−
1

4δ(s)a1(s)

)

ds = ∞, (2.8)

where

δ(t) :=

∫ ∞

t

1

a1(s)
ds,

holds for all constants M > 0, then (E) is almost oscillatory.
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P r o o f. Suppose that x(t) is a positive solution of (E). By condition (1.2), there exist three
possible cases:

(1) Z(t) > 0, Z ′(t) > 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0,

(2) Z(t) > 0, Z ′(t) < 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0, and

(3) Z(t) > 0, Z ′(t) > 0, (a2(t)Z
′(t))′ < 0, (a1(t)(a2(t)Z

′(t))′)′ < 0, for t ≥ t1, t1 is large enough.

In cases (1) and (2) we can obtain the conclusion of Theorem 2 by applying the proof of Theorem 1.
Assume that case (3) holds, (a1(t)(a2(t)Z

′(t))′)′ < 0 and a1(t)(a2(t)Z
′(t))′ is nonincreasing. Thus,

we get

a1(s)(a2(s)Z
′(s))′ ≤ a1(t)(a2(t)Z

′(t))′, s ≥ t ≥ t1.

Dividing the above inequality by a1(s) and integrating from t to l, we obtain

a2(l)Z
′(l) ≤ a2(t)Z

′(t) + a1(t)(a2(t)Z
′(t))′

∫ l

t

ds

a1(s)
.

Letting l → ∞, we have

0 ≤ a2(t)Z
′(t) + a1(t)(a2(t)Z

′(t))′
∫ ∞

t

ds

a1(s)
,

that is,

−
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)

∫ ∞

t

ds

a1(s)
≤ 1. (2.9)

Now define ϕ as

ϕ(t) :=
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)
, t ≥ t1. (2.10)

Then ϕ(t) < 0 for t ≥ t1. Therefore, by (2.9) and (2.10), we obtain

−δ(t)ϕ(t) ≤ 1. (2.11)

Differentiating (2.10) gives

ϕ′(t) =
(a1(t)(a2(t)Z

′(t))′)′

a2(t)Z ′(t)
−

a1(t)a1(t)(a2(t)Z
′(t))′(a2(t)Z

′(t))′

(a2(t)Z ′(t))2
.

Now Z ′(t) > 0, so from (E) and (2.4) we have

ϕ′(t) ≤ −q(t)kp∗(t)
Z(σ(t))

a2(t)Z ′(t)
−

a1(t)a1(t)(a2(t)Z
′)′(a2(t)Z

′(t))′

(a2(t)Z ′(t))2
. (2.12)

In view of case (3), we see that

Z(t) ≥ a2(t)

∫ t

t1

ds

a2(s)
Z ′(t). (2.13)
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Thus,

(

Z(t)
∫ t
t1
ds/a2(s)

)′

≤ 0 implies

Z(σ(t))

Z(t)
≥

∫ σ(t)

t1

ds

a2(s)
∫ t

t1

ds

a2(s)

. (2.14)

From (2.10) and (2.12)–(2.14) we have

ϕ′(t) ≤ −q(t)kp∗(t)

∫ σ(t)

t1

ds

a2(s)
−

ϕ2(t)

a1(t)
.

Multiplying the above inequality by δ(t) and integrating it from t2 (> t1) to t, we have

ϕ(t)δ(t) − ϕ(t2)δ(t2) +

∫ t

t2

δ(s)kq(s)p∗(s)
(

∫ σ(s)

t1

dv

a2(v)

)

ds

+

∫ t

t2

ϕ2(s)δ(s)

a1(s)
ds+

∫ t

t2

ϕ(s)

a1(s)
ds ≤ 0,

ϕ(t)δ(t) − ϕ(t2)δ(t2) +

∫ t

t2

δ(s)kq(s)p∗(s)
(

∫ σ(s)

t1

dv

a2(v)

)

ds−

∫ t

t2

ds

4δ(s)a1(s)

+

∫ t

t2

[
√

δ(s)

a1(s)
ϕ(s) +

1

2

1
√

a1(s)δ(s)

]2

ds ≤ 0,

from which it follows that

∫ t

t2

(

δ(s)q(s)kp∗(s)

(

∫ σ(s)

t1

dv

a2(v)

)

−
1

4δ(s)a1(s)

)

ds ≤ 1 + ϕ(t2)δ(t2)

due to (2.11). Letting t → ∞, we come to the contradiction (2.8). Then the result of the Theorem
follows. �

3. Examples

In this section we will present some examples to illustrate the main results.

Example 1. Consider a third-order neutral differential equation

(

t−1/2

(

t1/2
[

x(t) +
1

4
x3/5(t− 1)

]′)′
)′

+
λ

t1/2
x(t− 2) = 0, t ≥ 1, (3.1)

where λ > 0 is a constant. Let α = 3/5, a1(t) = t−1/2, a2(t) = t1/2, p(t) = 1/4, q(t) =
λ

t1/2
,

τ(t) = t− 1, and σ(t) = t− 2. We obtain p∗(t) = 1−
1/4

M2/5
,

∫ ∞

t0

1

a2(v)

∫ ∞

v

1

a1(u)

[
∫ ∞

u

λ

s1/2
ds

]

du dv = ∞.
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and

Θ(t) =

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ t

t1

du

a1(u)

=
(t− 2)3 + 6(t− 2)1/2t

1/2
1 − 3c

t3/2 − t
3/2
1

,

where c = t32/3 + 2t
3/2
1 t

1/2
2 . Pick φ(t) = 1, then

∫ ∞

t3

q(s)p∗(s)Θ(s)ds =
λ

3

(

1−
1/4

M2/5

)

∫ ∞

t3

(s− 2)3 + 6(s − 2)1/2t
1/2
1 − 3c

s2 − s1/2t
3/2
1

= ∞,

if 1/4 < M2/5. Hence, by Theorem 1, every solution of equation (3.1) is either oscillatory or
converges to zero as t → ∞ when 1/4 < M2/5.

Example 2. Consider a third-order neutral differential equation

(

t2
[

x(t) +
1

2
x1/3(t/8)

]′′)′

+
1

t

(

1 +
2

27
t2/3
)

x(t/2) = 0, t ≥ 1. (3.2)

Let α = 1/3, a1(t) = t2, a2(t) = 1, p(t) = 1/2, q(t) = 1/t
(

1+2/27 t2/3
)

, τ(t) = t/8 and σ(t) = t/2.

