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AROUND THE ERDÖS–GALLAI CRITERION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29–48

Subhajit Bera, Binod Chandra Tripathy

STATISTICAL CONVERGENCE IN A BICOMPLEX VALUED METRIC SPACE. . . . 49–63

Indrani Dutta, Sukhendu Kar

TERNARY ∗-BANDS ARE GLOBALLY DETERMINED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64–77

Hamza El Bazi, Abdellatif Sadrati

WEIGHTED Sp-PSEUDO S-ASYMPTOTICALLY PERIODIC SOLUTIONS FOR

SOME SYSTEMS OF NONLINEAR DELAY INTEGRAL EQUATIONS WITH

SUPERLINEAR PERTURBATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78–92

Anar Huseyin, Nesir Huseyin

ON THE PROPERTIES OF THE SET OF TRAJECTORIES OF THE

NONLINEAR CONTROL SYSTEM WITH QUADRATIC INTEGRAL CONSTRAINT

ON THE CONTROL FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93–103

Mohd Yousf Mir, Shah Lubna Wali, Wali Mohammad Shah

INEQUALITIES FOR A CLASS OF MEROMORPHIC FUNCTIONS WHOSE ZEROS

ARE WITHIN OR OUTSIDE A GIVEN DISK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104–112

Zahid Bashir Monga, Wali Mohammad Shah

ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS

OF MATRIX POLYNOMIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113–120

Athira P. Ranjith, Joseph Varghese Kureethara

SUM SIGNED GRAPHS – II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121–126

Vladimir B. Repnitskǐı
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Abstract: The first and second Zagreb indices, since its inception have been subjected to extensive research
in the physio-chemical analysis of compounds. In [5], Hanyuan Deng et al. computed the first and second
Zagreb indices of four new operations on a graph defined by M. Eliasi, B. Taeri [6]. Motivated by [6], in this
paper we define a new operation on graphs and compute the first and second Zagreb indices of the resultant
graph. We illustrate the results with some examples.

Keywords: First Zagreb index M1(G), Second Zagreb index M2(G), F ∗ sum.

1. Introduction

A graph without loops and also without parallel edges is called a simple graph and if all the
pairs of vertices of the graph are connected by a path then it is said to be connected. Throughout
our discussion, we consider only connected simple graphs. The degree-based structural descriptors
have been a subject of detailed study since their induction from the first degree-based topological
index in 1972 by I. Gutman, N. Trinajstić [11]. Later, in 1975 I. Gutman, B. Rusćić, N. Trinajstić,
C.F. Wilcox [12] defined another degree based index in connection with studying physical properties
of chemical compounds. At first, both these indices were named as Zagreb group indices [3], but
later I. Gutman named them as first and second Zagreb indices. The first Zagreb index M1(G) is
defined as the sum of squares of degrees of all the vertices and the second Zagreb index M2(G) is
defined as the sum of product of degrees of end vertices of all the edges. That is,

M1(G) =
∑

u∈V (G)

dG(u)
2, M2(G) =

∑

uv∈E(G)

dG(u)dG(v).

Various physical applications of these indices can be found in [8–10, 13, 19, 20]. A more unified and
general approach on degree based indices of graphs were considered by X. Li, H. Zhao in [17, 18]
which lead in defining generalized Zagreb index as

Mα(G) =
∑

u∈V (G)

dG(u)
α.

https://doi.org/10.15826/umj.2023.1.001
mailto:lijualex0@gmail.com
mailto:indulalgopal@gmail.com 
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Various particular cases for this generalized Zagreb index were considered separately, one among
them is the Forgotten index F (G) (when α = 3) defined in 1972 [11] but resurged in 2015 through
the works of B. Furtula, I. Gutman [7]. For more works on topological indices, see [2, 15, 17, 18, 21].
The degree based topological indices of graph operations have been a subject of detailed study
recently [1, 5]. In [16], M.H. Khalifeh, H. Yousefi–Azari, A.R. Ashrafi computed the first and
second Zagreb indices of graph operations such as cartesian product, composition, join, disjunction
and symmetric difference of graphs. In [6], M. Eliasi, B. Taeri defined four new operations of graphs
related to subdivisions and computed the Wiener index. Motivated by [6], in this paper we define
a new sum related to the four subdivison graphs and compute the first and second Zagreb indices
of the new sum. We also find the Zagreb indices of some chemical structures and some classes of
bridge graphs using the expressions obtained. We refer to this new sum as F ∗ sums of graphs.

2. F
∗ sums of graphs

Let G1, G2 be two graphs with vertex set V1, V2 and edge set E1, E2 respectively. The four
subdivision graphs S(G1), R(G1), Q(G1), T (G1) are defined as follows in [4]:

1. S(G1) is the graph obtained from G1 by replacing each edge ei of G1 with a vertex and
making the new vertex adjacent to the corresponding end vertices of ei for each ei ∈ E1.
That is, S(G1) is a graph with vertex set V (S(G1)) = V1

⋃

V ∗

1 where V ∗

1 is the collection of
new vertices and the edge set

E(S(G1)) =
{

(v, h), (u, h) : e = vu ∈ E1, h ∈ V ∗

1

}

.

2. R(G1) is the graph obtained fromG1 by replacing each edge ei of G1 with a vertex and making
new vertex adjacent to the corresponding end vertices of ei for each ei ∈ E1 also keeping
every edge in G1 as well. That is, R(G1) is a graph with vertex set V (R(G1)) = V1

⋃

V ∗

1

where V ∗

1 is the collection of new vertices and edge set

E(R(G1)) =
{

(v, h), (u, h) : e = vu ∈ E1, h ∈ V ∗

1

}

∪ E1.

3. Q(G1) is the graph obtained from G1 by replacing each edge ei of G1 with a vertex and
making new vertex adjacent to the corresponding end vertices of ei for each ei ∈ E1 along
with edges joining vertex in the ith copy of V ∗

1 to the vertex in the jth copy of V ∗

1 whenever
ei adjacent to ej in G1. That is, Q(G1) is a graph with vertex set V (Q(G1)) = V1

⋃

V ∗

1 where
V ∗

1 is the collection of new vertices and edge set

E(Q(G1)) =
{

(v, h), (u, h) : e = vu ∈ E1, h ∈ V ∗

1

}

∪E∗

1 ,

E∗

1 =
{

(ui, uj) : ei adjacent to ej in E1, ui, uj ∈ V ∗

1

}

,

where ui, uj are the vertices corresponding to the edges ei, ej ∈ E1.

4. T (G1) is the graph obtained from G1 by replacing each edge ei of G1 with a vertex and
making new vertex adjacent to the corresponding end vertices of ei for each ei ∈ E1 along
with edges joining vertex in the ith copy of V ∗

1 to the vertex in the jth copy of V ∗

1 whenever
ei adjacent to ej in G1 and keeping every edge of G1 as well. That is, T (G1) is a graph with
vertex set V (T (G1)) = V1

⋃

V ∗

1 where V ∗

1 is the collection of new vertices and edge set

E(T (G1)) = {(v, h), (u, h) : e = vu ∈ E1, h ∈ V ∗

1 } ∪ E∗

1 ,

E∗

1 = {(ui, uj) : ei adjacent to ej in E1, ui, uj ∈ V ∗

1 } ∪E1,

where ui, uj are the vertices corresponding to the edges ei, ej ∈ E1.
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In each of these new subdivision graphs the vertices V1 can be termed as black vertices and the
vertices V ∗

1 can be termed as white vertices. In [6], M. Eliasi, B. Taeri defined four new sums called
F sums with the operation cartesian product on black vertices on copies of subdivison graphs.
Motivated by this we define a sum on copies of white vertices related to the cartesian product. Let
F be any one of the symbols S,R,Q, T , then the F ∗ sum of two graphs G1 and G2 is denoted by
G1 ∗F G2, is a graph with the vertex set V (G1 ∗F G2) = V (F (G1))× V2 and the edge set

E(G1 ∗F G2) =
{

(a, b)(c, d) : a = c ∈ V ∗

1 and bd ∈ E2 or ac ∈ E(F (G1)) and b = d ∈ V2

}

.

Fig. 1 is an example with G1 = P4, G2 = P6.

Figure 1. (a) P4 ∗S P6, (b) P4 ∗R P6, (c) P4 ∗Q P6, (d) P4 ∗T P6.

3. Zagreb index of F ∗ sum

In this section we compute the first and second Zagreb indices of F ∗ sums of graphs.

Theorem 1. Let G1 and G2 be two connected graphs, then

(a) M1(G1 ∗S G2) = |V2|M1(G1) + |E1|M1(G2) + 4|E1| (2|E2|+ |V2|) ,

(b) M2(G1 ∗S G2) = 2|E1|M1(G2) + |E1|M2(G2) + 4|E1| (2|E2|+ |V2|) .

P r o o f. From the definition of first Zagreb index, we have

M1(G1 ∗S G2) =
∑

(a,b)∈V (G1∗SG2)

(

d(G1∗SG2)(a, b)
)2

=
∑

(u,v)(x,y)∈E(G1∗SG2)

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(x, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(u, y)
)

+
∑

v∈V2

∑

ux∈E(S(G1)

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(x, v)
)

.



Zagreb Indices of a New Sum of Graphs 7

Now we separately find the values of the each parts in the sum. Firstly we consider the sum in
which u ∈ V ∗

1 and vy ∈ E2

∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(u, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

[

dS(G1)(u) + dG2
(v) +

(

dS(G1)(u) + dG2
(y)

) ]

=
∑

u∈V ∗

1

∑

vy∈E2

[

2dS(G1)(u) + dG2
(v) + dG2

(y)
]

=
∑

u∈V ∗

1

[

4|E2|+M1(G2)
]

= 4|E1||E2|+ |E1|M1(G2).

Now for each edge ux ∈ E(S(G1)), v ∈ V2

∑

v∈V2

∑

ux∈E(S(G1))

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(S(G1)
u∈V1, x∈V

∗

1

[

dS(G1)(u) +
(

dG2
(v) + dS(G1)(x)

)]

=
∑

v∈V2

(2|E1|dG2
(v) +M1(G1) + 4|E1|) = 4|E1||E2|+ |V2|M1(G1) + 4|E1||V2|.

From the expressions we obtain

M1(G1 ∗S G2) =|V2|M1(G1) + |E1|M1(G2) + 4|E1| (2|E2|+ |V2|) .

Next consider

M2(G1 ∗S G2) =
∑

(u,v)(x,y)∈E(G1∗SG2)

(dG1∗SG2
(u, v)dG1∗SG2

(x, y))

=
∑

u∈V ∗

1

∑

vy∈E2

(dG1∗SG2
(u, v)dG1∗SG2

(u, y)) +
∑

v∈V2

∑

ux∈E(S(G1)

(dG1∗SG2
(u, v)dG1∗SG2

(x, v))

=
∑

u∈V ∗

1

∑

vy∈E2

[

dS(G1)(u) + dG2
(v)

] [

dS(G1)(u) + dG2
(y)

]

+
∑

v∈V2

∑

ux∈E(S(G1)),
u∈V1, x∈V

∗

1

[

dS(G1)(u)
(

dG2
(v) + dS(G1)(x)

)]

=
∑

u∈V ∗

1

∑

vy∈E2

[4 + 2 (dG2
(v) + dG2

(y)) + dG2
(v)dG2

(y)] +
∑

v∈V2

(2 (|E1|) dG2
(v) + 4|E1|)

= 4|E1||E2|+ 2|E1|M1(G2) + |E1|M2(G2) + 4|E1| (|E2|+ |V2|) .

Thus,

M2(G1 ∗S G2) = 2|E1|M1(G2) + |E1|M2(G2) + 4|E1| (2|E2|+ |V2|) .

�
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Theorem 2. Let G1 and G2 be two connected graphs, then

(a) M1(G1 ∗R G2) = 4|V2|M1(G1) + |E1|M1(G2) + 4|E1|(2|E2|+ |V2|),

(b) M2(G1 ∗R G2) = 4M1(G1)(1 + |E2|) +M2(G2)(4|V2|+ |E1|) + 2|E1|M1(G2) + 4|E1||E2|.

P r o o f. We have

M1(G1 ∗R G2) =
∑

(a,b)∈V (G1∗RG2)

(

d(G1∗RG2)(a, b)
)2

=
∑

(u,v)(x,y)∈E(G1∗RG2)

(

d(G1∗RG2)(u, v) + d(G1∗RG2)(x, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗RG2)(u, v)+d(G1∗RG2)(u, y)
)

+
∑

v∈V2

∑

ux∈E(R(G1)

(

d(G1∗RG2)(u, v)+d(G1∗RG2)(x, v)
)

.

Now we separately find the values of each part in the sum. First we consider the sum in which
u ∈ V ∗

1 and vy ∈ E2

∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗RG2)(u, v) + d(G1∗RG2)(u, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

[(

dR(G1)(u) + dG2
(v)

)

+
(

dR(G1)(u) + dG2
(y)

)]

=
∑

u∈V ∗

1

∑

vy∈E2

[4 + dG2
(v) + dG2

(y)] =
∑

u∈V ∗

1

[4|E2|+M1(G2)] = 4|E1||E2|+ |E1|M1(G2).

Now for each edge ux ∈ E(R(G1)), v ∈ V2

∑

v∈V2

∑

ux∈E(R(G1))

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(R(G1)),
u,x∈V1

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(R(G1)),
u∈V1, x∈V

∗

1

(

d(G1∗SG2)(u, v) + d(G1∗SG2)(x, v)
)

.

Now we calculate the each sum separately

∑

v∈V2

∑

ux∈E(R(G1)),
u,x∈V1

(

d(G1∗RG2)(u, v) + d(G1∗RG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(R(G1)),
u,x∈V ∗

1

(

dR(G1)(u) + dR(G1)(x)
)

=
∑

v∈V2

∑

ux∈E(R(G1)),
u,x∈V1

2
(

dG1
(u) + dG1

(x)
)

= 2|V2|M1(G1).
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By considering the case where ux ∈ E(R(G1)), u ∈ V1, x ∈ V ∗

1
∑

v∈V2

∑

ux∈E(R(G1)),
u∈V ∗

1
, x∈V ∗

1

(

d(G1∗RG2)(u, v)+d(G1∗RG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(R(G1)),
u∈V1, x∈V

∗

1

dR(G1)(u) + (dG2
(v) +2)

=
∑

v∈V2

∑

ux∈E(R(G1)),
u∈V1, x∈V

∗

1

2dG1
(u) + dG2

(v) + 2 = 2|V2|M1(G1) + 4|E1|
(

|E2|+ |V2|
)

.

Thus we obtain

M1(G1 ∗R G2) = 4|V2|M1(G1) + |E1|M1(G2) + 4|E1|
(

2|E2|+ |V2|
)

.

Similarly,

M2(G1 ∗R G2) =
∑

(u,v)(x,y)∈E(G1∗RG2)

(

dG1∗RG2
(u, v)dG1∗RG2

(x, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

(dG1∗RG2
(u, v)dG1∗RG2

(u, y)) +
∑

v∈V2

∑

ux∈E(R(G1)

(

d(G1∗RG2
(u, v)d(G1∗RG2

(x, v)
)

.

Now we find the sums separately
∑

u∈V ∗

1

∑

vy∈E2

(dG1∗RG2
(u, v)dG1∗RG2

(u, y)) =
∑

u∈V ∗

1

∑

vy∈E2

[(

dR(G1)(u) + dG2
(v)

) (

dR(G1)(u) + dG2
(y)

)]

=
∑

u∈V ∗

1

∑

vy∈E2

[

dR(G1)(u)
2 + dR(G1)(u) (dG2

(v) + dG2
(y)) + dG2

(v)dG2
(y)

]

=
∑

u∈V ∗

1

∑

vy∈E2

[

4 + 2 (dG2
(v) + dG2

(y)) + dG2
(v)dG2

(y)
]

= 4|E1||E2|+ 2|E1|M1(G2) + |E1|M2(G2).

Also,
∑

v∈V2

∑

ux∈E(R(G1))

(

dG1∗RG2
(u, v)dG1∗RG2

(x, v)
)

=
∑

v∈V2

∑

ux∈E(R(G1)),
u,x∈V1

(

dG1∗RG2
(u, v)dG1∗RG2

(x, v)
)

+
∑

v∈V2

∑

ux∈E(R(G1)),
u∈V1, x∈V

∗

1

(

dG1∗RG2
(u, v)dG1∗RG2

(x, v)
)

.

Finding the sums separately, we get
∑

v∈V2

∑

ux∈E(R(G1))
u,x∈V1

(

dG1∗RG2
(u, v)dG1∗RG2

(x, v)
)

=
∑

v∈V2

∑

ux∈E(R(G1))
u,x∈V1

(

dR(G1)(u)dR(G1)(x)
)

=
∑

v∈V2

∑

ux∈E(R(G1))
u,x∈V1

4dG1
(u)dG1

(x) = 4|V2|M2(G2).

Now,
∑

v∈V2

∑

ux∈E(R(G1))
u∈V1, x∈V

∗

1

(

dG1∗RG2
(u, v)dG1∗RG2

(x, v)
)

=
∑

v∈V2

∑

ux∈E(R(G1))
u∈V1, x∈V

∗

1

dR(G1)(u)
(

dG2
(v) + dR(G1)(x)

)

=
∑

v∈V2

∑

ux∈E(R(G1))
u∈V1, x∈V

∗

1

4dG1
(u) + 2dG1

(u)dG2
(v) = 4M1(G1) + 4|E2|M1(G1).
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Now collecting all the previous terms, we get

M2(G1 ∗R G2) = 4M1(G1)(1 + |E2|) +M2(G2)(4|V2|+ |E1|) + 2|E1|M1(G2) + 4|E1||E2|.

�

Theorem 3. Let G1 and G2 be two connected graphs, then

(a) M1(G1 ∗Q G2) = (|V2|+ 2|E2|)M1(G1) + |E1|M1(G2) + 2|V2|M2(G1)

+ |V2|F (G1) + 2|E2|
(

2|E(Q(G1))|+ 3|E1|
)

,

(b) M2(G1 ∗Q G2) = |E2|M2(G1) + |E1|M2(G2) +M2(G1)M2(G2) + 2|E2|M1(G1)

+
1

2

[

|V2|M4(G1) + (2|E2|+ |V2|F (G1))
]

+ |V2|
(

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj) +
∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1, uiuj∈E1

dG1
(ui)

)

,

where rij denotes the number of neighbouring common vertices adjacent to both ui and uj .

P r o o f. We have

M1(G1 ∗Q G2) =
∑

(a,b)∈V (G1∗SG2)

(

d(G1∗QG2)(a, b)
)2

=
∑

(u,v)(x,y)∈E(G1∗QG2)

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(u, y)
)

+
∑

v∈V2

∑

ux∈E(Q(G1))

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, v)
)

.

First we consider the sum in which u ∈ V ∗

1 and vy ∈ E2
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(u, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

[(

dQ(G1)(u) + dG2
(v)

)

+
(

dQ(G1)(u) + dG2
(y)

)]

=
∑

u∈V ∗

1

∑

vy∈E2

[

2dQ(G1)(u) + dG2
(v) + dG2

(y)
]

=
∑

e=pq∈E1

2|E2|(dG1
(p) + dG1

(q)) +
∑

u∈V ∗

1

M1(G2) = 2|E2|M1(G1) + |E1|M1(G2).

For each edge ux ∈ E(Q(G1)) and the vertex v ∈ V2
∑

v∈V2

∑

ux∈E(Q(G1))

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1, x∈V

∗

1

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, v)
)

.



Zagreb Indices of a New Sum of Graphs 11

Now we separately find both the sums. First,

∑

v∈V2

∑

ux∈E(Q(G1))
u∈V1, x∈V

∗

1

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(Q(G1))
u∈V1, x∈V

∗

1

dQ(G1)(u) +
(

dG2
(v) + dQ(G1)(x)

)

=
∑

v∈V2

∑

ux∈E(Q(G1))
u∈V1, x∈V

∗

1

dG1
(u) + dG2

(v) + dQ(G1)(x)

=
∑

v∈V2

M1(G1) + 2|E1|dG2
(v) + 2

∑

v∈V2

∑

e=uivi∈E(G1)
ui, vi∈V1

(dG1
(ui) + dG1

(vi))

= |V2|M1(G1) + 4|E1||E2|+ 2|V2|M1(G1).

The second part of the sum is the following

∑

v∈V2

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

dQ(G1)(u) + dG2
(v) + dQ(G1)(x) + dG2

(v)
)

=
∑

v∈V2

(

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

2dG2
(v)

)

+
∑

v∈V2

(

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

dQ(G1)(u) + dQ(G1)(x)
)

)

=
∑

v∈V2

(

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

2dG2
(v)

)

+
∑

v∈V2

(

∑

uiuj ,ujuk∈E1

(

dG1
(ui) + dG1

(uj) + dG1
(uj) + dG1

(uk)
)

)

= 4(|E(Q(G1))| − 2|E1|)|E2|+ |V2|

(

2
∑

uj∈V1

C2
dG1

(uj)
dG1

(uj) +
∑

uj∈V1

(dG1
(uj)− 1)

∑

ui∈V1,
uiuj∈E1

dG1
(ui)

)

= 4(|E(Q(G1))|−2|E1|)|E2|+|V2|

(

∑

uj∈V1

(dG1
(uj)

3−dG1
(uj)

2)+
∑

uj∈V1

(dG1
(uj)− 1)

∑

ui∈V1,
uiuj∈E1

dG1
(ui)

)

= 4
(

|E(Q(G1))| − 2|E1|
)

|E2|+ |V2|
(

F (G1) + 2M2(G1)− 2M1(G1)
)

.

Here uiuj is the edge corresponding to the vertex u and ujuk is the edge corresponding to the
vertex x.

Thus we obtain

M1(G1 ∗Q G2) = (|V2|+ 2|E2|)M1(G1) + |E1|M1(G2) + 2|V2|M2(G1)

+|V2|F (G1) + 2|E2|(2|E(Q(G1))|+ 3|E1|).

Similarly,

M2(G1 ∗Q G2) =
∑

(u,v)(x,y)∈E(G1∗QG2)

(

d(G1∗QG2)(u, v)d(G1∗QG2)(x, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗QG2)(u, v)d(G1∗QG2)(u, y)
)

+
∑

v∈V2

∑

ux∈E(Q(G1)

(

d(G1∗QG2)(u, v)d(G1∗QG2)(x, v)
)

.
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Now we separately find the values of each part in the sum
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗QG2)(u, v)d(G1∗QG2)(u, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

[(

dQ(G1)(u)+dG2
(v)

) (

dQ(G1)(u)+dG2
(y)

)]

=
∑

u∈V ∗

1

∑

vy∈E2

[

dQ(G1)(u)
2 + dQ(G1)(u) (dG2

(v) + dG2
(y)) + dG2

(v)dG2
(y)

]

=
∑

vy∈E2

∑

uiuj∈E1

(dG1
(ui) + dG1

(uj))
2 +

∑

uiuj∈E1

∑

vy∈E2

(dG1
(ui) + dG1

(uj))(dG2
(v) + dG2

(y))

+
∑

uiuj∈E1

∑

vy∈E2

dG2
(v)dG2

(y)

=
∑

vy∈E2

∑

uiuj∈E1

(dG1
(ui)

2 + dG1
(uj)

2 + 2dG1
(ui)dG1

(uj)) +M2(G1)M2(G2) + |E1|M2(G2)

= |E2|F (G1) + 2|E2|M2(G1) +M2(G1)M2(G2) + |E1|M2(G2).

Now,
∑

v∈V2

∑

ux∈E(Q(G1))

(

d(G1∗QG2)(u, v)d(G1∗QG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1,x∈V

∗

1

(

d(G1∗QG2)(u, v)d(G1∗QG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

d(G1∗QG2)(u, v)d(G1∗QG2)(x, v)
)

.

Now we find each sum separately
∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1, x∈V

∗

1

(

d(G1∗QG2)(u, v)d(G1∗QG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1, x∈V

∗

1

dQ(G1)(u)
(

dQ(G1)(x) + dG2
(v)

)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1, x∈V

∗

1

dQ(G1)(u)dQ(G1)(x) + dG2
(v)dQ(G1)(u)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1, x∈V

∗

1

dG1
(u)dQ(G1)(x) +

∑

v∈V2

∑

ux∈E(Q(G1)),
u∈V1, x∈V

∗

1

dG1
(u)dG2

(v)

= |V2|(F (G1) + 2M2(G1)) + 2|E2|M1(G1).

The second part is

∑

v∈V2

(

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

dQ(G1)(u) + dG2
(v)

) (

dQ(G1)(x) + dG2
(v)

)

)

=
∑

v∈V2

∑

ux∈E(Q(G1)),
u,x∈V ∗

1

(

dQ(G1)(u)dQ(G1)(x) + dG2
(v)

(

dQ(G1)(u) + dQ(G1)(x)
)

+ dG2
(v)2

)

=
∑

v∈V2

(

∑

uiuj∈E1,
ujuk∈E1

(dG1
(ui) + dG1

(uj)) (dG1
(uj) + dG1

(uk))

)

+
∑

v∈V2

dG2
(v)

(

∑

uiuj∈E1,
ujuk∈E1

(

dG1
(ui)+dG1

(uj)+dG1
(uj)+dG1

(uk)
)

)

+(|E(Q(G1))|−2|E1|)M1(G2)
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= |V2|

(

∑

uj∈V1

C2
dG1

(uj)
dG1

(uj)
2+

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj)+
∑

uj∈V1

(dG1
(uj)−1)dG1

(uj)
∑

ui∈V1,
uiuj∈E1

dG1
(ui)

)

+2|E2|

(

2
∑

uj∈V1

C2
dG1

(uj)
dG1

(uj)+
∑

uj∈V1

(dG1
(uj)−1)

∑

ui∈V1,
uiuj∈E1

dG1
(ui)

)

+
(

|E(Q(G1))| − 2|E1|
)

M1(G2)

= |V2|

(

1

2

∑

uj∈V1

(dG1
(uj)

4 − dG1
(uj)

3) +
∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj)

)

+|V2|

(

∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1,
uiuj∈E1

dG1
(ui)− 2M2(G1)

)

+2|E2|

(

∑

uj∈V1

(dG1
(uj)

3−dG1
(uj)

2)+
∑

uj∈V1

(dG1
(uj)−1)

∑

ui∈V1,
uiuj∈E1

dG1
(ui)

)

+
(

|E(Q(G1))|−2|E1|
)

M1(G2)

=|V2|

(

1

2
M4(G1)−

1

2
F (G1)+

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj)+
∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1,
uiuj∈E1

dG1
(ui)−2M2(G1)

)

+2|E2| (F (G1) + 2M2(G1)− 2M1(G1)) + (|E(Q(G1))| − 2|E1|)M1(G2).

Here uiuj is the edge corresponding to the vertex u and ujuk is the edge corresponding to the
vertex x, rij denotes the number of common vertices adjacent to both ui and uj . Thus we obtain

M2(G1 ∗Q G2) = |E2|M2(G1) + |E1|M2(G2) +M2(G1)M2(G2) + 2|E2|M1(G1)

+
1

2
[|V2|M4(G1) + (2|E2|+ |V2|F (G1))]

+|V2|

(

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj) +
∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1,
uiuj∈E1

dG1
(ui)

)

.

�

Theorem 4. Let G1 and G2 be two connected graphs, then

(a) M1(G1 ∗T G2) = 2|E2|M1(G1) + |E1|M1(G2) + 2|V2|M2(G1)

+ |V2|F (G1) + 4
(

|E(T (G1))| − 3|E1|
)

|E2|,

(b) M2(G1 ∗T G2) = 5|E2|M2(G1) +
(

4|V2|+ |E1|
)

M2(G2) +M2(G1)M2(G2)− 2|E2|M1(G1)

+
(

|E(T (G1))| − 3|E1|
)

M1(G2) +
1

2

[

|V2|M4(G1) + (2|E2|+ |V2|)F (G1)
]

+ |V2|

(

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj) +
∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1,uiuj∈E1

dG1
(ui)

)

.

where rij denotes the number of common vertices adjacent to both ui, uj .

P r o o f. We prove this theorem using Theorem 2 and Theorem 3. When u ∈ V ∗

1 and vy ∈ E2
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(u, y)
)

=
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗QG2)(u, v) + d(G1∗QG2)(u, y)
)

.
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From Theorem 3
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(u, y)
)

= 2|E2|M1(G1) + |E1|M1(G2).

Also
∑

v∈V2

∑

ux∈E(T (G1))

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(T (G1)),
u∈V1, x∈V

∗

1

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(T (G1)),
u,x∈V ∗

1

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(T (G1)),
u,x∈V1

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(x, v)
)

.

Also from Theorem 2 and Theorem 3
∑

v∈V2

∑

ux∈E(T (G1))

(

d(G1∗TG2)(u, v) + d(G1∗TG2)(x, v)
)

= 4
(

|E(T (G1))| − 3|E1|
)

|E2|+ |V2|
(

F (G1) + 2M2(G1)− 2M1(G1)
)

+ 2|V2|M1(G1).

Thus,

M1(G1 ∗T G2) = 2|E2|M1(G1) + |E1|M1(G2) + 2|V2|M2(G1)

+|V2|F (G1) + 4
(

|E(T (G1))| − 3|E1|
)

|E2|.

Similarly for M2, from Theorem 3
∑

u∈V ∗

1

∑

vy∈E2

(

d(G1∗TG2)(u, v)d(G1∗TG2)(u, y)
)

= |E2|F (G1) + |E2|M2(G1) +M2(G1)M2(G2) + |E1|M2(G2).

The second part of the sum is
∑

v∈V2

∑

ux∈E(T (G1))

(

d(G1∗TG2)(u, v)d(G1∗TG2)(x, v)
)

=
∑

v∈V2

∑

ux∈E(T (G1)),
u∈V1, x∈V

∗

1

(

d(G1∗TG2)(u, v)d(G1∗TG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(T (G1)),
u,x∈V ∗

1

(

d(G1∗TG2)(u, v)d(G1∗TG2)(x, v)
)

+
∑

v∈V2

∑

ux∈E(T (G1)),u,x∈V1

(

d(G1∗TG2)(u, v)d(G1∗TG2)(x, v)
)

.

From Theorem 2 and Theorem 3 we get
∑

v∈V2

∑

ux∈E(T (G1))

(

d(G1∗TG2)(u, v)d(G1∗TG2)(x, v)
)

= |V2|
(

F (G1) + 2M2(G1)
)

+ 2|E2|M1(G1)

+|V2|

(

1

2
M4(G1)−

1

2
F (G1)+

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj)+
∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1

uiuj∈E1

dG1
(ui)−2M2(G1)

)

+2|E2|
(

F (G1) + 2M2(G1)− 2M1(G1)
)

+
(

|E(Q(G1))| − 2|E1|
)

M1(G2) + 4|V2|M2(G2),
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here rij denotes the number of common vertices adjacent to both ui, uj . Thus we obtain

M2(G1 ∗T G2) = 5|E2|M2(G1) +
(

4|V2|+ |E1|
)

M2(G2) +M2(G1)M2(G2)− 2|E2|M1(G1)

+
(

|E(T (G1))| − 3|E1|
)

M1(G2) +
1

2

[

|V2|M4(G1) + (2|E2|+ |V2|)F (G1)
]

+|V2|

(

∑

ui,uj∈V1

rijdG1
(ui)dG1

(uj) +
∑

uj∈V1

dG1
(uj)

2
∑

ui∈V1,uiuj∈E1

dG1
(ui)

)

.

�

4. Applications with illustration

The above computational procedure can be used to find the respective indices for many classes
of graphs very easily. As an illustration we provide the following.

Example 1. When G1 = Pn, G2 = Pm, n,m > 3, using the theorem, we easily obtain the
following results

1. M1(Pn ∗S Pm) = 20mn − 22m− 14n+ 14,
M2(Pn ∗S Pm) = 32mn − 40m− 24n+ 38;

2. M1(Pn ∗R Pm) = 32mn − 40m− 14n+ 14,
M2(Pn ∗R Pm) = 64mn − 48m+ 24n− 80;

3. M1(Pn ∗Q Pm) = 40mn − 64m− 22n + 30,
M2(Pn ∗Q Pm) = 96mn − 184m+ 18n + 134;

4. M1(Pn ∗T Pm) = 48mn− 82m− 22n + 30,
M2(Pn ∗T Pm) = 136mn − 258m − 86n+ 146.

Let Tn,m denote the torus grid graph obtained from the cycle Cn and Cm. Using F ∗ sums, we
can compute the Zagreb indices of torus grid graph T2n,m since T2n,m = Cn ∗S Cm.

Example 2. When G1 = Cn, G2 = Cm, n,m > 3, using the theorem, we easily obtain the
following results

1. M1(Cn ∗S Cm) = 20mn,

M2(Cn ∗S Pm) = 32mn;

2. M1(Cn ∗R Cm) = 32mn,

M2(Cn ∗R Cm) = 48mn;

3. M1(Cn ∗Q Cm) = 40mn,

M2(Cn ∗Q Cm) = 96mn;

4. M1(Cn ∗T Cm) = 52mn,

M2(Cn ∗T Cm) = 136mn.

We can also find the Zagreb indices of some chemical structures using the expressions of F ∗

sums.

Example 3. Let n ≥ 3 be an integer, then Zagreb indices of the the zigzag polyhex nanotube
TUHC6[2n, 2]
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M1(TUHC6[2n, 2]) = 26n,
M2(TUHC6[2n, 2]) = 33n.

Since TUHC6[2n, 2] = Cn ∗S P2, then by Theorem 1.

Using F ∗ sums, we can also find the Zagreb indices of some classes of bridge graphs. Let
v1, v2, . . . , vn be vertices of graphs G1, G2, . . . , Gn respectively. The bridge graph using v1, v2, . . . , vn
is secured by joining the vertices vi of Gi to vi+1 of Gi+1 for i = 1, 2, . . . n − 1 and it is denoted
by B(G1, G2, . . . , Gn; v1, v2, . . . , vn). If Gi

∼= Gi+1
∼= G and vi = vi+1 = v for all i = 1, 2, . . . n,

then B(G,G, . . . , G; v, v . . . , v) = Gn(G, v). Let Bn = Gn(P3, v) where the degree d(v) = 2 and
Tn,3 = Gn(C3, v) [14] be two class of bridge graphs.

Example 4. Let n ≥ 2 be an integer, then
M1(Bn) = 18n − 14,
M2(Bn) = 24n − 28;

M1(Tn,3) = 24n− 14,
M2(Tn,3) = 36n− 32.

Since Bn = P2 ∗S Pn and Tn,3 = P2 ∗R Pn and by Theorem 1 and Theorem 2.

5. Summary and Conclusion

The F sum of graphs was a new sum defined by M. Eliasi, B. Taeri in [6], a lot of research
has been done on this to compute various topological indices of this F sum. In this paper we
have defined a similar new operation and computed the first and second Zagreb index of this sum.
Computing other topological indices on these sums is an area which researchers may find helpful.
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Abstract: Similarity measures of fuzzy sets are applied to compare the closeness among fuzzy sets. These
measures have numerous applications in pattern recognition, image processing, texture synthesis, medical di-
agnosis, etc. However, in many cases of pattern recognition, digital image processing, signal processing, and
so forth, the similarity measures of the fuzzy sets are not appropriate due to the presence of dual information
of an object, such as amplitude term and phase term. In these cases, similarity measures of complex fuzzy
sets are the most suitable for measuring proximity between objects with two-dimensional information. In the
present paper, we propose some trigonometric similarity measures of the complex fuzzy sets involving similarity
measures based on the sine, tangent, cosine, and cotangent functions. Furthermore, in many situations in real
life, the weight of an attribute plays an important role in making the right decisions using similarity measures.
So in this paper, we also consider the weighted trigonometric similarity measures of the complex fuzzy sets,
namely, the weighted similarity measures based on the sine, tangent, cosine, and cotangent functions. Some
properties of the similarity measures and the weighted similarity measures are discussed. We also apply our
proposed methods to the pattern recognition problem and compare them with existing methods to show the
validity and effectiveness of our proposed methods.

Keywords: Complex fuzzy set, Similarity measures, Pattern recognition.

1. Introduction

The fuzzy set theory introduced by L.A. Zadeh [34] has been revealed to be a valuable apparatus
for designating situations in which the data are imprecise or vague. Fuzzy sets (FSs) describe
such cases by assigning a degree to which a particular object belongs to a set. It is a robust
system where no precise inputs are required; as a result, it has been applied in numerous branches
of science and engineering with great success. However, in real life, there is a lot of uncertain
data that cannot be described by fuzzy sets due to the presence of dual information about the
object, such as the amplitude term and the phase term. To describe such uncertain data, Ramot
et al. [25] introduced the concept of complex fuzzy set (CFS), in which the membership function
is characterized by a complex number in the polar form rA(x)e

iωA(x) belonging to the unit circle
of the complex plane, where rA(x) and eiωA(x) denote the amplitude term and the phase term
of an element x ∈ A ⊆ X, respectively. The amplitude term consistent with the membership
degree gives the extent of belonging of an object to a CFS, and the phase term allied with the
membership degree provides supplementary data associated with periodicity. The phase term is a
unique parameter of the membership degree and is the crucial difference between a traditional FS
and a CFS. Due to the presence of the phase term in a CFS, the uncertainty of an object can be
described more accurately than by an FS. As a result, the concept of CFSs has been applied by a
host of researchers in many areas of our real-life situations, such as image processing [19], signal
processing [16, 25, 35], decision making [1, 3, 4, 21, 22], and so on by using different mathematical
tools, such as distance measures, aggregation operations, entropy measures, and so forth.

https://doi.org/10.15826/umj.2023.1.002
mailto:ali.mdyasin56@gmail.com
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On the other hand, the similarity measure is a core method to see how two objects are related
together. The similarity measures between the fuzzy sets are significant topics in fuzzy mathematics
which have obtained much attention for their wide applications in various fields, such as pattern
recognition [15], decision making [27, 28], image processing [29], clustering [7, 10, 13], approximate
reasoning [26, 33], and many other fields (see [8, 32]). The theoretical aspects of the similarity
measures of the FSs are also studied by a host of researchers (see [2, 5, 6, 9, 11, 12, 17, 18, 23, 24,
30, 31, 36]).

However, if the data sets are related to a two-dimensional aspect, then the similarity measures
of the fuzzy sets fail to compare the proximity among the data sets. To overcome these situations,
Guo et al. [14] introduced the cosine similarity measure of complex fuzzy sets and applied it to
measure the robustness of the complex fuzzy connectives and the complex fuzzy inference. More-
over, trigonometric similarity measures are important in solving numerous complicated problems
in pattern recognition, medical diagnosis, signal processing, etc. But still now, as far as known
from the literature, there are no trigonometric similarity measures for CFSs. So, in this paper,
we introduce some trigonometric similarity measures for CFSs. Also, the weighted trigonometric
similarity measures for CFSs are established. Finally, an application in the pattern recognition
problem is illustrated by using our proposed similarity measures.

The paper is organized as follows. In Section 2, we describe some basic properties of CFSs.
In Section 3, we introduce some trigonometric similarity measures involving similarity measures
based on the sine, tangent, cosine, and cotangent functions. We also define weighted trigonometric
similarity measures based on the sine, tangent, cosine, and cotangent functions. In Section 4,
a practical example illustrates using these similarity measures and weighted similarity measures.
The comparison studies with existing methods and advantages of our proposed methods are also
described in Section 4. Finally, a concluding remark is given.

2. Preliminaries

In this section, we describe some basic concepts of CFSs from [25], which are essential to the
rest of the paper.