We obtain

p∗(t) = 1−
1/2

M2/3
, δ(t) =

∫ ∞

t

ds

s2
=

1

t

and
∫ t/2

t1

ds

a2(s)
=

1

2
(t− 2t1),

then

∫ ∞

t2

(

δ(s)q(s)p∗(s)

(

∫ σ(s)

t1

dv

a2(v)

)

−
1

4δ(s)a1(s)

)

ds

=

∫ ∞

t2

(

(

1− 0.5M−2/3
)[ 1

2s
+

1

27
s−1/3 −

t1
s2

−
2t1
27

s−4/3
]

−
1

4s

)

ds = ∞,

if 0.5 < M2/3. Hence, by Theorem 2, every solution of equation (3.2) is either oscillatory or
converges to zero as t → ∞ when 0.5 < M2/3 and x(t) = t−1 is such a solution of (3.2).
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EVALUATION OF THE NON-ELEMENTARY INTEGRAL
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e
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α

dx, α ≥ 2, AND OTHER RELATED INTEGRALS
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Abstract: A formula for the non-elementary integral
∫
eλx

α

dx where α is real and greater or equal two, is
obtained in terms of the confluent hypergeometric function 1F1 by expanding the integrand as a Taylor series.
This result is verified by directly evaluating the area under the Gaussian Bell curve, corresponding to α = 2, using
the asymptotic expression for the confluent hypergeometric function and the Fundamental Theorem of Calculus
(FTC). Two different but equivalent expressions, one in terms of the confluent hypergeometric function 1F1 and
another one in terms of the hypergeometric function 1F2, are obtained for each of these integrals,

∫
cosh(λxα)dx,∫

sinh(λxα)dx,
∫
cos(λxα)dx and

∫
sin(λxα)dx, λ ∈ C, α ≥ 2. And the hypergeometric function 1F2 is expressed

in terms of the confluent hypergeometric function 1F1. Some of the applications of the non-elementary integral∫
eλx

α

dx, α ≥ 2 such as the Gaussian distribution and the Maxwell-Bortsman distribution are given.

Key words: Non-elementary integral, Hypergeometric function, Confluent hypergeometric function, Asymp-
totic evaluation, Fundamental theorem of calculus, Gaussian, Maxwell-Bortsman distribution.

1. Introduction

Definition 1. An elementary function is a function of one variable built up using that variable
and constants, together with a finite number of repeated algebraic operations and the taking of
exponentials and logarithms [6].

In 1835, Joseph Liouville established conditions in his theorem, known as Liouville 1835’s
Theorem [4, 6], which can be used to determine whether an indefinite integral is elementary or non-
elementary. Using Liouville 1835’s Theorem, one can show that the indefinite integral

∫

eλx
α

dx,
α ≥ 2, is non-elementary [4], and to my knowledge, no one has evaluated this non-elementary
integral before.

For instance, if α = 2, λ = −β2 < 0, where β is a real constant, the area under the Gaussian
Bell curve can be calculated using double integration and then polar coordinates to obtain

+∞
∫

−∞

e−β2x2

dx =

√
π

β
. (1.1)

Is that possible to evaluate (1.1) by directly using the Fundamental Theorem of Calculus (FTC)
as in equation (1.2)?

+∞
∫

−∞

e−β2x2

dx = lim
t→−∞

0
∫

t

e−β2x2

dx+ lim
t→+∞

t
∫

0

e−β2x2

dx. (1.2)
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The Central limit Theorem (CLT) in Probability theory [2] states that the probability that a
random variable x does not exceed some observed value z is

P (X < z) =
1√
2π

z
∫

−∞

e−
x
2

2 dx. (1.3)

So if we know the antiderivative of the function g(x) = eλx
2

, we may choose to use the FTC to
calculate the cumulative probability P (X < z) in (1.3) when the value of z is given or is known,
rather than using numerical integration.

The Maxwell-Boltsman distribution in gas dynamics,

F (v) = θ

v
∫

0

x2e−γx2

dx, (1.4)

where θ and γ are some positive constants that depend on the properties of the gas and v is the
gas speed, is another application.

There are many other examples where the antiderivative of g(x) = eλx
α

, α ≥ 2 can be useful.
For example, using the FTC, formulas for integrals such as

∞
∫

x

et
2n+1

dt, x < ∞;

∞
∫

x

e−t2n+1

dt, x > −∞;

∞
∫

x

t2ne−t2dt, x ≤ ∞, (1.5)

where n is a positive integer, can be obtained if the antiderivative of g(x) = eλx
α

, α ≥ 2 is known.
In this paper, the antiderivative of g(x) = eλx

α

, α ≥ 2, is expressed in terms of a special
function, the confluent hypergeometric 1F1 [1]. And the confluent hypergeometric 1F1 is an entire
function [3], and its properties are well known [1, 5]. The main goal here is to consider the most
general case with λ complex (λ ∈ C), evaluate the non-elementary integral

∫

eλx
α

, α ≥ 2 and thus
make possible the use of the FTC to compute the definite integral

B
∫

A

eλx
α

dx, (1.6)

for any A and B. And once (1.6) is evaluated, then integrals such as (1.1), (1.2), (1.3), (1.4) and
(1.5) can also be evaluated using the FTC.

Using the hyperbolic and Euler identities,

cosh(λxα) = (eλx
α

+ e−λxα

)/2, sinh(λxα) = (eλx
α − e−λxα

)/2,

cos(λxα) = (eiλx
α

+ e−iλxα

)/2, sin(λxα) = (eiλx
α − e−iλxα

)/(2i),

the integrals
∫

cosh(λxα)dx,

∫

sinh(λxα)dx,

∫

cos(λxα)dx and

∫

sin(λxα)dx, α ≥ 2, (1.7)

are evaluated in terms of 1F1 for any constant λ. They are also expressed in terms of the hyper-
geometric 1F2. And some expressions of the hypergeometric function 1F2 in terms of the confluent
hypergeometric function 1F1 are therefore obtained.

For reference, we shall first define the confluent confluent hypergeometric function 1F1 and
the hypergeometric function 1F2 before we proceed to the main aims of this paper (see sections 2
and 3).
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Definition 2. The confluent hypergeometric function, denoted as 1F1, is a special function
given by the series [1, 5]

1F1(a; b;x) =

∞
∑

n=0

(a)n
(b)n

xn

n!
, (1.8)

where a and b are arbitrary constants, (ϑ)n = Γ(ϑ+ n)/Γ(ϑ) (Pochhammer’s notation [1]) for any
complex ϑ, with (ϑ)0 = 1, and Γ is the standard gamma function [1].

Definition 3. The hypergeometric function 1F2 is a special function given by the series [1, 5]

1F2(a; b, c;x) =

∞
∑

n=0

(a)n
(b)n(c)n

xn

n!
, (1.9)

where a, b and c are arbitrary constants, and (ϑ)n = Γ(ϑ + n)/Γ(ϑ) (Pochhammer’s notation [1])
as in Definition 2.

2. Evaluation of
∫

B

A
e
λxα

dx

Proposition 1. The function G(x) = x 1F1

(

1
α ;

1
α + 1;λxα

)

, where 1F1 is a confluent hyper-
geometric function [1], λ is an arbitrarily constant and α ≥ 2, is the antiderivative of the function
g(x) = eλx

α

. Thus,
∫

eλx
α

dx = x 1F1

(

1

α
;
1

α
+ 1;λxα

)

+ C. (2.1)

P r o o f. We expand g(x) = eλx
α

as a Taylor series and integrate the series term by term.
We also use the Pochhammer’s notation [1] for the gamma function, Γ(a + n) = Γ(a)(a)n, where
(a)n = a(a+ 1) · · · (a+ n − 1), and the property of the gamma function Γ(a+ 1) = aΓ(a) [1]. For
example, Γ(n+ a+ 1) = (n+ a)Γ(n + a). We then obtain

∫

g(x)dx =

∫

eλx
α

dx =

∞
∑

n=0

λn

n!