2.1. Complex fuzzy set

A complex fuzzy set defined on a universal set X is characterized by a membership function
µA(x) that assigns a complex-valued grade of membership in A to any element x ∈ X. By definition,
all values of µA(x) lie within the unit circle in the complex plane and are expressed in the form rA(x)·
eiωA(x), where i =

√
−1, rA(x) and ωA(x) are both real-valued, rA(x) ∈ [0, 1], and ωA(x) ∈ [0, 2π].

A complex fuzzy set may be represented as the set of ordered pairs

A =
{

(x, µA(x)) : x ∈ X
}

=
{

(x, rA(x) · eiωA(x)) : x ∈ X
}

.

For every two CFSs

A =
{

(x, rA(x) · eiωA(x))
}

and B =
{

(xj , rB(x) · eiωB(x))
}

,

A ⊆ B if rA(x) ≤ rB(x) and ωA(x) ≤ ωB(x).

3. Some trigonometric similarity measures of complex fuzzy sets

In this section, we propose similarity measures based on the sine, tangent, cosine, and cotangent
functions of CFSs. In many decision-making problems, sometimes we need the weight of attributes
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to describe precisely any situation. These weights of attributes play an important role in making
decisions properly. As a result, we consider the weighted similarity measures based on the sine,
tangent, cosine, and cotangent functions of CFSs. Some properties of these similarity measures
and weighted similarities are also described.

3.1. Similarity measures based on the sine function

Let
A =

{

(xj , rA(xj) · eiωA(xj))
}

, B =
{

(xj , rB(xj) · eiωB(xj))
}

be two CFSs in the universe of discourse X = {x1, x2, . . . , xn}, xj ∈ X. Then the similarity
measures based on the sine function between A and B can be defined as follows:

SSF 1(A,B) = 1− 1

n

n
∑

j=i

sin
{π

2

[

|rA(xj)− rB(xj)| ∨
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

SSF 2(A,B) = 1− 1

n

n
∑

j=i

sin
{π

4

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

where the symbol ∨ denotes the maximum operator.

Proposition 1. For two CFSs A and B in X = {xi, x2, . . . , xn}, the similarity measures
SSF k(A,B), k = 1, 2, have the following properties:

(1) 0 ≤ SSF k(A,B) ≤ 1;

(2) SSF k(A,B) = SSF k(B,A);

(3) SSF k(A,B) = 1 if and only if A = B;

(4) if C is a CFS in X and A ⊆ B ⊆ C, then SSF k(A,B) ≥ SSF k(A,C) and
SSF k(B,C) ≥ SSF k(A,C).

P r o o f. (1) It is known that the sine function monotonically increases in the interval [0, π/2]
and takes values from [0, 1]. Therefore, we have 0 ≤ SSF k(A,B) ≤ 1.

(2) This property is obvious.
(3) If A = B, then rA(xj) = rB(xj) and ωA(xi) = ωB(xi) for j = 1, 2 . . . , n. Therefore,

SSF k(A,B) = 1.
(4) If A ⊆ B ⊆ C, then rA(xj) ≤ rB(xj) ≤ rC(xj) and ωA(xj) ≤ ωB(xj) ≤ ωC(xj) for

j = 1, 2, . . . , n. Then we have

|rA(xj)− rB(xj)| ≤ |rA(xj)− rC(xj)|,
|rB(xj)− rC(xj)| ≤ |rA(xj)− rC(xj)|,

and

|ωA(xj)− ωB(xj)| ≤ |ωA(xj)− ωC(xj)|,
|ωB(xj)− ωC(xj)| ≤ |ωA(xj)− ωC(xj)|.

Hence,

SSF 2(A,B) = 1− 1

n

n
∑

j=i

sin
{π

4

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

≥ 1− 1

n

n
∑

j=i

sin
{π

4

[

|rA(xj)− rC(xj)|+
1

2π
(|ωA(xj)− ωC(xj)|)

]

}

= SSF 2(A,C).
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Similarly, we can prove that SSF 2(B,C) ≥ SSF 2(A,C) as well as SSF 1(A,B) ≥ SSF 1(A,C) and
SSF 1(B,C) ≥ SSF 1(A,C). Hence, SSF k(A,B) ≥ SSF k(A,C) and SSF k(B,C) ≥ SSF k(A,C).

�

Taking a real-valued weight of xj, we propose to consider the following weighted similarity
measures based on the sine function between CFSs A and B:

WSSF 1(A,B) = 1− 1

n

n
∑

j=i

ρj sin
{π

2

[

|rA(xj)− rB(xj)| ∨
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

WSSF 2(A,B) = 1− 1

n

n
∑

j=i

ρj sin
{π

4

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

where ρ = (ρ1, ρ2, . . . , ρn)
T and ρj is the weight vector of xj (j = 1, 2, . . . , n), ρj ∈ [0, 1], and

∑n
j=1 ρj = 1. If we take ρj = 1/n, j = 1, 2, . . . , n, then WSSF k(A,B) = SSF k(A,B), k = 1, 2.

Proposition 2. For two CFSs A and B in X = {xi, x2, . . . , xn}, the weighted similarity mea-
sures based on the sine function SSF k(A,B), k = 1, 2, have the following properties:

(1) 0 ≤ WSSF k(A,B) ≤ 1;

(2) WSSF k(A,B) = WSSF k(B,A);

(3) WSSF k(A,B) = 1 if and only if A = B;

(4) if C is a CFS in X and A ⊆ B ⊆ C, then WSSF k(A,B) ≥ WSSF k(A,C) and
WSSF k(B,C) ≥ WSSF k(A,C).

P r o o f. Similarly to the previous proof methods, we can prove the above four properties. �

3.2. Similarity measures based on the tangent function

Let

A =
{

(xj , rA(xj) · eiωA(xj))
}

, B =
{

(xj , rB(xj) · eiωB(xj))
}

be two CFSs in X = {x1, x2, . . . , xn}, xj ∈ X. Then the similarity measures based on the tangent
function between A and B are defined as follows:

STF 1(A,B) = 1− 1

n

n
∑

j=i

tan
{π

4

[

|rA(xj)− rB(xj)| ∨
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

STF 2(A,B) = 1− 1

n

n
∑

j=i

tan
{π

8

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

.

Proposition 3. For two CFSs A and B in X = {xi, x2, . . . , xn}, the similarity measures
STF k(A,B), k = 1, 2, have the following properties:

(1) 0 ≤ STF k(A,B) ≤ 1;

(2) STF k(A,B) = STF k(B,A);

(3) STF k(A,B) = 1 if and only if A = B;
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(4) if C is a CFS in X and A ⊆ B ⊆ C, then STF k(A,B) ≥ STF k(A,C) and
STF k(B,C) ≥ STF k(A,C).

P r o o f. The proofs are similar to the proofs for the similarity measures based on the sine
function. �

Taking a real valued weight of xj, we propose to consider the following weighted similarity
measures based on the tangent function between CFSs A and B:

WSTF 1(A,B) = 1− 1

n

n
∑

j=i

ρj sin
{π

2

[

|rA(xj)− rB(xj)| ∨
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

WSTF 2(A,B) = 1− 1

n

n
∑

j=i

ρj sin
{π

4

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

where ρ = (ρ1, ρ2, . . . , ρn, )
T and ρj is the weight vector of xj (j = 1, 2, . . . , n), ρj ∈ [0, 1],

∑n
j=1 ρj = 1. If we take ρj = 1/n, j = 1, 2, . . . , n, then WSTF k(A,B) = STF k(A,B), k = 1, 2.

Proposition 4. For two CFSs A and B in X = {xi, x2, . . . , xn}, the weighted similarity mea-
sures based on the tangent function WTSF k(A,B), k = 1, 2, have the following properties:

(1) 0 ≤ WSTF k(A,B) ≤ 1;

(2) WSTF k(A,B) = WSTF k(B,A);

(3) WSTF k(A,B) = 1 if and only if A = B;

(4) if C is a CFS in X and A ⊆ B ⊆ C, then WSTF k(A,B) ≥ WSTF k(A,C) and
WSTF k(B,C) ≥ WSTF k(A,C).

P r o o f. The proofs are similar to the proofs for the similarity measures based on the sine
function. �

3.3. Similarity measures based on the cosine function

Let

A =
{

(xj , rA(xj) · eiωA(xj))
}

, B =
{

(xj , rB(xj) · eiωB(xj))
}

be two CFSs in X = {x1, x2, . . . , xn}, xj ∈ X. We define two similarity measures between A and
B based on the cosine function as follows:

SCF 1 =
1

n

n
∑

j=i

cos
{π

2

[

|rA(xj)− rB(xj)| ∨
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

SCF 2 =
1

n

n
∑

j=i

cos
{π

4

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

.

Proposition 5. For two CFSs A and B in X = {xi, x2, . . . , xn}, the similarity measures
SCF k(A,B), k = 1, 2, have the following properties:

(1) 0 ≤ SCF k(A,B) ≤ 1;
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(2) SCF k(A,B) = SCF k(B,A);

(3) SCF k(A,B) = 1 if and only if A = B;

(4) if C is a CFS in X and A ⊆ B ⊆ C, then SCF k(A,C) ≤ SCF k(A,B) and
SCF k(A,C) ≤ SCF k(B,C).

P r o o f. The proofs of properties (1)–(3) are trivial. Let us prove property (4).

If A ⊆ B ⊆ C, then rA(xj) ≤ rB(xj) ≤ rC(xj) and ωA(xj) ≤ ωB(xj) ≤ ωC(xj) for
j = 1, 2, . . . , n. Then, we have

|rA(xj)− rB(xj)| ≤ |rA(xj)− rC(xj)|,
|rB(xj)− rC(xj)| ≤ |rA(xj)− rC(xj)|,

and

|ωA(xj)− ωB(xj)| ≤ |ωA(xj)− ωC(xj)|,
|ωB(xj)− rC(xj)| ≤ |ωA(xj)− ωC(xj)|.

Hence, SCF k(A,C) ≤ SCF k(A,B) and SCF k(A,C) ≤ SCF k(B,C) for k = 1, 2. �

Taking a real weight of xj, we define the weighted similarity measures based on the cosine
function as follows:

WSCF 1 =

n
∑

j=i

ρj cos
{π

2

[

|rA(xj)− rB(xj)| ∨
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

WSCF 2 =

n
∑

j=i

ρj cos
{π

4

[

|rA(xj)− rB(xj)|+
1

2π
(|ωA(xj)− ωB(xj)|)

]

}

,

where ρ = (ρ1, ρ2, . . . , ρn, )
T and ρj is the weight vector of xj (j = 1, 2, . . . , n),ρj ∈ [0, 1],

∑n
j=1 ρj = 1. If we take ρj = 1/n, j = 1, 2, . . . , n, then WSCF k(A,B) = SCF k(A,B), k = 1, 2.

It is clear that the weighted similarity measures based on the cosine function between CFSs A
and B also satisfy the following statement.

Proposition 6. For two CFSs A and B in X = {xi, x2, . . . , xn}, the similarity measures
WSCF k(A,B), k = 1, 2, have the following properties:

(1) 0 ≤ WSCF k(A,B) ≤ 1;

(2) WSCF k(A,B) = WSCF k(B,A);

(3) WSCF k(A,B) = 1 if and only if A = B;

(4) if C is a CFS in X and A ⊆ B ⊆ C, then WSCF k(A,C) ≤ WSCF k(A,B) and
WSCF k(A,C) ≤ WSCF k(B,C).

We can prove (1)–(4) using methods similar to the above proofs.
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3.4. Similarity measures based on the cotangent function

For any two CFSs A and B, the similarity measure between A and B based on the cotangent
function is defined as follows:

SCTF 1 =
1

n

n
∑

j=i

cot
[π

4
+

π

4
(|rA(xj)− rB(xj)| ∨

1

2π
(|ωA(xj)− ωB(xj)|)

]

.

Taking a real weight of xj, we define the weighted similarity measure based on the cotangent
function between two CFSs A and B as follows:

WSCTF 1 =
n
∑

j=i

ρj cot
[π

4
+

π

4
(|rA(xj)− rB(xj)| ∨

1

2π
(|ωA(xj)− ωB(xj)|)

]

,

where ρj = (ρ1, ρ2, . . . , ρn, )
T and ρj is the weight vector of xj (j = 1, 2, . . . , n), ρj ∈ [0, 1],

∑n
j=1 ρj = 1. If we take ρj = 1/n, j = 1, 2, . . . , n, then WSCTF 1(A,B) = SCTF 1(A,B).

4. Application of the proposed similarity measures

in the pattern recognition problem

4.1. Application in pattern recognition

Pattern recognition is one of the most essential decision-making skills in problems of choice. It
consists in finding an appropriate pattern from some unknown patterns. Pattern recognition with
fuzzy data is becoming increasingly popular and important in research in medicine, engineering,
computer science, psychology, and physiology, among others. However, in many cases of pattern
recognition, such as digital images, speech, audio signals, voice, and language, among others, we
face some problems due to the dual characteristics of an element. In this case, pattern recognition
with complex fuzzy data is more suitable for describing such situations. In this section, we describe
the problem of pattern recognition using our proposed similarity measures.

In general, we can formulate the pattern recognition problem in complex fuzzy sets as follows.

Problem Formulation. Let

B =
{

(xj , rB(xj) · eiωB(xj)) : xj ∈ X, j = 1, 2, . . . , n
}

be an ideal pattern characterized by a complex fuzzy set in X = {x1, x2, . . . xn}. Let
{A1, A2, . . . , Am} be some sample patterns characterized by complex fuzzy sets in
X = {x1, x2, . . . , xn} as follows:

Ak =
{

(xj , rAk
(xj) · eiωAk

(xj)) : xj ∈ X, j = 1, 2 . . . , n
}

, k = 1, 2, . . . ,m.

Aim. Determine which sample pattern is close to ideal.

Solution. The sample patterns Ak, k = 1, 2 . . . ,m, should be close to the ideal pattern B, which
has the maximum similarity.

Now, we illustrate the performance of our proposed similarity measures with the help of a
practical example. First, we describe our proposed unweighted similarity measures of an element
of the universe of discourse. Second, we depict the weighted similarity measures.
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Table 1. The representation of sample signals and an ideal signal by complex fuzzy sets.

A1 A2 A3 A4 B

x1 0.5ei2π(0.3) 0.8ei2π(0.2) 0.6ei2π(0.4) 0.7ei2π(0.6) 0.8ei2π(0.9)

x2 0.4ei2π(0.5) 0.7ei2π(0.4) 0.7ei2π(0.6) 0.1ei2π(0.2) 0.6ei2π(0.5)

x3 0.2ei2π(0.1) 0.1ei2π(0.4) 0.5ei2π(0.6) 0.9ei2π(0.2) 0.6ei2π(0.3)

Table 2. The similarity measures between the sample signals and the ideal signal.

(A1, B) (A2, B) (A3, B) (A4, B)
SSF 1(Aj, B) 0.4316 0.4153 0.5610 0.4618
SSF 2(Aj, B) 0.5802 0.6225 0.7685 0.7169
STF 1(Aj , B) 0.6692 0.6316 0.7558 0.7020
STF 2(Aj , B) 0.7731 0.8056 0.8827 0.8180
SCF 1(Aj , B) 0.7828 0.7165 0.8620 0.8298
SCF 2(Aj , B) 0.8798 0.9105 0.9644 0.9562
SCTF 1(Aj, B) 0.5210 0.5035 0.6277 0.5473
SCTF 2(Aj, B) 0.6433 0.6763 0.7142 0.6549

Example 1. In this example, we practice our proposed similarity measures in audio signal
processing. Suppose we have four sample audio signals A = {A1, A2, A3, A4} and an ideal audio
signal B that are characterized by complex fuzzy sets given in Table 1. Here X = {x1, x2, x3} rep-
resents different points on the signals and rAk

(xj) (j = 1, 2, 3, k = 1, 2, 3, 4) and rB(xj) (j = 1, 2, 3)
represent the frequency of the sample signals and the ideal signal, respectively. The terms ωAk

(xj)
(j = 1, 2, 3, k = 1, 2, 3, 4) and ωB(xj) (j = 1, 2, 3) represent the amplitude of the sample signals
and the ideal signal, respectively. We aim to detect which sample signal is close to the ideal signal.
To determine this, we use our proposed similarity measures. The results are given in Table 2. From
the numerical results in Table 2, we observe that the signal A3 is the closest to the signal B.

Again, we consider, the real valued weight vector of xj(j = 1, 2, 3) is ρ = (0.30, 0.34, 0.36)T .
Then by using table 1 and methods of weighted similarity measures of complex fuzzy sets, we
obtain the results of weighted similarity measures between sample audio signals and ideal audio
signal given in Table 3. From the numerical results in Table 3, we also observe that the signal A3

is the closest to the signal B.

4.2. Comparison studies

As known from the literature, there is only a similarity measure, namely the cosine similarity
measure [14], for CFSs, in which the range of similarity measurement value is from −1 to 1.
However, the similarity measurement value in our proposed methods ranges from 0 to 1. So, for
comparing the performance of our proposed methods, we consider some existing distance methods
of CFSs proposed in [1, 20].

1. Applying the distance measure denoted by d1 and using equation (4) from [1], we get the
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Table 3. The weighted similarity measures between the sample signals and the ideal signal.

(A1, B) (A2, B) (A3, B) (A4, B)
WSSF 1(Aj , B) 0.4408 0.4251 0.5714 0.4601
WSSF 2(Aj , B) 0.5887 0.6268 0.7745 0.7159
WSTF 1(Aj , B) 0.6765 0.6404 0.7626 0.7008
WSTF 2(Aj , B) 0.7787 0.8079 0.8858 0.8144
WSCF 1(Aj , B) 0.7911 0.7262 0.8688 0.8286
WSCF 2(Aj , B) 0.8848 0.9124 0.9662 0.9559
WSCTF 1(Aj , B) 0.5286 0.5122 0.6359 0.5459
WSCTF 2(Aj , B) 0.6500 0.6797 0.7206 0.6534

following measurement value for each sample signal {A1, A2, . . . , Am} compared with the
ideal signal B:

d1(A1, B) = 0.85, d1(A2, B) = 0.75, d1(A3, B) = 0.65, d1(A4, B) = 0.8.

The minimum value of d1(Aj , B) is considered the best alternative. Since the measurement
value of A3 is the minimum among all these values, we conclude that A3 is the closest to B.

2. Utilizing the complex fuzzy weighted discrimination measures denoted by wd1 as defined in
[20], we get the following measurement values by using Table 1 and the real-valued weight
vector ρ = (0.30, 0.34, 0.36)T of xj(j = 1, 2, 3):

wd1(A1, B) = 0.24, wd1(A2, B) = 0.27, wd1(A3, B) = 0.15, wd1(A4, B) = 0.19.

In this case, the minimum value of wd1(Aj , B) is also considered the best alternative. Since
the measurement value of A3 is the minimum among all these values, we again conclude that
A3 is the closest to B.

4.3. Advantages of our proposed methods

From the study of existing literature and our proposed methods, we address the following
advantages of our proposed methods to apply in different branches of science and engineering.

1. A CFS is an extension of FS considering two-dimensional information, such as the amplitude
term and the phase term in a single element, whereas a real FS contains only the amplitude
term in a single element. So the primary advantage of our proposed methods is capturing
more information about an element when uncertainty arises in the case of decision-making,
pattern recognition, image processing, signal processing, audio recognition, and others.

2. It is disclosed from our study that some trigonometric similarity measures under the CFSs
are particular forms of trigonometric similarity measures of real FSs, so we can use these
similarity measures to solve many problems where a one-dimensional term presents in a
single element by taking the phase term zero.

5. Conclusion

In our present study, an endeavor has been taken to develop some trigonometric similarity
measures under the CFSs environment. Different kinds of similarity measures have been defined
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in the FS environment where the membership degree of an element is a subset of real numbers.
But in our proposed methods, the membership degree of an element is taken as a two-dimensional
value which enables describing the uncertainty of an element more precisely. On the other hand, in
the existing cosine similarity measure of CFS, which was introduced in [14], the range of similarity
measurement values was taken from −1 to 1, but the similarity measurement value should range
from 0 till 1. In our proposed methods, we also develop this limitation. In the future, we will extend
our methods to an interval-valued complex fuzzy set, complex intuitionistic fuzzy set, complex
Pythagorean fuzzy set, complex picture fuzzy set, and so forth. Also, other similarity measures for
CFSs will be considered.
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Abstract: By an (integer) partition we mean a non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative
integers that contains a finite number of non-zero components. A partition λ is said to be graphic if there
exists a graph G such that λ = dptG, where we denote by dptG the degree partition of G composed of the
degrees of its vertices, taken in non-increasing order and added with zeros. In this paper, we propose to consider
another criterion for a partition to be graphic, the ht-criterion, which, in essence, is a convenient and natural
reformulation of the well-known Erdös–Gallai criterion for a sequence to be graphical. The ht-criterion fits well
into the general study of lattices of integer partitions and is convenient for applications. The paper shows the
equivalence of the Gale–Ryser criterion on the realizability of a pair of partitions by bipartite graphs, the ht-
criterion and the Erdös–Gallai criterion. New proofs of the Gale–Ryser criterion and the Erdös–Gallai criterion
are given. It is also proved that for any graphical partition there exists a realization that is obtained from some
splitable graph in a natural way. A number of information of an overview nature is also given on the results
previously obtained by the authors which are close in subject matter to those considered in this paper.
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1. Introduction

Everywhere by a graph we mean a simple graph, i.e. a graph without any loops and multiple
edges.

An integer partition, or simply partition, is a non-increasing sequence λ = (λ1, λ2, . . . ) of non-
negative integers that contains a finite number of non-zero components (see [1]). Let sumλ denote
the sum of all components of the partition λ and call it the weight of the partition λ. It is often
said that a partition of λ is a partition of a non-negative integer n = sumλ. The length ℓ(λ) of a
partition λ is the number of its non-zero components. For convenience, the partition λ will often
be written as λ = (λ1, . . . , λt), where t ≥ ℓ(λ), i. e. we will omit the zeros by starting from some
zero component without forgetting that the sequence is infinite.

The theory of partitions is one of the actively developing areas of contemporary combinatorics,
the foundations of which were laid by L. Euler as early as the 18th century. For some information
about the achievements of this theory in the 19th and 20th centuries, see [1].

A partition λ is said to be graphic if there is a graph G such that λ = dptG, where we denote
by dptG the degree partition composed by the degrees of vertices taken in non-increasing order
with added zeros. In this case, the graph G is called a realization of the partition λ, and λ is said
to be realized by the graph G. It is clear that adding or removing isolated vertices does not change
the degree partition of the graph.

A finite sequence λ = (λ1, λ2, . . . , λn) of non-negative integers such that λ1 ≥ λ2 ≥ · · · ≥ λn

and n is a natural number will be called an n-sequence. Such an n-sequence is called graphic if
there is a simple graph G on n vertices such that deg(v1) = λ1, . . . ,deg(vn) = λn, where v1, . . . , vn
is the sequence of all its vertices; and the graph G is called a realization of the n-sequence λ, and
λ is said to be realized by the graph G.

https://doi.org/10.15826/umj.2023.1.003
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Obviously, an n-sequence λ = (λ1, λ2, . . . , λn) is graphic if and only if the partition
(λ1, λ2, . . . , λn, 0, 0, . . . ) obtained from λ by adding zeros, is graphic.

It should be noted that in [4] an algorithm was constructed for generating all graphic n-sequences
which does not generate any non-graphic sequences during calculations.

We call an n-sequence λ = (λ1, λ2, . . . , λn) proper (proper n-sequence) if
1) n− 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn;
2) the sumλ of all components of the sequence λ is even.

Obviously, any graphic n-sequence is proper.

The first criterion for an n-sequence to be graphic was found by Erdös and Gallai [14].

Theorem 1 [14, Erdös and Gallai]. Let λ = (λ1, λ2, . . . , λn) be a proper n-sequence. Then λ
is a graphic n-sequence if and only if it is satisfied the inequality

k∑

i=1

λi ≤ k(k − 1) +
n∑

i=k+1

min{k, λi}

for any k = 1, . . . , n.

It is an easy matter to prove that the condition “k = 1, . . . , n” can be replaced by the condition
“k = 1, . . . , r(λ)”, where r(λ) = max{i|λi ≥ i} is the rank of the n-sequence λ.

The paper [17] considers all seven graphic criteria known by that time: Erdös–Gallai, Ryser,
Berge, Fulkerson–Hoffman–McAndrew, Bollobas, Grünbaum, Hässelbarth. It is shown, how they
deduced from each other, and a new, more elegant proof of the Erdös–Gallai criterion is given.

In this paper, we propose for consideration (in our terminology) another graphic criterion, the
ht-criterion (see Theorem 2), which has the simplest and most natural form. Moreover, as will be
seen below, this criterion fits well into the general study of partition lattices.

It should be noted that considerations close to the ht-criterion can be found in [15].

As can be seen below, the ht-criterion can be in essence considered as a reformulation of the
Erdös–Gallai criterion which is convenient for applications.

In § 2, by fairly simple reasoning, we establish the equivalence of Theorem 2 on the ht-criterion
and the Erdös–Gallai Theorem 1.

§ 3 will provide a transparent proof of the Gale–Ryser theorem on the realization of two parti-
tions by a bipartite graph, that does not use the partition graphicity criteria.

In § 4, with the Gale–Ryser theorem and without any partition graphicity criteria, we prove
Theorem 2 on the ht-criterion and, therefore, obtain a new natural proof of the Erdös–Gallai
theorem. From the proof of Theorem 2 we also extract Theorem 4 and Theorem 5 on the existence
of a special kind of realizations for arbitrary partitions, and this result is one of the main ones in
this paper.

§ 5 will give another proof of the Gale–Ryser theorem, in which the ht-criterion is used. As a
result, we will show how the Gale–Ryser theorem, the ht-criterion Theorem 2 and the Erdös–Gallai
Theorem 1 can be derived from each other.

At the end of paragraphs 4 and 5, we give a brief review of the previously obtained results of
authors which are close in subject matter to those considered in this paper.

2. On the ht-criterion

Let us first give the necessary definitions.
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We denote by IPL the set of all partitions of all natural numbers with added zero partition,
and by IPL(m) for a non-negative integer m we denote the set of all its partitions. On the sets
IPL and IPL(m), consider the dominance relation E [13], by setting λE µ if

λ1 + λ2 + · · ·+ λi ≤ µ1 + µ2 + · · · + µi

for any i = 1, 2, . . . , i. e. the prefix partial sums of the partition λ do not exceed the corresponding
prefix partial sums of the partition µ.

The partition can be conveniently depicted as a Ferrers diagram, which can be thought of
as a set of square boxes of the same size (see an example in Fig. 1, which shows the partition
(6, 5, 4, 4, 3, 2, 1, 1) of the number 26, the length of this partition is 8). We will use Cartesian
notation for Ferrers diagrams aligned to the bottom-left corner of the 1st quadrant. Components
correspond to columns and decrease in size from left to right. The coordinates for boxes resemble
the standard Cartesian coordinates for the Euclidean plane.

Figure 1. The Ferrers diagram of the partition (6, 5, 4, 4, 3, 2, 1, 1).

Let us define two types of elementary transformations (see [2–5]) of the partition
λ = (λ1, λ2, . . . , λn), where n = ℓ(λ) + 1.

Let there be natural numbers i, j ∈ {1, . . . , n} such that i < j ≤ ℓ(λ) + 1 and

1) λi − 1 ≥ λi+1,

2) λj−1 ≥ λj + 1,

3) λi = λj + δ, where δ ≥ 2.

We will say that the partition η = (λ1, . . . , λi − 1, . . . , λj + 1, . . . , λn) is obtained from the
partition λ = (λ1, . . . , λi, . . . , λj , . . . , λn) by an elementary transformation of the first type (or
through box movement). It should be noted that η differs from λ on exactly two components with
numbers i and j.

For the Ferrers diagram, such a transformation means moving the top box from the i-th column
to the right to the top of the j-th column. The conditions 1), 2) and 3) guarantee that after such
a move, a partition will again be obtained. It should be noted that a box can also be thrown to
the zero component with the number ℓ(λ) + 1.

The fact that η is obtained from λ by moving a box will be briefly written in the form λ ⇁ η.
It should be noted that an elementary transformation of the first type preserves the weight of the
partition, while the length of the partition can be preserved or lifted by 1.

We now define elementary transformations of the second type for the partition λ = (λ1, λ2, . . . ).
Let λi − 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by

η = (λ1, . . . , λi−1, λi − 1, λi+1, . . . )

will be called an elementary transformation of the second type (or a box removal).
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As in the previous case, we will briefly write λ ⇁ η, i. e., the notation λ ⇁ η means that η
obtained from λ by an elementary transformation of the first or second type. It should be noted
that box removal reduces the weight of the partition by exactly 1, while the length of the partition
can be preserved or lowered by 1.

On the set IPL and on sets of the form IPL(m), we define the relation ≤ by setting η ≤ λ if η
can be obtained from λ by sequentially applying a finite number (possibly a zero one) of elementary
transformations of the stated types.

Of course, in the case of IPL(m) we are forced to use only elementary transformations of the
first type, which do not change the weight of the partitions. It was proved in [3] and [5] that the
relation ≤ on each of the considered sets coincides with the dominance relation E, and each of
these sets is a lattice.

It is essential to note that the use of elementary transformations is often more convenient than
the use of inequalities appearing in the definition of the dominance relation.

It should be noted that the IPL lattice is a disjoint union of lattices IPL(m), where m ranges
over non-negative integers corresponding to some natural transitive system of embeddings [5].

Let λ = (λ1, λ2, . . . ) be a partition. We determine the rank r(λ) of the partition λ by setting
r(λ) = max{i|λi ≥ i}. Obviously, the rank r = r(λ) of a partition λ is equal to the number of
boxes on the main diagonal of the Ferrers diagram of this partition. The maximum square made
up of boxes and symmetrical about the main diagonal is called the Durfey square of the partition λ
(see Fig. 2).

Figure 2. The main diagonal in the Durfey square.

Fig. 2 shows the partition λ = (6, 5, 4, 4, 3, 2, 1, 1). Here r(λ) = 4 and the Durfey square consists
of 16 = 4 · 4 boxes. Any row and any column of a Durfey square consists of r = r(λ) boxes.

For each partition λ, we will consider an conjugate partition λ∗ whose components are equal
to the number of boxes in the corresponding rows of the Ferrers diagram of the partition λ. It is
clear that the Ferrers diagram of the partition λ∗ can be obtained from the Ferrers diagram of the
partition λ by mirror symmetry with respect to the main diagonal. For Fig. 2, λ∗ = (8, 6, 5, 4, 2, 1)
is satisfied. Of course, the equality r(λ∗) = r(λ) is true.

It should be noted (see [3]) that for any m ∈ N the mapping λ → λ∗ is an involutive anti-
automorphism of the lattice IPL(m) such that (λ∗)∗ = λ and the condition γ1 ≤ γ2 implies the
condition γ∗1 ≥ γ∗2 .

Let ξ, η ∈ IPL(m) and f be an elementary transformation of the first type ξ ⇁ η, transforming ξ
into η. It is plain to see (see Fig. 3) that the inverse transformation f∗ to the transformation f is
an elementary transformation of the first type η∗ ⇁ ξ∗, transforming η∗ into ξ∗. Ferrers diagrams
stated in Fig. 3 can also be considered as Ferrers diagrams of the corresponding conjugate partitions,
only then they need to be considered lying “on their side”, i. e., the components should be read in
rows.

Similarly, if f is an elementary transformation of the second type ξ ⇁ η (box removal) that
transforms ξ into η, then the inverse transformation f∗ of f is a box insertion that transforms η∗
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⇁

↽∗

Figure 3. The elementary transformathion of the first type and the inverse transformation.

into ξ∗, i. e., η∗ ⇁ ξ∗ (it is convenient to use the same symbol ⇁ to indicate box insertion).
We now define the head and tail of the partition λ = (λ1, λ2, . . . ), the rank of which is equal

to r.
As the head hd (λ), we take the partition that is obtained from the partition λ by reducing the

first r components by the same number r−1 and zeroing all components with numbers r+1, r+2, . . .
(for an example, see the diagram in Fig. 4).

As the tail tl (λ) we take a partition for which the Ferrers diagram of the conjugate partition
is obtained from the Ferrers diagram of the partition λ by deleting the first r columns, i. e. the
Ferrers diagram of the partition tl (λ)∗ is located to the right of the Durfey square (see Fig. 4).

hd(λ) = (3, 2, 1, 1)

tl(λ) = (4, 2, 1)

hd(λ)

tl(λ)∗

Figure 4. The head and the tail of the partition (6, 5, 4, 4, 3, 2, 1, 1).

The arrows in Fig. 4 indicate the directions in which the components of the partitions hd(λ)
and tl(λ) are read. It is clear that the upper row of the Durfey square enters the Ferrers diagram
of the partition hd(λ), the partition hd(λ) is “read” by column from left to right, and the length of
the partition hd(λ) is equal to r. The partition tl(λ) is “read” by row from bottom to top and the
length of the partition tl(λ)∗ is equal to ℓ(λ) − r(λ), and the length of the partition tl(λ) is equal
to tl(λ)∗1 — the value the first component of the partition tl(λ)∗, hence ℓ(tl(λ)) ≤ r(λ).

For n-sequences, the concepts of rank, head, and tail are introduced in exactly the same way.
In order to consider the ht-criterion for partitions to be graphic, we present two auxiliary

lemmas.

Lemma 1. Let λ = (λ1, λ2, . . . , λn) be an n-sequence. Then for any k = 1, . . . , r = r(λ), the
condition

k∑

i=1

λi ≤ k(k − 1) +

n∑

i=k+1

min{k, λi} (2.1)

is equivalent to the condition
k∑

i=1

hd (λ)i ≤
k∑

i=1

tl (λ)i,

where hd (λ)i and tl (λ)i are the i-components, respectively, of the head and tail of the partition λ
for any i = 1, . . . , k.
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P r o o f. Note first that for k = 1, . . . , r the sum

n∑

i=k+1

min{k, λi}

is equal to the number of boxes of the Ferrers diagram of the sequence λ located in the strip
standing at the intersection of rows with numbers from 1 to k and columns with numbers from
k + 1 to n (see the shaded area in Fig. 5).

hd(λ)

tl(λ)

k r − k

r − 1
k

Figure 5. The Ferrers diagram of the sequence.

Let us rewrite inequality (2.1) in the equivalent form

k∑

i=1

λi − k(k − 1)− k(r − k) ≤
n∑

i=k+1

min{k, λi} − k(r − k),

after transformations, the resulting inequality is equivalent to the inequality

k∑

i=1

λi − k(r − 1) ≤
n∑

i=k+1

min{k, λi} − k(r − k).

It is plain to see that

k∑

i=1

λi − k(r − 1) =

k∑

i=1

hd (λ)i and

n∑

i=k+1

min{k, λi} − k(r − k) =

k∑

i=1

tl (λ)i.

Therefore, inequality (2.1) is equivalent to the inequality

k∑

i=1

hd (λ)i ≤
k∑

i=1

tl (λ)i.

�

Lemma 2. Let λ = (λ1, λ2, . . . , λn) be an n-sequence and hd (λ) ≤ tl (λ). Then λ1 ≤ n− 1.
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P r o o f. Let r = r(λ). The condition hd (λ) ≤ tl (λ) implies hd (λ)1 ≤ tl (λ)1, so

λ1 − (r − 1) ≤ ℓ(λ)− r.

Therefore,
λ1 ≤ ℓ(λ)− 1 ≤ n− 1.

�

Since ℓ(hd (λ)) = r(λ) and ℓ(tl (λ)) ≤ r(λ) for any partition λ, due to Lemmas 1 and 2 the
statement of the Erdös–Gallay theorem is equivalent to the following statement.

Theorem 2. Let λ = (λ1, λ2, . . . ) be an arbitrary nonzero partition of even weight. Then λ is

a graphic partition if and only if

hd (λ) ≤ tl (λ).

The criterion for a partition to be graphic specified in Theorem 2 will be called the ht-criterion.

3. About the Gale–Ryser theorem

Our next main goal is to prove Theorem 2 without using the Erdös–Gallai theorem and other
criteria for graphic partitions. To do this, we first give a direct, transparent proof of the well-known
Gale–Ryser theorem on the representation of a pair of partitions by a bipartite graph, in which we
will not use any of the criteria for the graphicity of partitions.

For a bipartite graph H = (V1, E, V2), where V1 and V2 are its parts, we denote by dptH(V1)
and dptH(V2) the degree partitions corresponding to its parts, i. e. partitions composed of the
degrees of the vertices of the corresponding parts in non-increasing order and added with zeros.

Theorem 3 [16, Gale D., Ryser H.J. (1957)]. Let α = (α1, α2, . . . ) and β = (β1, β2, . . . ) be

nonzero partitions. Then there is a bipartite graph H = (V1, E, V2) such that dptH(V1) = α and

dptH(V2) = β if and only if sum(α) = sum(β) and α ≤ β∗.

We need the following

Lemma 3. Let G = (V,E) be a graph, V = {v1, v2, . . . , vn} and λ = (λ1, λ2, . . . ) is a degree

partition corresponding to the graph G such that λi = deg(vi) for any i = 1, . . . , ℓ(λ) and λj = 0
for any j > ℓ(λ). Then hd (λ) ≤ tl(λ).

P r o o f. By virtue of Lemma 1, it suffices to check the validity of inequality (2.1) for any
k = 1, . . . , r = r(λ). For k = 1, . . . , r, we estimate the sum

k∑

i=1

λi.

Let us first estimate the part of this sum contributed by edges from G({v1, v2, . . . , vk}). Ob-
viously, degG(vi) ≤ k − 1 for any i = 1, . . . , k. Therefore, this part of the sum does not exceed
k(k − 1).

Let us now estimate the contribution to the summade by edges of the form vjvi, where 1 ≤ j ≤ k
and k+1 ≤ i ≤ n. For a given i such that k+1 ≤ i ≤ n, the number of such edges does not exceed
k and does not exceed λi, i. e., does not exceed min{k, λi}.
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Consequently, inequality (2.1) is satisfied for any k = 1, . . . , r = r(λ), and therefore, by virtue
of Lemma 1, the inequality hd (λ) ≤ tl (λ) also holds. �

A graph G is said to be splitable if the set of its vertices can be represented as a disjoint union
of a clique V1 and a coclique V2 (i. e., V1 ∩ V2 = ∅, V1 generates a complete subgraph K(V1), and
V2 generates a zero subgraph O(V2) with an empty set of edges). For such a graph G, the set of all
edges can be represented as a disjoint union of the set of all edges of the complete subgraph K(V1)
and the set E of all its edges connecting vertices from V1 with vertices from V2. Therefore, it is
convenient to represent a splitable graph G in the form G = (K(V1), E,O(V2)). We will simply
write G = (K(V1), E, V2).

The following lemma proves the necessity of the conditions in the Gale–Ryser theorem.

Lemma 4. Let H = (V1, E, V2) be an arbitrary bipartite graph and dpt (V1) = α, dpt (V2) = β
be the degree partitions of its parts. Then

1) sum(α) = sum(β) = m, where m = |E|;

2) α ≤ β∗.

(It should be noted that the condition α ≤ β∗ is equivalent to the condition β ≤ α∗, since the
transformation γ → γ∗ is an involutive antiautomorphism of the lattice IPL(m).)

P r o o f. 1) It is obvious.
2) Without loss of generality, we will assume that H does not have any isolated vertices. Let

V1 = {u1, u2, . . . , up} and V2 = {v1, v2, . . . , vq}, where αi = deg(ui) for any i = 1, . . . , p and
βj = deg(vj) for any j = 1, . . . , q.