∫

xαndx

=
∞
∑

n=0

λn

n!

xαn+1

αn+ 1
+ C =

x

α

∞
∑

n=0

(λxα)n
(

n+ 1
α

)

n!
+ C

=
x

α

∞
∑

n=0

Γ
(

n+ 1
α

)

Γ
(

n+ 1
α + 1

)

(λxα)n

n!
+ C

= x

∞
∑

n=0

(

1
α

)

n
(

1
α + 1

)

n

(λxα)n

n!
+ C

= x 1F1

(

1

α
;
1

α
+ 1;λxα

)

+ C = G(x) + C. �

(2.2)

Example 1. We can now evaluate
∫

x2neλx
2

dx in terms of the confluent hypergeometric function.
Using integration by parts,

∫

x2neλx
2

dx =
x2n−1

2λ
eλx

2 − 2n− 1

2λ

∫

x2n−2eλx
2

dx. (2.3)
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1. For instance, for n = 1,

∫

x2eλx
2

dx =
x

2λ
eλx

2 − 1

2λ

∫

eλx
2

dx =
x

2λ
eλx

2 − x

2λ
1F1

(

1

2
;
3

2
;λx2

)

+ C. (2.4)

2. For n = 2,

∫

x4eλx
2

dx =
x3

2λ
eλx

2− 3

2λ

∫

x2eλx
2

dx =
x3

2λ
eλx

2− 3x

4λ2
eλx

2

+
3x

4λ2 1F1

(

1

2
;
3

2
;λx2

)

+C. (2.5)

Example 2. Using the method of integrating factor, the first-order ordinary differential equation

y′ + 2xy = 1 (2.6)

has solution

y(x) = e−x2

(
∫

ex
2

dx+ C

)

= xe−x2

1F1

(

1

2
;
3

2
;x2
)

+ Ce−x2

. (2.7)

Assuming that the function G(x) (see Proposition 1) is unknown, in the following lemma, we
use the properties of function g(x) to establish the properties of G(x) such as the inflection points
and the behavior as x → ±∞.

Lemma 1. Let the function G(x) be an antiderivative of g(x) = eλx
α

, λ ∈ C with α ≥ 2.

1. If the real part of λ is negative (< 0) and α is even, then the limits limx→−∞G(x) and
limx→+∞G(x) are finite (constants). And thus the Lebesgue integral

∫∞
−∞ |eλxα |dx < ∞.

2. If λ is real (λ ∈ R), then the point (0, G(0)) = (0, 0) is an inflection point of the curve
Y = G(x), x ∈ R.

3. And if λ ∈ R and λ < 0, and α is even, then the limits limx→−∞G(x) and limx→+∞G(x)
are finite. And there exists real constant θ > 0 such that limits limx→−∞G(x) = −θ and
limx→+∞G(x) = θ.

P r o o f.

1. For complex λ = λr + iλi, where the subscript r and i stand for real and imaginary parts
respectively, the function g(x) = g(z) = ez

α

where z = (λr + iλi)
1/αx, α ≥ 2, is an entire

function on C. And if λr < 0 and α is even implies Re(zα) is always negative regardless of
the values of x. And so, if |z| → ∞ (or x → ±∞), then g(z) = 0 (g(z) → 0) (or g(x) = 0 as
x → ±∞). Therefore by Liouville theorem, G(z) has to be constant as |z| → ∞, and so is
G(x) as x → ±∞. Hence, the Lebesgue integral

∫ ∞

−∞
|eλxα |dx =

∫ ∞

−∞
eλrxα |eλixα |dx =

∫ ∞

−∞
eλrxα

dx < ∞

since G(x) is constant as x → ±∞. For λr < 0 and α odd, the limit limx→−∞ eλrxα

diverges
and so does the integral

∫∞
−∞ eλrxα

dx. Therefore, the Lebesgue integral
∫∞
−∞ |eλxα |dx has

to diverge too. On the other hand, for λr > 0, the limit limx→+∞ eλrxα

diverges, and so
does the integral

∫∞
−∞ eλrxα

dx regardless of the value of α. Therefore, the Lebesgue integral
∫∞
−∞ |eλxα |dx has to diverge too.
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Figure 1. G(x) is the antiderivative of e−x
2

given by (2.8).

2. At x = 0, g(0) = 1. And so, around x = 0, the antiderivative G(x) ∼ x because G′(0) =
g(0) = 1. And so (0, G(0)) = (0, 0). Moreover, G′′(x) = g′(x) = λαxα−1eλx

α

, α ≥ 2,
gives G′′(0) = 0. Hence, by the second derivative test, if λ is real (λ = λr), the point
(0, G(0)) = (0, 0) is an inflection point of the curve Y = G(x), x ∈ R.

3. For λ = λr (λ ∈ R), both g(x) and G(x) are analytic on R. Using this fact and the fact that
for even α and λr < 0,

∫∞
−∞ |eλxα |dx < ∞ implies that for even α and λr < 0, G(x) has to be

constant as x → ±∞. In addition, the fact that G′′(x) < 0 if x < 0 and G′′(x) > 0 if x > 0
implies that, G(x) is concave upward on the interval (∞, 0) while is concave downward on
the interval (0,+∞). Moreover, the fact that g(x) = G′(x) is symmetric about the y-axis
(even) implies that G(x) has to be antisymmetric about the y-axis (odd). Hence there exists
a real positive constant θ > 0 such that limits limx→−∞G(x)= − θ and limx→+∞G(x)=θ.�

Example 3. If λ = −1 and α = 2, then

∫

e−x2

dx = x 1F1

(

1

2
;
3

2
;−x2

)

+ C. (2.8)

According to (2.8), the antiderivative of g(x) = e−x2

is G(x) = x 1F1

(

1
2 ;

3
2 ;−x2

)

. Its graph as a
function of x, sketched using MATLAB, is shown in Figure 1. It is in agreement with Lemma 1. It
is actually seen in Figure 1 that (0, 0) is an inflection point and that G(x) reaches some constants
as x → ±∞ as predicted by Lemma 1.

In the following lemma, we obtain the values of G(x), the antiderivative of the function g(x) =
eλx

α

, as x → ±∞ using the asymptotic expansion of the confluent hypergeometric function 1F1.

Lemma 2. Consider G(x) in Proposition 1.

1. Then for |x| ≫ 1,

G(x) = x1F1

(

1

α
;
1

α
+ 1;λxα

)

∼















Γ
(

1
α + 1

) ei
π

α

λ
1

α

x

|x| +
eλx

α

αλxα−1
, if α is even,

Γ
(

1
α + 1

) ei
π

α

λ
1

α

+
eλx

α

αλxα−1
, if α is odd.

(2.9)
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2. Let α ≥ 2 and be even, and let λ = −β2, where β is a real number, preferably positive. Then

G(−∞) = lim
x→−∞

G(x) = lim
x→−∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

= − 1

β
2

α

Γ

(

1

α
+ 1

)

(2.10)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→+∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

=
1

β
2

α

Γ

(

1

α
+ 1

)

. (2.11)

3. And by the FTC,

∞
∫

−∞

e−β2xα

dx = G(+∞)−G(−∞)

=
1

β
2

α

Γ

(

1

α
+ 1

)

−
(

− 1

β
2

α

Γ

(

1

α
+ 1

)

)

=
2

β
2

α

Γ

(

1

α
+ 1

)

. (2.12)

P r o o f.

1. To prove (2.9), we use the asymptotic series for the confluent hypergeometric function that
is valid for |z| ≫ 1 ([1], formula 13.5.1),

1F1 (a; b; z)

Γ(b)
=

e±iπaz−a

Γ(b− a)

{

R−1
∑

n=0

(a)n(1 + a− b)n
n!

(−z)−n +O(|z|−R)

}

+
ezza−b

Γ(a)

{

S−1
∑

n=0

(b− a)n(1− a)n
n!

(z)−n +O(|z|−S)

}

, (2.13)

where a and b are constants, and the upper sign being taken if −π/2 < arg(z) < 3π/2 and
the lower sign if −3π/2 < arg(z) ≤ −π/2. We set z = λxα, a = 1

α and b = 1
α + 1, and obtain

1F1

(

1
α ;

1
α + 1;λxα

)

Γ
(

1
α + 1

) =
ei

π

α

(λxα)
1

α

{

R−1
∑

n=0

(

1
α

)

n

n!
(λxα)−n +O {λxα)−R

}

+
eλx

α

(λxα)−1

Γ
(

1
α

)

{

S−1
∑

n=0

(

1− 1

α

)

n

(λxα)−n +O (λxα)−S

}

. (2.14)

Then, for |x| ≫ 1,

ei
π

α

(λxα)
1

α

{

R−1
∑

n=0

(

1
α

)

n

n!
(λxα)−n +O {λxα)−R

}

∼















ei
π

α

λ
1

α

1

|x| , if α is even,

ei
π

α

λ
1

α

1

x
, if α is odd,

(2.15)

while

eλx
α

(λxα)−1

Γ
(

1
α

)

{

S−1
∑

n=0

(

1− 1

α

)

n

(λxα)−n +O (λxα)−S

}

∼ eλx
α

Γ
(

1
α

)

λxα
. (2.16)
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And so, for |x| ≫ 1,

1F1

(

1
α ;

1
α + 1;λxα

)

Γ
(

1
α + 1

) ∼



















ei
π

α

λ
1

α

1

|x| +
eλx

α

Γ
(

1
α

)

λxα
, if α is even,

ei
π

α

λ
1

α

1

x
+

eλx
α

Γ
(

1
α

)

λxα
, if α is odd.

(2.17)

Hence,

G(x) = x1F1

(

1

α
;
1

α
+ 1;λxα

)

∼















Γ
(

1
α + 1

) ei
π

α

λ
1

α

x

|x| +
eλx

α

αλxα−1
, if α is even,

Γ
(

1
α + 1

) ei
π

α

λ
1

α

+
eλx

α

αλxα−1
, if α is odd.

(2.18)

2. Setting λ = −β2, where β is real and positive and using (2.9), then for α even,

G(x) = x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

∼ 1

β
2

α

Γ

(

1

α
+ 1

)

x

|x| −
e−β2xα

αβ2xα−1
. (2.19)

Therefore,

G(−∞) = lim
x→−∞

G(x) = lim
x→−∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

= − 1

β
2

α

Γ

(

1

α
+ 1

)

(2.20)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→+∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

=
1

β
2

α

Γ

(

1

α
+ 1

)

. (2.21)

3. By the Fundamental Theorem of Calculus, we have

+∞
∫

−∞

e−β2xα

dx = lim
y→−∞

0
∫

y

e−β2xα

dx+ lim
y→+∞

y
∫

0

e−β2xα

dx

= lim
y→+∞

y 1F1

(

1

α
;
1

α
+ 1;−β2yα

)

− lim
y→−∞

y 1F1

(

1

α
;
1

α
+ 1;−β2yα

)

= G(+∞)−G(−∞)

=
1

β
2

α

Γ

(

1

α
+ 1

)

−
(

− 1

β
2

α

Γ

(

1

α
+ 1

)

)

=
2

β
2

α

Γ

(

1

α
+ 1

)

.

(2.22)

We now verify whether (2.22) is correct or not by double integration. We first observe that
(2.22) is valid for all even α ≥ 2. And so, if (2.22) is verified for α = 2, we are done since (2.22) is
valid for all even α ≥ 2. For α = 2, we have

+∞
∫

−∞

e−β2x2

dx = lim
y→−∞

0
∫

y

e−β2x2

dx+ lim
y→+∞

y
∫

0

e−β2x2

dx

= lim
y→+∞

y 1F1

(

1

2
;
3

2
;−β2y2

)

− lim
y→−∞

y 1F1

(

1

2
;
3

2
;−β2y2

)

= G(+∞)−G(−∞) =
2

β
Γ

(

3

2

)

=
2

β

√
π

2
=

√
π

β
.

(2.23)
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On the other hand,





∞
∫

−∞

e−β2x2

dx





2

=





∞
∫

−∞

e−β2x2

dx









∞
∫

−∞

e−β2y2dy



 (2.24)

=

∞
∫

−∞

∞
∫

−∞

e−β2(x2+y2)dydx. (2.25)

In polar coordinate,

∞
∫

−∞

∞
∫

−∞

e−β2(x2+y2)dydx =

2π
∫

0

∞
∫

0

e−β2r2rdrdθ =
1

2β2

2π
∫

0

dθ =
π

β2
. (2.26)

This gives
∞
∫

−∞

e−β2x2

dx =

√

√

√

√

√

∞
∫

−∞

∞
∫

−∞

e−(x2+y2)dydx =

√
π

β
(2.27)

as before. �

Example 4. Setting λ = −β2 = −1, β = 1 and α = 2 in Lemma 2 gives

G(−∞) = lim
x→−∞

G(x) = lim
x→−∞

x 1F1

(

1

2
;
3

2
;−x2

)

= −
√
π

2
(2.28)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→+∞

x 1F1

(

1

2
;
3

2
;−x2

)

=

√
π

2
. (2.29)

This implies θ =
√
π/2 in Lemma 1. And this is exactly the value of G(x) as x → ∞ in Figure 1.

We also have limx→−∞G(x) = −θ = −√
π/2 as in Figure 1. Using the FTC, we readily obtain

0
∫

−∞

e−x2

dx = G(0) −G(−∞) = 0−
(

−
√
π

2

)

=

√
π

2
, (2.30)

+∞
∫

0

e−x2

dx = G(+∞)−G(0) =

√
π

2
− 0 =

√
π

2
(2.31)

and
+∞
∫

−∞

e−x2

dx = G(+∞)−G(−∞) =

√
π

2
−
(

−
√
π

2

)

=
√
π. (2.32)

Example 5. In this example, the integral

x
∫

−∞

et
2n+1

dt, x < ∞, (2.33)
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where n is a positive integer, is evaluated using Proposition 1 and the asymptotic expression (2.9).
Setting λ = 1 and α = 2n+ 1 in Proposition 1 , and using (2.9) gives

x
∫

−∞

et
2n+1

dt = lim
y→−∞

x
∫

y

et
2n+1

dt

= x 1F1

(

1

2n + 1
;
2n+ 2

2n+ 1
;x2n+1

)

− lim
y→−∞

y 1F1

(

1

2n+ 1
;
2n + 2

2n + 1
; y2n+1

)

= x 1F1

(

1

2n + 1
;
2n+ 2

2n+ 1
;x2n+1

)

− Γ

(

2n + 2

2n + 1

)

, x < ∞.