Let us embed the graph H into a splitable graph H+ = (K(V1), E, V2) by adding to H all
possible edges connecting pairs of different vertices from V1. In the graph H+, the set V1 is a clique
and the set V2 is a coclique. Then

α1 + (p− 1) ≥ α2 + (p− 1) ≥ · · · ≥ αp + (p− 1) ≥ p ≥ β1 ≥ β2 ≥ · · · ≥ βq,

i. e.
dpt (H+) = (α1 + (p− 1), α2 + (p− 1), . . . , αp + (p− 1), β1, β2, . . . , βq).

Let dpt (H+) = λ. Then

r(λ) = p, hd (λ) = (α1, α2, . . . , αp) = α, tl ∗(λ) = (β1, β2, . . . , βq) = β.

By virtue of Lemma 3, we have hd (λ) ≤ tl (λ). Since tl (λ) = β∗, we obtain α ≤ β∗. �

To prove the sufficiency of the Gale–Ryser theorem conditions, we need additional definitions
and two lemmas.

Let (x, v, y) be a triple of different vertices of the graph G = (V,E) such that xv ∈ E and
vy /∈ E. We call such a triple 1) lifting if deg(x) ≤ deg(y), 2) lowering if deg(x) ≥ 2 + deg(y), and
3) preserving if deg(x) = 1 + deg(y).

A transformation ϕ of a graph G such that ϕ(G) = G − xv + vy, i. e., first the edge xv is
removed from G and then the edge vy is added (see Fig. 6), is called the rotation of the edge (in
the graph G around vertex v) corresponding to the triple (x, v, y).

The rotation of an edge in the graph ϕ(G) corresponding to the triple (y, v, x) is called the
reverse rotation of an edge for the rotation ϕ.
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x

v

y

→
x

v

y

Figure 6. The rotation of an edge.

The rotation of an edge in G corresponding to a triple (x, v, y) is called 1) lifting if the triple
(x, v, y) is lifting, 2) lowering if the triple (x, v, y) is lowering, and 3) preserving if the triple (x, v, y)
is preserving.

It should be noted that the cases when deg(x) = 1 or deg(y) = 0 will be considered admissible,
i. e. after the rotation of an edge, an isolated vertex may appear or the rotation of an edge will
occur in the graph G with the addition of a new isolated vertex.

It should be noted that the rotation of an edge in the graph G is lowering if and only if the
reverse rotation of the edge is lifting.

If the graph G2 obtained from the graph G1 by rotating an edge, then we write G1 → G2.
Let dpt (G) be the degree partition corresponding to the graph G and ϕ be the rotation of the

edge in the graph G corresponding to the triple (x, v, y), where xv ∈ E and vy /∈ E. Then the
following assertions are correct.

1. If ϕ is a lifting rotation of an edge, then dpt (G) < dpt (ϕ(G)), moreover, dpt (G) is obtained
from dpt (ϕ(G)) with one elementary transformation of the first type, and G is obtained from
ϕ(G) with the reverse (lowering) rotation of an edge.

2. If ϕ is the lowering rotation of an edge, then dpt (G) > dpt (ϕ(G)), moreover, dpt (ϕ(G)) is
obtained from dpt (G) with one elementary transformation of the first type, and G is obtained
from ϕ(G) with the reverse (lifting) rotation of an edge.

3. If ϕ is the preserving rotation of an edge, then dpt (G) = dpt (ϕ(G)), and G is obtained from
ϕ(G) with the reverse (preserving) rotation of an edge.

Let (x, v, y) be a triple of distinct vertices of a bipartite graph H = (V1, E, V2) such that xv ∈ E
and vy /∈ E. If x, y ∈ V1 and v ∈ V2, then we call the triple V1-triple, but if x, y ∈ V2 and v ∈ V1,
then the triple will be called a V2-triple. We will say that V1-triples correspond to V1-rotations of

edges, and V2-triples correspond to V2-rotations of edges.

Lemma 5. 1. Let H1 = (V1, E1, V2) and H2 = (V1, E2, V2) be bipartite graphs, and the

graph H2 is obtained from the graph H1 by the lowering V1-rotation of the edge H1 → H2.

Then dptH2
(V1) is obtained from dptH1

(V1) with an elementary transformation of the first

type, i. e., dptH1
(V1) ⇁ dptH2

(V1), and dptH2
(V2) = dptH1

(V2).

2. Let H1 = (V1, E1, V2) be a bipartite graph and the partition µ be obtained from the partition

dptH1
(V1) with an elementary transformation of the first type, i. e., dptH2

(V1) ⇁ µ. Then

there exists a bipartite graph H2 = (V1, E2, V2) that is obtained from the graph H1 by means

of a lowering V1-rotation of an edge H1 → H2 and for which µ = dptH2
(V2) and dptH2

(V2) =
dptH1

(V2).

P r o o f. Assertion 1 is obvious. Let us prove the assertion 2. Let dptH1
(V1) =

(λ1, . . . , λi, . . . , λj , . . . , λt), where λi ≥ 2 + λj , 1 ≤ i < j ≤ t and µ = (λ1, . . . , λi − 1, . . . , λj +
1, . . . , λt). Let for vertices x, y ∈ V1, degH1

(x) = λi and degH1
(y) = λj . Since λi > λj, there

is a vertex v ∈ V2 such that xv ∈ E1 and vy /∈ E1. Let ϕ be a lowering V1-rotation of an
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edge corresponding to the triple (x, v, y) in the graph H1. Then µ = dptH2
(V1) in the graph

H2 = ϕ(H1). The equality dptH2
(V2) = dptH1

(V2) is obvious, since the lowering V1-rotation of an
edge does not change the degrees of vertices in V2. �

The following lemma guarantees the sufficiency of the Gale–Ryser theorem conditions.

Lemma 6. Let α = (α1, α2, . . . ) and β = (β1, β2, . . . ) be nonzero partitions such that

sum (α) = sum(β) and α ≤ β∗. Then there is a bipartite graph H = (V1, E, V2) such that

dpt (V1) = α and dpt (V2) = β.

P r o o f. Let ℓ(α) = p and ℓ(β) = q. Take two sets V1 and V2 such that |V1| = |V2| =
m, where m = sum (α) = sum(β). It is clear that p, q ≤ m. Let V1 = {u1, u2, . . . , um} and
V2 = {v1, v2, . . . , vm}.

First, we construct a bipartite graph H0 = (V1, E0, V2). To do this, it suffices to specify the
neighborhoods of its vertices v1, v2, . . . , vm. Let

NH0
(v1) = {u1, u2, . . . , uβ1

}, NH0
(v2) = {u1, u2, . . . , uβ2

}, . . . , NH0
(vq) = {u1, u2, . . . , uβq

}

and NH0
(vi) = ∅ if i > q (for such i, βi = 0). Neighborhoods of vertices v1, v2, . . . , vm form a

system of nested subsets in V1 and uniquely define the graph H0.
Let us consider an m ×m bipartite adjacency matrix A of the bipartite graph H0, where the

columns of the matrix A correspond to the vertices v1, v2, . . . , vm and are numbered from left to
right, and the rows correspond to the vertices u1, u2, . . . , um and are numbered from bottom to
top. In matrix A, boxes containing 1’s are concentrated in the lower left corner and form a Ferrers
diagram for β = (β1, β2, . . . ), and by reading 1’s row by row, we get a Ferrers diagram for β∗, i. e.
dptH0

(V1) = β∗ and dptH0
(V2) = β.

Example 1. Let β = (3, 2, 1, 1, 0, . . . ). Then β∗ = (4, 2, 1, 0, . . . ) and m = 7. Then the matrix
A has the following form:

u7 0 0 0 0 0 0 0

u6 0 0 0 0 0 0 0

u5 0 0 0 0 0 0 0

u4 0 0 0 0 0 0 0

u3 1 0 0 0 0 0 0

u2 1 1 0 0 0 0 0

u1 1 1 1 1 0 0 0

v1 v2 v3 v4 v5 v6 v7

Since β∗ ≥ α and the partitions β∗ and α have the same weight m, in IPL(m) there is a
sequence of elementary transformations of the first type such that

β∗ = ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(t) = α.

According to this sequence, by applying t times the assertion 2 of Lemma 5, we obtain, with
lowering V1-rotations of edges, a sequence of bipartite graphs:

H0 = (V1, E0, V2) → H1 = (V1, E1, V2) → · · · → Ht = (V1, Et, V2)

such that dptHi
(V1) = ξ(i) and dptHi

(V2) = β for any i = 0, 1, . . . , t. The graph Ht = (V1, Et, V2)
is the sought one, since dptHt

(V1) = ξ(t) = α and dptHt
(V2) = β. �

Gale–Ryser theorem proceeds from Lemmas 4 and 6.
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4. Proof of Theorem 2 using the Gale–Ryser theorem

Now our goal is to prove Theorem 2 without using the Erdös–Gallai theorem and other criteria
for partitions to be graphic. In addition, along the way, we will prove one of the main results of
the paper, Theorem 5, on the existence for any nonzero partition λ of a realization that is obtained
from some splitable graph with a certain sequence of lowering rotations of edges.

For this we need two auxiliary lemmas.

Lemma 7. 1. Let H1 = (V1, E1) and H2 = (V2, E2) be graphs and let the graph H2 be

obtained from the graph H1 with the lowering rotation of an edge H1 → H2. Then dpt (H2)
is obtained from dpt(H1) with an elementary transformation of the first type dpt (H1) ⇁
dpt(H2).

2. Let H1 = (V1, E1) be a graph and let the partition µ be obtained from the partition dpt (H1)
with an elementary transformation of the first type dpt (H1) ⇁ µ. Then there exists a graph

H2 = (V2, E2) which is obtained from the graph H1 by means of a lowering rotation of the

edge H1 → H2 and for which µ = dpt (H2) is satisfied.

P r o o f. Assertion 1 is obvious. Assertion 2 is proved similarly to assertion 2 of Lemma 5. �

Lemma 8. For any partition λ of even weight, the number C = sum tl (λ)−sumhd (λ) is even.

P r o o f. Since
sumλ = sumhd (λ) + r(r − 1) + sumtl (λ),

where r = r(λ), sum tl (λ) + sumhd (λ) is even. It follows that the number sum tl (λ) − sumhd (λ)
is also even. �

The necessity of the condition of Theorem 2 is proved in Lemma 3.
Let us now give a proof of the sufficiency of the condition of Theorem 2, in which the Erdös–

Gallai criterion and other criteria for the graphicity of partitions are not used, but the Gale–Ryser
theorem is used.

Let λ = (λ1, λ2, . . . ) be an arbitrary nonzero partition of even weight, hd (λ) ≤ tl (λ). Our
goal is to prove the existence of a realization for the partition λ and to reveal a special kind of the
realization that we obtain.

Let r = r(λ) be the rank of the partition λ. It should be noted that ℓ(hd (λ)) = r and
ℓ(tl (λ)) = (tl ∗(λ))1 ≤ r, where (tl ∗(λ))1 is the first component of the partition tl ∗(λ).

Since hd (λ) ≤ tl (λ), there is a sequence of elementary transformations from tl (λ) to hd (λ),
and both types of elementary transformations are admissible. Let us apply the algorithm [8] for
constructing the shortest sequence of this type. For this, we take the component wise difference of
the partitions

tl (λ)− hd (λ) = (tl (λ)1 − hd (λ)1, tl (λ)2 − hd (λ)2, . . . , tl (λ)r − hd (λ)r, 0, . . . ).

Example 2. Assuming that λ = (8, 7, 7, 7, 6, 6, 5, 3, 3, 2, 2). Then

r(λ) = 6, hd (λ) = (3, 2, 2, 2, 1, 1), tl ∗(λ) = (5, 3, 3, 2, 2),

C = sumtl ∗(λ) − sumhd (λ) = 15 − 11 = 4, tl (λ) = (5, 5, 3, 1, 1).
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hd(λ)

tl(λ)

Figure 7. The head and the tail of the partition.

It should be noted that the conditions of Theorem 2 are satisfied since sumλ = 56 and

hd (λ) = (3, 2, 2, 2, 1, 1) ≤ (5, 5, 3, 1, 1) = tl (λ),

since the prefix sums of the sequence (3, 2, 2, 2, 1, 1) do not exceed the corresponding prefix sums of
the sequence (5, 5, 3, 1, 1, 0). Take the component-wise difference of the partitions tl (λ) and hd (λ):

tl (λ) = (5, 5, 3, 1, 1, 0)
hd (λ) = (3, 2, 2, 2, 1, 1)

tl (λ)− hd (λ) = (+2 +3 +1 –1 0 –1)

The partition tl (λ) over the partition hd (λ) in components with numbers 1, 2, and 3 has hills
(see [8]) of heights 2, 3, and 1, respectively, and in components with numbers 4 and 6, it has pits
(see [8]), each of which has depth 1. It should be noted that the sum of the heights of all hills
is C plus the sum of the depths of all pits [8]. A pit is called admissible if adding 1 to it does
not change the non-increasing order for the resulting partition (preserves the stepped form of the
Ferrers diagram). Here the 6-pit (in the component with number 6), like the 4-pit, is admissible
for the partition tl (λ). According to [8], if there is a pit, then there should be an admissible pit.

The algorithm for constructing some shortest sequence of elementary transformations from
tl (λ) to hd (λ) [8] consists in sequentially moving a box into an admissible pit from the hill closest
to it on the left or in removal the upper box from the last hill; be removal exactly C boxes. The
admissible pits in the partition to be transformed will be chosen from right to left. The length of
such a sequence is equal to the sum of the heights of all the hills of the partition tl (λ) over the
partition hd (λ). Let us build such a sequence in our example. First we remove two boxes, then we
fill two pits, and finally we remove two more boxes.

tl (λ) = (5, 5, 3, 1, 1, 0)4; (5, 5, 2, 1, 1, 0)3;
+2, +3, +1, –1, 0, –1 +2, +3, 0, –1, 0, –1

(5, 4, 2, 1, 1, 0)2; (5, 3, 2, 1, 1, 1)2; (5, 2, 2, 2, 1, 1)2;
+2, +2, 0, –1, 0, –1 +2, +1, 0, –1, 0, 0 +2, 0, 0, 0, 0, 0

(4, 2, 2, 2, 1, 1)1; (3, 2, 2, 2, 1, 1)0 = hd (λ)
+1, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0

In this context, underlining at each step shows the choice of a hill for the subsequent elementary
transformation of the second type or the choice of a hill and an admissible pit for the subsequent
elementary transformation of the first type. In addition, at the top right of the current partition,
we state the number of boxes that still need to be removed.
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Since the partition λ has an even weight, by virtue of Lemma 8 the number C is even. Assuming
that s = 0.5C. With the component-by-component difference of the partitions tl (λ) and hd (λ), by
using the considered algorithm [8], we construct the shortest sequence of elementary transformations
from tl (λ) to hd (λ), and at the beginning we remove s boxes and at the end we remove s more
boxes:

tl (λ) = η(0) ⇁ η(1) ⇁ · · · ⇁ η(s) = τ = τ(0) ⇁ · · · ⇁ τ(t) = ξ

= ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(s) = hd (λ).
(4.2)

Since ℓ(tl (λ)) ≤ r and ℓ(hd (λ)) = r, in components with numbers greater than r in the
difference tl (λ)− hd (λ) all components are equal to 0, i. e. among them there are no hills or pits.
Obviously, ℓ(ξ) ≤ r is true, since in (4.2) when the pits are filled and the hills are removed, the
lengths of the partitions cannot become larger than r. Hence, due to the equality ℓ(hd (λ)) = r
and the fact that in the sequence of transformations

ξ = ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(s) = hd (λ)

only boxes are removed, we get the equality ℓ(ξ) = r, i. e. for ξ = (ξ1, ξ2, . . . , ξr) ξr ≥ 1.
Let us also consider a sequence of inverse transformations in reverse order from τ∗ to tl ∗(λ),

which are box insertions:

τ∗ = η∗(s) ⇁ η∗(s−1) ⇁ · · · ⇁ η∗(0) = tl ∗(λ).

Since in the sequence of transformations from τ∗ to tl ∗(λ) only block insertions occur and in the
partition tl ∗(λ) all components do not exceed r, in this sequence all components of all partitions
do not exceed r and, in particular, (τ∗)1 ≤ r.

Let us now take a pair of partitions: α = ξ and β = τ∗. Then

sumα = sum τ = sum τ∗ = sumβ,

since the transition from τ to ξ in (4.2) does not remove the boxes, and by virtue of (4.2)
α = ξ ≤ τ = β∗ also holds. Therefore, by virtue of the Gale–Ryser theorem, there is a bipar-
tite graph H = (V1, R, V2) such that dptH(V1) = α and dptH(V2) = β. We add V1 to a complete
subgraph by adding 1/2 · r(r − 1) edges. We obtain a splitable graph H+ = (K(V1), R, V2).

Since r ≥ (τ∗)1 = β1 and the partition ξ = (ξ1, ξ2, . . . , ξr) satisfies ξr ≥ 1, we have

ξ1 + (r − 1) ≥ · · · ≥ ξr + (r − 1) ≥ r ≥ β1 ≥ β2 ≥ . . .

Therefore, the degree partition corresponding to the graph H+ has the form:

dpt(H+) = (ξ1 + (r − 1), . . . , ξr + (r − 1), β1, β2, . . . , βℓ(β), 0, . . . ).

Let σ(0) = dpt(H+). Since β = τ∗,

σ(0) = dpt(H+) = (ξ1 + (r − 1), . . . ξr + (r − 1), (τ∗)1, (τ
∗)2, . . . , (τ

∗)ℓ(τ∗), 0, . . . ).

It is clear that r(σ(0)) = r, hd (σ(0)) = ξ = ξ(0) and tl ∗(σ(0)) = τ∗ = η∗(s).

It should be noted that for s = 0, due to (4.2) we have

hd (σ(0)) = ξ = hd (λ), tl ∗(σ(0)) = τ∗ = tl ∗(λ)



42 Vitaly A. Baransky and Tatiana A. Senchonok

σ(0) =

ξ(0)

η∗(s)

⇁ σ(1) =

ξ(1)

η∗(s−1)

Figure 8. The elementary transformation of the first type obtained by removing and inserting of the box.

and r(dpt(H+)) = r, so dpt(H+) = λ, i. e. the splitable graphH+ is a realization of the partition λ.

Thus, in the case s = 0, the existence of a splitable realization for λ has been proved.

In what follows, we will assume that s > 0.

Starting from the partition σ(0) = dpt(H+), we sequentially perform s elementary transforma-
tions of the first type in the partitions.

At step 1), we remove a box from the head of the partition σ(0) by removing the box ξ(0) ⇁ ξ(1)
and insert this box into the partition η∗(s) by inserting the box η∗(s) ⇁ η∗(s−1).

As a result, we get a partition σ(1) such that r(σ(1)) = r, hd (σ(1)) = ξ(1) and tl ∗(σ(1)) = η∗(s−1),

and η(1) is obtained from σ(0) with an elementary transformation of the first type σ(0) ⇁ σ(1) (see
Fig. 8).

At step 2) remove a box from the head of the current partition σ(1) by removing the box
ξ(1) ⇁ ξ(2) and insert this box into the partition η∗(s−1) by inserting the box η∗(s−1) ⇁ η∗(s−2). As a

result, we get a partition σ(2) such that r(σ(2)) = r, hd (σ(2)) = ξ(2) and tl ∗(σ(2)) = η∗(s−2), and σ(2)
is obtained from σ(1) with an elementary transformation of the first type σ(1) ⇁ σ(2).

We perform such steps s times.

At step s) we obtain a partition σ(s) such that hd (σ(s)) = ξ(s) = hd (λ), tl ∗(σ(s)) = η∗(0) = tl ∗(λ)

and r(σ(s)) = r(λ). Therefore σ(s) = λ and

dpt(H+) = σ(0) ⇁ σ(1) ⇁ σ(2) ⇁ · · · ⇁ σ(s) = λ.

Now, starting from the graph H+, we apply Lemma 7 s times to this sequence, and we obtain
graph G such that dpt(G) = λ.

Thus, in the case s > 0, the sought realization of the partition λ is obtained from the splitable
graph H+ with the s lowering rotations of edges.

The theorem has been proved. �

It is plain to see that this proof also shows the validity of the two assertions as follows.

Theorem 4. Let λ be a graphic partition. Then λ has a realization that is a splitable graph if

and only if sumhd (λ) = sumtl (λ).

Theorem 5. Let λ be a graphic partition and

s =
1

2
[sum tl ∗(λ) − sumhd (λ)].

Then the partition λ has a realization G that is obtained from some splitable graph H by s successive

lowering rotations and, conversely, H is obtained from G by s successive lifting rotations of edges.
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Figure 9. All realizations of the partition.

Example 3. Assuming that λ = (4, 3, 2, 2, 2, 1). Here sumλ = 14, r = 2, hd (λ) = (3, 2) and
tl (λ)∗ = (2, 2, 2, 1), therefore tl (λ) = (4, 3), sum tl (λ) − sumhd (λ) = 7 − 5 = 2 and s = 1. To
get hd (λ) from tl (λ) we need to remove two boxes, hence, hd (λ) ≤ tl (λ).

Up to isomorphism and isolated vertices, there are 4 realization of the partition λ (see Fig. 9).
According to the proof of Theorem 2, we have

tl (λ) = (4, 3) ⇁ (4, 2) = τ = ξ ⇁ (3, 2) = hd (λ).

Therefore, α = ξ = (4, 2) and β = τ∗ = (2, 2, 1, 1). We sequentially construct a bipartite graph H, a
splitable graphH+, two vertices of which generate a clique and six vertices generate a coclique, then
we perform one lowering rotation of an edge, we obtain the sought realization G of the partition
λ = (4, 3, 2, 2, 2, 1) (see Fig. 10). Graph G is shown in Fig. 9a.

2 2 1 1

4 2

→

2 2 1 1

5 3

→

2 2 2 1

4 3

Figure 10. The graph G obtaining.

It is easy to check that in this example, each realization of the partition λ = (4, 3, 2, 2, 2, 1) can
be obtained from a suitable splitable graph with one lowering rotation of an edge.

At the end of this section, we present a brief review of related results previously obtained by
the authors.

It is worth reminding that any graphic partition has an even weight. The set of all graphic
partitions of fixed weight 2m is an order ideal of the lattice IPL(2m), i. e. it is closed under smaller
partitions. A graphic partition λ of weight 2m will be called a maximal graphic partition if it is
maximal in the set of all graphic partitions of the lattice IPL(2m).

The graph G is called a threshold one (see [16]) if its set of vertices can be represented as a
disjoint union of the clique V1 and coclique V2 (i. e. V1∪V2 = ∅, V1 generates the complete subgraph
K(V1) and V2 is the zero subgraph O(V2) in G), and the set of neighbourhoods in G of vertices from
V2 forms a chain of subsets of the set V1 with respect to the set-theoretic inclusion. It should be
noted that the cases V1 = ∅ or V2 = ∅ are allowed, i. e. the complete and zero graphs are threshold.
For the threshold graph G, the set of all edges can be represented as a disjoint union of the set of
all edges of the complete subgraph K(V1) and the set E of all its edges connecting vertices from
V1 with vertices from V2. Thus, the threshold graph can be represented as G = (K(V1), E,O(V2)).
We will simply write G = (K(V1), E, V2). A bipartite subgraph H = (V1, E, V2) will be called its
sandwich subgraph. In the trivial cases when V1 = ∅, or V2 = ∅, or V2 consists of isolated vertices,
the sandwich subgraph H is an empty subgraph in G.
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The following statements are true, which were proved in [6, 7].

1. An arbitrary partition λ is a maximal graphic partition if and only if hd (λ) = tl (λ).

2. A graph is threshold if and only if it does not contain any lifting triples of vertices.

3. The degree partition corresponding to the graph G is the maximum graphic partition if and
only if the graph G is threshold.

4. Any graph can be reduced to a threshold form with a finite sequence of lifting rotations of
edges.

5. For an arbitrary graphic partition λ, all of its realizations H, and only they are obtained
from the threshold realizations G of maximal graphic partitions µ such that µ ≥ λ and
sum(µ) = sum(λ) with the finite sequences of lowering edge rotations from G to H.

Assume that µ and λ are two arbitrary non-zero partitions and µ ≥ λ. The height (µ, λ)
of a partition µ over a partition λ is the number of transformations in the shortest sequence of
elementary transformations transforming µ into λ.

For a given graphic partition λ, a maximal graphic partition µ such that µ ≥ λ and
sum(µ) = sum(λ) is said to be closest in height to a partition λ if it has the minimum possi-
ble height over λ among all such partitions.

The following assertion was proved in [9].

Assume that λ be an arbitrary graphic partition and µ be the maximum graphic partition
closest to it in height. Then

1) either r(µ) = r(λ)− 1 and ℓ(tl(λ)) < r(λ), or r(µ) = r(λ);

2) height(µ, λ) = height(tl(λ),hd(λ)) −
1

2
[sum(tl(λ)) − sum(hd(λ))] =

1

2

∑r
i=1 |tl(λ)i − hd(λ)i|,

where r = r(λ).

An algorithm was found in [9] that constructs some maximum graphic partition µ closest to λ
in height such that r(µ) = r(λ). In the case when ℓ(tl(µ)) < r(µ), we also found an algorithm that
constructs some maximum graphic partition µ closest to λ in height such that r(µ) = r(λ)− 1.

Assuming that λ be an arbitrary non-zero graphic partition of weight 2m and there is maximal
graphic partitions µ such that µ ≥ λ and r(µ) = r, where r is some natural number. Then the set
of heads of all such maximal graphic partitions µ creates an interval in the lattice IPL(m− 1/2 ·
r(r− 1)). This result was obtained by our PhD-student V.V. Zuev (Ural Federal University). The
full version of this result will be published in the article being prepared.

5. Proof of the Gale–Ryser theorem with the ht-criterion

Let us now give another rather simple proof of the Gale–Ryser theorem, in which the ht-criterion
is used.

The necessity of the condition of the theorem is satisfied by virtue of Lemma 4.

Let us prove the sufficiency of the condition of the theorem. Let α = (α1, α2, . . . ) and
β = (β1, β2, β) be non-zero partitions such that sumα = sumβ and α ≤ β∗. Assume that
m = sumα = sumβ, i. e. α, β ∈ IPL(m), p = ℓ(α) and q = ℓ(β).

Since αp + (p− 1) ≥ p ≥ β1, the sequence as follows

λ = (α1 + (p− 1), . . . , αp + (p− 1), β1, β2, . . . , βq, 0, . . . )
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is a partition. Obviously, r(λ) = p and

hd (λ) = (α1, α2, . . . ) = α, tl∗(λ) = (β1, β2, . . . ) = β,

thus, tl (λ) = β∗.
It should be noted that

sumλ = sumhd (λ) + p(p− 1) + sum tl (λ) = sumα+ p(p− 1) + sumβ = 2m+ p(p− 1)

is even number and hd (λ) = α ≤ β∗ = tl (λ). Therefore, by virtue of the ht-criterion, there is a
graphH realizing the partition λ, i. e. a graph H such that dpt(H) = λ. It is clear that ℓ(λ) = p+q.
Without loss of generality, we assume that H has no isolated vertices and VH = {v1, v2, . . . , vp+q}.

Assume that V1 = {v1, v2, . . . , vp}, where degH vi = αi + (p − 1) for any i = 1, 2, . . . , p, and
V2 = {vp+1, vp+2, . . . , vp+q}, where degH vp+j = βj for any j = 1, 2, . . . , q.

Let us remove all edges in H that connect pairs of different vertices from V1. We obtain a
graph G. For each i = 1, 2, . . . , p, the degree αi of the vertex vi will decrease by no more than p−1
when passing from H to G, so degG vi = αi+ δi, where δi will hold in G, where δi is a non-negative
integer. Moreover, δi = 0 is satisfied if, when passing from H to G, the degree of the vertex vi
decreases by p− 1.

Case 1. Assume that the set V1 = {v1, v2, . . . , vp} is not a clique in H.
Then there are vertices vi from the set V1 such that δi > 0. Therefore,

p∑

i=1

degG vi =

p∑

i=1

αi +

p∑

i=1

δi > sumα = m.

Therefore, in the graph G there are more than m edges going from V1 to V2. Since sumβ is greater
than or equal to the number of such edges, we get the sumβ > m, which contradicts sumβ = m.

Therefore, this case is impossible.
Case 2. Let the set V1 = {v1, v2, . . . , vp} is a clique in H.
Then degG vi = αi for any i = 1, 2, . . . , p. Since sumα = m, the number of edges of the graph

G going from V1 to V2 is equal to m. By virtue of the equality sumβ = m, it follows that there are
no edges in the graph G that connect pairs of different vertices from V2. Therefore, V1 and V2 are
two cocliques in G.

Since dptG(V1) = α and dptG(V2) = β, the graph G is the sought bipartite graph with parts
V1 and V2.

The theorem has been proved. �

At the end of this section, we present a brief review of the results previously obtained by the
authors and similar in subject matter to the Gale–Ryser theorem.

We first give the necessary definitions.
We say that a bipartite graph H = (V1, E, V2) contains a bipartite 4-pseudocycle

x1, x2, x3, x4, x1, if x1, x3 ∈ V2; x2, x4 ∈ V1; x1x2 ∈ E; x2x3 /∈ E; x3x4 ∈ E; x4x1 /∈ E.
We call the bipartite graph H = (V1, E, V2) a bipartite-threshold graph [10] if it does not have

any lifting triples of both the first and second parts, i. e. such lifting triples (x, v, y), that x, y ∈ V1,
v ∈ V2, or x, y ∈ V2, v ∈ V1.

It should be reminded [7] that a graph is a threshold one if and only if it does not contain any
lifting triples of vertices. Therefore, bipartite-threshold graphs are analogues of threshold graphs
for the class of bipartite graphs.

In [10], the properties of bipartite-threshold graphs were studied. The following assertion is
true [10].

Let H = (V1, E, V2) be a bipartite graph. Then the following conditions are equivalent
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1. H is a sandwich subgraph of the threshold graph G = (K(V1), E, V2).

2. H is a sandwich subgraph of the threshold graph G = (K(V2), E, V1).

3. The neighborhoods in H of the vertices of each of the parts V1 and V2 are nested, i. e. they
form chains with respect to the set-theoretical inclusion.

4. Neighborhoods in H of the vertices of the part V1 are nested, i. e. it forms a chain with
respect to the set-theoretical inclusion.

5. Neighborhoods in H of the vertices of V2 are nested, i. e. it forms a chain with respect to the
set-theoretical inclusion.

6. H is a bipartite-threshold graph, i. e. it does not contain lifting V1-triples and lifting V2-
triples.

7. H does not contain lifting V1-triples.

8. H does not contain lifting V2-triples.

9. dptH(V2) = dptH(V1)
∗.

10. dptH(V1) = dptH(V2)
∗.

11. H has no bipartite 4-pseudocycles.

Assume that α and β be non-zero partitions such that sumα = sumβ = m and α ≤ β∗.
A bipartite graph H = (V1, E, V2) such that dptH(V1) = α and dptH(V2) = β will be called
a realization of a pair of partitions (α, β). The class of all such bipartite graphs is denoted by
BG (α, β) (the family of bipartite graphs corresponding to the pair (α, β)).

For an arbitrary partition γ, we denote by btg (γ, γ∗) a bipartite threshold graph with parts
V1 and V2 without any isolated vertices such that dptG(V1) = γ and dptG(V2) = γ∗. It should be
noted that this graph is unique up to isomorphism (see [12]).

Any bipartite graph H = (V1, E, V2) from the family of graphs BG (α, β) can be reduced with
finite sequences of bipartite lifting rotations of edges to bipartite threshold graphs, each of which,
up to isomorphism and isolated vertices, has the form btg (γ, γ∗) for a suitable partition γ, and the
graph H = (V1, E, V2) is obtained from such graphs btg (γ, γ∗) with reverse sequences of bipartite
lowering edge rotations.

We denote by BTG↑ (α, β) the family of all bipartite threshold graphs that can be obtained from
the graphs of the family BG (α, β) with bipartite lifting rotations (the family of bipartite threshold

graphs over the pair (α, β)).

Let a bipartite graph H = (V1, E2, V2) be obtained from a bipartite graph G = (V1, E1, V2) with
a finite sequence of bipartite lifting edge rotations. The least number of bipartite lifting rotations
of edges in the sequence taking G to H is denoted by updist (G,H) and is called the upper distance
from G to H.

The following two theorems are valid [12].

1. The family of bipartite threshold graphs BTG↑ (α, β) up to isomorphisms and isolated vertices
consists of graphs of the form btg (γ, γ∗), where α ≤ γ ≤ β∗ (compare with the Zuev theorem
about the interval of heads of maximal graphic partitions over the given partition given at
the end of Section 4).
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2. Let the bipartite threshold graph H = (V1, E2, V2) = btg (γ, γ∗) ∈ BTG↑ (α, β) be obtained
from the graphG = (V1, E1, V2) ∈ BG(α, β) with a finite sequence of bipartite lifting rotations
of edges. Then

updist (G,H) ≥ height (β∗, α) = height (α∗, β).

This estimate is achieved on the graphs btg (β∗, β) and btg (α,α∗), i. e. for γ = β∗ and for γ = α.

It is clear that any bipartite graph is reduced by successive rotations of edges, each of which
corresponds to a lifting triple of only the first part, to a bipartite-threshold graph.

Assume that the bipartite graph H2 = (V1, E2, V2) can be obtained from the graph
H1 = (V1, E1, V2) with a finite sequence of V1-rotations of the edges. Let V1-dist (H1,H2) denote
the smallest number of V1-rotations of edges in the sequence that maps H1 to H2 and call it as the
V1-distance from H1 to H2. In [11], with the Hungarian algorithm, a polynomial algorithm was
constructed that transforms an arbitrary bipartite graph H = (V1, E, V2) into a bipartite-threshold
graph G with a finite sequence of the smallest possible length consisting of V1-rotations of edges,
i. e. the length equal to V1-dist (H,G).

In conclusion we make the following important remark. Let λ be an arbitrary nonzero partition.
It corresponds to two partitions α = hd (λ) and β = tl (λ)∗. According to the ht-criterion, a
partition λ is graphic if and only if its sum is even and α ≤ β∗. It is clear that the ht-criterion is
essentially an analog of the Gale–Reiser criterion when passing from the class of bipartite graphs
to the class of all graphs. There are many facts indicating a deep analogy between the properties
of degree partitions in the class of all bipartite graphs and in the class of all graphs.
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Abstract: In this paper, we study some basic properties of bicomplex numbers. We introduce two different
types of partial order relations on bicomplex numbers, discuss bicomplex valued metric spaces with respect to
two different partial orders, and compare them. We also define a hyperbolic valued metric space, the density
of natural numbers, the statistical convergence, and the statistical Cauchy property of a sequence of bicomplex
numbers and investigate some properties in a bicomplex metric space and prove that a bicomplex metric space
is complete if and only if two complex metric spaces are complete.

Keywords: Partial order, Bicomplex valued metric space, Statistical convergence.

1. Introduction

The concept of statistical convergence for real numbers was introduced by Fast [6], Buck [2],
and Schoenberg [12] independently. Later, the concept was studied and linked with summability
theory by Salat [11], Fridy [7], Tripathy [17, 19], Rath and Tripathy [8], Tripathy and Sen [18],
Tripathy and Nath [16], and many others.

The concept of bicomplex numbers has been investigated from different aspects by Segre [13],
Wagh [20], Srivastava and Srivastava [15], Sager and Sager [10], Rochon and Shapiro [9],
Beg et al. [3], and Singh [14]. In this paper, we study different types of partial order relations
on bicomplex numbers and discuss the concept of statistical convergence in bicomplex valued met-
ric spaces.

Das et al. [5] and many other researchers discussed the statistical convergence in a metric
space. In this paper, we investigate statistically convergent and statistically Cauchysequences in a
bicomplex valued metric space.

In what follows, C0, C1, and C2 denote the set of real, complex, and bicomplex numbers,
respectively.

2. Definitions and preliminaries

2.1. Bicomplex numbers

The concept of bicomplex numbers was introduced by Segre [13]. A bicomplex number is defined
as

ξ = x1 + i1x2 + i2x3 + i1i2x4,

where x1, x2, x3, x4 ∈ C0 and the independent units i1 and i2 are such that i21 = i22 = −1 and
i1i2 = i2i1. The set of bicomplex numbers C2 is defined as

C2 =
{

ξ : ξ = x1 + i1x2 + i2x3 + i1i2x4, x1, x2, x3, x4 ∈ C0

}

,

https://doi.org/10.15826/umj.2023.1.004
mailto:berasubhajit0@gmail.com
mailto:tripathybc@gmail.com
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i.e.,

C2 =
{

ξ : ξ = z1 + i2z2, z1, z2 ∈ C1

}

.

There are four idempotent elements in C2, they are 0, 1, e1 = (1 + i1i2)/2, and e2 = (1− i1i2)/2,
two of which, e1 and e2, are nontrivial such that e1 + e2 = 1 and e1e2 = 0.

Every bicomplex number ξ = z1 + i2z2 can be uniquely expressed as the combination of e1
and e2; namely,

ξ = z1 + i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2 = µ1e1 + µ2e2,

where µ1 = (z1 − i1z2) and µ2 = (z1 + i1z2).

A bicomplex number ξ = x1 + i1x2 + i2x3 + i1i2x4 is said to be a hyperbolic number if x2 = 0
and x3 = 0. The set of hyperbolic numbers is denoted by H.

The Euclidean norm ‖.‖ on C2 is defined as

‖ξ‖C2
=

√

x21 + x22 + x23 + x24 =
√

|z1|2 + |z2|2 =
√

|µ1|2 + |µ2|2
2

,

where

ξ = x1 + i1x2 + i2x3 + i1i2x4 = z1 + i2z2 = µ1e1 + µ2e2

and

µ1 = z1 − i1z2, µ2 = z1 + i1z2, e1 =
1 + i1i2

2
, e2 =

1− i1i2
2

.

With this norm, C2 is a Banach space, also C2 is a commutative algebra.

The product of two bicomplex numbers satisfies the inequality

‖ξ · η‖C2
≤

√
2‖ξ‖C2

· ‖η‖C2
.

Definition 1.

(i) The i1-conjugate of a bicomplex number ξ = z1 + i2z2 is denoted by ξ∗ and is defined as

ξ∗ = z̄1 + i2z̄2 for all z1, z2 ∈ C1; here z̄1 and z̄2 are the complex conjugates of z1 and z2,
respectively, and i21 = i22 = −1.

(ii) The i2-conjugate of a bicomplex number ξ = z1 + i2z2 is denoted by ξ̄ and is defined as

ξ̄ = z1 − i2z2 for all z1, z2 ∈ C1, where i21 = i22 = −1.

(iii) The i3-conjugate of a bicomplex number ξ = z1 + i2z2 is denoted by ξ
′

and is defined as

ξ
′

= z̄1 − i2z̄2 for all z1, z2 ∈ C1; here z̄1 and z̄2 are the complex conjugates of z1 and z2,
respectively, and i21 = i22 = −1.

2.2. Partial order relation

Definition 2 [1]. The i1-partial order relation �i1 on C1 is defined as follows: for z1, z2 ∈ C1,
z1 �i1 z2 if and only if Re (z1) ≤ Re (z2) and Im (z1) ≤ Im (z2).

Definition 3. Let ξ1, ξ2 ∈ C2, ξ1 = z1 + i2z2 and ξ2 = z∗1 + i2z
∗
2 . The i2-partial order relation

�i2 on C2 is defined as follows: ξ1 �i2 ξ2 if and only if z1 �i1 z∗1 and z2 �i1 z∗2 , i.e., ξ �i2 η if one

of the following conditions is satisfied :
(i) z1 = z∗1 and z2 = z∗2 ;
(ii) z1 ≺i1 z∗1 and z2 = z∗2 ;
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(iii) z1 = z∗1 and z2 ≺i1 z∗2 ;
(iv) z1 ≺i1 z∗1 and z2 ≺i1 z

∗
2 .