(2.34)

One can also obtain

+∞
∫

x

e−t2n+1

dt = lim
y→+∞

y
∫

x

e−t2n+1

dt

= lim
y→−∞

y 1F1

(

1

2n+ 1
;
2n + 2

2n + 1
;−y2n+1

)

− x 1F1

(

1

2n+ 1
;
2n+ 2

2n+ 1
;−x2n+1

)

= Γ

(

2n + 2

2n + 1

)

− x 1F1

(

1

2n+ 1
;
2n+ 2

2n+ 1
;−x2n+1

)

, x > −∞.

(2.35)

Theorem 1. For any A and B, the FTC gives

B
∫

A

eλx
α

dx = G(B)−G(A), (2.36)

where G is the antiderivative of the function g(x) = eλx
α

and is given in Proposition 1. And λ is
any complex or real constant, and α ≥ 2.

P r o o f. G(x) = x 1F1

(

1
α ;

1
α + 1;λxα

)

, where λ is any constant, is the antiderivative of
g(x) = eλx

α

, α ≥ 2 by Proposition 1, Lemma 1 and Lemma 2. And since the FTC works for
A = −∞ and B = 0 in (2.30), A = 0 and B = +∞ in (2.31) and A = −∞ and B = +∞ in (2.32)
by Lemma 2 if λ = 1 and α = 2, and for all λ < 0 and all even α ≥ 2, then it has to work for other
values of A,B ∈ R and for any λ ∈ C and α ≥ 2. This completes the proof. �

Example 6. In this example, we apply Theorem 1 to the Central Limit Theorem in Probability
theory [2]. The normal zero-one distribution of a random variable X is the measure µ(dx) =
gX(x)dx, where dx is the Lebesgue measure and the function gX(x) is the probability density
function (p.d.f) of the normal zero-one distribution [2], and is

gX(x) =
1√
2π

e−
x
2

2 ,−∞ < x < +∞. (2.37)

A comparison with the function g(x) in Proposition 1 and Lemma 1 gives λ = β2 = −1/2 and
α = 2. By Theorem 1, the cumulative probability, P (X < z), is then given by
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P (X < z) = µ{(−∞, z)} =

z
∫

−∞

gX(x)dx =
1√
2π

z
∫

−∞

e−
x
2

2 dx =
1

2
+

z√
2π

1F1

(

1

2
;
3

2
;−z2

2

)

. (2.38)

For example, we can also use Theorem 1 to obtain P (−2 < X < 2) = µ(−2, 2) = 0.4772 −
(−0.4772) = 0.9544, P (−1 < X < 2) = µ(−1, 2) = 0.4772 − (−0.3413) = 0.8185 and so on.

Example 7. Using integration by parts and applying Theorem 1, the Maxwell-Bortsman distri-
bution is written in terms of the confluent hypergeometric 1F1 as

F (v) = θ

v
∫

0

x2e−γx2

dx = −θv

2γ
e−γv2 +

θv

2γ
1F1

(

1

2
;
3

2
;−γv2

)

=
θv

2γ

[

1F1

(

1

2
;
3

2
;−γv2

)

− e−γv2
]

.

(2.39)

3. Other related non-elementary integrals

Proposition 2. The function G(x) = x 1F2

(

1
2α ;

1
2 ,

1
2α + 1; λ

2x2α

4

)

, where 1F2 is a hypergeo-

metric function [1], λ is an arbitrarily constant and α ≥ 2, is the antiderivative of the function
g(x) = cosh (λxα). Thus,

∫

cosh (λxα)dx = x 1F2

(

1

2α
;
1

2
,
1

2α
+ 1;

λ2x2α

4

)

+C. (3.1)

P r o o f. We proceed as before. We expand g(x) = cosh (λxα) as a Taylor series and integrate
the series term by term, use the Pochhammers notation [1] for the gamma function, Γ(a + n) =
Γ(a)(a)n, where (a)n = a(a+1) · · · (a+n− 1), and the property of the gamma function Γ(a+1) =
aΓ(a) [1]. We also use the Gamma duplication formula [1]. We then obtain

∫

g(x)dx =

∫

cosh (λxα)dx =

∞
∑

n=0

λ2n

(2n)!

∫

x2αndx

=
∞
∑

n=0

λ2n

(2n)!

x2αn+1

2αn + 1
+ C

=
x

2α

∞
∑

n=0

(λ2x2α)n

(2n)!
(

n+ 1
2α

) + C

=
x

2α

∞
∑

n=0

Γ
(

n+ 1
2α

)

Γ(2n+ 1)Γ
(

n+ 1
2α + 1

)(λ2x2α)n + C

= x
∞
∑

n=0

(

1
2α

)

n
(

1
2

)

n

(

1
2α + 1

)

n

(λ2x2α)n

n!
+ C

= x 1F2

(

1

2α
;
1

2
,
1

2α
+ 1;

λ2x2α

4

)

+ C = G(x) +C. �

(3.2)

Proposition 3. The function

G(x) =
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;
λ2x2α

4

)

,
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where 1F2 is a hypergeometric function [1], λ is an arbitrarily constant and α ≥ 2, is the antideriva-
tive of the function g(x) = sinh (λxα). Thus,

∫

sinh (λxα)dx =
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;
λ2x2α

4

)

+ C. (3.3)

P r o o f. As above, we expand g(x) = sinh (λxα) as a Taylor series and integrate the series
term by term, use the Pochhammers notation [1] for the gamma function, Γ(a + n) = Γ(a)(a)n,
where (a)n = a(a + 1) · · · (a + n − 1), and the property of the gamma function Γ(a + 1) = aΓ(a)
[1]. We also use the Gamma duplication formula [1]. We then obtain

∫

g(x)dx =

∫

sinh (λxα)dx =

∞
∑

n=0

λ2n+1

(2n + 1)!

∫

x2αn+αdx

=
∞
∑

n=0

λ2n+1

(2n + 1)!

x2αn+α+1

2αn + α+ 1
+ C

=
λxα+1

2α

∞
∑

n=0

(λ2x2α)n

(2n + 1)!
(

n+ 1
2α + 1

2

) + C

=
λxα+1

2α

∞
∑

n=0

Γ
(

n+ 1
2α + 1

2

)

Γ(2n + 2)Γ
(

n+ 1
2α + 3

2

)(λ2x2α)n + Cr

=
λxα+1

α+ 1

∞
∑

n=0

(

1
2α + 1

2

)

n
(

3
2

)

n

(

1
2α + 3

2

)

n

(λ2x2α)n

n!
+ C

=
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;
λ2x2α

4

)

+ C = G(x) + C. �

(3.4)

We also can show as above that
∫

cos (λxα)dx = x 1F2

(

1

2α
;
1

2
,
1

2α
+ 1;−λ2x2α

4

)

+ C (3.5)

and
∫

sin (λxα)dx =
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;−λ2x2α

4

)

+ C. (3.6)

Theorem 2. For any constants α and λ,

1F2

(

1

2α
;
1

2
,
1

2α
+ 1;

λ2x2α

4

)

=
1

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

(3.7)

and

1F2

(

1

2α
;
1

2
,
1

2α
+ 1;−λ2x2α

4

)

=
1

2

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

. (3.8)

P r o o f. Using Proposition 1, we obtain

∫

cosh (λxα)dx =

∫

eλx
α

+ e−λxα

2
dx

=
x

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

+ C. (3.9)
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Hence, comparing (3.1) with (3.9) gives (3.7). Using Proposition 1, on the other hand, we obtain

∫

cos (λxα)dx =

∫

eiλx
α

+ e−iλxα

2
dx

=
x

2

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

+ C. (3.10)

Hence, comparing (3.5) with (3.10) gives (3.8). �

Theorem 3. For any constants α and λ,

λxα

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;−λ2x2α

4

)

=
1

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

− 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

(3.11)

and

λxα

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;−λ2x2α

4

)

=
1

2i

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

− 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

. (3.12)

P r o o f. Using Proposition 1, we obtain

∫

sinh (λxα)dx =

∫

eλx
α

+ e−λxα

2
dx

=
x

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

− 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

+ C. (3.13)

Hence, comparing (3.3) with (3.13) gives (3.11). Using Proposition 1, on the other hand, we obtain

∫

sin (λxα)dx =

∫

eiλx
α

+ e−iλxα

2i
dx

=
x

2i

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

− 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

+ C. (3.14)

Hence, comparing (3.6) with (3.14) gives (3.12). �

4. Conclusion

The non-elementary integral
∫

eλx
α

dx, where λ is an arbitrary constant and α ≥ 2, was ex-
pressed in term of the confluent hypergeometric function 1F1. And using the properties of the
confluent hypergeometric function 1F1, the asymptotic expression for |x| ≫ 1 of this integral was
derived too. As established in Theorem 1, the definite integral (1.6) can now be computed using the
FTC. For example, one can evaluate the area under the Gaussian Bell curve using the FTC rather
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than using double integration and then polar coordinates. One can also choose to use Theorem 1 to
compute the cumulative probability for the normal distribution or that for the Maxwell-Bortsman
distribution as shown in examples 6 and 7.

On one hand, the integrals
∫

cosh(λxα)dx,
∫

sinh(λxα)dx,
∫

cos(λxα)dx and
∫

sin(λxα)dx,
α ≥ 2, were evaluated in terms of the confluent hypergeometric function 1F1, while on another
hand, they were expressed in terms of the hypergeometric 1F2. This allowed to express the hyper-
geometric function1F2 in terms of the confluent hypergeometric function 1F1 (Theorems 2 and 3).
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NEW METHOD OF REFLECTOR SURFACE SHAPING
TO PRODUCE A PRESCRIBED CONTOUR BEAM1
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Abstract: In this paper a simple iterative synthesis method is presented for the formation of the shape of
the reflector surface with a single feed element to produce the desired contour beam. This is the method of
the optimal phase synthesis of the appropriate field in the reflector aperture similar to other works. But unlike
them, we solve the problem in a very simple way using the properties of complex-valued functions and Fourier
transforms and not applying complicated methods of numerical minimization theory.

Key words: Antenna, Shaped reflector, Radiation pattern, Contour beam, Synthesis.

Introduction

We consider the problem of synthesis of antenna reflector surface with a single feed. Such
surfaces are constructed to generate a desirable far-field pattern available for the reflector aperture.

There are antennas with a single feed that form contour beams by means of appropriate profiled
reflector surfaces for serving separated districts from spacecraft. They have a very simple construc-
tion, are reliable in exploitation, and optimally solve problems of electromagnetic compatibility.

Several synthesizing methods are known for the problem. They proved themselves to be efficient
but are related to the minimization problems of multi-parameter goal functions. Some of these
methods are direct methods for optimal modification of the basis reflector surface represented by
polynomials, splines, and wavelets [1–4]. Other methods are related to preliminary synthesizing
the electromagnetic fields in the reflector aperture which generate the assembly of narrow partial
beams with subsequent optimization of the disposition of their maximums and selection of their
superposition parameters. After that, the computation of the reflector surface form is carried out
to generate the synthesized optimal aperture field [5–10]. The developed methods are very efficient
for the synthesis of the reflector surface with the diameter of several tenth of the wavelength.

In this paper, another method is presented for contour beam synthesizing by antenna with a
single feed element and a special reflector shape. It is also related to solving optimization problems
but without the application of multi-parameter nonlinear optimization theory. The method is
entirely based on the specific setting of the reflector surface synthesizing problem and on the
properties of complex-valued functions and Fourier transforms. It is possible to adapt the method
to the problem of phase control of large radiating arrays in real time.

The computation of the electric field in opening of the initial reflector (for example, parabolic
revolution with focus at the phase center of the feeding element) is carried out in the knots of the
uniform lattice at very close aperture. It is implemented by means of a vector radiation model of

1This work was supported by the Program for State Support of Leading Scientific Schools of the Russian
Federation (project no. NSh-9356.2016.1) and by RAS Presidium programm “Mathematical Problems of
Modern Control Theory”.
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the array, which has a sufficiently dense set of points on the initial reflector surface. Dimensions of
the lattice cells must guarantee the exact calculation of the Kirchhoff integral for the far zone field.

Our method, like many others, is iterative. The phase synthesis of a given pattern for the
minimization of the amplitude distribution deviation from the desired far-field pattern is performed
in L2(R2) space. We apply (here, perhaps, for the first time) the iterative methods alternately
using direct and inverse Fourier transforms. It does not require any classic ways of numerical
differentiation and solutions of large systems of linear equations. The mentioned iteration procedure
is implemented until a completely suitable phase distribution at the reflector aperture is found.
Moreover, the procedure may be accompanied by a proper shaping of the reflector surface at every
step of the iteration. To represent intermediate variants of the constructed surface, we make it
“scaly”. Every “scale” is a fragment of a parabolic surface having the same focus as the initial one.
Of course, we do not consider the diffraction at the edges of these (virtual) “scales”, because, at
the final stage of optimization, the weakly discontinuous surface will be changed by a continuous
and smooth one.

1. Physical and phenomenological basis of the method

Bellow, the size and contour of the aperture, the pattern of the feed element, and model D(θ, ϕ)
of the required far-field radiation pattern are supposed to be given. The latter can be a model of
different beams, including contour ones, whose parameters conform to the reflector opening.

Getting to the problem, we assume that the initial reflector surface is cut off from a paraboloid
of revolution by a plane orthogonal to its axis. The corresponding part of the plane is assumed to
be its aperture A containing the origin O and the axes OX and OY of the Cartesian coordinate
system, whose axis OZ coincides with the axis of the parabolic surface and contains its focus F
coincident with the phase center of the feed element.