In particular, we write ξ �i2 η if ξ �i2 η and ξ 6= η, i.e., if one of (ii), (iii), and (iv) is

satisfied, and we write ξ ≺i2 η if only (iv) is satisfied.

For every two bicomplex numbers ξ, η ∈ C2, we can verify the following :
(1) ξ �i2 η =⇒ ‖ξ‖C2

≤ ‖η‖C2
,

(2) ‖ξ + η‖C2
≤ ‖ξ‖C2

+ ‖η‖C2
.

Definition 4. Let ξ1, ξ2 ∈ C2, where

ξ1 = z1 + i2z2 = µ1e1 + µ2e2 and ξ2 = z∗1 + i2z
∗
2 = µ∗

1e1 + µ∗
2e2.

The Id-partial order relation �iId on C2 is defined as follows: ξ1 �iId ξ2 if and only if µ1 �i1 µ∗
1

and µ2 �i1 µ∗
2 on C1, i.e., ξ �iId η if one of the following conditions is satisfied :

(i) µ1 = µ∗
1 and µ2 = µ∗

2;
(ii) µ1 ≺i1 µ

∗
1 and µ2 = µ∗

2;
(iii) µ1 = µ∗

1 and z2 ≺i1 z∗2 ;
(iv) µ1 ≺i1 z

∗
1 and µ2 ≺i1 µ

∗
2.

In particular, we write ξ �iId η if ξ �iId η and ξ 6= η, i.e., one of (ii), (iii), and (iv) is satisfied,
and we write ξ ≺iId η if only (iv) is satisfied.

For every two bicomplex numbers ξ, η ∈ C2, we can verify the following :

ξ �iId η =⇒ ‖ξ‖C2
≤ ‖η‖C2

.

Remark 1. For ξ, η ∈ C2, the relation ξ ≺i2 η does not guarantee that ξ ≺iId η. Similarly,
ξ ≺iId η does not guarantee that ξ ≺i2 η.

2.3. Bicomplex valued metric space

Choi et al. [4] defined a bicomplex valued metric space as follows.

Definition 5 [4]. A function d : X × X → C2 is a bicomplex valued metric on X ⊆ C2 with

respect to the i2-partial order if it has the following properties for all x, y, z ∈ X:
(i) 0 �i2 d(x, y);
(ii) d(x, y) = 0 if and only if x = y;
(iii) d(x, y) = d(y, x);
(iv) d(x, y) �i2 d(x, z) + d(z, y).

The pair (X, d) is called a bicomplex valued metric space with respect to the i2-partial order. It

is denoted by (X, di2).

Definition 6. A function d : X × X → C2 is a bicomplex valued metric on X ⊆ C2 with

respect to the iId-partial order if it has the following properties for all x, y, z ∈ X:
(i) 0 �iId d(x, y);
(ii) d(x, y) = 0;
(iii) d(x, y) = d(y, x);
(iv) d(x, y) �iId d(x, z) + d(z, y).

The pair (X, d) is called a bicomplex valued metric space with respect to the iId-partial order.
It is denoted by (X, diId).
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Definition 7. A function dH : X×X → H is a hyperbolic valued (D-valued) metric on X ⊆ C2

with respect to the i2-partial order (the iId-partial order) if it has the following properties for all

x, y, z ∈ X, respectively :
(i) 0 �i2 (�iId) d

H(x, y);
(ii) dH(x, y) = 0 if and only if x = y;
(iii) dH(x, y) = dH(y, x);
(iv) dH(x, y) �i2 (�iId) d

H(x, z) + dH(z, y).
The pair (X, dH) is called a bicomplex valued metric space with respect to the i2-partial order

(the iId-partial order). The metric space (X, dH) with respect to the i2-partial order is denoted

by (X, dHi2), and the metric space (X, dH) with respect to the iId-partial order is denoted by (X, dHiId).

2.4. Statistical convergence of a sequences of bicomplex numbers

The concept of statistical convergence depends on the notion of the natural density of the set
of natural numbers.

Definition 8. A subset E of N is said to have natural density δ(E) if

δ(E) = lim
n→∞

1

n

n
∑

k=1

χE(k),

where χE is the characteristic function on E.

Definition 9. For two sequences (xk) and (yk), we say that xk = yk for almost all k if

δ
(

{k ∈ N : xk 6= yk}
)

= 0.

Definition 10. A sequence of bicomplex number (ξk) is said to be statistically convergent to

ξ ∈ C2 with respect to the Euclidean norm on C2 if, for all ε > 0,

δ
(

{k ∈ N : ‖ξk − ξ‖C2
≥ ε}

)

= 0.

We use the notation stat-lim ξk = ξ.

3. Statistically convergent and statistically Cauchy sequences

in a bicomplex valued metric space with respect to the i2-partial order

Definition 11. Let (X, di2) be a bicomplex valued metric space, and let (ξk) be a sequence

in (X, di2). The sequence (ξk) is said to be statistically convergent to ξ ∈ X if, for all 0 ≺i2 ε ∈ C2,

δ
(

{k : d(ξk, ξ) �i2 ε}
)

= 0.

We use the notation stat-lim ξk = ξ.

Definition 12. Let (X, di2) be a bicomplex valued metric space, and let (ξk) be a sequence

in (X, di2). We say that (ξk) is a statistically Cauchy sequence if, for all 0 ≺i2 ε ∈ X,

δ
(

{k : d(ξk, ξm) �i2 ε}
)

= 0.

Definition 13. Let (X, dh) be a D-valued metric space, and let (ξk) be a sequence in (X, dh).
The sequence (ξk) is said to be statistically convergent to ξ ∈ X if, for all 0 ≺i2 ε ∈ D,

δ
(

{k : dh(ξk, ξ) �i2 ε}
)

= 0.
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4. Main results

Lemma 1. If a sequence (ξk) is statistically convergent in a bicomplex valued metric space

(X, di2), then (d(ξk, ξ)) is statistically convergent to 0 with respect to Euclidean norm on C2.

P r o o f. Since (ξk) is statistically convergent in a bicomplex valued metric space (X, di2), for
all ε ≻i2 0, we have

δ
(

{k : d(ξk, ξ) �i2 ε}
)

= 0 =⇒ δ
(

{k : ‖d(ξk, ξ)‖C2
≥ ‖ε‖C2

}
)

= 0

=⇒ δ
(

{k : ‖d(ξk, ξ)‖C2
≥ ε′}

)

= 0,

where ε′ = ‖ε‖C2
> 0. Thus, the sequences of bicomplex numbers (d(ξk, ξ)) is statistically conver-

gent to 0 with respect to the Euclidean norm on C2, and hence stat-lim d(ξk, ξ) = 0. �

Lemma 2. Let (X, di2) be a bicomplex valued metric space, then the inequality

d(ξ1, η1)− d(ξ2, η2) �i2 d(ξ1, ξ2) + d(η1, η2)

holds for all ξ1, ξ2, η1, η2 ∈ C2.

P r o o f. By the triangle inequality, we have

d(ξ1, η1) �i2 d(ξ1, ξ2) + d(ξ2, η2) + d(η2, η1) =⇒ d(ξ1, η1)− d(ξ2, η2) �i2 d(ξ1, ξ2) + d(η2, η1)

=⇒ d(ξ1, η1)− d(ξ2, η2) �i2 d(ξ1, ξ2) + d(η1, η2).

�

Theorem 1. Let (X, di2) be a bi-complex valued metric space, and if the sequences (ξk) and

(ηk) are statistically convergent to ξ and η, respectively, in (X, di2). Then the sequence (d(ξk, ηk))
is statistically convergent to d(ξ, η) with respect to Euclidean norm in C2.

P r o o f.

{k : d(ξk, ηk)− d(ξ, η) �i2 ε} ⊆ {k : d(ξk, ξ) �i2 ε} ∪ {k : d(ηk, y) �i2 ε}
=⇒ δ({k : d(ξk, ηk)− d(ξ, η) �i2 ε}) ≤ δ({k : d(ξk, ξ) �i2 ε}) + δ({k : d(ηk, η) �i2 ε})

=⇒ δ({k : d(ξk, ηk)− d(ξ, η) �i2 ε}) = 0

=⇒ δ({k : ‖d(ξk, ηk)− d(ξ, η)‖C2
≥ ‖ε‖C2

}) = 0.

�

Let us formulate the following theorem without proof.

Theorem 2. Let (X, di2) be a bicomplex valued metric space, and let ξ, η ∈ X. If (ξk) is a

sequence in X statistically convergent to ξ and statistically convergent to η, then ξ = η.

Lemma 3. Consider a bicomplex valued metric space (X, di2) on C2. Suppose that

d(ξk, ξ) = d1(ξk, ξ) + i1d2(ξk, ξ) + i2d3(ξk, ξ) + i1i2d4(ξk, ξ).

The sequence (ξk) is statistically convergent (statistically Cauchy) in (X, di2) if and only if (xk) is
statistically convergent (statistically Cauchy) in the real valued metric spaces (X, dj), j = 1, 2, 3, 4.
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Lemma 4. Consider a bicomplex valued metric space (X, di2) on X. Suppose that

d(ξk, ξ) = d1(ξk, ξ) + i1d2(ξk, ξ) + i2d3(ξk, ξ) + i1i2d4(ξk, ξ).

Then A sequence (ξk), where

ξk = x1 + i1x2 + i2x3 + i1i2x4, x1, x2, x3, x4 ∈ C0,

is statistically convergent (statistically Cauchy) in (X, di2) if and only if (xj) is statistically con-

vergent (statistically Cauchy) in the real valued metric spaces (C2, dj), j = 1, 2, 3, 4.

Lemma 5. Consider a D-valued metric space (X, dHi2) on X. Suppose that

dH(ξk, ξ) = dH1 (ξk, ξ)e1 + dH2 (ξk, ξ)e2.

Then (X, dH1 ) and (X, dH2 ) are real valued metric spaces. A sequence (ξk) is statistically convergent

(statistically Cauchy) in (X, dH) with respect to the i2-partial order if and only if (ξk) is statistically
convergent (statistically Cauchy) in the real valued metric spaces (X, dHj ), j = 1, 2.

Lemma 6. Consider a D-valued metric space (H, dHi2) on H. Suppose that

dH(ξk, ξ) = dH1 (ξk, ξ)e1 + dH2 (ξk, ξ)e2.

Then (C2, d
H
1 ) and (C2, d

H
2 ) are real valued metric spaces. A sequence (ξk) ∈ H, where

ξk = µ1ke1 + µ2ke2,

is statistically convergent (statistically Cauchy) in (H, dH) with respect to the i2-partial order if

and only if (µjk) is statistically convergent (statistically Cauchy) in the real valued metric spaces

(C2, d
H
j ), j = 1, 2.

Theorem 3. If (ξk) and (ηk) are statistically convergent in a bicomplex valued metric space

(X, di2) and if

‖d1(ξk, ηk)‖ ≤ ‖d(ξk, ηk)‖
for all k ∈ N, then (d1(ξk, ηk)) is also statistically convergent with respect to the Euclidean norm

in C2.

P r o o f. Using Lemma 2, for all ε ≻i2 0 and k,m ≥ n0, we obtain

{k : d1(ξk, ηk)− d1(ξm, ηm) �i2 ε} ⊆ {k : d1(ξk, ξm) �i2 ε} ∪ {k : d1(ηk, ηm) �i2 ε}
=⇒ {k : ‖d1(ξk, ηk)− d1(ξm, ηm)‖C2

≥ ‖ε‖C2
}

≤ {k : ‖d1(ξk, ξm)‖C2
≥ ‖ε‖C2

} ∪ {k : ‖d1(ηk, ηm)‖C2
≥ ‖ε‖C2

}
=⇒ δ({k : ‖d1(ξk, ηk)− d1(ξm, ηm)‖C2

≥ ‖ε‖C2
})

≤ {k : ‖d(ξk, ξm)‖C2
≥ ‖ε‖C2

} ∪ {k : ‖d(ηk, ηm)‖C2
≥ ‖ε‖C2

}
=⇒ δ({k : ‖d1(ξk, ηk)− d1(ξm, ηm)‖C2

≥ ‖ε‖C2
}) = 0.

Thus, (d1(ξk, ηk)) is a Cauchy sequence of bicomplex numbers and, hence, (d1(ξk, ηk)) is statistically
convergent with respect to the Euclidean norm. �

Lemma 7. δ
(

{k : d(ξk, ξ) �i2 ε}
)

= 0 implies that δ
(

{k : d(ξk, ξm) �i2 ε}
)

= 0.
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P r o o f.

δ
(

{k : d(ξk, ξ) �i2 ε}
)

= 0 =⇒ δ
(

{k : d(ξk, ξ) ≺i2 ε/2}
)

= 1 =⇒ δ
(

{k : d(ξm, ξ) ≺i2 ε/2}
)

= 1.

We have

{k : d(ξk, ξ) ≺i2 ε/2} ⊆ {k : d(ξk, ξm) ≺i2 ε} =⇒ δ
(

{k : d(ξk, ξm) ≺i2 ε}
)

= 1

=⇒ δ
(

{k : d(ξk, ξm) �i2 ε}
)

= 0.

�

Remark 2. The converse is generally not true. To justify this, consider the following example.

Example 1. Let
X = (0, 1 + i1 + i2 + i1i2]

with the metric
d(ξ, η) = (1 + i1 + i2)‖ξ − η‖C2

for all ξ, η ∈ X.
Consider a sequence (ξk) in X defined as

ξk =











(1 + i1 + i2 + i1i2)

k
for k = i2, i ∈ N;

(1 + i1 + i2 + i1i2)

k2
otherwise.

Then, we observe that (ξk) is a statistically Cauchy sequence but is not statistically convergent
in X.

Lemma 8. Let (X, di2) be a complete bicomplex valued metric space, and let (ξk) be a sequence

in X. Then the following properties are equivalent :
(i) (ξk) is statistically convergent ;
(ii) (ξk) is a statistically Cauchy sequence.

Theorem 4. Assume that (ξk) is a sequence in a bicomplex valued metric space (X, di2) and

δ
(

{k :

k
∑

i=1

d(ξi, ξi+1

)

�i2 ε}) = 0.

Then (ξk) is a statistically Cauchy sequence in (X, di2).

P r o o f. We have

δ
(

{k :

k
∑

i=1

d(ξi, ξi+1) �i2 ε}
)

= 0

=⇒ δ
(

{k :

k
∑

i=1

dj(ξi, ξi+1) ≥ εj}
)

= 0, j = 1, 2, 3, 4

=⇒ δ
(

{k : dj(ξk, ξk+1) ≥ εj}
)

= 0, j = 1, 2, 3, 4.

Thus, (ξk) is a statistically Cauchy sequence in the real valued metric spaces (X, dj), j = 1, 2, 3, 4.
Hence, (ξk) is a statistically Cauchy sequence in the bicomplex valued metric space (X, di2). �
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Theorem 5. Let (ξk), where
ξk = z1k + i2z2k,

be a sequence of bicomplex numbers in the bicomplex valued metric space (X, di2). Then the following

properties are equivalent :

(i) (ξk) statistically converges to a point ξ = z1 + i2z2 ∈ X;

(ii) (z1k) and (z2k) statistically converge to z1 and z2, respectively ;

(iii) there are sequences (z1k) and (z2k) such that z1k = z′1k and z2k = z′2k for almost all k and

(z′1k) and (z′2k) converge to z1 and z2, respectively ;

(iv) there is a bicomplex sequence convergent to ξ + i2ξ̄, where ξ̄ is the i2-conjugate of ξ;

(v) there are a statistically dense subsequence (z1ki) of (z1k) and a statistically dense subsequence

(z2ki) of (z2k) such that (z1ki) and (z2ki) are convergent ;

(vi) there are a statistically dense subsequence (z1ki) of (z1k) and a statistically dense subsequence

(z2ki) of (z2k) such that (z1ki) and (z2ki) are statistically convergent.

P r o o f. (i) =⇒ (ii) The sequence (ξk) is statistically convergent to ξ. Then for every

0 ≺ ε = ε1 + i2ε2 ∈ C2,

we have

δ
(

{k : di2(ξk, ξ) �i2 ε}
)

= lim
n→∞

1

n

∣

∣ {k : di2(ξk, ξ) �i2 ε}
∣

∣ = 0.

There are two following cases.
Case 1. Consider

di2(ξk, ξ) = |z1k − z1|+ i2|z2k − z2|
or

di2(ξk, ξ) = d1(z1k, z1) + i2d1(z2k, z1),

where
d1(zk, z) = |zk − z|,

corresponds to a real valued metric space on C1 with the property

{

k : di2(ξk, ξ) �i2 ε
}

=
{

k : |z1k − z1|+ i2|z2k − z2| �i2 (ε1 + i2ε2)
}

.

We have
δ
(

{k : |z1k − z1| ≥ |ε1|}
)

≤ δ
(

{k : di2(ξk, ξ) �i2 ε}
)

= 0,

which implies
δ
(

{k : |z1k − z1| ≥ |ε|}
)

= 0.

Similarly,
δ
(

{k : |z2k − z2| ≥ |ε|}
)

= 0.

Hence, (z1n) and (z2n) are statistically convergent in real valued metric spaces on C1.

Case 2. Consider
di2(ξk, ξ) = (a1 + i2a2)‖ξk − ξ‖C2

,

where
0 ≺ a1, a2 ∈ C1(i1),
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or
di2(ξk, ξ) = a1‖ξk − ξ‖C2

+ i2a2‖ξk − ξ‖C2

or
di2(ξk, ξ) = a1d1(ξk, ξ) + i2a2d1(ξk, ξ),

where
d1(ξk, ξ) = ‖ξk − ξ‖C2

,

defines a real valued metric space on C2. Then, (ξk) is statistically convergent in real valued metric
space on C2.

We have

‖ξk − ξ‖C2
=

√

(z1k − z1)2 + (z2k − z2)2 = d22(z1k, z1) + d22(z2k, z2),

and
|z1k − z1| ≤

√

(z1k − z1)2 + (z2k − z2)2,

which implies that
{k : |z1k − z1| ≥ ε} ⊆ {k : d1(ξk, ξ) ≥ ε} .

Hence, (z1k) is statistically convergent in a related real valued metric space. Similarly, (z2k) is
statistically convergent in a real valued metric space.

(ii) =⇒ (iii) The sequences (z1k) and (z2k) statistically converge to z1 and z2, respectively.
Then, for every 0 < ε ∈ C0, we have

δ
(

{k : d(z1k, z1) ≥ ε}
)

= lim
n→∞

1

n

∣

∣ {k : d(z1k, z1) ≥ ε}
∣

∣ = 0

and

δ
(

{k : d(z2k, z2) ≥ ε}
)

= lim
n→∞

1

n

∣

∣ {k : d(z2k, z2) ≥ ε}
∣

∣ = 0.

Choose an increasing sequence of natural numbers (nk) such that, for all n > nk,

1

n

∣

∣

∣

{

k : d(z1k, z) ≥
1

2k

}
∣

∣

∣
<

1

2k
.

Define a sequence of complex numbers (w1k) such that

w1k =











z1k if k ≤ n1;

z1k if d(z1k, z) ≥
1

2k
;

z1 otherwise.

The sequence (w1k) is convergent.
Now we have

{k : z1k = w1k} ⊇ {k : di1(z1k, z1) ≺i1 ε}.
Therefore, z1k = w1k for almost all k. Similarly, z2k = w2k for almost all k.

(iii) =⇒ (iv) The sequences (z1k) and (z2k) converge to z1 and z2, respectively. Then the
bicomplex sequence (ξk) = (z1k + i2z2k) converges to ξ = z1 + i2z2 and the bicomplex sequence
(ζk) = (z2k + i2z1k) converges to z2 + i2z1, i.e., to i2ξ̄. Hence, there exists a bicomplex sequence
(ηk) = (ξk + ζk) converging to ξ + i2ξ̄.

(iv) =⇒ (v) Consider a bicomplex sequence (ηk) converging to

ξ + i2ξ̄ = (z1 + z2) + i2(z1 + z2).
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Let
ηk = z′1k + i2z

′
2k.

There exist
(

z′′1k
)

and
(

z′′2k
)

such that

z′1k = z1k + z′′1k and z′2k = z2k + z′′2k,

and as (z1k) and (z2k) are convergent we have

lim
k→∞

z′′1k = z2 and lim
k→∞

z′′2k = z1.

Let
M1 =

{

k : di1
(

z′′1k, z2
)

�i1 ε
}

and M2 =
{

k : di1
(

z′′2k, z1
)

�i1 ε
}

.

Let
K1 = N−M1 =

{

ki : ki < ki+1

}

and K2 = N−M2 =
{

k′i : k
′
i < k′i+1

}

.

Then δ(K1) = 1 and δ(K2) = 1. Thus, we have

lim
i→∞

z1ki = z1 and lim
i→∞

z2ki = z2.

(v) =⇒ (vi) A subsequence (z1ki) of the sequence (z1k) is convergent, hence, it is statistically
convergent. Similarly, (z2ki) is statistically convergent.

(vi) =⇒ (i) Let there exist

K1 =
{

ki : ki < ki+1

}

⊂ N and K2 =
{

k′i : k
′
i < k′i+1

}

⊂ N

such that
lim
i→∞

z1ki = z1 and lim
i→∞

z2ki = z2.

Then, for all
0 ≺i2 ε = ε1 + i2ε2 ∈ C2,

we have

{

k : di2(ξk, ξ) �i2 ε
}

⊆
{

k : di1(z1k) �i1 ε1
}

∪
{

k : di1(z2k) �i1 ε2
}

⊆ Kc
1 ∪

{

k ∈ K1 : di1(z1k, z1) �i1 ε1
}

∪Kc
2 ∪

{

k ∈ K2 : di1(z2k, z2) �i1 ε2
}

.

Therefore, (ξk) is statistically convergent. �

5. Statistically convergent and statistically Cauchy sequences

in a bicomplex valued metric space with respect to the iId-partial order

Definition 14. Let (X, diId) be a bicomplex valued metric space, and let (ξk) be a sequence

in (X, d). The sequence (ξk) is said to be statistically convergent to ξ ∈ X if, for all 0 ≺iId ε ∈ C2,

δ
(

{k : d(ξk, ξ) �iId ε}
)

= 0.

We use the notation stat-lim ξk = ξ.

Definition 15. Let (X, diId) be a bicomplex valued metric space, and let (ξk) be a sequence

in (X, diId). We say that (ξk) is a statistically Cauchy sequence if, for all 0 ≺iId ε ∈ C2,

δ
(

{k : d(ξk, ξm) �iId ε}
)

= 0.
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Example 2. Consider a metric d : C2 × C2 → C2 on C2 defined as

d(ξ, η) =
[

(5 + 8i1)e1 + (7 + 2i1)e2
]

‖ξ − η‖C2
∀ ξ, η ∈ C2.

Consider a sequence (ξk) in C2 defined as

ξk =

{

1 + i1 + i2 + i1i2 for k = i2, i ∈ N;
1/2022 otherwise.

Then we observe that (ξk) is statistically convergent in the metric space (C2, diId).

Lemma 9. Consider a bicomplex valued metric space (X, diId) on X. Suppose that

d(ξk, ξ) = d′1(ξk, ξ)e1 + d′2(ξk, ξ)e2.

Then (X, d′1) and (X, d′1) are complex valued metric spaces. A sequence (ξk) is statistically conver-

gent (statistically Cauchy) in (X, diId) if and only if (ξk) is a statistically convergent (statistically
Cauchy) sequence in the complex valued metric spaces (X, d′j), j = 1, 2.

Lemma 10. Consider a bicomplex valued metric space (X, diId) on X. Suppose that

d(ξk, ξ) = d′1(ξk, ξ)e1 + d′2(ξk, ξ)e2.

Then (X, d′1) and (X, d′1) are complex valued metric spaces. A sequence (ξk), where

ξk = µ1ke1 + µ2ke2,

is a statistically convergent (statistically Cauchy) sequence in (X, diId) if and only if (µjk) are

statistically convergent (statistically Cauchy) sequences in the complex valued metric spaces (X, d′j),
j = 1, 2.

We formulate the following theorem without proof.

Theorem 6. Let (ξk), where

ξk = µ1ke1 + µ2ke2,

be a sequence of bicomplex numbers in the bicomplex valued metric space (X, diId). Then the

following statements are equivalent :

(i) (ξk) statistically converges to a point ξ = µ1e1 + µ2e2 ∈ X;

(ii) (µ1k) and (µ2k) statistically converge to µ1 and µ2, respectively ;

(iii) there are sequences (µ1k) and (µ2k) such that µ1k = µ′
1k and µ2k = µ′

2k for almost all k, and
(µ′

kn) and (µ′
2k) converge to µ1 and µ2, respectively ;

(iv) there is a bicomplex sequence converging to µ1 + µ2 − (i2 − 1)(µ1e2 + µ2e1);

(v) there are a statistically dense subsequence (µ1ki) of (µ1k) and a statistically dense subsequence

(µ2ki) of (µ2k) such that (µ1ki) and (µ2ki) are convergent ;

(vi) there are a statistically dense subsequence (µ1ki) of (µ1k) and a statistically dense subsequence

(µ2ki) of (µ2k) such that (µ1ki) and (µ2ki) are statistically convergent.
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Theorem 7. (X, diId) is complete if and only if (X, d′) and (X, d′′) are complete metric spaces

in C1, where

d(ξ, η) = d′(ξ, η)e1 + d′′(ξ, η))e2.

P r o o f. Let (X, diId) be a complete metric space, and let ξ = (ξk) be a Cauchy sequence
in (X, d′). Therefore, for all 0 ≺i2 ε′ ∈ C1, there exists k0 ∈ N such that

d′(ξk, ξm) ≺i1 ε′ ∀k,m ≥ k0.

Consider

d(ξk, ξm) = d′(ξk, ξm)e1 + 0 · e2 ∈ C2 and ε = ε′e1 + 0 · e2 ∈ C2.

Then

d(ξk, ξm) = d′(ξk, ξm)e1 + 0 · e2 ≺iId e1ε+ 0 · e2.
This implies that (ξk) is a Cauchy sequence in (X, diId). Therefore, by the completeness of (X, diId),
there exists ξ in (X, diId) such that ξk → ξ as n → ∞ in (X, diId). We need to show that
ξk → ξ′ as n → ∞ in (X, d′) and x′′ = 0.

Now, ξk → ξ as n → ∞ in (X, diId), therefore, there exists a natural number k such that

d(ξk, ξ) ≺iId ε for all n > k

=⇒ d′(ξk, ξ)e1 + 0 · e2 ≺iId ε′e1 + 0 · e2 for all n > k

=⇒ d′(ξk, ξ) ≺i1 ε′ for all n > k.

Similarly, d′′(ξk, ξ) ≺i1 ε′ for all n > k. Hence, (X, d′) and (X, d′′) are complete metric spaces
in C1.

Conversely, let (X, d′) and (X, d′′) be complete metric spaces in C(i1).

Let (ξk) be a Cauchy sequence in (X, diId). Therefore, for ε ≻iId 0, there exists k0 ∈ N such
that ∀m,k ≥ k0

diId(ξk, ξm) ≺iId ε =⇒ d′(ξk, ξm)e1 + d′′(ξk, ξm)e2 ≺iId ε′e1 + ε′′e2

=⇒ d′(ξk, ξm) ≺i1 ε
′ and d′′(ξk, ξm) ≺i1 ε′′.

Therefore, (ξk) is a Cauchy sequence in (X, d′) and (X, d′′).

Since (X, d′) and (X, d′′) are complete, there exist k′0, k
′′
0 ∈ N such that

d′(ξk, ξ) ≺i1 ε′ for all k > k′0 and d′′(ξk, ξ) ≺i1 ε
′′ for all k > k′′0 .

Now, for all k > k1 = max{k′0, k′′0},

d(ξk, ξ) = d′(ξk, ξ)e1 + d′′(ξk, ξ)e2 ≺iId ε′e1 + ε′′e2

=⇒ d(ξk, ξ) ≺iId ε, where ε = ε′e1 + ε′′e2 ∈ C2.

Hence, (X, diId) is a complete metric space. �

We formulate the following theorem without proof.

Theorem 8. Let (C2, diId) be a bicomplex valued metric space. Then the class b∗∞ of all bounded

statistically convergent sequences of bicomplex numbers over C2 is complete.

Theorem 9. The metric spaces (X, di2) and (X, diId) are not comparable.
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P r o o f. Consider a metric d : X ×X → C2 on X defined as

d(ξ, η) = (5 + 6i1 + 7i2 + i1i2)‖ξ − η‖C2
∀ ξ, η ∈ X.

Then, all properties of metric space with respect to the i2-partial order holds and hence (X, di2) is
a metric space. Now we have

d(ξ, η) =
(

5 + 6i1 + 7i2 + i1i2
)

‖ξ − η‖C2

=
[

(−2 + 5i1)e1 + (12 + 7i1)e2
]

‖ξ − η‖C2
∀ ξ, η ∈ X.

Then the property d(ξ, η) ≻ 0 with respect to the Id-partial order does not hold. Therefore,
(X, diId) is not a metric space.

Next, consider a metric d : X ×X → C2 on X defined as

d(ξ, η) =
[

(5 + 8i1)e1 + (7 + 2i1)e2
]

‖ξ − η‖C2
∀ ξ, η ∈ X.

Then all properties of metric space with respect to the Id-partial order hold and hence (X, diId) is
a metric space. Now we have

d(ξ, η) =
[

(5 + 8i1)e1 + (7 + 2i1)e2
]

‖ξ − η‖C2

= (6 + 5i1 − 3i2 − i1i2)‖ξ − η‖C2
∀ ξ, η ∈ X.

Then the property d(ξ, η) ≻ 0 with respect to the i2-partial order does not hold. Therefore, (X, di2)
is not a metric space. �

6. Complete bicomplex metric space

Definition 16. A bicomplex valued metric space on C2 is said to be a complete bicomplex

metric space if every Cauchy sequence of bicomplex numbers in C2 converges to a point in C2.

Theorem 10. Let (C2, di2) be a bicomplex valued metric space. Then the class b∗∞ of all

bounded statistically convergent sequences of bicomplex numbers over C2 is complete.

P r o o f. Let (ξk) be a Cauchy sequence of bicomplex numbers in b∗∞. For a given 0 ≺i2 ε ∈ C2,
there exists n0 ∈ N such that

sup
k

d(ξmk , ηnk ) ≺i2 ε ∀ m,n ≥ n0.

Then, for every fixed value of k,

d(ξmk , ηnk ) ≺i2

ε

3
for all m,n ≥ n0. (6.1)

Then (ξjk) is a bicomplex Cauchy sequence in (C2, di2). Since (C2, di2) is a complete bicomplex
metric space, (ξik) converges to ξ ∈ C2 for all k ∈ N.

Let
lim
k→∞

ξmk = ξ.

Let (ξjk) statistically converge to ηm ∈ X for all j. Then

δ
({

k ∈ N : d(ξjk, η
j) ≺i2

ε

3

})

= 1.
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Let

Aj =
{

k ∈ N : d(ξjk, η
j) ≺i2

ε

3

}

. (6.2)

Let n0 be chosen such that for k ∈ Aj ∩Ar for all j, r ≥ n0. Now,

d(ηj , ηr) ≺i2 d(ξ
j
k, ξ

r
k) + d(ξrk, η

r) + d(ξjk, η
j)

=⇒ d(ηj , ηr) ≺i2

ε

3
+

ε

3
+

ε

3
[using (6.1) and (6.2)]

=⇒ d(ηj , ηr) ≺i2 ε.

Hence, (ηj) is a Cauchy sequence in (C2, di2), which is complete. Let

lim
j→∞

ηj = η.

Now,

d(ξk, η) ≺i2 d(ξjk, ξk) + d(ηj , η) + d(ξjk, η
j) ≺i2 ε,

as δ(Aj) = 1 implies that,

δ
(

{k : d(ξk, η) ≺i2 ε}
)

= 1.

Hence, b∗∞ is a complete bicomplex metric space. This completes the proof. �

7. Conclusion

In this paper, we have studied the statistical convergence in bicomplex valued metric spaces.
This is the first paper on this topic and is expected to attract researchers for further investigations
and applications.
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Abstract: A non-empty set S together with the ternary operation denoted by juxtaposition is said to be
ternary semigroup if it satisfies the associativity property ab(cde) = a(bcd)e = (abc)de for all a, b, c, d, e ∈ S.
The global set of a ternary semigroup S is the set of all non empty subsets of S and it is denoted by P (S). If S
is a ternary semigroup then P (S) is also a ternary semigroup with a naturally defined ternary multiplication. A
natural question arises: “Do all properties of S remain the same in P (S)?” The global determinism problem is
a part of this question. A class K of ternary semigroups is said to be globally determined if for any two ternary
semigroups S1 and S2 of K, P (S1) ∼= P (S2) implies that S1

∼= S2. So it is interesting to find the class of ternary
semigroups which are globally determined. Here we will study the global determinism of ternary ∗-band.

Keywords: Rectangular ternary band, Involution ternary semigroup, Involution ternary band, Ternary
∗-band, Ternary projection.

1. Introduction

In our previous paper [7] we have discussed the global determinism of ternary groups and finite
left zero ternary semigroups. Here we will discuss some properties of a rectangular ternary band and
of a proper rectangular ternary band and also discuss the global determinism problem of ternary
∗-band.

Let us briefly present the literature on the problem of global determinism. In 1960 B.M. Shane
formulated the importance of studying the problem of global determinism. In 1967, T. Tamura
and J. Shafer [11] proved that groups are globally determined. In 1984, T. Tamura [10] proved that
rectangular groups are globally determined. In 1984, M. Gould and J.A. Iskra [4] also studied some
globally determined classes of semigroups. M. Gould, J.A. Iskra, C. Tsinakis [5, 6] also studied the
global determinism problem of semigroup theory. In 1984, Y. Kobayashi [9] proved that semilattices
are globally determined. At present, the problem of global determinism is a well-known research
problem. M. Vinčić [13] established in 2001, that ∗-bands are globally determined. In 2014, A. Gan,
X. Zhao and Y. Shao [1] proved that clifford semigroups are globally determined. In 2015, A. Gan,
X. Zhao and M. Ren [3] studied the global determinism of semigroups having regular globals.
A. Gan, X. Zhao and Y. Shao [2] also discussed the globals of idempotent semigroups in 2016 and
in 2017, B. Yu, X. Zhao, A. Gan [12] proved that idempotent semigroups are globally determined.

So the problem of global determinism is important and relevant in the ternary theory of semi-
groups. Here we will prove that ternary ∗-bands are globally determined.

2. Preliminaries

First we provide the basic definitions and results which are used in the rest of the paper.

Definition 1. A ternary semigroup S is said to be left (resp. right) zero ternary semigroup if
for a, b, c ∈ S, abc = a (resp. abc = c).

https://doi.org/10.15826/umj.2023.1.005
mailto:indrani.jumath@gmail.com
mailto:karsukhendu@yahoo.co.in
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Definition 2. A ternary semigroup S is said to be a ternary band if every element of S is
idempotent, i.e. a3 = a for all a ∈ S.

Definition 3. A ternary semigroup S is said to be rectangular ternary band if aba = a for all
a, b ∈ S.

Although the definition of rectangular ternary band and rectangular band in binary are similar,
but all the rectangular ternary bands are not rectangular bands in binary. The following example
illustrates this fact.

Example 1. Let M2(R) is the set of all 2 × 2 matrices over R. This is a ternary semigroup
w.r.t. the natural ternary matrix multiplication.

(i)

{

(

−1 0
0 0

)

,

(

−1 −1
0 0

)

}

∈ M2(R). This is a rectangular ternary band w.r.t. natural ternary

matrix multiplication.

(ii)

{

(

0 0
−1 −1

)

,

(

−1 −1
0 0

)

}

∈M2(R). This is a rectangular ternary band w.r.t. natural ternary

matrix multiplication.

Lemma 1. A ternary semigroup S is rectangular ternary band if and only if ababa = a and
abcde = ace for all a, b, c, d, e ∈ S.

P r o o f. Let S be a rectangular ternary band. Then aba = a for all a, b ∈ S. Therefore,

ababa = (aba)ba = aba = a for all a, b ∈ S.

Now

abcde = a(b(adc)b)(cde) = (aba)(d(cbc)d)e = a(dcd)e = (adc)(d(ace)d)e

= (a(dcd)a)c(ede) = (ada)ce = ace.

Conversely, suppose that ababa = a and abcde = ace. Then

aba = (ababa)ba = a(bab)aba = aaa = a3 = a.

Therefore, S is the rectangular ternary band. �

Lemma 2. A ternary semigroup S is a rectangular ternary band if and only if it can be ex-
pressed as a cartesian product of left zero and right zero ternary semigroups.

P r o o f. Let S be a rectangular ternary band and u be a fixed element of S. Define two sets
L, R such that

L = {xuu : x ∈ S}, R = {uux : x ∈ S}.

Since

(xuu)(yuu)(zuu) = x(uuy)u(uzu)u = xuu
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for all xuu, yuu, zuu ∈ L, we have, L is left zero ternary semigroup.
Similarly,

(uux)(uuy)(uuz) = u(uxu)u(yuu)z = uuz

for all uux, uuy, uuz ∈ R implies that R is right zero ternary semigroup.

Define a mapping φ : S −→ L×R such that φ(x) = (xuu, uux) for all x ∈ S. Here the ternary
operation on L×R is as follows:

(a, b)(c, d)(e, f) = (ace, bdf) = (a, f) for all (a, b), (c, d), (e, f) ∈ L×R.

Let φ(x) = φ(y). This implies that xuu = yuu, uux = uuy. Now

x = xux = xuuux = (xuu)ux = (yuu)ux = yu(uux) = yu(uuy) = yuuuy = yuy = y.

Therefore, φ is one-to-one mapping.

φ(xuz) = (xuzuu, uuxuz) = ((xuu)(uuu)(zuu), (uux)(uuu)(uuz)) = (xuu, uuz).

Therefore, φ is an onto mapping.

φ(x)φ(y)φ(z) = (xuu, uux)(yuu, uuy)(zuu, uuz)

= (xuuyuuzuu, uuxuuyuuz) = (xuu, uuz) = φ(xyz).

Thus φ is a ternary homomorphism. Hence φ is an isomorphism and S ∼= L×R.

Conversely, suppose that S is isomorphic to L × R, where L, R are left zero, right zero
ternary semigroups respectively. Now (a, c)(e, g)(a, c) = (aea, cgc) = (a, c). Therefore, L × R
is a rectangular ternary band. Since S is isomorphic to a rectangular ternary band, S is also
rectangular ternary band. �

Let S ∼= L × R where L be the left zero, R be the right zero ternary semigroup and µ be an
isomorphism from S to L×R. The ternary operation on L×R is defined as

(a, b)(c, d)(e, f) = (ace, bdf) = (a, f) for all (a, b), (c, d), (e, f) ∈ L×R.

There are some notions defined as follows:

Let A ∈ P (S), where P (S) is the global of S.

πL(A) = {i ∈ L : ∃ k ∈ R such that (i, k) ∈ µ(A)}.

πR(A) = {k ∈ R : ∃ i ∈ L such that (i, k) ∈ µ(A)}.

If S = L×R then for any A ∈ P (S), we have

πL(A) = {i ∈ L : ∃ k ∈ R such that (i, k) ∈ (A)}.

πR(A) = {k ∈ R : ∃ i ∈ L such that (i, k) ∈ (A)}.

Definition 4. A rectangular ternary band S is said to be a proper rectangular ternary band if
it is not left zero, right zero and lateral zero ternary semigroup. By the notation TRB2 we mean
the proper rectangular ternary band.

Definition 5. (i) A ternary semigroup S is said to be an involution ternary semigroup if it
is equipped with a unary operation ∗ such that (xyz)∗ = z∗y∗x∗ and (x∗)∗ = x.

(ii) An idempotent involution ternary semigroup is said to be an involution ternary band.



Ternary ∗-Band 67

Definition 6. (i) Let S be an involution ternary semigroup. If for each x ∈ S, xx∗x = x,
x∗xx∗ = x∗ and x2y = xy2 for all x, y ∈ S, then S is said to be a ternary ∗-semigroup.

(ii) A ternary semigroup S is said to be ternary ∗-band if S is an idempotent ternary ∗-semigroup.

Definition 7. Let S be an involution ternary semigroup. An element x ∈ S is said to be a
projection of S if it is idempotent and is a fixed point of involution, i.e. x3 = x and x∗ = x.

Definition 8. Let S be an involution ternary semigroup. Then X ⊆ S is said to be an invo-
lution ternary subsemigroup if X is a subsemigroup of S and X∗ ⊆ X, where X∗ = {x∗ : x ∈ X}.

Two important notations of this paper are as follows:
The set of all subsemigroups of a ternary ∗-band S is denoted by S(S) and

Ch(S) = {X ∈ S(S) : X = Y 3 =⇒ X = Y for all Y ∈ P (S)}.

Remark 1. Every bijection between two left (resp. right) zero ternary semigroups is the iso-
morphism between them.

We have already discussed in [7], that finite left (resp. right) zero ternary semigroups are
globally determined. In this paper, we generalize this result for arbitrary left (resp. right) zero
ternary semigroups.

Here we assume the generalized continuum hypothesis which states that if cardinality of an
infinite set lies between that of an infinite set A and that of the power set P (A) of A, then it has
the same cardinality as either A or P (A).

Lemma 3. If P (S1) ∼= P (S2) then |S1| = |S2| where |S1| and |S2| denote cardinality of S1, S2
respectively.

P r o o f. To prove the result we consider the following three cases.
Case 1. Suppose that S1, S2 both are finite sets. Let |S1| = m and |S2| = n.
Since P (S1) ∼= P (S2), so |P (S1)| = |P (S2)|. Again |P (S1)| = 2m and |P (S2)| = 2n. Therefore,

2m = 2n. This implies that m = n.

Case 2. Suppose that S1 is a finite set and S2 is an infinite set and |S1| = m. Then |P (S1)| = 2m,
i.e. a finite number but |P (S2)| is not a finite number. Therefore, |P (S1)| 6= |P (S2)|. Hence Case 2
is not true.

Case 3. Let us assume that both S1, S2 are infinite sets. Then the following three situations
may arise.

(i) If S1 and S2 both are countable then |S1| = |S2| = ℵ0
1. So there is nothing to prove.

(ii) Suppose S1 is a countable set and S2 is an uncountable set. Then |S1| = ℵ0 =⇒ |P (S1)| =
2ℵ0 and |S2| ≥ 2ℵ0 . Therefore, |P (S2)| > 2ℵ0 = |P (S1)|. But this is not possible.

(iii) Suppose S1 and S2 both are uncountable. If possible, let |S1| 6= |S2|. Then |S1| = c and
|S2| = c1 where c, c1 ≥ 2ℵ0 . Therefore, |P (S1)| = 2c and |P (S2)| = 2c1 . Since c 6= c1 thus
2c 6= 2c1 . This contradicts our assumption. Therefore, |S1| = |S2|. �

Theorem 1. Left (resp. right) zero ternary semigroups are globally determined.

P r o o f. Let S1 and S2 be two left zero ternary semigroups and φ : P (S1) −→ P (S2) is
an isomorphism, i.e. P (S1) ∼= P (S2). This implies that |P (S1)| = |P (S2)|. Hence by Lemma 3,
|S1| = |S2|. Thus there is a bijection from S1 to S2. Since S1 and S2 are left zero ternary semigroups,
by Remark 1, it follows that the bijection is an isomorphism. So it is clear that S1 ∼= S2. Hence
the class of all left zero ternary semigroups is globally determined.

Similarly, we can show that right zero ternary semigroups are globally determined. �

1ℵ is the cardinality of the set of all natural number.
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3. Main result

A rectangular ternary band is said to be a proper rectangular ternary band if it is not a left
zero, right zero or lateral zero ternary semigroup. In this section, we provide some results of proper
rectangular ternary bands and show that the proper rectangular ternary band satisfies the strong
isomorphism property. By strong isomorphism property we mean that any isomorphism φ from
P (S) to P (S1) is also an isomorphism from S to S1. Here we also discuss that ternary ∗-bands
are globally determined. Unless otherwise stated, in this section, we assume that S is a proper
rectangular ternary band.

Lemma 4. Let S and S1 be two ternary semigroups such that P (S) ∼= P (S1) and ψ is an
isomorphism from P (S) to P (S1). Then the restriction ψ |Ch(S) is a bijection from Ch(S) to
Ch(S1).

P r o o f. Let A ∈ Ch(S). This implies that A ∈ S(S). Therefore, ψ(A) ∈ S(S1).
Let ψ(A) = A1. If possible, there exists B1 ∈ P (S1) such that B3

1 = A1. Since ψ is an
isomorphism there exists B ∈ P (S) such that ψ(B) = B1. Therefore, A1 = B3

1 = (ψ(B))3 = ψ(B3).
Hence ψ(A) = ψ(B3). This implies that A = B3. Since A ∈ Ch(S), we have A = B. Therefore,

ψ(A) = ψ(B). This implies that A1 = B1. Hence A1 ∈ Ch(S1). Therefore, ψ |Ch(S) is a bijection
from Ch(S) to Ch(S1). �

Lemma 5. Let S be a proper rectangular ternary band such that S = L×R. Then A ∈ Ch(S)
if and only if |πL(A)| = 1 or |πR(A)| = 1.

P r o o f. The proof is similar to the binary result of [2]. �

Theorem 2. Rectangular ternary bands are globally determined.

P r o o f. Proof of the theorem immediately follows from the binary result of [10]. �

Theorem 3. Proper rectangular ternary band satisfies the strong isomorphism property.

P r o o f. The proof is similar to the binary result of [2]. �

A restricted class of a involution ternary semigroup is ternary ∗-band. Unless otherwise stated,
in the rest of this section, B denotes an involution ternary band and S(B) denotes the set of all
involution ternary subsemigroups of B.

Lemma 6. For any involution ternary band B, S(B) coincides with the set of all projections
of P (B). Therefore, if B1 and B2 be two involution ternary bands, then every isomorphism ψ :
P (B1) −→ P (B2) induces a bijection from S(B1) to S(B2).

P r o o f. Since B is a involution ternary band, for any subset X of B, we have X ⊂ X3 and
(X∗)∗ = X.

Now let X ∈ S(B). This implies X3 ⊆ X, X∗ ⊆ X andX ⊆ B. ThusX3 = X and (X∗)∗ ⊆ X∗.
Hence X3 = X and X ⊆ X∗.
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Therefore, X3 = X and X∗ = X. So X is a projection of P (B).

Conversely, if X is a projection of P (B) then X3 = X and X = X∗. Therefore, X3 ⊆ X and
X∗ ⊆ X. Thus X ∈ S(B).

Hence S(B) is the set of all projections of P (B).

Let ψ : P (B1) −→ P (B2) be an isomorphism, where B1, B2 be two involution ternary bands.
We have to show that X ∈ S(B1) implies that ψ(X) ∈ S(B2). Let us extend ψ on (P (B1))

∗ as
ψ : (P (B1))

∗ −→ (P (B2))
∗ such that ψ(X∗) = (ψ(X))∗.

If X = X∗ then ψ(X) = ψ(X∗) = (ψ(X))∗. Hence X ∈ S(B1) implies that ψ(X) ∈ S(B2).
Thus ψ(S(B1)) ⊆ S(B2). Similarly, ψ−1(S(B2)) ⊆ S(B1). This implies that

ψ(ψ−1(S(B2))) ⊆ ψ(S(B1)) =⇒ S(B2) ⊆ ψ(S(B1)).

Therefore, S(B2) = ψ(S(B1)). Thus ψ induces a bijection between S(B1) and S(B2). �

Lemma 7. Let B1, B2 be two involution ternary bands. Any isomorphism from P (B1) to P (B2)
induces a bijection from Ch(B1) to Ch(B2).

P r o o f. If we are able to show that for any isomorphism ψ : P (B1) −→ P (B2),
ψ(Ch(B1)) = Ch(B2) then ψ : Ch(B1) −→ Ch(B2) becomes onto mapping. Again since ψ is an
isomorphism from P (B1) to P (B2) and Ch(B1) ⊆ P (B1) so ψ : Ch(B1) −→ Ch(B2) is one-to-one
mapping hence a bijection.

Let X ∈ Ch(B1). If possible there exists Y ′ ∈ P (B2) such that Y ′3 = ψ(X). Then there exists
Y ∈ P (B1) such that ψ(Y ) = Y ′. Therefore,

ψ(X) = Y ′3 = (ψ(Y ))3 = ψ(Y 3).

This implies that X = Y 3 because X ∈ Ch(B1). Hence X = Y . Thus ψ(X) = ψ(Y ). Therefore,
ψ(X) = Y ′. So X ∈ Ch(B1) implies that ψ(X) ∈ Ch(B2). Hence ψ(Ch(B1)) ⊆ Ch(B2).

Since ψ is an isomorphism, ψ−1 is also an isomorphism. Hence Y ∈ Ch(B2) implies that
ψ−1(Y ) ∈ Ch(B1). Thus

ψ−1(Ch(B2)) ⊆ Ch(B1) =⇒ ψ(ψ−1(Ch(B2))) ⊆ ψ(Ch(B1)) =⇒ Ch(B2) ⊆ ψ(Ch(B1)).

Hence ψ(Ch(B1)) = Ch(B2).

Therefore, ψ is a bijection from Ch(B1) to Ch(B2). �

Let us a define partial ordering and a chain on a ternary band as follows.

Definition 9. Let B be a ternary band. A partial order ≤ on a ternary band B can be defined
as a ≤ b if and only if

a = a2b = ab2 = b2a = ba2.

Definition 10. Let A be a non empty subset of a ternary band B. Then A is said to be a
chain of B if for all a, b ∈ A either a ≤ b or b ≤ a.

Lemma 8. Let B be a ternary ∗-band. Then X ∈ Ch(B) if and only if X is a chain of
projections.
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P r o o f. Let B be a ternary ∗-band. Then

x3 = x, (x∗)∗ = x, x∗xx∗ = x∗, xx∗x = x and x2y = xy2 for all x, y ∈ B.

Suppose X ∈ Ch(B) and x, y ∈ X. If possible let x2y /∈ {x, y}. Construct Y = X \ {x2y}.
Now x2y ∈ Y 3 and Y ⊆ X. Since B is ternary ∗-band and Y ⊆ X ⊆ B, we have Y ⊆ Y 3. Thus it
follows that Y 3 = X. Again

Y ⊆ X =⇒ Y 3 ⊆ X3 = X.

Now

Y = X \ {x2y} ⊆ Y 3 ⊆ X.

Since x2y ∈ Y 3, it follows that Y 3 6= Y . Hence Y 3 = X. By definition of Ch(B) we find that
Y = X. This contradicts our assumption that x2y /∈ {x, y}. Therefore, x2y ∈ {x, y}. Similarly,
xy2, yx2, y2x, xyx, yxy all are in {x, y}. Hence X is a chain.

Now our aim is to show that x ∈ X implies that x is a projection. Since X ∈ Ch(B), X3 = X.
Therefore, x∗ ∈ X for all x ∈ X. Now x2x∗ ∈ {x, x∗}.

Suppose x2x∗ = x. This implies that

(x2x∗)∗ = x∗ =⇒ xx∗x∗ = x∗ =⇒ x2x∗ = x∗.

Therefore, x = x∗. Hence x is the projection.

Again if

x2x∗ = x∗ =⇒ xx∗x∗ = x =⇒ x2x∗ = x.

Hence x∗ = x. Therefore, x is the projection.

This implies that X is a chain of projections.

Conversely, suppose that X ∈ P (B1) is a chain of projections. Suppose there exists Y ∈ P (B1)
such that Y 3 = X. It is clear that Y ⊆ Y 3. Therefore, Y ⊆ X. Subset of a chain must be a chain.
Hence Y 3 ⊆ Y . This implies X ⊆ Y ⊆ X. Thus X = Y . Therefore, X ∈ Ch(B). �

Let B be a ternary ∗-band. Let define a partial ordering “ ≤ ” on P (B) as follows:

X ≤ Y if and only if X = X2Y = Y X2 for all X,Y ∈ P (B).

X ։ Y if and only if X < Y in S(B) and there does not exist any Z ∈ S(B) such that
X < Z < Y .

Again X −→ Y if and only if X < Y and there does not exist any Z ∈ Ch(B) such that
X < Z < Y .

It is clear that

X ։ Y =⇒ X −→ Y.

Remark 2. If B is a ternary band then B is also a ternary semigroup. So ideal of a ternary
band is the same as the ideal of a ternary semigroup.

Lemma 9. Let B be a ternary band. Thus there exists some ternary semilattice S such that
there is a homomorphism σ : B −→ S such that σ(B) = S.

P r o o f. Let B be a ternary band. Define

Ia = {xay : x, y ∈ B}

for any a ∈ B. Then Ia is an ideal of B, generated by a.
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Let us define a relation ρ on B such that aρb if and only if Ia = Ib. There is no doubt that ρ
is an equivalence relation on B. Now let Ia1 = Ib1 , Ia2 = Ib2 , Ia3 = Ib3 . Therefore,

b1 = x1a1y1, b2 = x2a2y2, b3 = x3a3y3.

Hence

b1b2b3 = x1a1y1x2a2y2x3a3y3 = x1(a1y1x2a2
2)a2y2x3a3y3

= x1(a1y1x2a2
2)(a1y1x2a2

2)(a1y1x2a2
2)a2y2x3a3y3 = x1X(a2a1y1x2a2y2x3)a3y3

= x1X(a2a1Y a3
2)a3y3 = x1X(a2a1Y a3

2)(a2a1Y a3
2)(a2a1Y a3

2)a3y3

= (x1Xa2a1Y a3
2a2a1Y a3)(a3a2a1)(Y a3y3) = X1(a3a2a1)Y1,

where

X = a1y1x2a2
2a1y1x2a2, Y = y1x2a2y2x3, X1 = x1Xa2a1Y a3

2a2a1Y a3, Y1 = Y a3y3.

Therefore, b1b2b3 ∈ Ia3a2a1 . Similarly, we can show that a3a2a1 ∈ Ib1b2b3 .
Thus it is clear that Ia3a2a1 = Ib1b2b3 . Now

(i) abc = abcabcabc = a(bca)bcabc ∈ Ibca.

Similarly, we can show that bca ∈ Iabc. This implies that Iabc = Ibca. Again

(ii) abc = abcabcabc = a(bcabc)(bcabc)(bcabc)abc

= (abcab)(cbcabcbca)(bcabc) = (abcab)(cbcxa)(bcabc)

= (abcab)(cbcxa)(cbcxa)(cbcxa)(bcabc) = (abcabcbcx)acb(cxacbcxabcabc),

where x = abcbc. Therefore, abc ∈ Iacb. Hence Iabc = Iacb. Thus

Iabc = Iacb = Ibac = Ibca = Icab = Icba.

This shows that Ia1a2a3 = Ib1b2b3 . Therefore, ρ is a ternary congruence relation on B.
Now B/ρ be the set of all equivalence classes of the congruence relation and the elements are

denoted by ā for a ∈ B. Define a ternary operation on B/ρ by āb̄c̄ = abc.
Now we show that B/ρ is a ternary semilattice w.r.t. above defined ternary operation. This is

clear from the above discussion that B/ρ is a commutative ternary semigroup. Again since B is
ternary band,

āāā = aaa = ā3 = ā.

Thus B/ρ is also a ternary band. Now

a2b = a2b3 = a(ab2)b ∈ Iab2 , ab2 = a3b2 = a(a2b)b ∈ Ia2b.

Therefore, Ia2b = Iab2 . This implies that a2b = ab2. Hence ā2b̄ = āb̄2. Thus B/ρ is a ternary
semilattice.

Now we define a mapping σ : B −→ B/ρ such that σ(a) = ā. Then σ is an epimorphism.
If we consider S = B/ρ then there exists a ternary semilattice which is homomorphic image of B. �

Lemma 10. Let B be a ternary ∗-band and S be a ternary semilattice image of B. If
X,Y ∈ Ch(B) are such that X < Y and σ(X) ։ σ(Y ) [resp. σ(X) −→ σ(Y )] holds in P (S)
then X ։ Y [resp. X −→ Y ], where S is the semilattice image of B and σ is the corresponding
epimorphism from B to S.
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P r o o f. Let σ : B −→ S be an epimorphism. Then

σ(X) ։ σ(Y ) =⇒ σ(X) < σ(Y ).

Suppose Z ∈ S(B) be such that X < Z < Y . Now Z ∈ S(B) implies that σ(Z) ∈ S(S), since
(σ(Z))3 = σ(Z3) = σ(Z). Therefore,

X = X2Z = XZ2 = ZX2 = Z2X.

This implies that

σ(X) = σ(X)2σ(Z) = σ(X)σ(Z)2 = σ(Z)σ(X)2 = σ(Z)2σ(X).

Hence σ(X) < σ(Z). Thus it follows that σ(X) < σ(Z) < σ(Y ). This contradicts σ(X) ։ σ(Y ).
Hence σ(X) ։ σ(Y ) =⇒ X ։ Y .
Again let X,Y ∈ Ch(B) such that σ(X) −→ σ(Y ). If possible, there exists Z ∈ Ch(B) such

that X < Z < Y . This implies σ(X) < σ(Z) < σ(Y ). Since Z ∈ Ch(B) implies that σ(Z) ∈ Ch(S),
this contradicts that σ(X) −→ σ(Y ). Hence X −→ Y . �

Lemma 11. Let B be a ternary ∗-band and X ∈ Ch(B). If x ∈ X is not a maximal element
of X then X ։ X \ {x}.

P r o o f. Let X ∈ Ch(B). This implies that X3 = X. Now

X2(X \ {x}) = X(X \ {x})2 ⊆ X3 = X.

Let h ∈ X and h 6= x. Then h = h3 ∈ X2(X \ {x}). Again if h = x then there exists
some y ∈ X such that x = x2y = xy2. Therefore, h = x = x2y ∈ X2(X \ {x}). This implies
that X ⊆ X2(X \ {x}). Hence X2(X \ {x}) = X. Thus X < X \ {x}. Since X ∈ Ch(B),
X \ {x} ∈ Ch(B). Since {x} is not a maximal element of X, σ({x}) is also not a maximal element
of σ(X). Then from [8], we can write

σ(X) ։ σ(X) \ σ({x}) = σ(X \ {x}).

Hence by Lemma 10, it follows that X ։ X \ {x}. �

Lemma 12. Let B be a ternary ∗-band and X ∈ Ch(B). If X has a greatest element x1 and
there exists a projection y ∈ B such that x1 −→ y, then X −→ X ∪ {y}.

P r o o f. Let B be a ternary ∗-band. Then y ∈ B implies that

(y∗)∗ = y, yy∗y = y, y∗yy∗ = y∗.

Let X ∈ Ch(B). This implies that X is a chain of projections. If y be a projection of B such
that x1 −→ y then it is clear that X ∪ {y} is also a chain of projections. Hence X ∪ {y} ∈ Ch(B).
Now

X2(X ∪ {y}) = X3 ∪X2{y} = X.

Similarly, (X ∪ {y})X2 = X. Again

X(X ∪ {y})2 = X3 ∪X2{y} ∪X{y}2 ∪X{y}X = X, (X ∪ {y})2X = X.

Therefore, X < (X ∪ {y}).
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If possible, there exists Y ∈ Ch(B) such that X < Y < (X ∪ {y}). Thus

X2Y = Y X2 = X and Y 2(X ∪ {y}) = (X ∪ {y})Y 2 = Y.

Therefore, Y 2X ∪ Y 2{y} = Y . This implies that

X ∪ Y 2{y} = Y =⇒ X ⊆ Y.

If X 6= Y then there exists z ∈ Y such that z /∈ X. Again let z ∈ Y \X. If z < x1 then

z = zx21 = z2x1 = x1z
2 = x21z ∈ Y X2 = X.

So z ∈ X. This contradicts our assumption that X 6= Y .
Hence x1 < z. Since

X ∪ Y 2{y} = X ∪ {y}Y 2 = Y, z ∈ Y 2{y} = {y}Y 2.

Therefore, z = y1y2y = yy3y4 for some y1, y2, y3, y4 ∈ Y .
This implies that

zy2 = y1y2yy
2 = y1y2y = z, y2z = y2(yy3y4) = y3y3y4 = yy3y4 = z.

Hence z = zy2 = y2z. Therefore, z < y.
Thus we get x1 < z < y. This contradicts the relation x1 −→ y. Hence our assumption is not

true and so X −→ X ∪ {y}. �

Lemma 13. Let B be a ternary ∗-band and let x ∈ B be a projection. If {x} −→ Y for some
Y ∈ Ch(B) then Y = {x, y} with x −→ y.

P r o o f. Since {x} −→ Y , we get {x}2Y=Y {x}2={x}. Hence for any y ∈ Y , x2y = yx2 = x.
This implies that x ≤ y for all y ∈ Y .

Let Y1 = {x} ∪ Y . Now

Y 2Y1 = Y 2{x} ∪ Y 3 = {x} ∪ Y = Y1 = Y Y1
2, Y1Y

2 = {x}Y 2 ∪ Y 3 = {x} ∪ Y = Y1 = Y1
2Y.

This implies that Y1 ≤ Y .
Again

Y1{x}
2 = {x}3 ∪ Y {x}2 = {x} = Y1

2{x}, {x}2Y1 = {x}3 ∪ {x}2Y = {x} = {x}Y1
2.

This implies that {x} < Y1. Therefore, {x} < Y1 ≤ Y . This contradicts the relation {x} −→ Y .
Hence Y1 = Y . This implies x ∈ Y .

Next we assume that z ∈ Y \ {x} is an arbitrary element. Consider the set

Z = {y ∈ Y : y ≤ z}.

Since Y ∈ Ch(B), Z is also a chain of projections. Now z ∈ Z implies that Z is nonempty. Hence

x2Z = {x2y : y ≤ z} = {x}.

Similarly, xZ2 = {x}. Therefore, {x} ≤ Z.
Again let u ∈ Z2Y = ZY 2. Therefore, u = z1z2y1 for some y1 ∈ Y and z1, z2 ∈ Z. This implies

either y1 ≤ z or y1 > z.
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Case 1. Let y1 ≤ z then y1z
2 = y1

2z = z2y1 = zy1
2 = y1. Hence

z2u = z2z1z2y1 = z1z2y1 = u, uz2 = z1z2y1z
2 = z1z2y1 = u.

This implies u ≤ z.

Case 2. Let y1 > z then y1z
2 = y1

2z = z2y1 = zy1
2 = z. Hence

z2u = z2z1z2y1 = z1z2y1 = u, uz2 = z1z2y1z
2 = z1z2z

2y1 = z1z2y1 = u.

Therefore, u ≤ z. Thus u ∈ Z. Hence Z2Y = ZY 2 ⊆ Z.

Similarly, v ∈ Y Z2 = Y 2Z =⇒ v = y1z1z2 = y2y3z3. Then either y1 ≤ z or y1 > z.

Case 1. Let y1 ≤ z. Then

y1 = y1z
2 = y1

2z = z2y1 = zy1
2,

z2v = z2y1z1z2 = y1z1z2 = v = zv2, vz2 = y1z1z2z
2 = y1z1z2 = v = v2z.

Hence v ≤ z.

Case 2. Let y1 > z. Therefore,

z = y1z
2 = y1

2z = z2y1 = zy1
2,

vz2 = y1z1z2z
2 = y1z1z2 = v, z2v = z2y1z1z2 = y1z

2z1z2 = y1z1z2 = v.

Hence v ≤ z. This implies that v ∈ Z. Thus Y Z2 = Y 2Z ⊆ Z.

Conversely, Z = Z3 ⊆ Y 2Z = Y Z2 and Z = Z3 ⊆ Z2Y = ZY 2.
Hence

Z = Y 2Z = Y Z2 = ZY 2 = Z2Y.

This implies that Z ≤ Y . Therefore, {x} ≤ Z ≤ Y . This contradicts the relation {x} −→ Y .
Hence Y = Z. Since z is an arbitrary element, Y has only two elements say {x, y}. It is clear that
x < y. If possible x9 y. Then there exists z ∈ Ch(B) such that x < z < y. Then

x2{x, z} = x{x, z}2 = {x, z}2x = {x, y}x2 = {x},

{x, z}Y 2 = xY 2 ∪ zY 2 = {x} ∪ {z} = {x, z} = {x, z}2Y = Y 2{x, z} = Y {x, z}2.

Therefore, {x} < {x, z} < Y . This is a contradiction. Hence Y = {x, y} and x −→ y. �

Proposition 1. Let B be a ternary ∗-band and X ∈ Ch(B) such that |X| ≥ 3. Then X has a
topknot.

P r o o f. Let X ∈ Ch(B) and |X| ≥ 3. Then there exist x, y, z ∈ X such that x < y < z.
Since {x} and {y} are not maximal elements of X, X ։ X \{x} and X \{y}, by Lemma 11. Again
X \ {x} ։ X \ {x, y} and X \ {y} ։ X \ {x, y}. Therefore, we have the following topknot:

X \ {x}

X \ {x, y}

X \ {y}

X



Ternary ∗-Band 75

�

Proposition 2. Let B be a ternary ∗-band. If X ∈ Ch(B) and |X| = 2 then X has either a
maximal hair of length 1 or a topknot.

P r o o f. Let X = {x, y}, with x < y. By Lemma 11, it follows that X ։ X \ {x} = {y}. If
X has no maximal hair of length 1 then there is an element z ∈ Ch(B) such that y −→ z. Again
by Lemma 13, {y} −→ {y, z}. Also by Lemma 12, X −→ X ∪{z} = {x, y, z}. Then by Lemma 11,
{x, y, z} ։ {y, z}. Hence we can construct the following topknot:

{y}

{y, z}

{x, y, z}

X

�

Proposition 3. Let B is a ternary ∗-band and X ∈ Ch(B). Then |X| = 1 if and only if X
has neither maximal hair of length 1 nor topknots.

P r o o f. Suppose that X = {x} and if possible, X has a maximal hair of length 1. Then
there exists Y ∈ Ch(B) such that X ։ Y . Thus by Lemma 13, we get Y = {x, y} for some y with
x −→ y. Since x is not maximal in Y , by Lemma 11, it is clear that {x} ։ Y ։ Y \ {x}. This
contradicts our assumption that X has a maximal hair of length 1. Now suppose that X has a
topknot as follows:

Y

T

Z

{x}

Again by Lemma 13, we have Y = {x, y} with x −→ y and Z = {x, z} with x −→ z and y 6= z
so that y2z = yz2 = zy2 = z2y.

Now T ∈ Ch(B). Consider W = {x, y, z}. Since y2z = yz2 = zy2 = z2y = x, W /∈ Ch(B).
So xyz = x implies that W 3 =W . Hence W ∈ S(S). Now

{x, y}2W = {x3, x2y, x2z, xyx, xy2, xyz, yx2, yxy, yxz, y2x, y3, y2z} = {x, y}.

Similarly,
{x, y}W 2 =W{x, y}2 =W 2{x, y} = {x, y}.

This shows that {x, y} < W . Again W 2T = WT 2 = W . Thus {x, y} < W < T . This contradicts
the existence of topknot. Hence X has no topknot.

Conversely, suppose that X has neither maximal hair of length 1 nor topknot. If possible, |X| >
1. Then Proposition 1 and Proposition 2 contradicts our assumption. Thus the result holds. �

Theorem 4. Ternary ∗-band is globally determined.
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P r o o f. Let B1, B2 be two ternary ∗-bands such that ψ : P (B1) −→ P (B2) be an isomor-
phism. Let B̄1, B̄2 be the set of all singleton subsets of B1 and B2 respectively. Let us define
ψ1 : B1 −→ B̄1 such that ψ1(x) = {x} and ψ2 : B̄2 −→ B2 such that ψ2({y}) = y. Now from the
construction of ψ1, ψ2 it follows that ψ1 and ψ2 be two isomorphisms from B1 to B̄1 and from B̄2

to B2 respectively.
If we are able to show that ψ |B̄1

is a bijection from B̄1 to B̄2 then it follows that ψ |B̄1
: B̄1 −→ B̄2

is an isomorphism.
Let X ∈ Ch(B1) such that |X| = 1. Then X ∈ B̄1. If possible, ψ(X) = X ′ /∈ B̄2, i.e., |X

′| ≥ 2.
Then by Proposition 1 and Proposition 2, it follows that X ′ has either a maximal hair of length 1
or a topknot.

Case 1. Suppose X ′ has a maximal hair of length 1. Then X has also a maximal hair of
length 1. This contradicts that X ∈ B̄1.

Case 2. Suppose X ′ has a topknot as follows:

Y ′

W ′

Z ′

X ′

where Y ′, Z ′,W ′ ∈ Ch(B2) and Y ′ 6= Z ′. Then there exists Y,Z,W ∈ Ch(B1) and Y 6= Z such
that Y ′ = ψ(Y ), Z ′ = ψ(Z) and W ′ = ψ(W ). Then the above topknot can be written as follows:

ψ(Y )

ψ(W )

ψ(Z)

ψ(X)

Hence we have the following topknot:

Y

W

Z

X

From the Proposition 3, it follows that X /∈ B̄1. This contradicts our assumption. Therefore,
|ψ(X)| = |X ′| = 1 and X ′ ∈ Ch(B2). Thus ψ is a bijection from the singleton subset of projection
of B1 to the singleton subset of projection of B2.

Now let x ∈ B1 such that x is not projection. Then (x2x∗)∗ = xx∗2 = x2x∗. Therefore, x2x∗ is
a projection.

Similarly, x∗x2 is also a projection and (x2x∗)(x2x∗)(x∗x2) = x. Therefore, any element of B
can be written as a product of three projections, say x = lmn, where l,m, n are projections. So

ψ({x}) = ψ({lmn}) = ψ({l}{m}{n}) = ψ({l})ψ({m})ψ({n}) = l1m1n1 = x1.

Therefore, {x} ∈ B̄1 implies that ψ({x}) ∈ B̄2, i.e., ψ(B̄1) ⊆ B̄2. Similarly, ψ−1(B̄2) ⊆ B̄1. This
implies that ψ(ψ−1(B̄2)) ⊆ ψ(B̄1) and B̄2 ⊆ ψ(B1). Hence ψ(B̄1) = B̄2. Therefore, ψ is an onto
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mapping from B̄1 to B̄2 and since ψ is an isomorphism from P (B1) to P (B2) and B̄1 ⊆ P (B1), it
follows that ψ |B̄1

: B̄1 −→ B̄2 is an isomorphism.
Therefore, ψ2ψ |B̄1

ψ1 : B1 −→ B2 is an isomorphism. Hence B1
∼= B2. Thus we conclude that

ternary ∗-bands are globally determined. �

4. Conclusion

Throughout this paper we investigated the on global determinism of ternary ∗-bands and suc-
cessfully proved that ternary ∗-bands are globally determined. This research enriches the study of
global determinism problem on different classes of ternary semigroup. In future we will be able
to study the global determinism problem of another class of ternary semigroup with the help of
those results that we have proved in this paper. We hope this work will flourish the field of ternary
semigroup, specially the global determinism problem on various classes of ternary semigroupes.
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Abstract: This work is concerned with the existence of positive weighted pseudo S-asymptotically periodic
solution in Stepanov-like sense for some systems of nonlinear delay integral equations. In this context, we will
first be interested in establishing a suitable composition theorem, and then some existing results concerning the
S-asymptotic periodicity in the scalar case are developed here for the vector case. We point out that, in this
paper, we adopt some changes in the definitions, which, although slight, are necessary to accomplish the work.
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1. Introduction

The concept of S-asymptotically periodic functions was introduced in the literature by
Henŕıquez et al. [10] in 2008. The concept turns out to generalize that of asymptotically peri-
odic functions. For additional details on this topic, we refer the reader to [1, 5, 7, 8, 10, 11, 18] and
the references therein. Since then, S-asymptotically periodic functions are widely investigated and
used in the study of differential and integral equations.

However, the notion of weighted Sp-pseudo S-asymptotic periodicity, which was introduced
by Xia [17] in 2015, is more general than that of asymptotic periodicity and all its various ex-
tensions, namely S-asymptotic periodicity, pseudo S-asymptotic periodicity and weighted pseudo
S-asymptotic periodicity.

Motivated by the works on various kinds of systems of nonlinear delay integral equations (see,
e.g., [13–16]), on S-asymptotically periodic functions and by the works [9, 17] on weighted Stepanov-
like pseudo S-asymptotically periodic functions, we investigate the existence of positive weighted
Sp-pseudo S-asymptotically ω-periodic solution (ω > 0) for systems of nonlinear delay integral
equations with superlinear perturbations of the following type:

x(s) = α1(s)x
η(s− l) +

∫ τ1(s)

0
f
(

s, σ, x(s− σ − l), y(s− σ − l)
)

dσ,

y(s) = α2(s)y
ν(s− l) +

∫ τ2(s)

0
g
(

s, σ, x(s − σ − l), y(s − σ − l)
)

dσ.

(1.1)

Let η, ν ≥ 1 and l ≥ 0 be fixed numbers, and let f, g : R×R
+ ×R

+ ×R
+ → R

+, α1, α2 : R → R
+,

and τ1, τ2 : R → R
+ be suitable functions satisfying some appropriate conditions mentioned later

in the assumptions.

https://doi.org/10.15826/umj.2023.1.006
mailto:hamza.elbazi.uae@gmail.com
mailto:abdo2sadrati@gmail.com
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First of all, it is interesting to highlight the biological context of our model. Note that, consid-
ering the equation

x(s) = α(s)xη(s− l) +

∫ τ(s)

0
f(s, σ, x(s− σ − l))dσ,

we have the scalar case of system (1.1), which generalizes the model studied in 2016 by Zhao et
al. [18], if one changes the variable s− σ = u and takes l = 0:

x(s) = α(s)xη(s− l) +

∫ s

s−τ(s)
f(σ, x(σ))dσ,

which in turn generalizes the model

x(s) =

∫ s

s−τ
f(σ, x(σ))dσ

published in 1976 by Cooke and Kaplan [4] to explain the spread of some infectious diseases or the
population growth of single species.

The work consists of four sections and a conclusion. In the next section, we introduce some
basic concepts, definitions, and notation required in what follows. Section 3 is devoted to proving
several lemmas and a composition theorem needed to prove our existence result. In Section 4,
we give sufficient conditions that ensure the existence and uniqueness of a weighted Sp-pseudo
S-asymptotically ω-periodic solution to system (1.1).

2. Some definitions and preliminaries

Throughout the paper, we use the following notation. Let N be the set of all positive integers,
R = (−∞,+∞), R∗ = (−∞, 0) ∪ (0,+∞), R+ = [0,+∞), Rn

+ = R+ × · · · × R+ (n times), and let,
for x = (x1, . . . , xn) ∈ R

n,

‖x‖ =
n
∑

i=1

|xi|.

Let BC (R,Rn) (resp. BC(R × R+ × R
n
+,R

n)) be the space of continuous bounded functions
f : R → R

n (resp. f : R× R+ × R
n
+ → R

n). Then, endowed with the sup norm

‖f‖∞ = sup
t∈R

‖f(t)‖,

BC (R,Rn) is a Banach space. For 1 ≤ p ≤ +∞, Lp (R,Rn) denotes the Lebesgue space and
Lp
Loc (R,R

n) denotes the space of all equivalence classes of measurable functions f : R −→ R
n such

that the restriction of f to every bounded subinterval of R is in Lp (R,Rn). Let Lp,1
Loc (R× R+,R

n)
denote the space of all equivalence classes of measurable functions f : R × R+ −→ R

n,
(s, σ) −→ f(s, σ) such that the restriction of f to every bounded subset of R × R+ is in
Lp,1 (R× R+,R

n) = Lp
(

R, L1 (R+,R
n)
)

.
Furthermore, in the general case when x = (x1, . . . , xn) : R −→ R

n
+, τ = (τ1, . . . , τn) : R −→ R

n
+,

and f = (f1, . . . , fn) : R× R+ × R
n
+ −→ R

n
+ are appropriate functions, we use the notation

∫ τ(s)

0
f(s, σ, x(s− σ − l))dσ

for the vector of Rn whose components are
∫ τi(s)

0
fi(s, σ, x1(s− σ − l), . . . , xn(s− σ − l))dσ, i = 1, 2, . . . , n.
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Definition 1 [18]. A function f ∈ BC (R,Rn) is said to be S-asymptotically ω-periodic if there

exists ω > 0 such that limt→∞ ‖f(t+ ω)− f(t)‖ = 0. In this case, we say that ω is an asymptotic

period of f . We denote by SAPω (R,Rn) the set of all such functions.

Lemma 1 [18]. Let f, g ∈ SAPω (R,Rn). Then the following assertions hold :

(i) the function t→ f(t+ s) lies in SAPω (R,Rn) for every s ∈ R;

(ii) the product f · g lies in SAPω (R,Rn) ;

(iii) equipped with the sup norm

‖f‖∞ = sup
s∈R

‖f(s)‖,

SAPω (R,Rn) turns out to be a Banach space.

Let U denote the collection of all functions (weights) ρ : R∗ −→ (0,+∞) locally integrable over
(−∞, 0) and (0,+∞) such that ρ(t) > 0 for almost all t ∈ R

∗. For ρ ∈ U and r > 0, we set

m−(r, ρ) =

∫ 0

−r
ρ(s)ds and m+(r, ρ) =

∫ r

0
ρ(s)ds.

Throughout this paper, the set of weights U∞ stands for

U∞ =
{

ρ ∈ U : lim
r→+∞

m−(r, ρ) = +∞ and lim
r→+∞

m+(r, ρ) = +∞
}

.

Obviously, U∞ ⊂ U , with strict inclusions.

Definition 2. Let ρ ∈ U∞ and f ∈ BC (R,Rn). If

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
‖f(s− ω)− f(s)‖ ρ(s)ds = 0,

lim
r→+∞

1

m+(r, ρ)

∫ r

0
‖f(s+ ω)− f(s)‖ ρ(s)ds = 0,

for some ω > 0, then we call f weighted pseudo S-asymptotically ω-periodic. The collection of such

functions is denoted by PSAPω (R,Rn, ρ). In particular, we use the notation PSAPω (R,Rn) when
ρ ≡ 1. Equipped with the sup norm

‖f‖∞ = sup
s∈R

‖f(s)‖,

PSAPω (R,Rn, ρ) turns out to be a Banach space.

Definition 3 [6]. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function f : R −→ R
n,

is defined as

f b(t, s) := f(t+ s).

Remark 1. Note that a function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a certain
function f(t),

ϕ(t, s) = f b(t, s),

if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for all t ∈ R, s ∈ [0, 1], and τ ∈ [s − 1, s].
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Definition 4 [6]. The Bochner transform f b(t, s, σ, u), t ∈ R, s ∈ [0, 1], (σ, u) ∈ R × R
n, of a

function f : R× R× R
n −→ R

n, is defined as

f b(t, s, σ, u) := f(t+ s, σ, u).

Definition 5 [12]. Let p ∈ [1,+∞).

(i) The space BSp (R,Rn) of all Stepanov bounded functions, with the exponent p, consists of all
measurable functions f on R with values in R

n such that f b ∈ L∞
(

R, Lp ([0, 1],Rn)
)

. This

is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(
∫ t+1

t
‖f(s)‖pds

)1/p

.