At first, it is necessary to the calculate electric field at the aperture A (more exactly, its
component Ė(x, y) on the chosen polarization). It should be done very precisely, because it is
possible (although not necessary) do not change the amplitude distribution E(x, y) = |Ė(x, y)| in
the aperture A in future (neglecting the weak influence of local shifts of primary reflector surface
cells). The phase S0(x, y) = arg Ė(x, y)/(2π) will be the initial functional “parameter” which we
are going to change in the course of the reflector surface synthesis. The electrodynamic problem of
searching the field Ė(x, y) is not considered in this article, since it can be solved by other known
methods. We found that the computation according to the vector model formulas (see, for example,
[13]) is very efficient.

2. Model of the algorithm

First we expound a continuous version of the algorithm for the synthesis of the reflector surface,
which will be necessary to carry out numerically. Knowing Ė(x, y) in the reflector aperture A, we
have a representation of the electric field expected in the far zone as the Kirchhoff integral

Ê(u, v) =

∫∫

A

Ė(x, y)e−2πi(ux+vy) dxdy, (2.1)

where u = k sin θ cosϕ, v = k sin θ sinϕ, (θ, ϕ) are the angles of the spherical coordinate system,
k = 1/λ, and u, v are dimensionless variables, because x, y are measured in wavelengths. The
function S0(x, y) is determined from the condition Ė(x, y) = E(x, y) exp(2πiS0(x, y)). Although it
involves the phase component of the feed, it can be interpreted as the length of the optical path
from a point (x, y) ∈ A through the corresponding point on the reflector surface and then up to
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the phase centre of the feed (also measured in wavelength). Disregarding diffraction at the edge
of the reflector, we suppose that the antenna radiation extends only to the half-space z > 0 and
E(x, y) ≡ 0 under the condition (x, y) ∈ R2\A. Thus, from the previous reasoning and (2.1), we
have

Ê(u, v) = Ê(u, v, S) =

∫∫

R2

E(x, y)e2πiS(x,y)e−2πi(ux+vy) dxdy, S = S0, (2.2)

that is the Fourier transform of the predetermined function Ė(x, y). If needed, we smoothly extend
the given contour model D(u, v) of the radiation pattern a little outside the domain of interest and,
denoting the new domain by Ω, we set D(u, v) ≡ 0 for (u, v) ∈ R

2\Ω. We can define the mean
square deviation by the formula

∆(D, Ê) =:
∥∥D(u, v) − |Ê(u, v;S)|

∥∥ =

(∫∫

R2

(D(u, v) − |Ê(u, v;S)|)2 dudv
)1/2

, (2.3)

and formulate the following problem of antenna phase synthesis: to find a function S(x, y) =
S(x, y;D) for which the value

δ =: inf
S

∆(D(u, v), Ê(u, v;S)) (2.4)

is attained. Here, S belongs to the class of all measurable real-valued functions. It should be noted
that only a part of R2 (the ball u2+ v2 ≤ 1) really lies in the physical space. But, in problem (2.4),
we also minimize the energy flow

∫∫

u2+v2>1

∣∣∣Ê(u, v;S)
∣∣∣
2
dudv =

∫∫

u2+v2>1

∣∣∣D(u, v)− Ê(u, v;S)
∣∣∣
2
dudv

in the antenna reactive zone. Further, we apply the usual iterative procedures for phase synthe-
sis worked out for hybrid reflector antennas (HRA) (see, for example, [11, 12]), but here they
are especially clear because do not use a finite-dimensional approximation of the antenna radia-
tion Ê(u, v;S).

Obviously, we have

δ2 = inf
S

inf
ψ

∫∫

R2

∣∣∣D(u, v)eiψ(u,v) − F−(E(x, y)e2πiS(x,y))(u, v)
∣∣∣
2
dudv =

= inf
ψ

inf
S

∫∫

R2

∣∣∣F+(D(u, v)eiψ(u,v))(x, y) − E(x, y)e2πiS(x,y)
∣∣∣
2
dxdy,

(2.5)

where ψ(u, v) is a real-valued measurable function like S(x, y) and functions (F±g)(s, t) are inverse
(with +) and direct (with −) Fourier transforms defined for a function g ∈ L(R2) by

(F±g)(s, t) =

∫∫

R2

g(ξ, ζ)e±2πi(sξ+tζ) dξdζ,

and then extended to L2(R2) in a reasonable well-known way. To represent δ defined by (2.4) as
like (2.5), we have used the following considerations:

1) from the properties of complex-valued functions, it follows that the first integrand in (2.5) is
minimal for ψ equal to ψs defined

ψS(u, v) =: arg Ê(u, v;S) = arg(F−(Ee2πiS))(u, v) = argF−(Ė)), (2.6)



146 Boris V. Semenov, Nikolai I. Chernykh, Viktor M. Pleshchev

so the inner infimum over ψ coincides with ∆2(D, Ė) (see (2.3)) in view of formulas (2.2)–(2.4) and
the definition of F−g;

2) it is easy to see that, for any positive functional G(S,ψ) on the spaces of real-valued measurable
functions S(x, y) and ψ(u, v), the following formula inf

S
inf
ψ
G(S,ψ) = inf

ψ
inf
S
G(S,ψ) holds;

3) the equality of integrals in (2.5) follows from the Parseval equality.

Reasoning as in 1), we see that the inner infimum in the last part of (2.5) is attained for 2πS
equal to

2πS(x, y) = 2πSψ(u, v) =: arg(F+(Deiψ))(x, y). (2.7)

From these considerations, it follows that the solution S(x, y) ((x, y) ∈ A) of problem (2.4) together
with the solution ψ of the problem

inf
ψ

∫∫

R2

(
E(x, y) −

∣∣∣F+(Deiψ)(x, y)
∣∣∣
)2

dxdy

must be connected by the nonlinear equations (2.6) and (2.7). Except for special cases, this system
can be solved only approximately by a numerical method.

To construct such a method, we use the obvious fact that, for every above mentioned functions
S(x, y) and ψ(u, v), we have the following inequalities for the norms in the space L2(R2) hold:

∥∥∥Deiψs − F−(Ee2πiS)
∥∥∥ ≤

∥∥∥Deiψ − F−(Ee2πiS)
∥∥∥

=
∥∥∥F+(Deiψ)− Ee2πiS

∥∥∥ ,
(2.8)

∥∥∥F+(Deiψ)− Ee2πiSψ
∥∥∥ ≤

∥∥∥F+(Deiψ)− Ee2πiS
∥∥∥
L2(R)

, (2.9)

where ψS and Sψ are defined in (2.6) and (2.7). Further, beginning with the function S0(x, y) and
alternately using formulas (2.6) and (2.7), we construct the following chain of functions:

ψS0
(u, v), SψS0 (x, y) =: S1(x, y), ψS1

(u, v),

S2(x, y) =: SψS1 (x, y), . . . , ψSn−1
(u, v), Sn =: SψSn−1

, . . . .

Denoting 



Sn(x, y)− Sn−1(x, y) =: ∆n−1(x, y) (n ∈ N, (x, y) ∈ A),

δn =
∥∥DeiψSn − F−(Ee2πiSn)

∥∥ =
∥∥F+(DeiψSn )− Ee2πiSn)

∥∥ ,

δn =
∥∥F+(DeiψSn )− Ee2πiSn+1

∥∥ =
∥∥DeiψSn − F−(Ee2πiSn+1)

∥∥

(2.10)

and assuming that S = Sn(x, y) and ψ = ψSn−1
(u, v) in (2.8) and S = Sn(x, y) and ψ = ψSn(u, v)

in (2.9), we deduce the inequalities

· · · ≥ δn−1 ≥ δn ≥ δn ≥ · · · (n = 1, 2, . . .).

Since the formulas ψSn = argF−(Ee2πiSn) and F−(Ee2πiSn) = Ê(u, v;Sn) hold, we have that

δn =
∥∥∥D − |Ê(u, v;Sn)|

∥∥∥ is the distance between the desired radiation pattern and the realizable

pattern |Ê(u, v;Sn)|. This distance decreases to some value δ∞(S0) as n → ∞, which cannot
be zero, because the finitely supported function D(u, v) is not an entire function. For different
S0(x, y), the sequences {Sn(x, y)} may differ too, since problem (2.4) is a set-valued extremal one
(for example, |Ê(u, v;S)| ≡ |Ê(u, v;S+const)|). Nevertheless, for large n, the function |Ê(u, v;Sn)|
inherits the main features of D(u, v). We verified this fact in many computing experiments.
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3. Computation procedures

It is natural to begin the construction of the sequence {Sn(x, y)} with calculating S0(x, y) =
arg Ė(x, y) = Ė(x, y)/|Ė(x, y)| over the nodes of a chosen lattice and stop it when the replacement
of ψSn−1

by ψSn negligibly changes the value max
A

|∆n−1(x, y)| or the value

max
Ω

|Ê(u, v;Sn−1)− Ê(u, v;Sn)|.

In practice, the range of values (ux+ vy) is not large, so oscillations of the function exp(−2πi(ux+
vy)) are also not large. Therefore, an approximate computation of the integral in the Fourier
transforms over any dense lattice does not cause any difficulties and the construction of the sequence
{Sn} almost does not need any additional calculations.

4. Synthesis of the reflector surface

The initial parabolic reflector surface z =
x2 + y2

4f
−z0 (z0 > 0, x2+y2 < 4fz0) can be corrected

after each step of replacement of Sn−1(x, y) by Sn(x, y). It is possible to do this more rarely or at
the end, i.e., immediately after the computation of SN based on the difference Sn(x, y)− S0(x, y).
Below, we use the first strategy.

Let cells of the chosen lattice over the aperture A be the squares with size h×h and midpoints
Mij with coordinates xi = ih, yj = jh (i, j = 0,±1, . . . ,±k, where (k + 1/2)h =: r, and r is the
radius of A) and with the conditions (xi, yj) ∈ A. Here, we have r =

√
4fz0, F (0, 0, f,−z0) is the

focus of the paraboloid, the cells mij of the lattice are framed by the lines (x = xi ± h/2, z = 0)
and (y = yj ± h/2, z = 0). Replacing the condition z = 0 by z < 0, we obtain, instead of the cells,
the set of tubes tij in the half-space z < 0 of the space R3 whose orthogonal cross-sections are the
squares (

−h
2
+ xi < x < xi +

h

2
, −h

2
+ yj < y < yj +

h

2
, z = const < 0

)
.

Every tube tij cuts off an initial scale σ0ij from the initial paraboloid which is part of the paraboloid

z =
x2 + y2

4f
−z0, (x, y) ∈ mij, intersecting the axis at tij at the pointM

0
ij

(
xi, yj,

x2i + y2j
4f

− z0

)
.

Further, we use analogous “scales” which are cuttings of any other paraboloid Pij with the same
axis of symmetry OZ and focus F . The cuttings are embedded in the tubes tij and contain any
given point M(xi, yj , zij) on their axes. It is easy to verify that the equation of the paraboloid Pij
for the given zij is

z =
x2 + y2

4fij
− z̃ij , (x, y) ∈ mij , (4.11)

where the focal distance fij and the zth vertex coordinate z̃ij are defined by the relations
{
4fij(zij + z̃ij) = x2i + y2j , fij − z̃ij = f − z0, fij > 0, zij > 0

}
. (4.12)

Since the function exp(−2πiS(x, y)) of S is λ-periodic, it is quite possible to locally change the
function S(x, y) in the Kirchhoff integral (2.2) by (S(x, y) − n) with an arbitrary integer n up to
[S(x, y)]. Hence, taking into account the first notation in (2.10) and determining S1(x, y), we can
compensate the difference ∆1(x, y) by small shifts and simultaneously change all initial scales σ0ij
by σ1ij whose coordinates z0ij are determined from the conditions

|FM0
ij |+ |M0

ijMij | = S0(Mij) + ∆0(Mij)−∆0(0, 0) + (n0ij)λ. (4.13)
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Here, we assume that n000 = 0, so, the location of σ000 is not changed. The other numbers n0ij
determining the pointsM0

ij must be chosen layerwise aroundM00(0, 0,−z0) to minimize the distance

|z0ij − z0i1j1 | between the neighbouring points Mij and Mi1j1 .

The further steps of the iteration procedures are implemented according to the same principles:
using (2.6) and (2.7), we find the recurrent phase distribution S0(Mij) (Mij ∈ A) and compensate
the differences ∆n−1(Mij) by numerical construction of the corresponding new scaled surface of the
reflector as explained above in the case n = 1. Just in this construction, we must replace the set of
points M0

ij by M
n
ij and perform all calculations for n = 1, 2, . . . according formulas (4.11)–(4.13).

In this section, we described how to choose a number N to stop the iterations. In the final stage,
it will be necessary to smooth the constructed weakly discontinuous surface z = fN (x, y) built of
little scales nNij . A fairly good result could be obtained as a close solution of the approximation
problem

‖fN (x, y)− S2(x, y)‖+ α
∥∥S′

2(x, y)
∥∥→ inf

S

for the function fN (x, y) by using quadratic or cubic splines S(x, y). This problem was completely
investigated in [14]. Perhaps it would be useful to recompute the amplitude distribution on the
aperture A after each next version of the modified reflector surface and to change the function
E(x, y) in the corresponding Fourier transforms (2.2).

Fig. 1 shows an example of a far-field pattern of the cosecant type for the antenna with a
single feed element and the reflector surface shaped by the described method. The results of the
synthesized contour beam for Europe and the corresponding reflector surface form are presented in
Fig. 2. Other examples can be found in [15].

5. Conclusion

In this work, we describe a new iterative method for numerical shaping of the locally curved
shape of the reflector surface for the antenna with a single feed element. The antenna must generate
a beam with a prescribed contour of its cross-section. The method has some common features with
other known methods, in particular, stated in the papers from the list of references. Our method
mainly differs by the technique of minimization in the problem of aperture phase synthesis, which
makes it possible to shape reflectors of large diameter. The method was tested in many computing
experiments and showed itself as efficient.
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Figure 1. Example of the synthesized far-field pattern of double cosecant type



150 Boris V. Semenov, Nikolai I. Chernykh, Viktor M. Pleshchev

λ

Figure 2. Example of the synthesized contour beam for Europe and the corresponding reflector surface form
(contour plot of a deflection of a of the synthesized reflector surface from an initial paraboloid are shown
with a step 0,01 wavelength λ)
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