(ii) The space BSp
(

R × R+ × R
n
+,R

n
)

of all Stepanov bounded functions, with the exponent p,
consists of all measurable functions f : R× R+ × R

n
+ −→ R

n such that

f b(·, ·, σ, u) ∈ L∞ (R, Lp ([0, 1],Rn)) , t→ f b(t, ·, σ, u) ∈ Lp ([0, 1],Rn) ,

for every t ∈ R and every (σ, u) ∈ R+ × R
n
+.

One can see that, for every f ∈ Lp
Loc (R,R

n), the function f b is continuous (by construction). Then,
the space BSp (R,Rn) may also be written as

BSp (R,Rn) =
{

f ∈ Lp
Loc (R,R

n) : f b ∈ BC(R), Lp ([0, 1],Rn)
}

.

In fact, for p ≥ 1, we have

(BC (R,Rn) , ‖ · ‖BC) is continuously embeded in (BSp (R,Rn) , ‖ · ‖Sp) .

Also, it is well known that Lp (R,Rn) ⊂ BSp (R,Rn) ⊂ Lp
Loc (R,R

n) andBSp (R,Rn) ⊂ BSq (R,Rn)
for p ≥ q ≥ 1.

Definition 6. Let ρ ∈ U∞ and f ∈ BSp (R,Rn). If

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt = 0,

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω)− f(s)‖p ds

)1/p

dt = 0

for some ω > 0, then we call f weighted Sp-pseudo S-asymptotically ω-periodic. Such function

space is denoted by PSAP p
ω (R,Rn, ρ). In particular, we use the notation PSAP p

ω (R,Rn) when

ρ ≡ 1.

Remark 2. The above definition has a slight difference from [17, Definition 3.1], where a
weighted Sp-pseudo S-asymptotically ω-periodic function is defined on R+.

Similarly to [9], we give an example illustrating that PSAP p
ω (R,Rn) 6= PSAP p

ω (R,Rn, ρ).

Example 1. Define a function f : R → R as follows:

f(t) =











−n5(t− n3 − 1/n)2 + n3, t ∈ [n3, n3 + 2/n], n ∈ N,

−n5(t+ n3 + 1/n)2 + n3, t ∈ [−n3 − 2/n,−n3], n ∈ N,

0, otherwise.
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Then, for all ω > 0, there exists integer n0 such that f(s + ω) = 0 (resp. f(s − ω) = 0) for all
n ≥ n0 and s ∈ [n3, n3 + 2/n] (resp. for all n ≥ n0 and s ∈ [−n3 − 2/n,−n3]). Let p = 1, let r > 0
be a sufficiently large number, and let k be the largest integer satisfying the inequality

n30 +
2

n0
≤ k3 +

2

k
≤ r.

If the function (weight) ρ ≡ 1, then, by the same calculation as in [9, Example 2.2], we obtain

1

r

∫ 0

−r

(
∫ t

t−1
‖f(s− ω)− f(s)‖ds

)

dt =
1

r

∫ 0

−r

(
∫ 0

−1
‖f(t+ s− ω)− f(t+ s)‖ds

)

dt

=

∫ 0

−1

(

1

r

∫ 0

−r
‖f(t+ s− ω)− f(t+ s)‖dt

)

ds

≥
∫ 0

−1

1

(k + 1)3 + 2/(k + 1)

( k
∑

n=n0

∫ −n3

−n3−2/n

[

− n5
(

t+ n3 +
1

n

)2

+ n3
]

dt

)

ds

=
1

(k + 1)3 + 2/(k + 1)

k
∑

n=n0

4n2

3
→ 4

9
(k → +∞)

and

1

r

∫ r

0

(
∫ t+1

t
‖f(s+ ω)− f(s)‖ds

)

dt

≥
∫ 1

0

1

(k + 1)3 + 2/(k + 1)

( k
∑

n=n0

∫ n3+2/n

n3

[

− n5
(

t− n3 − 1

n

)2

+ n3
]

dt

)

ds

=
1

(k + 1)3 + 2/(k + 1)

k
∑

n=n0

4n2

3
→ 4

9
(k → +∞).

This implies that f /∈ PSAP p
ω (R,R).

Now, take ρ(t) = 1/t4 and t 6= 0. Again, by the same calculation as in [9, Example 2.2], we
obtain f ∈ PSAP p

ω (R,R, ρ).

Theorem 1 [9]. PSAP p
ω (R,Rn, ρ), where ρ ∈ U∞, with the norm ‖.‖Sp is a Banach space.

P r o o f. The proof is similar to that of [9, Theorem 3.2], where weighted Sp-pseudo S-
asymptotically periodic function is defined on R+, so it is omitted here. �

Definition 7. Let ρ ∈ U∞. A function f : R × R+ × R
n
+ → R is called weighted Sp-pseudo

S-asymptotically ω-periodic in s ∈ R for all (σ, x) ∈ R+ × R
n
+ if f(·, σ, x) ∈ BSp (R,Rn) and

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω, σ, x) − f(s, σ, x)‖p ds

)1/p

dt = 0,

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
‖f(s− ω, σ, x)− f(s, σ, x)‖p ds

)1/p

dt = 0

for all (σ, x) ∈ R+ ×R
n
+. Denote by PSAP p

ω

(

R× R+ × R
n
+,R, ρ

)

the set of all such functions.
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3. Composition theorem

To study the existence of solutions to system (1.1), we reduce the problem to a fixed point
problem of a nonlinear operator. For this, we must prove a composition theorem adapted to our
case.

Let BPSAP p
ω (R,Rn, ρ) be the subset of PSAP p

ω (R,Rn, ρ) consisting of all bounded functions x,
that is,

‖x‖∞ = sup
s∈R

‖x(s)‖ <∞.

It is clear that BPSAP p
ω (R,Rn, ρ) is a Banach space with respect to the norm ‖ · ‖Sp .

Let PSAP p,1
ω

(

R× R+× R
n
+, R

n, ρ
)

be the subset of the space PSAP p
ω

(

R× R+× R
n
+, R

n, ρ
)

consisting of all functions f such that f(·, ·, u) ∈ Lp,1
Loc(R×R+, R

n) for all u ∈ R
n
+. For ρ ∈ U∞, we

further assume that (see [2])

(Hρ) for all σ ∈ R, lim sup
|s|−→+∞

ρ(s+ σ)

ρ(s)
< +∞.

Note that hypothesis (Hρ) implies that, for all σ ∈ R+,

lim sup
r−→+∞

m+(r + σ, ρ)

m+(r, ρ)
< +∞ and lim sup

r−→+∞

m−(r + σ, ρ)

m−(r, ρ)
< +∞.

Lemma 2. Let ρ ∈ U∞ satisfy hypothesis (Hρ). If f ∈ PSAP p
ω (R,Rn, ρ) , then

f−σ ∈ PSAP p
ω (R,Rn, ρ) for all σ ∈ R+, where f−σ(s) = f(s− σ).

P r o o f. Fix σ ∈ R+. From assumption (Hρ), there exist constants k, s0 > 0 such that, for
|s| ≥ s0,

ρ(s − σ)

ρ(s)
≤ k,

ρ(s+ σ)

ρ(s)
≤ k,

m−(r + σ, ρ)

m−(r, ρ)
≤ k, and

m+(r + σ, ρ)

m+(r, ρ)
≤ k.

Thus, for r > s0 + σ,

1

m−(r, ρ)

∫ −σ

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt

=
1

m−(r, ρ)

∫ −s0−σ

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt

+
1

m−(r, ρ)

∫ −σ

−s0−σ
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt.

It is clear that the following integral is defined:

∫ −σ

−s0−σ
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt.

Therefore, since

lim
r→+∞

m−(r, ρ) = +∞,

lim
r→+∞

1

m−(r, ρ)

∫ −σ

−s0−σ
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt = 0.
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Also, we have

1

m−(r, ρ)

∫ −s0−σ

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt

=
m−(r + σ, ρ)

m−(r, ρ)

1

m−(r + σ, ρ)

∫ −s0−2σ

−r−σ

ρ(t+ σ)

ρ(t)
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt

≤ k2

m−(r + σ, ρ)

∫ 0

−(r+σ)
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt.

Since f ∈ PSAP p
ω (R,Rn, ρ), we have

lim
r→+∞

k2

m−(r + σ, ρ)

∫ 0

−(r+σ)
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt = 0.

Thus,

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s − ω)− f−σ(s)‖p ds

)1/p

dt = 0.

Similarly, we obtain

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω)− f(s)‖p ds

)1/p

dt = 0.

We deduce that f−σ ∈ PSAP p
ω (R,Rn, ρ) for all σ ∈ R+ (see [9, Theorem 3.1] for more details). �

Now, let us put forward the following hypothesis, which will be helpful throughout the rest of
this paper.

(H0) For every compact subset K ⊂ R
n
+ \ {0}, there exist constants LK ,MK > 0 such that

(i) for all x, u ∈ K and all (s, σ) ∈ R× R+,

‖f(s, σ, x)− f(s, σ, u)‖ ≤ LK‖x− u‖;

(ii) for all x ∈ K and all (s, σ) ∈ R× R+,

‖f(s, σ, x)‖ ≤MK‖x‖.

Lemma 3. Let ρ ∈ U∞. Assume that f ∈ PSAP p,1
ω

(

R×R+ × R
n
+,R

n, ρ
)

satisfies (H0), and
K1 and K2 are compact subsets of Rn

+ \ {0}. Then

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ t+1

t

(

sup
(τ,x)∈K

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x) − f(s, σ, x)]dσ

∥

∥

∥

)p

ds

]1/p

dt = 0,

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

[
∫ t

t−1

(

sup
(τ,x)∈K

∥

∥

∥

∫ τ

0
[f(s− ω, σ, x) − f(s, σ, x)]dσ

∥

∥

∥

)p

ds

]1/p

dt = 0,

where K = K1 ×K2 is a compact subset of Rn
+ × R

n
+.
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P r o o f. Fix ε > 0. Then, there exist (τ1, x1), ..., (τm, xm) ∈ K = K1 ×K2 such that

K ⊂
m
⋃

i=1

B
(

(τi, xi),
ε

|K|
)

,

where

|K| = sup
(τ,x)∈K

{‖τ‖ + ‖x‖}.

For the above ε > 0, there exists r0 > 0 such that

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω, σ, xi)− f(s, σ, xi)‖p ds

)1/p

dt <
ε

m
(3.1)

for r > r0, σ ≥ 0, and i ∈ {1, 2, . . . ,m}.
Now, let (τ, x) ∈ K. Then there exists i0 ∈ {1, 2, . . . ,m} such that

‖τ − τi0‖ <
ε

|K| and ‖x− xi0‖ <
ε

|K| .

Using (H0), for all r > r0, we have

∥

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x)− f(s, σ, x)]dσ

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ τ

0
f(s+ ω, σ, x)dσ −

∫ τi0

0
f(s+ ω, σ, xi0)dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τi0

0
[f(s+ ω, σ, xi0)− f(s, σ, xi0)]dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τi0

0
f(s, σ, xi0)dσ −

∫ τ

0
f(s, σ, x)dσ

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ τi0

0
[f(s+ ω, σ, x)− f(s+ ω, σ, xi0)]dσ

∥

∥

∥

∥

+

∫ ‖τi0‖

0

∥

∥f(s+ ω, σ, xi0)− f(s, σ, xi0)
∥

∥

+

∥

∥

∥

∥

∫ τ

0
[f(s, σ, xi0)− f(s, σ, x)]dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τ

τi0

f(s+ ω, σ, x)dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τi0

τ
f(s, σ, xi0)dσ

∥

∥

∥

∥

≤
∫ ‖τi0‖

0
‖f(s+ ω, σ, xi0)− f(s, σ, xi0)‖+ 2(LK2 +MK2)ε.

Minkowski’s inequality, Hölder’s inequality (see, for instance, [3, Theorem 4.6 and Theorem 4.7]),
and (3.1) imply that, for all r > r0,

1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ t+1

t

(

sup
(τ,x)∈K

∥

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x) − f(s, σ, x)]dσ

∥

∥

∥

∥

)p

ds

]1/p

dt

≤
m
∑

i=1

‖τi‖(p−1)/p 1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ ‖τi‖

0

∫ t+1

t
‖f(s+ ω, σ, xi)− f(s, σ, xi)‖pdsdσ

]1/p

dt

+2(LK2 +MK2)ε

<

m
∑

i=1

‖τi‖(p−1)/p‖τi‖1/p
ε

m
+ 2(LK2 +MK2)ε ≤

[

|K|+ 2(LK2 +MK2)
]

ε.

This proves the former limit. By the same considerations, we prove the latter limit. �
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Theorem 2. Let ρ ∈ U∞ satisfy (Hρ). Assume that τ, x ∈ BPSAP p
ω

(

R,Rn
+, ρ

)

,

infs∈R x(s) > 0, and f ∈ PSAP p,1
ω

(

R× R+ × R
n
+,R

n, ρ
)

satisfy (H0). Then, the function

Tx : R → R
n defined as

Tx(s) =

∫ τ(s)

0
f(s, σ, x(s − σ − l))dσ, l ≥ 0,

belongs to BPSAP p
ω

(

R,Rn
+, ρ

)

.

P r o o f. Since τ, x ∈ BPSAP p
ω

(

R,Rn
+, ρ

)

, using (H0) (ii), one can easily show that
Tx(·) ∈ BSp (R,Rn). In addition,

(
∫ t+1

t

∥

∥Tx(s+ ω)− Tx(s)
∥

∥

p
ds

)1/p

=

(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s+ω)

0
f(s+ ω, σ, x(s + ω − σ − l))dσ −

∫ τ(s)

0
f(s, σ, x(s− σ − l))dσ

∥

∥

∥

∥

p

ds

)1/p

≤
(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s+ω)

0

[

f(s+ ω, σ, x(s + ω − σ − l))− f(s, σ, x(s+ ω − σ − l))
]

dσ

∥

∥

∥

∥

p

ds

)1/p

+

(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s)

0

[

f(s, σ, x(s + ω − σ − l))− f(s, σ, x(s − σ − l))
]

dσ

∥

∥

∥

∥

p

ds

)1/p

+

(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s+ω)

τ(s)
f(s, σ, x(s+ ω − σ − l))dσ

∥

∥

∥

∥

p

ds

)1/p

.

Let
K1 = {τ(s) : s ∈ R}, K2 = {x(s) : s ∈ R},

and K = K1 ×K2. Then, we have

∫ r

0
ρ(t)

(
∫ t+1

t

∥

∥

∥

∥

Tx(s+ ω)− Tx(s)

∥

∥

∥

∥

p

ds

)1/p

dt

≤
∫ r

0
ρ(t)

[
∫ t+1

t

(

sup
(τ,x)∈K

∥

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x)− f(s, σ, x)]dσ

∥

∥

∥

∥

)p

ds

]1/p

dt

+‖τ‖(p−1)/p
∞

∫ r

0
ρ(t)

[
∫ t+1

t

∫ ‖τ‖∞

0
‖f(s, σ, x(s+ ω − σ − l))− f(s, σ, x(s − σ − l))‖pdσds

]1/p

dt

+M‖x‖∞
∫ r

0
ρ(t)

(
∫ t+1

t

∥

∥

∥

∥

τ(s+ ω)− τ(s)

∥

∥

∥

∥

p

ds

)1/p

dt.

From (H0), Lemma 2, and Lemma 3, we obtain

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ t+1

t
‖Tx(s+ ω)− Tx(s)‖p ds

)1/p

dt = 0.

Similarly, we get

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

[
∫ t

t−1
‖Tx(s− ω)− Tx(s)‖p ds

)1/p

dt = 0.

�

We close this section with the following lemma, which, together with Lemma 2 and Theorem 2,
are necessary for the sequel.
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Lemma 4. Let ρ ∈ U∞. Assume that f, g ∈ BPSAP p
ω (R,R, ρ), then the product f · g belongs

to BPSAP p
ω (R,R, ρ).

P r o o f. Since f, g ∈ PSAP p
ω (R,R, ρ) are bounded, we have

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s + ω)− f(s)g(s)|pds

)1/p

dt

≤ 1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s + ω)− f(s+ ω)g(s)|pds

)1/p

dt

+
1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s) − f(s)g(s)|pds

)1/p

dt

≤ ‖f‖∞
m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|g(s + ω)− g(s)|pds

)1/p

dt

+
‖g‖∞

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)− f(s)|pds

)1/p

dt.

Thus,

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s + ω)− f(s)g(s)|pds

)1/p

dt = 0,

and similarly we get

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
|f(s− ω)g(s − ω)− f(s)g(s)|pds

)1/p

dt = 0.

�

4. Existence theorem

In this section, we give sufficient conditions for system (1.1) to have a solution in the Banach
space BPSAP p

ω (R,R, ρ)×BPSAP p
ω (R,R, ρ). Suppose that ρ ∈ U∞ satisfies assumption (Hρ). We

put forward the following hypotheses on the components of system (1.1), which are essential in the
proof of our existence result.

(H1) τi, αi ∈ BPSAP p
ω (R,R, ρ) (i = 1, 2) are nonnegative functions.

(H2) F = (f, g) ∈ PSAP p,1
ω

(

R× R+ × R
2
+,R

2
+, ρ

)

is such that, for every (s, σ, x, y) ∈ R × R+ ×
R+ × R+, f(s, σ, ·, y) and g(s, σ, x, ·) are nondecreasing, and f(s, σ, x, ·) and g(s, σ, ·, y) are
nonincreasing.

(H3) There exist positive-valued functions ξ on (0, 1) and ϕi on (0, 1) × R+ × R+ (i = 1, 2) such
that

(i) ξ : (0, 1) → (0, 1) is a surjection;

(ii) for all x, y ∈ (0,+∞), all (s, σ) ∈ R× R+, and all γ ∈ (0, 1),

f

(

s, σ, ξ(γ)x,
1

ξ(γ)
y

)

≥ ϕ1(γ, x, y)f(s, σ, x, y),

g

(

s, σ,
1

ξ(γ)
x, ξ(γ)y

)

≥ ϕ2(γ, x, y)g(s, σ, x, y).
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(H4) There exist constants M > ε > 0 and N > δ > 0 such that, for all s ∈ R,

ε ≤ α1(s)ε
η +

∫ τ1(s)

0
f(s, σ, ε,N)dσ ≤ α1(s)M

η +

∫ τ1(s)

0
f(s, σ,M, δ)dσ ≤M

and

δ ≤ α2(s)δ
ν +

∫ τ2(s)

0
g(s, σ,M, δ)dσ ≤ α2(s)N

ν +

∫ τ2(s)

0
g(s, σ, ε,N)dσ ≤ N.

(H5) For every γ ∈ (0, 1),

ϕ1(γ) = inf
x∈[ε2/M,M ],
y∈[δ2/N,N]

ϕ1(γ, x, y) > ξ(γ) + r1 [ξ(γ)− (ξ(γ))η ] ,

ϕ2(γ) = inf
x∈[ε2/M,M ],
y∈[δ2/N,N]

ϕ2(γ, x, y) > ξ(γ) + r2 [ξ(γ)− (ξ(γ))ν ] ,

where

r1 =
α1M

η

inf
s∈R

∫ τ1(s)
0 f(s, σ, ε2/M,N)dσ

< +∞, r2 =
α2N

ν

inf
s∈R

∫ τ2(s)
0 g(s, σ,M, δ2/N)dσ

< +∞,

and αi = sup
s∈R

αi(s), i = 1, 2.

Theorem 3. Let F = (f, g) ∈ PSAP p,1
ω

(

R× R+ × R
2
+,R

2
+, ρ

)

be a function satisfy-

ing (H0). Assume that (H1)–(H5) hold. Then system (1.1) has a bounded positive weighted

Sp-pseudo S-asymptotically periodic solution (x∗, y∗), that is, x∗, y∗ ∈ BPSAP p
ω (R,R, ρ) are such

that infs∈R x
∗(s) > 0 and infs∈R y

∗(s) > 0.

P r o o f. Consider the following set in the Banach space PSAP p
ω (R;R, ρ):

K = {x ∈ PSAP p
ω (R;R, ρ) : inf

s∈R
x(s) > 0}.

Consider nonlinear operators B = (B1, B2) and C = (C1, C2) defined as

B1(x, y)(s) =

∫ τ1(s)

0
f(s, σ, x(s− σ − l), y(s− σ − l))dσ,

B2(x, y)(s) =

∫ τ2(s)

0
g(s, σ, x(s − σ − l), y(s − σ − l))dσ,

C1(x)(s) = α1(s)x
η(s− l) and C2(y)(s) = α2(s)y

ν(s− l),

for all (x, y) ∈ K ×K and all s ∈ R. Let

A1(x, y)(s) = B1(x, y)(s) + C1(x)(s),

A2(x, y)(s) = B2(x, y)(s) +C2(y)(s),

and

A(x, y)(s) = (A1(x, y)(s), A2(x, y)(s))

for all x, y ∈ K and all s ∈ R.
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Now, for (x, y) ∈ K ×K such that

ε2

M
≤ x(s) ≤M and

δ2

N
≤ y(s) ≤ N

for all s ∈ R, we have

C1(x)(s) ≤ α1M
η = r1 inf

s∈R

∫ τ1(s)

0
f

(

s, σ,
ε2

M
,N

)

dσ ≤ r1B1(x, y)(s), s ∈ R,

and

C2(y)(s) ≤ α2N
ν = r2 inf

s∈R

∫ τ2(s)

0
g

(

s, σ,M,
δ2

N

)

dσ ≤ r2B2(x, y)(s), s ∈ R.

It follows that, for all (x, y) ∈ K ×K such that

ε2

M
≤ x(s) ≤M,

δ2

N
≤ y(s) ≤ N, s ∈ R,

and all γ ∈ (0, 1),

A1

(

ξ(γ)x,
1

ξ(γ)
y

)

(s) = B1

(

ξ(γ)x,
1

ξ(γ)
y

)

(s) + C1 (ξ(γ)x) (s)

≥ ϕ1(γ)B1(x, y)(s) + (ξ(γ))η C1(x)(s)

= ξ(γ)A1(x, y)(s) + ϕ1(γ)B1(x, y)(s) + (ξ(γ))η C1(x)(s)− ξ(γ)A1(x, y)(s)

≥ ξ(γ)A1(x, y)(s) +
[

ϕ1(γ)− ξ(γ)
]

B1(x, y)(s) − [ξ(γ)− (ξ(γ))η] r1B1(x, y)(s)

≥
[

ξ(γ) +
ϕ1(γ)− ξ(γ)− [ξ(γ)− (ξ(γ))η] r1

1 + r1

]

A1(x, y)(s) = ψ1(γ)A1(x, y)(s).

Similarly, we obtain

A2

(

1

ξ(γ)
x, ξ(γ)y

)

(s) ≥ ψ2(γ)A2(x, y)(s),

where

ψ1(γ) = ξ(γ) +
ϕ1(γ)− ξ(γ)− [ξ(γ)− (ξ(γ))η] r1

1 + r1
> ξ(γ),

ψ2(γ) = ξ(γ) +
ϕ2(γ)− ξ(γ)− [ξ(γ)− (ξ(γ))ν ] r2

1 + r2
> ξ(γ)

for all γ ∈ (0, 1) by (H5). Take
x0(s) = ε, u0(s) =M,

y0(s) = δ, v0(s) = N

and consider the sequences

xk(s) = A1(xk−1, vk−1)(s), uk(s) = A1(uk−1, yk−1)(s),

yk(s) = A2(uk−1, yk−1)(s), vk(s) = A2(xk−1, vk−1)(s).

From (H4) and the monotony of the functions f and g assumed in (H2), it is easy to show by
induction that, for all s ∈ R,

ε ≤ x1(s) ≤ x2(s) ≤ · · · ≤ xk(s) ≤ · · · ≤ uk(s) ≤ · · · ≤ u2(s) ≤ u1(s) ≤M,

δ ≤ y1(s) ≤ y2(s) ≤ · · · ≤ yk(s) ≤ · · · ≤ vk(s) ≤ · · · ≤ v2(s) ≤ v1(s) ≤ N.
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Now, let

µk = sup
{

µ > 0 : xk(s) ≥ µuk(s) and yk(s) ≥ µvk(s), s ∈ R
}

.

Then xk(s) ≥ µkuk(s) and yk(s) ≥ µkvk(s) for all k ≥ 0.

It follows that

xk+1(s) ≥ xk(s) ≥ µkuk(s) ≥ µkuk+1(s),

yk+1(s) ≥ yk(s) ≥ µkvk(s) ≥ µkvk+1(s)

for all s ∈ R, which implies that µk+1 ≥ µk and

max

(

ε

M
,
δ

N

)

≤ µk ≤ 1, k ≥ 0.

Therefore, (µk)k is a convergent sequence. Let us set µ∗ = limk→+∞ µk and prove that µ∗ = 1.
Indeed, if we suppose to the contrary that µ∗ < 1, then by (H3) (i), there exist γ∗ ∈ (0, 1) such
that µ∗ = ξ(γ∗). We distinguish two cases.

Case 1. There exists integer k0 such that µk0 = µ∗. Then, µk = µ∗ for all k ≥ k0. Hence, for
all k ≥ k0 and all s ∈ R,

xk+1 = A1(xk, vk)(s) ≥ A1

(

µkuk,
1

µk
yk

)

(s) = A1

(

ξ(γ∗)uk,
1

ξ(γ∗)
yk

)

(s) ≥ ψ1(γ
∗)uk+1(s).

We also conclude that yk+1(s) ≥ ψ2(γ
∗)vk+1(s) for all s ∈ R.

Thus,

µk+1 = µ∗ ≥ max{ψ1(γ
∗), ψ2(γ

∗)} > ξ(γ∗) = µ∗.

This is a contradiction.

Case 2. For all integer k, µk < µ∗. Again, by (H3) (i), there exist γk ∈ (0, 1) such that

ξ(γk) =
µk
µ∗

∈ (0, 1).

Then, for all s ∈ R, we have

xk+1(s) = A1(xk, vk)(s) ≥ A1

(

µkuk,
1

µk
yk

)

(s) = A1

(

µk
µ∗
µ∗uk,

µ∗

µk
1

µ∗
yk

)

(s)

= A1

(

ξ(γk)µ
∗uk,

1

ξ(νk)

1

µ∗
yk

)

(s) ≥ ψ1(γk)ψ1(γ
∗)uk+1(s).

Similarly, we obtain

yk+1(s) ≥ ψ2(γk)ψ2(γ
∗)vk+1(s).

Thus, by the definition of µk, we have

µk+1 ≥ max
{

ψ1(γk)ψ1(γ
∗), ψ2(γk)ψ2(γ

∗)
}

≥ max

{

µk
µ∗
ψ1(γ

∗),
µk
µ∗
ψ2(γ

∗)

}

.

Let k → +∞, then

µ∗ ≥ max{ψ1(γ
∗), ψ2(γ

∗)} > ξ(γ∗) = µ∗.

This is also a contradiction.
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On the other hand, using hypotheses (H1) and (H2) combined with Lemma 2, Theorem 2, and
Lemma 4, one can show that xk, uk, yk, vk ∈ BPSAP p

ω (R;R, ρ) for all integer k.
In addition, for integer i and j such that i > j and for all s ∈ R, we have

0 ≤ xi(s)− xj(s) ≤ ui(s)− xj(s) ≤ uj(s)− xj(s) ≤ (1 − µj)uj(s) ≤ (1− µj)M,

0 ≤ yi(s)− yj(s) ≤ vi(s)− yj(s) ≤ vj(s)− yj(s) ≤ (1− µj)vj(s) ≤ (1− µj)N.

It follows that

‖xi − xj‖Sp ≤ (1− µj)M → 0, ‖yi − yj‖Sp ≤ (1− µj)N → 0 (as j → +∞).

This means that (xk)k and (yk)k are Cauchy sequences in BPSAP p
ω (R;R, ρ), and thus, there exist

x∗, y∗ ∈ BPSAP p
ω (R;R, ρ) such that xk → x∗ and yk → y∗ in BPSAP p

ω (R;R, ρ) as k → +∞.
Also, one can easily see that uk → x∗ and vk → y∗ in BPSAP p

ω (R;R, ρ) as k → +∞. Moreover,
for all integer k and all s ∈ R,

xk(s) ≤ x∗(s) ≤ uk(s) and yk(s) ≤ y∗(s) ≤ vk(s).

Finaly, we have

xk+1(s) = A1(xk, vk)(s) ≤ A1(x
∗, y∗)(s) ≤ A1(uk, yk)(s) = uk+1(s),

yk+1(s) = A2(uk, yk)(s) ≤ A2(x
∗, y∗)(s) ≤ A2(xk, vk)(s) = vk+1(s).

If k → +∞, we get
A(x∗, y∗) = (A1(x

∗, y∗), A2(x
∗, y∗)) = (x∗, y∗).

That is, (x∗, y∗) is a positive solution of system (1.1) in BPSAP p
ω (R;R, ρ) × BPSAP p

ω (R;R, ρ).
The proof is complete. �

Example 2. Let us choose

η =
3

2
, ν =

4

3
, α1 :=

1

10
, α2 :=

1

6
, τ1 = τ2 := 1.

Consider functions a, b ∈ PSAP p,1
ω (R,R, ρ) such that

9

10

√

12

19
≤ inf

s∈R
a(s) ≤ sup

s∈R
a(s) ≤ 8

5

√

9

11
,

5

6

(5

2

)1/5
≤ inf

s∈R
b(s) ≤ sup

s∈R
b(s) ≤ 4

3

(2

3

)1/5

and take

f(s, σ, x, y) = a(s− σ)

√

x+
1

4
+

1

y + 1
, g(s, σ, x, y) = b(s− σ) 5

√

y + 1

x2 + 1
.

Then, using the Mean value Theorem, one easily verifies that f and g satisfy (H0)(i), furthermore
(H0)(ii) is obvious. Also, (H1) and (H2) are easy to check.

Hypothesis (H3) is satisfied for

ξ(λ) := λ, ϕ1(λ, x, y) :=
√
λ, and ϕ2(λ, x, y) :=

5
√
λ3,

whenever λ ∈ (0, 1) and x, y ∈ (0,+∞).
Finally, (H4) and (H5) are satisfied for ε = δ = 1, M = N = 2,

r1 =
23/2

10 infs∈R
∫ 1
0 f(s, σ, 1/2, 2)dσ

≤ 1, and r2 =
24/3

6 infs∈R
∫ 1
0 g(s, σ, 2, 1/2)dσ

≤ 1.

Thus, all the assumptions of Theorem 3 hold. Therefore, system (1.1) with the above data has the
desired solution.
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5. Conclusion

We have extended for the first time the study of a nonlinear integral equation in certain spaces to
multidimensional systems in the space of weighted Sp-pseudo S-asymptotically ω-periodic functions.
Moreover, we have made a change to the definition of this type of function, especially in the domain
of definition, which we considered as R instead of R+. Our perspective in the future is to extend
such a study to the abstract case where the dimension is infinite.
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Abstract: In this paper the control system described by a nonlinear differential equation is studied. It is
assumed that the control functions have a quadratic integral constraint, more precisely, the admissible control
functions are chosen from the ellipsoid of the space L2([t0, θ];Rm). Different properties of the set of trajectories
are investigated. It is proved that a small perturbation of the set of control functions causes also appropriate
small perturbation of the set of trajectories. It is also shown that the set of trajectories has a small change if
along with the integral constraint on the control functions, a sufficiently large norm type geometric constraint
on the control functions is introduced. It is established that every trajectory is robust with respect to the fast
consumption of the remaining control resource, and hence every trajectory of the system can be approximated
by a trajectory generated by full consumption of the total control resource.

Keywords: Nonlinear control system, Quadratic integral constraint, Set of trajectories, Robustness.

1. Introduction

The control systems described by nonlinear differential equations are investigated in a vast
number of papers. Depending on the character of the control efforts the control systems are classified
as a) the control systems with geometric constraint on the control functions; b) the control systems
with integral constraint on the control functions; and c) the control systems with mixed constraints
on the control functions which include both the geometric and the integral constraints on the
control functions. The geometric constraints on the control functions appear in the case when the
control resource is not exhausted by consumption. But, if the control resource is exhausted by
consumption, say as energy, food, fuel, finance, etc., then the integral constraints on the control
functions is inevitable (see, e.g., [1, 2, 9, 12, 15, 16]). For example, the behaviour of the flying
objects with rapidly changing mass is described as a control system with integral constraint on the
control functions (see, e.g., [2, 12]).

One of the important notions of the control systems theory is the set of trajectories and attain-
able set concepts. Attainable set of the system at the given instant of time consists of points to
which arrive the trajectories of the system and can be defined as a section of the set of trajectories
at the given instant of time. Different topological properties and approximate construction meth-
ods of the set of trajectories described by various types of the integral and differential equations,
where the control functions have integral constraints, are considered in papers [4–8, 11, 13, 14]. In
papers [4, 5, 11, 14] the compactness, closedness, path-connectedness properties and approximate
construction methods of the set of trajectories and attainable sets of the control systems which are
affine with respect to the control vector are discussed. In papers [6–8, 13] the same problems are
investigated for nonlinear control systems. In presented paper the properties of the set of trajecto-
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ries of the nonlinear control systems are studied where the admissible control functions are chosen
from the ellipsoid of the space L2.

The paper is organized as follows. In Section 2, the basic conditions which have to satisfy the
system’s equation are formulated and preliminary properties of the system’s trajectories are given.
In Section 3 it is shown that introduction of the sufficiently large norm type constraint along with
integral constraint and a small perturbation of the given ellipsoid, which characterizes the integral
constraint, induce a small change of the set of trajectories (Theorem 2). A perturbation evaluation
for the set of trajectories is presented. In Section 4 it is proved that every trajectory is robust with
respect to the fast and full consumption of remaining control resource (Proposition 7). Applying
this result it is proved that every trajectory can be approximated by the trajectory generated by
full consumption of the total control resource (Theorem 3).

2. The system’s dynamics

Consider control system described by nonlinear ordinary differential equation

ẋ(t) = f (t, x(t), u(t)) , x(t0) = x0 (2.1)

where x(t) ∈ R
n is the phase state vector, u(t) ∈ R

m is the control vector, t ∈ [t0, θ] is the time.
Let B(·) : [t0, θ] → R

m×m be a continuous matrix function and B(t) be a positive definitem×m
matrix for every t ∈ [t0, θ] . For given ε ∈ [0, 1] and α > 0 we denote

Uε =
{

u(·) ∈ L2

(

[t0, θ];R
m
)

:

∫ θ

t0

〈B(t)u(t), u(t)〉dt ≤ 1 + ε
}

,

Uα
ε = {u(·) ∈ Uε : ‖u(t)‖ ≤ α for almost all t ∈ [t0, θ]} ,

U∗
0 =

{

u(·) ∈ L2

(

[t0, θ];R
m
)

:

∫ θ

t0

〈B(t)u(t), u(t)〉dt = 1
}

,

where L2 ([t0, θ];R
m) is the space of Lebesgue measurable functions u(·) : [t0, θ] → R

m such that

‖u(·)‖2 < +∞, ‖u(·)‖2 =
(
∫ θ

t0

‖u(t)‖2 ds
)1/2

,

‖·‖ denotes the Euclidean norm, 〈·, ·〉 stands for inner product.

Proposition 1. The sets Uε and Uα
ε are bounded, closed and convex subsets of the

space L2 ([t0, θ];R
m). The set U∗

0 is bounded and closed subset of the space L2 ([t0, θ];R
m).

It is not difficult to show that there exists c∗ > 0 such that the inequality

‖u(·)‖2 ≤ c∗ (2.2)

is satisfied for every u(·) ∈ Uε and ε ∈ [0, 1].
It is assumed that the function f(·, ·, ·) : [t0, θ]×R

n×R
m → R

n satisfies the following conditions:

2.A. The function f(·, ·, ·) : [t0, θ]× R
n × R

m → R
n is continuous.

2.B. For every bounded set D ⊂ [t0, θ] × R
n there exist γ1 = γ1(D) > 0, γ2 = γ2(D) > 0 and

γ3 = γ3(D) > 0 such that the inequality

‖f(t, x1, u1)− f(t, x2, u2)‖ ≤ [γ1 + γ2(‖u1‖+ ‖u2‖)] ‖x1 − x2‖+ γ3‖u1 − u2‖

is satisfied for every (t, x1, u1) ∈ D × R
m and (t, x2, u2) ∈ D × R

m.
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2.C. There exists κ > 0 such that the inequality

‖f(t, x, u)‖ ≤ κ (‖x‖ + 1) (‖u‖+ 1)

is held for every (t, x, u) ∈ [t0, θ]×R
n × R

m.

If the function (t, x, u) → f(t, x, u) : [t0, θ]×R
n×R

m → R
n is Lipschitz continuous with respect

to (x, u), then the conditions 2.B and 2.C are satisfied.

Let us define the trajectory of the system (2.1) generated by a control function
u∗(·) ∈ L2 ([t0, θ];R

m). An absolutely continuous function x∗(·) : [t0, θ] → R
n satisfying the equa-

tion ẋ∗(t) = f (t, x∗ (t) , u∗(t)) for almost all t ∈ [t0, θ] and initial condition x∗(t0) = x0 is said to be
a trajectory of the system (2.1) generated by the control function u∗(·) ∈ L2 ([t0, θ];R

m). The sets
of trajectories of the system (2.1) generated by all admissible control functions u(·) ∈ Uε, u(·) ∈ Uα

ε

and u(·) ∈ U∗
0 are denoted by Xε(t0, x0), X

α
ε (t0, x0) and X

∗
0 (t0, x0) respectively. It is obvious that

the inclusions
Xα

ε (t0, x0) ⊂ Xε(t0, x0), X∗
0 (t0, x0) ⊂ Xε(t0, x0)

are verified for every ε ∈ [0, 1] and α > 0.
For fixed t ∈ [t0, θ] we set

Xε(t; t0, x0) = {x(t) ∈ R
n : x(·) ∈ Xε(t0, x0)} , (2.3)

Xα
ε (t; t0, x0) = {x(t) ∈ R

n : x(·) ∈ Xα
ε (t0, x0)} , (2.4)

X∗
0 (t; t0, x0) = {x(t) ∈ R

n : x(·) ∈ X∗
0 (t0, x0)} . (2.5)

The sets Xε(t; t0, x0), X
α
ε (t; t0, x0) and X∗

0 (t; t0, x0) are called the attainable sets of the sys-
tem (2.1) at the instant of time t, generated by all admissible control functions from the sets Uε,
Uα
ε and U∗

0 respectively.
It is obvious that the attainable sets consist of points to which arrive the trajectories of the

system (2.1) at the instant of time t.
By symbol C ([t0, θ];R

n) we denote the space of continuous functions x(·) : [t0, θ] → R
n with

norm
‖x(·)‖C = max {‖x(t)‖ : t ∈ [t0, θ]} ,

hn(·, ·) and hC(·, ·) stand for the Hausdorff distance between the subsets of the spaces R
n and

C ([t0, θ];R
n) respectively.

Let us formulate the propositions which will be used in following arguments.

Proposition 2. Each control function u(·) ∈ L2 ([t0, θ];R
m) generates unique trajectory of the

system (2.1).

Denote
α∗ = κ

[

(θ − t0) + (θ − t0)
1/2c∗

]

· expκ
[

(θ − t0) + c∗(θ − t0)
1/2

]

(2.6)

where c∗ is defined by (2.2).
The following proposition characterizes boundedness of the set of trajectories.

Proposition 3. For every ε ∈ [0, 1] and x(·) ∈ Xε(t0, x0) the inequality ‖x(·)‖C ≤ α∗ holds.

P r o o f. Let us choose an arbitrary ε > 0 and x(·) ∈ Xε(t0, x0), generated by the control
function u(·) ∈ Uε. According to the Condition 2.C, inequality (2.2) and Cauchy–Schwarz inequality
we have

‖x(t)‖ ≤ κ

∫ t

t0

(‖x(τ)‖ + 1)(‖u(τ)‖ + 1) dτ

≤ κ

∫ t

t0

(‖u(τ)‖ + 1)‖x(τ)‖ dτ + κ
[

(θ − t0) + (θ − t0)
1/2c∗

]
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for every t ∈ [t0, θ]. Applying Bellman–Gronwall inequality and Cauchy–Schwarz inequality and
taking into consideration (2.2) and (2.6) we conclude from the last inequality

‖x(t)‖ ≤ κ
[

(θ − t0) + (θ − t0)
1/2c∗

]

· exp
[

κ

∫ θ

t0

(‖u(τ)‖ + 1) dτ

]

≤ κ
[

(θ − t0) + (θ − t0)
1/2c∗

]

· expκ
[

(θ − t0) + c∗(θ − t0)
1/2

]

= α∗

(2.7)

for every t ∈ [t0, θ]. The inequality (2.7) completes the proof. �

Let

ψ(δ) = κ(α∗ + 1)
(

δ + c∗δ
1/2

)

, δ ≥ 0. (2.8)

It is obvious that ψ(δ) → 0 as δ → 0+.

Proposition 4. For every ε ∈ [0, 1], x(·) ∈ Xε(t0, x0), t1 ∈ [t0, θ] and t2 ∈ [t0, θ] the inequality

‖x(t1)− x(t2)‖ ≤ ψ(|t1 − t2|)

is verified, and hence

hn(Xε(t1; t0, x0),Xε(t2; t0, x0)) ≤ ψ(|t1 − t2|)

where ψ(·) is defined by (2.8).

P r o o f. Without loss of generality let us assume that t2 > t1. Choose an arbitrary ε > 0 and
x(·) ∈ Xε(t0, x0), generated by the control function u(·) ∈ Uε. According to the Condition 2.C,
Proposition 3, (2.2) and (2.8) we have

‖x(t2)− x(t1)‖ ≤ κ

∫ t2

t1

(‖x(τ)‖ + 1)(‖u(τ)‖ + 1) dτ ≤ κ(α∗ + 1)

∫ t2

t1

(‖u(τ)‖ + 1) dτ

≤ κ(α∗ + 1)
[

(t2 − t1) + (t2 − t1)
1/2c∗

]

= ψ(|t2 − t1|) .

The proposition is proved. �

Proposition 3, Proposition 4 and Arzela-Ascoli theorem (see, e.g., [10, p. 102]) imply the validity
of the following theorem.

Theorem 1. For each ε ∈ [0, 1] the set of trajectories Xε(t0, x0) of the system (2.1) is a
precompact subset of the space C ([t0, θ];R

n).

Note that in general, the set of trajectories Xε(t0, x0) and X
∗
0 (t0, x0) are not closed subsets of

the space C ([t0, θ];R
n) (see, [3, 6]). Denote

Bn(α∗) = {x ∈ R
n : ‖x‖ ≤ α∗} ,

Dn(α∗) = {(t, x) ∈ [t0, θ]× R
n : x ∈ Bn(α∗)} ,

where α∗ is defined by equality (2.6).

Here and henceforth we will have in mind the cylinder Dn(α∗) as the set D in Condition 2.B.
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3. Properties of the set of trajectories

Denote

β∗ = γ1(θ − t0) + 2γ2c∗(θ − t0)
1/2, (3.1)

g∗ = γ3c∗(θ − t0)
1/2 · exp(β∗), (3.2)

BC(1) = {x(·) ∈ C ([t0, θ];R
n) : ‖x(·)‖C ≤ 1} , (3.3)

where c∗ is defined in (2.2).

Proposition 5. For every ε ∈ [0, 1] the inequality

hC(Xε(t0, x0),X0(t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

holds.

P r o o f. Let us choose an arbitrary x(·) ∈ Xε(t0, x0) generated by the control function
u(·) ∈ Uε. Define new control function u0(·) : [t0, θ] → R

m, setting

u0(t) =
1√
1 + ε

u(t), t ∈ [t0, θ]. (3.4)

The equality (3.4) yields that u0(·) ∈ U0. Now, from (2.2), (3.4) and Cauchy-Schwarz inequality
it follows that

‖u(·) − u0(·)‖1 =

∫ θ

t0

(

1− 1√
1 + ε

)

‖u(τ)‖ dτ ≤ c∗(θ − t0)
1/2

(

1− 1√
1 + ε

)

. (3.5)

Let x0(·) : [t0, θ] → R
n be the trajectory of the system (2.1) generated by the control function

u0(·) ∈ U0. Then x0(·) ∈ X0(t0, x0). From Condition 2.B, (2.1) and (3.5) it follows that

‖x(t)− x0(t)‖ ≤
∫ t

t0

[

γ1 + γ2(‖u(τ)‖ + ‖u0(τ)‖)
]

‖x(τ)− x0(τ)‖ dτ

+γ3c∗(θ − t0)
1/2

(

1− 1√
1 + ε

) (3.6)

for every t ∈ [t0, θ].
Taking into consideration the inequality (2.2), Gronwall–Bellman inequality and Cauchy–

Schwarz inequality, from (3.1), (3.2) and (3.6) we obtain

‖x(t)− x0(t)‖ ≤ γ3c∗(θ − t0)
1/2

(

1− 1√
1 + ε

)

· exp
[

∫ θ

t0

[γ1 + γ2(‖u(τ)‖ + ‖u0(τ)‖)] dτ
]

≤ γ3c∗(θ − t0)
1/2

(

1− 1√
1 + ε

)

· exp(β∗) = g∗

(

1− 1√
1 + ε

)

for every t ∈ [t0, θ], and hence

‖x(·) − x0(·)‖C ≤ g∗

(

1− 1√
1 + ε

)

.

Since x(·) ∈ Xε(t0, x0) is an arbitrarily chosen trajectory, x0(·) ∈ X0(t0, x0), then the last inequality
implies that

Xε(t0, x0) ⊂ X0(t0, x0) + g∗

(

1− 1√
1 + ε

)

BC(1) (3.7)
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where BC(1) is defined by (3.3). From inclusion X0(t0, x0) ⊂ Xε(t0, x0) and (3.7) we obtain the
proof of the proposition. �

From Proposition 5 it follows the validity of the following corollaries.

Corollary 1. hC(Xε(t0, x0),X0(t0, x0)) → 0 as ε→ 0+.

Corollary 2. For every ε ∈ [0, 1] and t ∈ [t0, θ] the inequality

hn(Xε(t; t0, x0),X0(t; t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

is verified where the sets Xε(t; t0, x0), ε ∈ [0, 1], are defined by (2.3).

Denote
r∗ = 2γ3c

2
∗ · exp(β∗) (3.8)

where β∗ is defined by (3.1).

Proposition 6. For every ε ∈ [0, 1] and α > 0 the inequality

hC(Xε(t0, x0),X
α
ε (t0, x0)) ≤

r∗

α

is satisfied where r∗ is defined by (3.8).

P r o o f. Let us choose an arbitrary ε ∈ [0, 1] and y(·) ∈ Xε(t0, x0) generated by the control
function v(·) ∈ Uε. Define new control function v∗(·) : [t0, θ] → R

m, setting

v∗(t) =







v(t) if ‖v(t)‖ ≤ α ,
v(t)

‖v(t)‖ · α if ‖v(t)‖ > α.
(3.9)

Let
A∗ = {t ∈ [t0, θ] : ‖v(t)‖ > α}.

Then from (2.2) we have

α2µ(A∗) ≤
∫

A∗

‖v(τ)‖2 dτ ≤
∫ θ

t0

‖v(τ)‖2 dτ ≤ c2∗,

and hence

µ(A∗) ≤
c2∗
α2

(3.10)

where µ(A∗) stands for the Lebesgue measure of the set A∗.
Since v(·) ∈ Uε and ‖v(τ)‖ > α for every τ ∈ A∗, then (3.9) implies that

∫ θ

t0

〈B(τ)v∗(τ), v∗(τ)〉 dτ

=

∫

[t0,θ]\A∗

〈B(τ)v(τ), v(τ)〉 dτ +

∫

A∗

〈B(τ)v(τ), v(τ)〉 · α2

‖v(τ)‖2 dτ

≤
∫

[t0,θ]\A∗

〈B(τ)v(τ), v(τ)〉 dτ +

∫

A∗

〈B(τ)v(τ), v(τ)〉 dτ

=

∫ θ

t0

〈B(τ)v(τ), v(τ)〉 dτ ≤ 1 + ε.

(3.11)
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Now, (3.9) and (3.11) yield that v∗(·) ∈ Uα
ε . Let y∗(·) : [t0, θ] → R

n be the trajectory of the
system (2.1) generated by the control function v∗(·) ∈ Uα

ε . Then y∗(·) ∈ Xα
ε (t0, x0). Now the

condition 2.B, inclusions v(·) ∈ Uε, v∗(·) ∈ Uα
ε , (2.2), (3.9) and (3.10) imply that

‖y(t)− y∗(t)‖ ≤
∫ t

t0

[

γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)
]

‖y(τ)− y∗(τ)‖ dτ + γ3

∫

A∗

‖v(τ) − v∗(τ)‖ dτ

≤
∫ t

t0

[

γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)
]

‖y(τ)− y∗(τ)‖ dτ + γ3 · [µ(A∗)]
1/2

[

‖v(·)‖2 + ‖v∗(·)‖2
]

≤
∫ t

t0

[

γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)
]

‖y(τ)− y∗(τ)‖ dτ +
2γ3c

2
∗

α

for every t ∈ [t0, θ]. The last inequality, the inclusions v(·) ∈ Uε, v∗(·) ∈ Uα
ε , Bellman–Gronwall

inequality and (3.8) yield

‖y(t)− y∗(t)‖ ≤ 2γ3c
2
∗

α
· exp

(
∫ θ

t0

[γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)] dτ
)

≤ 2γ3c
2
∗

α
· exp(β∗) =

r∗

α

for every t ∈ [t0, θ], and hence

‖y(·)− y∗(·)‖C ≤ r∗

α
. (3.12)

Since y(·) ∈ Xε(t0, x0) is an arbitrarily chosen trajectory, y∗(·) ∈ Xα
ε (t0, x0), then from (3.12)

it follows that

Xε(t0, x0) ⊂ Xα
ε (t0, x0) +

r∗

α
·BC(1), (3.13)

where the set BC(1) is defined by (3.3). Taking into consideration that Xα
ε (t0, x0) ⊂ Xε(t0, x0), we

obtain from (3.13) the proof of the proposition. �

Corollary 3. hC(Xε(t0, x0),X
α
ε (t0, x0)) → 0 as α→ +∞ uniformly with respect to the

ε ∈ [0, 1].

From Propositions 5 and 6 it follows the validity of the following theorem.

Theorem 2. For every ε ∈ [0, 1] and α > 0 the inequality

hC(X0(t0, x0),X
α
ε (t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

+
r∗

α

is satisfied where g∗ and r∗ are defined by (3.2) and (3.8) respectively.

Corollary 4. For every ε ∈ [0, 1], α > 0 and t ∈ [t0, θ] the inequality

hn(X0(t; t0, x0),X
α
ε (t; t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

+
r∗

α

is satisfied where Xα
ε (t; t0, x0) is defined by (2.4).

4. Robustness of the trajectories

Let us discuss the robustness of the trajectories with respect to the fast consumption of the
remaining control resource.
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Proposition 7. Let ν > 0 be a given number, Q∗ ⊂ [a, b] be Lebesgue measurable set,
z(·) ∈ X0(t0, x0) be a trajectory of the system (2.1) generated by the control function w(·) ∈ U0,

∫ θ

t0

〈B(τ)w(τ), w(τ)〉dτ = σ∗ < 1,

the control function w∗(·) ∈ L2([t0, θ];R
m) be such that

∫ θ

t0

〈B(τ)w∗(τ), w∗(τ)〉dτ = 1, w∗(t) = w(t), t ∈ [t0, θ] \Q∗,

and z∗(·) be the trajectory of the system (2.1) generated by the control function w∗(·). If

µ(Q∗) ≤
[

ν

2c∗γ3 exp(β∗)

]2

, (4.1)

then

‖z(·) − z∗(·)‖C ≤ ν

where c∗ is defined by (2.2), β∗ is defined by (3.1).

P r o o f. Let us underline that the equality

∫ θ

t0

〈B(τ)w∗(τ), w∗(τ)〉dτ = 1

implies that w∗(·) ∈ U∗
0 and hence z∗(·) ∈ X∗

0 (t0, x0). From Condition 2.B, inclusions w(·) ∈ U0,
w∗(·) ∈ U∗

0 , (2.2) and definition of the control function w∗(·) it follows that

‖z(t) − z∗(t)‖ ≤
∫ t

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

‖z(τ)− z∗(τ)‖ dτ + γ3

∫

Q∗

‖w(τ) − w∗(τ)‖ dτ

≤
∫ t

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

‖z(τ)− z∗(τ)‖ dτ + γ3 · [µ(Q∗)]
1/2

[

‖w(·)‖2 + ‖w∗(·)‖2
]

≤
∫ t

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

‖z(τ)− z∗(τ)‖ dτ + 2γ3c∗ · [µ(Q∗)]
1/2

for every t ∈ [t0, θ]. The last inequality, the inclusions w(·) ∈ U0, w∗(·) ∈ U∗
0 , Bellman–Gronwall

inequality, (3.1) and (4.1) imply

‖z(t)− z∗(t)‖ ≤ 2γ3c∗[µ(Q∗)]
1/2 · exp

(
∫ θ

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

dτ

)

≤ 2γ3c∗[µ(Q∗)]
1/2 · exp(β∗) ≤ ν

for every t ∈ [t0, θ], and consequently ‖z(·) − z∗(·)‖C ≤ ν.

The proof is completed. �

Theorem 3. The equality

hC(X0(t0, x0),X
∗
0 (t0, x0)) = 0

holds.
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P r o o f. Let ν > 0 be an arbitrary fixed number and let us choose an arbitrary trajectory
x(·) ∈ X0(t0, x0) of the system (2.1) generated by the control function u(·) ∈ U0. Assume that

∫ θ

t0

〈B(τ)u(τ), u(τ)〉dτ = σ∗ < 1.

Let Q∗ ⊂ [t0, θ] be such that

µ(Q∗) ≤
[

ν

2c∗γ3 exp(β∗)

]2

, (4.2)

where c∗ is defined by (2.2), β∗ is defined by (3.1) and let
∫

[t0,θ]\Q∗

〈B(τ)u(τ), u(τ)〉 dτ = σ1, (4.3)

B∗ =

∫

Q∗

B(τ) dτ. (4.4)

It is obvious that B∗ is positive definite m×m matrix and σ1 ≤ σ∗ < 1.
Define new control function v0(·) : [t0, θ] → R

m, setting

v0(t) =

{

u(t) if t ∈ [t0, θ] \Q∗,

u0 if t ∈ Q∗,
(4.5)

where u0 ∈ R
m is such that

〈B∗u0, u0〉 = 1− σ1. (4.6)

From (4.3), (4.4), (4.5) and (4.6) it follows that

∫ θ

t0

〈B(τ)v0(τ), v0(τ) >〉 dτ =

∫

[t0,θ]\Q∗

〈B(τ)u(τ), u(τ)〉 dτ +

∫

Q∗

〈B(τ)u0, u0〉 dτ

= σ1 +
〈(

∫

Q∗

B(τ) dτ
)

u0, u0

〉

= σ1 + 〈B∗u0, u0〉 = σ1 + 1− σ1 = 1,

and hence v0(·) ∈ U∗
0 . Let x0(·) be the trajectory of the system (2.1) generated by the control

function v0(·) ∈ U∗
0 . Then x0(·) ∈ X∗

0 (t0, x0) and from (4.2) and Proposition 7 we obtain

‖x(·) − x0(·)‖C ≤ ν .

Since x(·) ∈ X0(t0, x0) is an arbitrarily chosen trajectory, x0(·) ∈ X∗
0 (t0, x0), then the last

inequality implies that
X0(t0, x0) ⊂ X∗

0 (t0, x0) + ν ·BC(1) (4.7)

where BC(1) is defined by (3.3). Taking into consideration that X∗
0 (t0, x0) ⊂ X0(t0, x0), from (4.7)

we obtain that
hC(X

∗
0 (t0, x0),X0(t0, x0)) ≤ ν . (4.8)

Since ν > 0 is an arbitrarily fixed number, then (4.8) yields the proof of the theorem. �

From Theorem 3 we obtain the validity of the following corollaries.

Corollary 5. The equality

cl (X0(t0, x0)) = cl (X∗
0 (t0, x0))

is verified where cl denotes the closure of a set.
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The Corollary 5 means that every trajectory x(·) ∈ X0(t0, x0) of the system (2.1) can be
approximated by the trajectory which is generated by full consumption of the control resource.

Corollary 6. For every t ∈ [t0, θ] the equality

cl (X0(t; t0, x0)) = cl (X∗
0 (t; t0, x0))

is satisfied where X0(t; t0, x0) and X
∗
0 (t; t0, x0) are defined by (2.3) and (2.5) respectively.

From Theorems 2 and 3 we obtain the validity of the following theorem.

Theorem 4. For every ε ∈ [0, 1] and α > 0 the inequality

hC(X
∗
0 (t0, x0),X

α
ε (t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

+
r∗

α

is satisfied where g∗ and r∗ are defined by (3.2) and (3.8) respectively.

5. Conclusion

The results asserting that a small perturbations in the quadratic integral constraints inspire a
small deviation on the set of trajectories can be applied in mathematical modelling of the control
systems where the total control resource is measured with small errors. According to the obtained
results, it is possible to introduce a norm type geometric constraint along with quadratic type inte-
gral constraint where upper bound of the norm type geometric constraint is sufficiently large. Since
the integrally constrained control functions are not geometrically constrained, this fact simplifies
the structure of the set of control functions and allows to avoid geometrical unboundedness of the
admissible control functions.

Robustness of the trajectories with respect to the fast and full consumption implies that it is
reasonable to spend the control resource in economical mode, i.e. it is advisable to consume the
control resource on the domains with sufficiently small Lebesgue measures in small portions. This
yields that if you have a superfluous control resource and you want to get rid of this resource, then
by spending all of the resource on the domain with sufficiently small Lebesgue measure, you will
get a small deviation from the original system’s trajectory.
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Abstract: In this paper, we consider a class of meromorphic functions r(z) having an s-fold zero at the
origin and establish some inequalities of Bernstein and Turán type for the modulus of the derivative of rational
functions in the sup-norm on the disk in the complex plane. These results produce some sharper inequalities
while taking into account the placement of zeros of the underlying rational function. Moreover, many inequalities
for polynomials and polar derivatives follow as special cases. In particular, our results generalize as well as refine
a result due Dewan et al. [6].

Keywords: Polynomial, Rational function, s-fold zeros, Bernstein inequality.

1. Introduction

Let Pn denote the class of all complex polynomials

p(z) :=

n
∑

j=0

ajz
j

of degree at most n and p′(z) denote the derivative of p(z). Let D−
k denote the region inside

Tk := {z : |z| = k} and D+
k denote the region outside Tk. For αj ∈ C, we write

w(z) :=

n
∏

j=1

(z − αj); B(z) :=

n
∏

j=1

(

1− αjz

z − αj

)

and

Rn = Rn(α1, α2, ..., αn) :=

{

p(z)

w(z)
: p ∈ Pn

}

,

the set of rational functions with poles α1, α2, ..., αn, such that αj ∈ D+
1 and with finite limit at

infinity. A famous result due to Bernstein states that:

Theorem 1 [5]. If p ∈ Pn, then for any z ∈ C

max
z∈T1

|p′(z)| ≤ nmax
z∈T1

|p(z)|.

1The first author is highly thankful to the funding agency DST-INSPIRE for their financial support.

https://doi.org/10.15826/umj.2023.1.008
mailto:myousf@cukashmir.ac.in
mailto:shahlw@yahoo.co.in
mailto:wali@cukashmir.ac.in
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If p(z) 6= 0 for z ∈ D−
1 then it was conjectured by Erdös and latter proved by Lax [9] that

max
z∈T1

|p′(z)| ≤
n

2
max
z∈T1

|p(z)|,

where as, if p(z) 6= 0 for z ∈ D+
1 , then Turán [11] proved:

max
z∈T1

|p′(z)| ≥
n

2
max
z∈T1

|p(z)|.

Li, Mohapatra and Rodriguez [10] obtained Bernstein-type inequalities for rational functions
r ∈ Rn with prescribed poles α1, α2, ..., αn replacing zn by Blashke product B(z). Among other
things they proved the following results for rational functions with prescribed poles.

Theorem 2. If r ∈ Rn has n zeros all lie in T1 ∪D+
1 , then for z ∈ T1, we have

|r′(z)| ≤
1

2
|B′(z)||r(z)|.

The result is sharp and equality holds for r(z) = aB(z) + b, with |a| = |b| = 1.

As a refinement of Theorem 2, Aziz and Shah [2] proved the following:

Theorem 3. Let r ∈ Rn be such that all the zeros of r(z) lie in T1 ∪D+
1 . If t1, t2, ..., tn are

the zeros of B(z) + λ and s1, s2, ..., sn are the zeros of B(z)− λ, λ ∈ T1, then for z ∈ T1

|r′(z)| ≤
|B′(z)|

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2
}1/2

. (1.1)

In this paper we prove some results which infact strengthen certain known inequalities for rational
functions with prescribed poles and inturn produce refinements of some known polynomial inequal-
ities. We first prove the following generalization as well as a refinement of a result due to Wali and
Shah [12].

2. Main results

Theorem 4. Let

r(z) =
p(z)

w(z)
∈ Rn,

where

p(z) = zs
(

a0 +

m−s
∑

j=1

ajz
j
)

is a polynomial of degree m, having all zeros in Tk ∪D+
k , k ≥ 1 except an s-fold zero at the origin.

If t1, t2, ..., tn are the zeros of B(z) + λ and s1, s2, ..., sn are the zeros of B(z)− λ, λ ∈ T1, then for

z ∈ T1

|r′(z)| ≤
|B′(z)|

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2

−4

[(

k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

)

−
sk

1 + k
−

2m− n(1 + k)

2(1 + k)

]

|r(z)|2

|B′(z)|

}1/2

.

If we take k = 1 and m = n, in Theorem 4, we get the following:
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Corollary 1. Let

r(z) =
p(z)

w(z)
∈ Rn,

where

p(z) = zs
(

a0 +

n−s
∑

j=1

ajz
j
)

is a polynomial of degree n, having all zeros in T1 ∪D+
1 except a zero of multiplicity s at origin. If

t1, t2, ..., tn are the zeros of B(z) + λ and s1, s2, ..., sn are the zeros of B(z) − λ, λ ∈ T1, then for

z ∈ T1

|r′(z)| ≤
|B′(z)|

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2

− 2

[(

|a0| − |an−s|

|a0|+ |an−s|

)

|r(z)|2

|B′(z)|
− s

]}1/2

. (2.1)

On comparing inequalities (1.1) and (2.1) and noting that |a0| ≥ |an−s|, it is easy to see that
for s = 0, Corollary 1 is an improvement of Theorem 3 which is a result due to Aziz and Shah [2].

Remark 1. For s = 0, k = 1 and m = n, Theorem 4 reduces to a result due to Wali and
Shah [12, Theorem 1].

It is to be noted that in the paper of Wali and Shah [12] an advanced tool (Osserman’s lemma)
has been used for its proof. However, we here use a simple application of mathematical induction
to prove a more general result from which the result of Wali and Shah follows as special case.

If we take s = 0,m = n in Theorem 4, we have the following:

Corollary 2. Let

r(z) =
p(z)

w(z)
∈ Rn,

where

p(z) =
(

a0 +

n
∑

j=1

ajz
j
)

is a polynomial of degree n, having all zeros in Tk ∪ D+
k , k ≥ 1. If t1, t2, ..., tn are the zeros of

B(z) + λ and s1, s2, ..., sn are the zeros of B(z)− λ, λ ∈ T1, then for z ∈ T1

|r′(z)| ≤
|B′(z)|

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2

−4

[

n(k − 1)

2(k + 1)
+

k

k + 1

(

|a0| − kn|an|

|a0|+ kn|an|

)

|r(z)|2

|B′(z)|

]}1/2

.

If we consider that r(z) has a pole of order n at z = α, then

r(z) =
p(z)

(z − α)n
,

where p(z) is a polynomial of degree m. Therefore, we have

r′(z) =

(

p(z)

(z − α)n

)′

= −
(n−m)p(z) +Dαp(z)

(z − α)n+1
,
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where for any α ∈ C, Dαp(z) denotes the polar derivative of the polynomial p(z). Also

B(z) =

(

1− αz

z − α

)n

=
w∗(z)

w(z)
,

with B(z) → zn as α → ∞, and

B′(z) =
n(|α|2 − 1)

(z − α)2

(

1− αz

z − α

)n−1

.

Further for z ∈ T1,

|B′(z)| =
n(|α|2 − 1)

|z − α|2
.

Using these observations with m = n in Theorem 4 and letting |α| → ∞, we get the following:

Corollary 3. Let p ∈ Pn be such that all the zeros of

p(z) = zs
(

a0 +
n−s
∑

j=1

ajz
j
)

lie in Tk ∪ D+
k except an s-fold zero at the origin. If t1, t2, ..., tn are the zeros of zn + λ and

s1, s2, ..., sn are the zeros of zn − λ, λ ∈ T1, then for z ∈ T1

|p′(z)| ≤
n

2

{

(

max
1≤j≤n

|p(tj)|
)2

+
(

max
1≤j≤n

|p(sj)|
)2

−4

[

k

1 + k

(

|a0| − kn−s|an−s|

|a0|+ kn−s|an−s|

)

−
sk

1 + k
−

n(1− k)

2(1 + k)

]

|p(z)|2

n

}1/2

.

By taking k = 1 in Corollary 3, we get the following:

Corollary 4. Let p ∈ Pn be such that all the zeros of

p(z) = zs
(

a0 +

n−s
∑

j=1

ajz
j
)

lie in T1 ∪ D+
1 except an s-fold zero at the origin. If t1, t2, ..., tn are the zeros of zn + λ and

s1, s2, ..., sn are the zeros of zn − λ, λ ∈ T1, then for z ∈ T1

|r′(z)| ≤
|B′(z)|

2

{

(

max
1≤j≤n

|p(tj)|
)2

+
(

max
1≤j≤n

|p(sj)|
)2

− 2

[(

|a0| − |an−s|

|a0|+ |an−s|

)

|p(z)|2

n
− s

]}1/2

.

Taking s = 0, and noting that |a0| ≥ |an−s|, it can easily be seen that Corollary 4 is an improvement
of a result due to Aziz [1, Theorem 4].

We next prove the following:

Theorem 5. Let r ∈ Rn be such that all zeros of r(z) lie in Tk ∪ D−
k , k ≤ 1 with an s-fold

zero at the origin, then for some γ with |γ| ≤ 1 and for any z ∈ T1

∣

∣

∣

∣

zr′(z) +
γ

2

(

|B′(z)| +
2ks+ n(1− k)

1 + k

)

r(z)

∣

∣

∣

∣

≥

∣

∣

∣

∣

(

1 +
γ

2

)

|B′(z)|+
γ

2

(2ks+ n(1− k)

1 + k

)

∣

∣

∣

∣

inf
z∈Tk

|r(z)|.
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By taking s = 0, k = 1, Theorem 5 reduces to the result due to Hans et al. [8, Theorem 1].
Again substituting for r(z), r′(z) and |B′(z)| the values as in Corollary 3 and letting |α| → ∞,

we get the next property from Theorem 5.

Corollary 5. Let p ∈ Pn be such that all the zeros of a polynomial p(z) lie in Tk ∪D−
k except

an s-fold zero at the origin, then for some γ with |γ| ≤ 1 and for any z ∈ T1
∣

∣

∣

∣

zp′(z) +
γ

2

(

n+
2ks + n(1− k)

1 + k

)

p(z)

∣

∣

∣

∣

≥

∣

∣

∣

∣

(

1 +
γ

2

)

n+
γ

2

(

2ks+ n(1− k)

1 + k

)∣

∣

∣

∣

min
z∈Tk

|p(z)|. (2.2)

Remark 2. For s = 0, k = 1, (2.2) reduces to a result due to Dewan and Hans [6, Theorem 1].

3. Lemmas

For the proof of these theorems we need the following lemmas.

Lemma 1. If

B(z) =

n
∏

j=1

1− αjz

z − αj
.

Then for z ∈ T1

Re
(zw′(z)

w(z)

)

=
n− |B′(z)|

2
.

The above lemma is due to Aziz and Zargar [3].

Lemma 2. If (xj)
∞
j=1 be a sequence of real numbers such that xj ≥ 1, j ∈ N. Then

n
∑

j=1

1− xj
1 + xj

≤
1−

∏n
j=1 xj

1 +
∏n

j=1 xj

for all n ∈ N.

The proof of Lemma 2 is a simple consequence of the principle of mathematical induction.

Lemma 3. Suppose r ∈ Rn and if t1, t2, ..., tn are the zeros of B(z) + λ and s1, s2, ..., sn are

the zeros of B(z)− λ, λ ∈ T1, then for z ∈ T1

|r′(z)|2 + |r∗
′

(z)|2 ≤
|B′(z)|2

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2
}

.

The above lemma is due to Aziz and Shah [2].

Lemma 4. Let r ∈ Rn be such that all zeros of r(z) lie in Tk ∪D−
k , k ≤ 1 with s-fold zeros at

the origin, then for z ∈ T1

|zr′(z)| ≥
1

2

(

|B′(z)| +
1

1 + k
(2ks + n(1− k))

)

|r(z)|.

The above lemma follows from a result due to Akhter et al. [4].
Next lemma is due to Li, Mohapatra and Rodgriguez [10].

Lemma 5. If A and B are two complex numbers, then

(i) if |A| ≥ |B| and B 6= 0, then A 6= vB for some complex number v with |v| < 1;

(ii) conversely, if A 6= vB for some complex number v, with |v| < 1, then |A| ≥ |B|.
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4. Proofs of Theorems

Proof of Theorem 2. Since

r(z) =
zsh(z)

w(z)
,

where

h(z) = a0 +
m−s
∑

j=1

ajz
j .

This implies
zr′(z)

r(z)
= s+

zh′(z)

h(z)
−

zw′(z)

w(z)
.

Equivalently, we get

Re

(

zr′(z)

r(z)

)

= s+Re

(

zh′(z)

h(z)

)

− Re

(

zw′(z)

w(z)

)

.

Let z1, z2, ..., zm−s be the zeros of h(z), such that |zj | ≥ k > 1. In particular for z ∈ T1 , we get by
using Lemma 1.

Re

(

zr′(z)

r(z)

)

= s+Re

(m−s
∑

j=1

z

z − zj

)

− Re

(

zw′(z)

w(z)

)

≤ s+

m−s
∑

j=1

1

1 + |zj |
−Re

(

zw′(z)

w(z)

)

= s+
m− s

1 + k
+

m−s
∑

j=1

(

1

1 + |zj |
−

1

1 + k

)

−

(

n− |B′(z)|

2

)

= s+
m− s

1 + k
+

k

1 + k

m−s
∑

j=1

k − |zj |

k + |zj |k
−

(

n− |B′(z)|

2

)

≤ s+
m− s

1 + k
+

k

1 + k

m−s
∑

j=1

k − |zj |

k + |zj |
−

(

n− |B′(z)|

2

)

.

Now using Lemma 2 with |zj |/k ≥ 1, we get

Re

(

zr′(z)

r(z)

)

≤ s+
m− s

1 + k
+

k

1 + k

(

1−
∏m−s

j=1 |zj |/k

1 +
∏m−s

j=1 |zj |/k

)

−

(

n− |B′(z)|

2

)

= s+
m− s

1 + k
+

k

1 + k

(

km−s|am−s| − |a0|

km−s|am−s|+ |a0|
−
(n− |B′(z)|

2

)

)

=
1

2

{

|B′(z)| +
2m− n(1 + k)

1 + k
+

2sk

1 + k
−

2k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

)}

.

(4.3)

Now
r∗(z) = B(z)r

(

1/z
)

,

therefore using the fact that
zB′(z)

B(z)
= |B′(z)|,
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(see also [10]) we get for any z ∈ T1

|r∗
′

(z)| =
∣

∣|B′(z)|r(z) − zr′(z)
∣

∣.

This implies for z ∈ T1

∣

∣

∣

∣

zr∗
′

(z)

r(z)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

|B′(z)| −
zr′(z)

r(z)

∣

∣

∣

∣

2

= |B′(z)|2 +

∣

∣

∣

∣

zr′(z)

r(z)

∣

∣

∣

∣

2

− 2|B′(z)|Re

(

zr′(z)

r(z)

)

. (4.4)

Now using (4.3) in (4.4), we get

∣

∣

∣

∣

zr∗
′

(z)

r(z)

∣

∣

∣

∣

2

≥ |B′(z)|2 +

∣

∣

∣

∣

zr′(z)

r(z)

∣

∣

∣

∣

2

−|B′(z)|

(

|B′(z)| +
2m− n(1 + k)

1 + k
+

2sk

1 + k
−

2k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

))

.

This gives for z ∈ T1

|r∗
′

(z)|2 ≥ |r′(z)|2 +

{

2k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

)

−
2sk

1 + k
−

2m− n(1 + k)

1 + k

}

∣

∣B′(z)
∣

∣|r(z)|2.

This implies

2|r′(z)|2 +

{

2k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

)

−
2sk

1 + k
−

2m− n(1 + k)

1 + k

}

∣

∣B′(z)
∣

∣|r(z)|2

≤ |r′(z)|2 + |r∗
′

(z)|2.

Using Lemma 3, we get

2|r′(z)|2 +

{

2k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

)

−
2sk

1 + k
−

2m− n(1 + k)

1 + k

}

∣

∣B′(z)
∣

∣|r(z)|2

≤
|B′(z)|2

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2
}

.

On simplification, it follows that

|r′(z)| ≤
|B′(z)|

2

{

(

max
1≤j≤n

|r(tj)|
)2

+
(

max
1≤j≤n

|r(sj)|
)2

−4

[(

k

1 + k

(

|a0| − km−s|am−s|

|a0|+ km−s|am−s|

)

−
sk

1 + k
−

2m− n(1 + k)

2(1 + k)

]

|r(z)|2

|B′(z)|

}1/2

.

This completely proves Theorem 2. �

Proof of Theorem 3. Suppose r(z) has a zero on Tk, then

m = inf
z∈Tk

|r(z)| = 0

and the result holds trivally. We assume all the zeros of r(z) lie in D−
k , k ≤ 1 with an s-fold zero

at the origin. So that m > 0 and for z ∈ D−
k , |r(z)| ≥ m.

Since |B(z)| ≤ 1 for z ∈ T1 ∪D−
1 (see [7, p. 40]), therefore |B(z)| ≤ 1 for z ∈ Tk, k ≤ 1 . Hence

it follows by Rouche’s theorem that for some δ with |δ| < 1,

F (z) = r(z)− δmB(z)
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has all zeros in D−
k , k ≤ 1. Applying Lemma 4 to F (z), we get for z ∈ T1

|zF ′(z)| ≥
1

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}

|F (z)|.

That is for z ∈ T1

∣

∣

∣

∣

zr′(z)− δmzB′(z)

∣

∣

∣

∣

≥
1

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}

∣

∣r(z)− δmB(z)
∣

∣.

Since F (z) 6= 0 in Tk ∪D+
k , therefore for any complex number γ with |γ| ≤ 1, we have from (i) of

Lemma 5,

T (z) = zr′(z)− δmzB′(z) + γ

{

2ks+ n(1− k)

2(1 + k)
+

|B′(z)|

2

}

(

r(z)− δmB(z)
)

6= 0.

This gives for z ∈ T1

T (z) = zr′(z) +
γ

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}

r(z)

−δm

[

zB′(z) +
γ

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}

B(z)

]

6= 0.

Now using (ii) part of Lemma 5, we get for |δ| < 1, |γ| ≤ 1 and k ≤ 1

∣

∣

∣

∣

zr′(z) +
γ

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}

r(z)

∣

∣

∣

∣

≥ m

∣

∣

∣

∣

zB′(z) +
γB(z)

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}
∣

∣

∣

∣

.

Equivalently for z ∈ T1, we have

∣

∣

∣

∣

zr′(z) +
γ

2

{

2ks+ n(1− k)

1 + k
+ |B′(z)|

}

r(z)

∣

∣

∣

∣

≥

∣

∣

∣

∣

(

1 +
γ

2

)

|B′(z)|+
γ

2

(

2ks + n(1− k)

1 + k

)
∣

∣

∣

∣

inf
z∈Tk

|r(z)|.

This completely proves Theorem 3. �
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5. Bernstein S.N. Sur la limitation des dérivées des polynomes. C. R. Acad. Sci. Paris, 1930. Vol 190.
P. 338–340. (in French)

https://doi.org/10.1016/0022-247X(89)90370-3
https://doi.org/10.4153/CMB-1999-049-0
https://doi.org/10.22075/ijnaa.2021.23145.2484


112 Mohd Y. Mir, Shah L. Wali and Wali M. Shah

6. Dewan K.K., Hans S. Generalization of certain well-known polynomial inequalities. J. Math Anal. Appl.,
2010. Vol. 363, No. 1. P. 38–41. DOI: 10.1016/j.jmaa.2009.07.049

7. Garcia S. R., Mashreghi J., Ross W.T. Finite Blaschke Products and Their Connections. Cham:
Springer, 2018. 328 p. DOI: 10.1007/978-3-319-78247-8

8. Hans S., Tripathi D., Mogbademu A.A., Babita Tyagi. Inequalities for rational functions with prescribed
poles. J. Interdiscip. Math., 2018. Vol. 21, No. 1. P. 157–169. DOI: 10.1080/09720502.2015.1033837

9. Lax P.D. Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc.,
1944. Vol. 50. P. 509–513. DOI: 10.1090/S0002-9904-1944-08177-9

10. Li X., Mohapatra R.N., Rodriguez R. S. Bernstein-type inequalities for rational functions with prescribed
poles. J. London Math. Soc., 1995. Vol. 51. P. 523–531. DOI: 10.1112/jlms/51.3.523
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Abstract: Let Cm×m be the set of all m×m matrices whose entries are in C, the set of complex numbers.

Then P (z) :=
n∑

j=0

Ajz
j , Aj ∈ Cm×m, 0 ≤ j ≤ n is called a matrix polynomial. If An 6= 0, then P (z) is said

to be a matrix polynomial of degree n. In this paper we prove some results for the bound estimates of the
eigenvalues of some lacunary type of matrix polynomials.

Keywords: Matrix polynomial, Eigenvalue, Positive-definite matrix, Cauchy’s theorem, Spectral radius.

1. Introduction

Let Cm×m be the set of all m×m matrices whose entries are in C, the set of complex numbers.
For a matrix polynomial we mean the matrix-valued function of a complex variable of the form

P (z) :=
n
∑

j=0

Ajz
j , Aj ∈ C

m×m, 0 ≤ j ≤ n.

If An 6= 0, then P (z) is called a matrix polynomial of degree n.
A complex number λ is said to be an eigenvalue of the matrix polynomial P (z), if there exists

a nonzero vector u ∈ C
m, such that P (λ)u = 0. The vector u is called an eigenvector of P (z)

associated to the eigenvalue λ.
For matrices A,B ∈ C

m×m, we write A ≥ 0 or A > 0, if A is positive semi-definite or positive
definite respectively. By A ≥ B, we mean A−B ≥ 0 and A > B, means A−B > 0.

We denote by λmax(A) and λmin(A) the maximum and minimum eigenvalues of a Hermitian
matrix A respectively. Also the spectral radius denoted by ρ(A) of a matrix A is defined by

ρ(A) = max
{

|λ| : λ is an eigenvalue of A
}

.

The identity matrix and the conjugate transpose of a vector u are respectively denoted by I and u∗.
Also for α ≥ 0, denote the open disk

K∗(0, α) := {z ∈ C : |z| < α}

and the closed disk
K(0, α) := {z ∈ C : |z| ≤ α}.

Polynomial eigenvalue problems have vital applications in a wide range of science and engi-
neering fields (see for example [4, 9]). It is generally challenging to compute the eigenvalues of a
matrix polynomial, but bounds on such eigenvalues are relatively easy to obtain. These bounds

https://doi.org/10.15826/umj.2023.1.009
mailto:zahidmonga@cukashmir.ac.in
mailto:wali@cukashmir.ac.in
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can be used by iterative methods to calculate them and are also valuable for the computation of
pseudospectra.

A simple but classical result due to Cauchy [2; 7, Theorem 27.1, p. 122] on the location of zeros
of a polynomial with complex coefficients states:

Theorem 1. Let

p(z) :=

n
∑

j=0

ajz
j , an 6= 0

be a polynomial of degree n with complex coefficients. Then the zeros of p(z) lie in {z : |z| < ρ},
where ρ is the unique positive root of the equation

|an|zn − |an−1|zn−1 − · · · − |a1|z − |a0| = 0.

An extension to matrix polynomials of Cauchy’s classical result was obtained in [1, 5, 8]. It states:

Theorem 2. Let

P (z) :=
n
∑

j=0

Ajz
j, det (An) 6= 0

be a matrix polynomial. Then the eigenvalues of P (z) lie in |z| ≤ ρ, where ρ is the unique positive

root of the equation

‖A−1
n ‖−1zn − ‖An−1‖zn−1 − · · · − ‖A1‖z − ‖A0‖ = 0.

Throughout this paper, ‖ · ‖ denotes a subordinate matrix norm.

2. Main results

We call a matrix polynomial lacunary, if some of its coefficients are missing. In this paper, we
obtain bounds for the eigenvalues of a class of lacunary matrix polynomials. The first result we
prove in this paper states:

Theorem 3. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in K(0, δ), where δ > 1 is the largest

positive root of the equation

zn+1 − 2zn − ‖A1‖z2 + (‖A1‖ − ‖A0‖)z + ‖A0‖ = 0.

P r o o f. Let u be a unit vector, then we have for |z| > 1,

‖P (z)u‖ = ‖uzn − uzn−1 −A1uz +A0u‖
≥ |z|n −

∥

∥uzn−1 +A1uz −A0u
∥

∥

≥ |z|n − |z|n−1 − ‖A1‖|z| − ‖A0‖

= |z|n
(

1−
(

1

|z| + ‖A1‖
1

|z|n−1
+ ‖A0‖

1

|z|n
))

> |z|n
(

1−
(

1

|z| − 1
+ ‖A1‖

1

|z|n−1
+ ‖A0‖

1

|z|n
))

=
1

|z| − 1

(

|z|n+1 − 2|z|n − ‖A1‖|z|2 + (‖A1‖ − ‖A0‖)|z| + ‖A0‖
)

=
1

|z| − 1
H(|z|), (2.1)
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where
H(z) = zn+1 − 2zn − ‖A1‖z2 + (‖A1‖ − ‖A0‖)z + ‖A0‖.

Here H(z) has two sign changes within its sequence of coefficients and H(0) = ‖A0‖ > 0 and
H(1) = −1 < 0, therefore by Descartes’ rule of signs H(z) has two positive zeros. Let δ be the
largest positive zero of H(z), then H(|z|) > 0 if |z| > δ. Noting that δ > 1, therefore from (2.1), we
have

‖P (z)u‖ > 0 if |z| > δ.

Hence the eigenvalues of P (z) lie in the closed disk K(0, δ), where δ > 1 is the largest positive
root of H(z). �

The following result can be deduced from the above theorem.

Corollary 1. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in K(0, δ′), where δ′ > 1 is the largest

positive root of the equation

zn+1 − 2zn −Mz2 +M = 0

and

M = max(‖A1‖, ‖A0‖).

P r o o f. Let

H(z) = zn+1 − 2zn − ‖A1‖z2 + (‖A1‖ − ‖A0‖)z + ‖A0‖.

Then we have for |z| ≥ 1

H(|z|) = |z|n+1 − 2|z|n − ‖A1‖|z|2 + (‖A1‖ − ‖A0‖)|z|+ ‖A0‖
= |z|n+1 − 2|z|n − ‖A1‖(|z|2 − |z|)− ‖A0‖(|z| − 1)

≥ |z|n+1 − 2|z|n −M(|z|2 − |z|)−M(|z| − 1)

= |z|n+1 − 2|z|n −M |z|2 +M = G(|z|), (2.2)

where
G(z) = zn+1 − 2zn −Mz2 +M.

Since ‖A0‖ · ‖A1‖ 6= 0, therefore M 6= 0 and hence G(z) has two sign changes within its sequence
of coefficients. Also G(0) = M > 0 and G(1) = −1 < 0, thus by Descartes rule of signs G(z) has
two positive zeros. Let δ′ > 1 be the largest positive zero of G(z). Therefore from (2.2), we have

H(|z|) ≥ G(|z|) > 0 if |z| > δ′.

Thus
H(|z|) > 0 if |z| > δ′.

Thus δ ≤ δ′, where δ is the largest positive zero of H(z). However by Theorem 3 all eigenvalues of
P (z) lie in K(0, δ), therefore

K(0, δ) ⊆ K(0, δ′).

This proves the corollary. �

We next prove the following results which give bounds on the eigenvalues of a matrix polynomial
in terms of the norms of coefficient matrices.
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Theorem 4. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in the closed disk

K
(

0, (1 +
√

1 + 4‖A0‖+ 4‖A1‖)/2
)

.

P r o o f. Let u be a unit vector. Then just as in the proof of the Theorem 3, we have for |z| > 1

‖P (z)u‖ ≥ |z|n −
(

|z|n−1 + ‖A1‖|z| + ‖A0‖
)

> |z|n −
(

|z|n−1 + ‖A1‖|z|n−2 + ‖A0‖|z|n−2
)

= |z|n−2(|z|2 − |z| − ‖A1‖ − ‖A0‖) = |z|n−2H(|z|), (2.3)

where
H(z) = z2 − z − ‖A1‖ − ‖A0‖.

Now H(z) = 0 implies

z =
1±

√

1 + 4‖A1‖+ 4‖A0‖
2

.

Also lim
z→∞

H(z) = ∞, thus if

|z| > 1 +
√

1 + 4‖A1‖+ 4‖A0‖
2

,

then H(|z|) > 0. This implies from (2.3) that for |z| > 1

‖P (z)u‖ > 0 if |z| > 1 +
√

1 + 4‖A1‖+ 4‖A0‖
2

.

We note that
1 +

√

1 + 4‖A1‖+ 4‖A0‖
2

> 1,

therefore the eigenvalues of P (z) lie in the closed disk K
(

0, (1 +
√

1 + 4‖A1‖+ 4‖A0‖)/2
)

. �

It is clear that if ρ > 0 then

1 + ρ >
1

2
(1 +

√

1 + 4ρ)

and therefore we have the following:

Corollary 2. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in the open disk K∗(0, 1 + ‖A0‖+ ‖A1‖).

The next result which we prove gives an upper bound for the positive eigenvalues. For the proof
we need the following lemmas.

Lemma 1 [3]. If the real polynomial

p(z) = zn − zn−1 − a1z + a0, a1a0 > 0, n > 2,

has two positive zeros, its largest positive zero δ satisfies δ < 1 +
√
a1.
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The above lemma is due to Dehmer and Mowshowitz [3]. We also need the following lemma.

Lemma 2 [6, p. 235]. Let M ∈ C
m×m be a Hermitian matrix, then

λmin(M) = min
u∈Cm, u∗u=1

{u∗Mu}

and

λmax(M) = max
u∈Cm, u∗u=1

{u∗Mu}.

Theorem 5. Let

P (z) =: Izn − Izn−1 −A1z +A0, A1 ≥ A0 > 0, n > 2

be a matrix polynomial. If λ is a positive eigenvalue of P (z), then

λ < 1 +
√

‖A1‖.

P r o o f. Let u be a unit vector. Define

Pu(z) = u∗P (z)u = zn − zn−1 − u∗A1uz + u∗A0u.

Then Pu(z) is a polynomial with complex coefficients. Also since A0 > 0, therefore Pu(z) has two
sign changes within its sequence of coefficients. Moreover Pu(0) = u∗A0u > 0 and

Pu(1) = u∗A0u− u∗A1u = u∗(A0 −A1)u ≤ 0,

therefore by Descartes’ rule of signs Pu(z) has two positive roots. Hence by Lemma 1, the largest
positive zero δu of Pu(z) satisfies

δu < 1 +
√

u∗A1u.

Thus by Lemma 2, we have

δu < 1 +
√

λmax(A1) ≤ 1 +
√

‖A1‖. (2.4)

Let λ be a positive eigenvalue of P (z), then λ is a zero of Pu(z) for some unit vector u and therefore
by (2.4), we have

λ < 1 +
√

‖A1‖.
This proves the theorem. �

Taking A1 = I in Theorem 5, we get the following:

Corollary 3. Let

P (z) =: Izn − Izn−1 − Iz +A0, I ≥ A0 > 0, n > 2

be a matrix polynomial. If λ is a positive eigenvalue of P (z), then λ < 2.

The next theorem gives a bound on the eigenvalues of another class of lacunary matrix polynomials.

Theorem 6. Let

P (z) =: Izn −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in the closed disk

K
(

0, (‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4)/2
)

.
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P r o o f. Let u be a unit vector. Then just as in the proof of the Theorem 3, we have for
|z| > 1,

‖P (z)u‖ ≥ |z|n − ‖A1‖|z| − ‖A0‖
> |z|n −

(

‖A1‖|z|n−1 + ‖A0‖|z|n−2 + |z|n−2
)

= |z|n−2(|z|2 − ‖A1‖|z| − ‖A0‖ − 1) = |z|n−2H(|z|), (2.5)

where

H(z) = z2 − ‖A1‖z − ‖A0‖ − 1.

Now H(z) = 0 implies

z =
‖A1‖ ±

√

‖A1‖2 + 4‖A0‖+ 4

2
.

Thus H(|z|) > 0 if

|z| > ‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4

2
.

Also noting that

‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4

2
> 1.

therefore from (2.5), we have

‖P (z)u‖ > 0 if |z| > ‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4

2
.

Therefore the eigenvalues of P (z) lie in the closed disk

K
(

0, (‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4)/2
)

.

�

The next result is obtained on restricting the coefficient matrices. For the proof we need the
following lemma due to Dehmer and Mowshowitz [3].

Lemma 3 [3]. If the real polynomial

p(z) = zn − a1z + a0, a1a0 > 0, n > 2,

has two positive zeros, its largest positive zero satisfies

δ <
1 +

√
4a1 + 1

2
.

Theorem 7. Let

P (z) =: Izn −A1z +A0, A1 ≥ I +A0, A0 > 0, n > 2

be a matrix polynomial. If λ is a positive eigenvalue of P (z), then

λ <
1 +

√

4‖A1‖+ 1

2
.
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P r o o f. Let u be a unit vector and Pu(z) = u∗P (z)u. Then since

P (z) = Izn −A1z +A0,

we have
Pu(z) = zn − u∗A1uz + u∗A0u.

Now by hypothesis

Pu(1) = 1− u∗A1u+ u∗A0u = u∗(I −A1 +A0)u ≤ 0

and
Pu(0) = u∗A0u > 0.

Also Pu(z) has two sign changes within its sequence of coefficients, therefore by Descartes’ rule of
signs Pu(z) has two positive zeros. Hence by Lemma 3, the largest positive zero δu of Pu(z) satisfies

δu <
1 +

√
4u∗A1u+ 1

2
.

This gives on using Lemma 2

δu <
1 +

√

4λmax(A1) + 1

2
≤ 1 +

√

4‖A1‖+ 1

2
.

In the same way as in Theorem 5, we conclude that any positive eigenvalue λ of P (z) satisfies

λ <
1 +

√

4‖A1‖+ 1

2
.

�

For m = 1, the matrices Aj reduce to aj ∈ C and therefore in this case the above results reduce
to various theorems proved by Dehmer and Mowshowitz [3].

The bounds obtained in Theorem 3–5 are incomparable. We consider the following examples:

Example 1. Let n = 3, ‖A0‖ = ‖A1‖ = ‖A‖ for some matrix A. Then if ‖A‖ = 1, we have

δ = 2.3485 > 2 =
1 +

√

1 + 4‖A0‖+ 4‖A1‖
2

.

However, if ‖A‖ = 6, then

δ = 3.5544 < 4 =
1 +

√

1 + 4‖A0‖+ 4‖A1‖
2

.

Example 2. Let ‖A0‖ = ‖A1‖ = 3, then

1 +
√

1 + 4‖A0‖+ 4‖A1‖
2

= 3 > 1 +
√
3 = 1 +

√

‖A1‖.

However, if ‖A0‖ = ‖A1‖ = 1/2, then

1 +
√

1 + 4‖A0‖+ 4‖A1‖
2

= 1.618 < 1.7071 = 1 +
√

‖A1‖.
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Example 3. Assume ‖A0‖ = ‖A1‖ = ‖A‖ for some matrix A. Then if n = ‖A‖ = 4 we have

δ = 2.5279 < 3 = 1 +
√

‖A1‖.

However, if n = 3 and ‖A‖ = 6 then

δ = 3.5544 > 3.44 = 1 +
√

‖A1‖.

Note, we used Desmos, an online graphing calculator and mathematical tool, for the calcula-
tions.
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Abstract: In this paper, the study of sum signed graphs is continued. The balancing and switching nature
of the graphs are analyzed. The concept of rna number is revisited and an important relation between the
number and its complement is established.
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1. Introduction

Consider a scenario in which there exists a road of width 5 units. Clearly, vehicles of width
1 & 2, 1 & 3, 1 & 4 and 2 & 3 pass through the road with ease whereas the vehicles of width
2 & 4 and 3 & 4 find it difficult to pass through the road simultaneously. Also, the vehicle with
width 5 cannot pass with any other given vehicles. There can exist situations in which the vehicle
of width 5 can pass through the road alone which is depicted in the first figure. Also, there can
be situations in which such a vehicle cannot pass through the road or may not exist at all and
this idea is represented in the second figure. These two situations are modelled below in which
the vertices are the vehicles and the corresponding width is given as labels for the vertices. The
dashed line represents the case in which two vehicles travelling together are not possible and these
types of edges are the negative edges. The other case in which two vehicles can travel together is
represented by the bold line or positive edge.

1

2

3

4

5

1

2

3

4

5

Figure 1. The illustration above gives us a picture of which all vehicles can travel together or not.

The motivation for the concept of sum signed labeling arose from the above idea that the
vehicles passing through a road are sometimes restricted in terms of width of the road from a
smooth, continuous ride. Introductory studies on sum signed graphs is available in [7]. In this
paper, we extend the studies on sum signed graphs.
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In Section 2, the criteria for switching from one sum signed graph to another will be discussed.
The balance theory in the context of sum signed graphs is discussed in Section 3. An algorithm
is provided in Section 4 to find the rna number for trees. Finally, the Section 5 introduces the
concept of rna complement and discusses some of its properties.

2. Preliminaries

All the underlying graphs considered in this paper are simple, unless mentioned otherwise. We
give the definition of the sum signed graph now.

Definition 1 [7]. A sum signed graph is a trio, S = (G, f, σ) where G is a graph,

f : V (G) −→ {1, 2, . . . , | V (G) |}

is a bijective function and σ : E(G) −→ {+,−} is a mapping such that σ(uv) = +, whenever
f(u) + f(v) ≤ n and σ(uv) = −, whenever f(u) + f(v) > n.

An edge receiving ‘+’ sign is said to be a positive edge and the one receiving ‘−’ sign is said
to be a negative edge. A sum signed graph is said to be homogeneous, if all the edges receive
either positive or negative sign, or else the signed graph will be a heterogeneous one. For basic
terminologies on unsigned graphs and signed graphs, we refer to [5] and [9].

Definition 2 [7]. The smallest number of negative edges among all sum signed labeling of its
underlying graph G is called the rna number. It is denoted by σ−(G).

From a socio-psychological point of view, negation [6] of a signed graph to another is an impor-
tant operation. The negation η(S) of a signed graph S is obtained by negating every edge of S that
is, by changing the sign of each edge to its opposite. When this process is done, surely a signed
graph is obtained but the question arises when will that signed graph become a sum signed graph.
This question is answered in the next theorem.

Theorem 1. A sum sign graph S1 = (G, f, σ) can be negated to another sum signed graph
S2 = (G, g, σ) whenever

g(u) = n+ 1− f(u), u ∈ V (G).

P r o o f. Consider that there exists a sum signed graph S1 = (G, f, σ) for an underlying
graph G with n vertices which can be switched to S2 = (G, g, σ) without the stated relation
between f and g. In particular, assume that the stated relation does not exist for the vertex vi
having the label n i.e., all the edges incident to the vertex vi in S1 is negative. Then, vi can be
assigned the label k > 1 in S2 such that all edges incident to vi in is positive. Now, consider the
same procedure in which the edges incident to the vertex receive opposite signs, for the vertex vj
having the label n − 1 in S1. Proceeding like this, a contradiction will be reached at some vertex
u in S1, where at least one of the edges of the vertex u will have the same sign in S1 and S2 by
not admitting the condition of sum signed labeling. �

Remark 1. In the case of (n, 1)-shovel graphs [8], none of its sum signed graphs can be switched
to another sum signed graph.
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Figure 2. (3, 1) and (4, 1) shovel graphs.

3. Balanced sum signed graphs

Before diving into proving the balanced nature of sum signed graphs, we shall have a look at
the topic of energy in sum signed graphs [4]. Let v1, v2, ..., vn be the vertices of a graph G and S

be its sum signed graph. Then, the n × n matrix A(S) = aij known as the adjacency matrix is
defined as,

aij =







σ(vi, vj) if vi and vj are adjacent,

0 otherwise.

The eigenvalues of A(S) that are also the eigenvalues of S, are real in nature. The spectrum is
the set of distinct eigenvalues along with their multiplicities. The graphs with same spectrum are
known as cospectral. Upon observation, some interesting characteristics were seen.

Theorem 2. Every sum signed graph of the underlying graph G which satisfies the switching
function are cospectral if and only if the spectrum is symmetric about the origin.

P r o o f. Let S be a sum signed graph of G which can be switched to another sum signed
graph S1 using the switching function above. Clearly, S1 = −S where −S is the sum signed graph
obtained by negating each sign of S. Then, the statement holds as proved in [4]. �

The concept of balance in signed graphs was introduced by Harary in [6]. This concept is
very relevant while applying the ideas related to signed graph in a society. A signed graph is
balanced if all the cycles present in the graph are positive. Otherwise, the signed graph is said to
be unbalanced. In [1], a criterion was formulated to prove the balanced nature of signed graphs in
terms of spectrum. The same condition is satisfied in the case of sum signed graphs.

Theorem 3. A sum signed graph is balanced if and only if it is cospectral with the underlying
graph.

Theorem 4. Every sum signed complete graph Kn, where n ≥ 4 is unbalanced.

P r o o f. Let Kn where n ≥ 4, be a complete graph with n vertices having a sum signed
labeling. Every vertex of Kn is adjacent to every other vertex of the graph. Thus, there exists
only one sum signed labeling of the graph. For n = 3, the number of negative edges in K3 is 2 as
given [7]. When n ≥ 4, the minimum size of cycle present in Kn is that of 3. Consider a cycle
between the vertices having the labels n, n− 1 and n− 2 and such a C3 exists since all the vertices
are adjacent. The product of signs of that cycle is negative, i.e., that cycle is unbalanced. In
every Kn, n ≥ 4 contains such a C3 making the graph unbalanced. �



124 Athira P. Ranjith and Joseph Varghese Kureethara

Theorem 5. For every graph that is neither a complete graph nor a tree there exists at least
one sum signed labeling which is unbalanced.

P r o o f. Let G be a connected graph which is neither complete nor a tree, with n vertices
and m edges. Any sum signed labeling S of G will have σ−(G) and σ+(G) negative and positive
edges respectively since they are the minimum in number. Thus, there exists m− (σ−(G)+σ+(G))
edges that can vary in signs. Accordingly, for each variation a sum signed graph is obtained which
contains at least one cycle with odd number of negative edges making the graph unbalanced. �

Figure 3 represents two distinct sum signed graphs of the underlying graph G. The solid line
represents positive edge and dashed line represents negative edge. Clearly, the former is balanced
and the latter is unbalanced.

2 1

43

4 3

21

Figure 3. A graph with 4 vertices having two distinct sum signed labelling.

4. Algorithm for rna number of a tree

The concept of rna number in parity signed graphs was introduced in [2] and was studied in [3].
In [7], the rna number of sum signed graphs was introduced and has been found for various types
of graphs. Here, the concept will be generalized in particular for acyclic graphs.

Consider a tree T with n vertices that has k pendant vertices. For finding the minimum number
of negative edges in T , let T be drawn in such a way that the degrees of the vertices are increasing
in each level by placing the pendant vertices in the lower level and the root in the upper level.

• Label the k pendant vertices v1, v2, . . . , vk as n, n− 1, . . . , n − k − 1, respectively. Thus, the
first level of vertices in tree is labeled.

• Except the vertex adjacent to v1 labeled as n, mark the j adjacent vertices of v2, v3, . . . , vk
with 1, 2, . . . , j. If any of the two pendant vertices have the same adjacent vertex vi then,
mark vi with min{1, 2, . . . , j} which is not repeated. If v1 is adjacent to a vertex which
is adjacent to any other pendant vertex the, label it accordingly as mentioned previously.
Otherwise, label the adjacent vertex to v1 with the renewed min{1, 2, . . . , j} or j + 1.

• Label the next level of l vertices with the minimum label from the set {1,2, . . . ,n} which
has not been repeated yet and also maintains the condition that the sum of the labels of the
adjacent vertices never exceeds n.

• In a similar way, label all the remaining levels of the tree T .

Labeling a tree T in this way ensures that σ−(T ) = 1.

Pictorial representation of the algorithm is given in Fig. 4 for a tree with 23 vertices. In the
figure, solid line represents positive edge and dashed line represents negative edge.
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23 22 21 20 19 18 17 16 15 14 13 12 11 10

1 2 3 4 5 6

9 87

Figure 4. A tree with 23 vertices satisfying the above algorithm.

5. The rna complement number

The notion of rna number is mainly associated with that of negativity or negative people in
a society. In contrast to that another number is introduced which deals with the minimization of
positivity or positive people in a society. This number is known as rna complement.

Definition 3. The ‘rna complement’ number of a sum signed graph G is the minimum number
of positive edges among all the sum signed labelings of G. It is denoted by σ+(G).

Theorem 6. For every tree T , σ+(T ) = 0.

Proceeding as in the algorithm for σ+(T ) by changing the lowest labels to the highest ones and
and vice versa, we have the result.

Theorem 7. For any graph G containing no pendant vertices, σ+(G) ≥ 1.

P r o o f. Consider a graph G with n vertices containing no pendant vertices. Assign the
minimum label 1 to the vertex vj with degree δ(G) so that minimum number of positive edges
is obtained for the graph. Then, there exists at least δ(G) − 1 positive edges. Since, G is a
graph with no pendant vertices, δ(G) ≥ 2. Then, σ+(G) ≥ δ(G)−1 can be written as σ+(G) ≥ 1. �

From the above observations, we can conclude the following theorem.

Theorem 8. For any graph G, σ+(G) < σ−(G).

P r o o f. Let G be a graph with n number of vertices and let vj be the vertex with degree δ(G).
Let S1 and S2 be two sum signed graphs of G such that in S1, the vertex vj with degree δ(G) is
given the lowest label 1 and in S2, vj is given the highest label n. Let the two graphs satisfy
the condition that |E+(S1)| > |E−(S2)|. So, S1 has the minimum number of negative edges as
compared to S2 and S2 has the minimum number of positive edges as compared to S1. So,

|E+(S1)| = δ(G) − 1 + k, |E−(S2)| = δ(G) +m,

where k and m are two positive integers. We need to minimise k and m such that k ≤ m.
In S1, we need to minimise the number of positive edges, i.e., to maximise the number of

negative edges. For this, we will exchange labels of any two vertices except vj such that number of
negative edges is maximised. Then,

|E+(S1)| = δ(G) − 1 + k − a.
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This process is continued for every vertex till the maximum number of negative edges is obtained
in S1. Thus, |E

+(S1)| = σ+(G). Similarly, we proceed with S2. After the process we will see that
|E+(S1)| ≤ |E−(S2)|.

The determination of rna and rna complement number is mainly depended on the assignment
of maximum and minimum labels existing for the graph G to the vertex vj. When these two labels,
i.e., n and 1 are assigned to the vertex vj in two different graphs S3 and S4, it will be observed
that in S3, there exists δ(G) negative edges for vj and in S4 and δ(G)− 1 positive edges associated
with the vertex vj . This difference in the number of negative and positive edges goes on increasing
as the labeling of the graph proceeds to find rna and adhika number. Hence, it can be concluded
that σ+(G) 6= σ−(G). �

Theorem 9. The number of distinct signed graphs satisfying sum signed labeling for a con-
nected graph G is at most |E(G)| − σ−(G)− σ+(G).

P r o o f. Let G be a connected graph with n vertices and m edges. Any sum signed labeling
S of G will have σ−(G) and σ+(G) negative and positive edges since they are the minimum in
number. Thus, there exist m− (σ−(G) +σ+(G)) edges which can vary in signs. For each variation
in the sign of the edge, we will obtain a sum signed labeling of G which will be different from the
previous ones. Hence, there exist at most m − σ−(G) − σ+(G) distinct sum signed graphs for a
graph G. �

6. Conclusion

The recently introduced signed graphs open a wide variety of interesting problems in Graph
Theory. In this paper, we have explored the balance nature, switching property, number of negative
edges etc. of sum signed graph. The balanced nature of the sum signed graphs are studied using
the concept of energy of signed graphs. An algorithm relating to the rna number of trees has
been discussed. The concept of rna complement has been introduced and analyzed to some extent.
There is enough scope for further studies. One such concept is that of energy of sum signed graphs
and the other one is that of rna complement which has only been grazed.

REFERENCES

1. Acharya B.D. Spectral criterion for cycle balance in networks. J. Graph Theory, 1980. Vol. 4, No. 1.
P. 1–11. DOI: 10.1002/jgt.3190040102

2. Acharya M., Kureethara J.V. Parity Labeling in Signed Graphs. 2021. 10 p.
arXiv:2012.07737v2 [math.CO]

3. Acharya M., Kureethara J.V., Zaslavasky T. Characterizations of some parity signed graphs. Australas.
J. Combin., 2021. Vol. 81. No. 1. P. 89–100.

4. Bhat M.A., Pirzada S. On equienergetic signed graphs. Discrete Appl. Math., 2015. Vol. 189. P. 1–7.
DOI: 10.1016/j.dam.2015.03.003

5. Harary F. On the notion of balance of a signed graph. Michigan Math. J., 1953/1954. Vol. 2, No. 2.
P. 143–146. DOI: 10.1307/mmj/1028989917

6. Harary F. Structural duality. Behavioural Sciences, 1957. Vol. 2, No. 4. P. 255–265.
DOI: 10.1002/bs.3830020403

7. Ranjith A. P., Kureethara J.V. Sum signed graphs - I. AIP Conf. Proc., 2020. Vol. 2261, No. 1. Art.
no. 030047. DOI: 10.1063/5.0019053

8. Sudev N.K., Germina K.A. A study on topological integer additive set-labeling of graphs. Electron. J.
Graph Theory Appl., 2015. Vol. 3, No. 1. P. 70–84. DOI: 10.5614/ejgta.2015.3.1.8

9. Zaslavsky T. Signed graphs. Discrete Appl. Math., 1982. Vol. 4, No. 1. P. 47–74.
DOI: 10.1016/0166-218X(82)90033-6

https://doi.org/10.1002/jgt.3190040102
https://arxiv.org/pdf/2012.07737v2
https://doi.org/10.1016/j.dam.2015.03.003
https://doi.org/10.1307/mmj/1028989917
https://doi.org/10.1002/bs.3830020403
https://doi.org/10.1063/5.0019053
https://doi.org/10.5614/ejgta.2015.3.1.8
https://doi.org/10.1016/0166-218X(82)90033-6


URAL MATHEMATICAL JOURNAL, Vol. 9, No. 1, 2023, pp. 127–134

DOI: 10.15826/umj.2023.1.011

LATTICE UNIVERSALITY OF LOCALLY FINITE p-GROUPS

Vladimir B. Repnitskǐı

Ural Federal University,
19 Mira str., Ekaterinburg, 620002, Russian Federation

vladimir.repnitskii@urfu.ru

Abstract: For an arbitrary prime p, we prove that every algebraic lattice is isomorphic to a complete
sublattice in the subgroup lattice of a suitable locally finite p-group. In particular, every lattice is embeddable
in the subgroup lattice of a locally finite p-group.

Keywords: Subgroup lattice, Algebraic lattice, Complete sublattice, Lattice-universal class of algebras,
Locally finite p-group, Group valuation.

1. Introduction and formulation of results

A lattice is called algebraic if it is complete and each element is a join of compact elements. Im-
portant examples of algebraic lattices include subalgebra lattices of universal algebras, particularly
subgroup lattices of groups.

If a lattice L is complete and a subset M of L has the property that
∨

S,
∧

S ∈ M for every
nonempty subset S ⊆ M , then M is called a complete sublattice of L. It is well known that a
complete sublattice of an algebraic lattice is itself algebraic. This implies that complete sublattices
of subgroup lattices are algebraic as well. Conversely, we proved in [7] that every algebraic lattice
can be represented as a complete sublattice of the subgroup lattice of a suitable locally finite
2-group. It should be noted that every lattice can be embedded in some algebraic lattice, namely,
in the lattice of its ideals. It follows that every lattice is embeddable in the subgroup lattice of a
locally finite 2-group. For a given class K of algebras, we say that K is lattice-universal if every
lattice is embeddable in the subalgebra lattice of some algebra from K. In this sense, the class of
all locally finite 2-groups is lattice-universal. It must be said here that the lattice universality of
the class of all groups was first proved by Whitman in [12]. Other examples of lattice-universal
classes of algebras can be found in [3–5, 10].

The main theorem of the present paper generalizes the key result of the author’s paper [7] from
the case p = 2 to the case of an arbitrary prime number p.

Theorem 1. For an arbitrary prime p, let K be an abstract class of groups satisfying the
following conditions:

(1) K contains a group of order p;

(2) K is closed under restricted direct products, semidirect products and direct limits over totally
ordered sets.

Then every algebraic lattice is isomorphic to a complete sublattice in the subgroup lattice of some
group in K.

Since the class of all locally finite p-groups obviously satisfies conditions (1)–(2) of the theorem,
from here we get the following corollary.

https://doi.org/10.15826/umj.2023.1.011
mailto:vladimir.repnitskii@urfu.ru
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Corollary 1. For an arbitrary prime p, every algebraic lattice is isomorphic to a complete
sublattice in the subgroup lattice of a suitable locally finite p-group.

As a consequence, we get the following statement.

Corollary 2. For every prime p, the class of all locally finite p-groups is lattice-universal.

The proof of Theorem 1 is given in the next section. Technically, it is based on the concept of
so-called group valuations used by us in [7] when proving a specific case of this theorem for p = 2.
Here we essentially apply the ideas and constructions of the mentioned paper.

Below we give some additional concepts and notation.
SubG is the subgroup lattice of a group G.
〈X〉 is the subgroup generated by a subset X of a given group.
The commutator [u, v] of elements u and v of a group means u−1v−1uv and uv means v−1uv.
∏

λ∈Λ

Gλ is the direct product of a set {Gλ | λ ∈ Λ} of groups.

∏

λ∈Λ

Gλ is the restricted direct product of a set {Gλ | λ ∈ Λ} of groups; this group is a subgroup

of the corresponding direct product, and it can be regarded as the group of all functions from
fun(Λ,

⋃

λ∈Λ

Gλ) with the property f(λ) ∈ Gλ and with finite supports.

For given groups G and T , let us consider the direct product
∏

h∈T

Gh of isomorphic copies Gh

of the group G; here G1 = G. This group is regarded as the group fun(T,G) of all functions from
T to G and is denoted by GT . The group T naturally acts on the group GT in the following way:
f t(h) = f(th) for all f ∈ GT and t ∈ T . With respect to this action, one can consider the semidirect
product T ⋌GT , which is denoted by G ≀ T and is called the wreath product of the group G by the
group T . Here, for t1, t2 ∈ T and f1, f2 ∈ GT , we have

(t1, f1) · (t2, f2) = (t1t2, f
t2
1 f2).

For a prime p, the group
〈

u, v | up = vp = [u, v]p = 1, [u, [u, v]] = [v, [u, v]] = 1
〉

is of the order p3 and is isomorphic to the multiplicative unitriangular group of matrices of order 3
over the field of order p. So it will be denoted by UT3(p). Here the generating elements u and v

correspond to the matrices




1 1 0
0 1 0
0 0 1



 and





1 0 0
0 1 1
0 0 1



 ,

respectively. For p = 2, this group is isomorphic to the 8-element dihedral group

D4 =
〈

u, v | u2 = v2 = (uv)4 = 1
〉

.

Obviously, we have
UT3(p) ∼= 〈u〉⋌ 〈v, [u, v]〉,

where the group 〈u〉 acts by conjugation on the normal subgroup 〈v, [u, v]〉 in UT3(p) and

〈v, [u, v]〉 ∼= 〈v〉 × 〈[u, v]〉.

J(P ) is the ideal lattice of a given ∨-semilattice P with zero. Recall that every algebraic lattice
is isomorphic to the ideal lattice J(P ) of its ∨-semilattice P of compact elements.

The other definitions and notations used but undefined in the paper can be found in the books
[1, 2, 9].
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2. Concept of group valuation and the proof of the theorem

Let us give a key notion of the present paper. It was introduced by the author in [6] (see also
[7, 8, 11]).

Definition 1. Let P be a ∨-semilattice with zero. For a group G, we call a mapping
δ : G → P a group valuation if the following conditions hold :

(1) δ(1) = 0;

(2) δ(g−1) = δ(g) for every g ∈ G;

(3) δ(g1g2) ≤ δ(g1) ∨ δ(g2) for every g1, g2 ∈ G.

For an arbitrary ideal I ∈ J(P ) and a ∈ P , let us put Oδ(I) = δ−1(I) and Oδ(a) = Oδ(a↓),
where a↓ denotes the principal ideal generated by the element a. Obviously, Oδ(I) is a subgroup
of G and Oδ(I) =

∨

a∈I Oδ(a).
The following simple proposition explains the role of the notion of group valuation in our

examination (see its proof, for example, in [7]).

Proposition 1. Let a valuation δ : G → P satisfy the following conditions:

(1) for every a, b ∈ P and g ∈ G, δ(g) ≤ a ∨ b implies g ∈ 〈Oδ(a), Oδ(b)〉;

(2) δ is a surjective mapping of G onto P .

Then the mapping Oδ : J(P ) → SubG is a complete embedding of the ideal lattice J(P ) in the
subgroup lattice SubG, and so the lattice J(P ) is isomorphic to a complete sublattice of the corre-
sponding subgroup lattice.

For groups G, G′ and their valuations δ : G → P , δ′ : G′ → P , we say that the pair (G′, δ′) is
an extension of the pair (G, δ) if G is a subgroup of G′ and δ′|G = δ.

The following statement is key in proving our theorem.

Proposition 2. Let G be a group and δ : G → P a group valuation. Then, for arbitrary
elements a, b ∈ P , there exists an extension (G′, δ′) of the pair (G, δ) such that, if δ(g) ≤ a ∨ b for
an element g ∈ G, then in the group G′ the membership g ∈ 〈Oδ′(a), Oδ′ (b)〉 holds; moreover, for
an arbitrary prime p, one may take the group G ≀ UT3(p) as G′.

This statement was proved in [7] for p = 2, and in this case the role of the group UT3(p) was
played by the dihedral group D4 isomorphic to UT3(2).

We will prove Proposition 2 at the end of the section. But now we will explain how the theorem
is derived from it. This derivation practically iterates a similar derivation for p = 2 in our paper [7],
but we will give it for the reader’s convenience.

Let L be an arbitrary algebraic lattice and P its ∨-semilattice of compact elements. Thus, we
have L ∼= J(P ). Let p be an arbitrary prime number and K an abstract class of groups satisfying
conditions (1)–(2) of the Theorem 1. Now consider the set {〈wa〉 | a ∈ P} of groups of order p

generated by the elements wa indexed by elements from P . Let

G∗ =
∏

a∈P

〈wa〉

be the corresponding restricted direct product of these groups. Then G∗ ∈ K and each non-identity
element from G∗ can be uniquely represented (up to the permutation of the factors) as a term of
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the form wǫ1
a1
wǫ2
a2

· · ·wǫn
an

(here n ≥ 1, wai 6= waj for i 6= j and 1 ≤ ǫi ≤ p − 1). Now we define
a mapping δ∗ : G∗ −→ P by the following rule: δ∗(1) = 0 and, if g = wǫ1

a1
wǫ2
a2

· · ·wǫn
an
, then

δ∗(g) = a1 ∨ a2 ∨ · · · ∨ an. It is easy to see that the mapping δ∗ is a group valuation.
Now let

{(aγ , bγ) ∈ P × P | 0 < γ < χ}

be the well-ordered set of all couples from P 2. We define by induction on γ a set

{Gγ | 0 ≤ γ < χ}

of groups from K and a set
{δγ | 0 ≤ γ < χ}

of group valuations δγ : Gγ → P in the following way.
Put G0 = G∗ and δ0 = δ∗. If the ordinal γ > 0 is not limit, then the pair (Gγ , δγ) is an extension

of the pair (Gγ−1, δγ−1) with the property g ∈ 〈Oδγ (aγ), Oδγ (bγ)〉 in Gγ for every g ∈ G∗ satisfying
the condition δγ−1(g) = δ∗(g) ≤ aγ ∨ bγ . Such an extension exists by Proposition 2, and in this
case Gγ = Gγ−1 ≀ UT3(p). If the ordinal γ is limit, then put

Gγ =
⋃

(Gζ | ζ < γ) and δγ =
⋃

(δζ | ζ < γ).

Further, put

G(1) =
⋃

(Gγ | γ < χ) and δ(1) =
⋃

(δγ | γ < χ).

By construction, the mapping δ(1) : G(1) → P is a valuation and the pair (G(1), δ(1)) is an extension
of the pair (G∗, δ∗) such that, for any elements g ∈ G∗ and a, b ∈ P with δ∗(g) ≤ a ∨ b, the
membership g ∈ 〈Oδ(1)(a), Oδ(1)(b)〉 holds in G(1). In addition, we have UT3(p) ∈ K, since K contains
all p-element groups and, by condition (2) of the theorem, is closed under direct and semidirect
products of any two of its groups and UT3(p) as mentioned above is a semidirect product of the
p-element group 〈u〉 with the direct product of the p-element groups 〈v〉 and 〈[u, v]〉. Therefore,
G(1) ∈ K because, by the same condition, the class K is closed also under direct limits over totally
ordered sets.

Next we construct the following increasing under inclusion chains of groups G(n) ∈ K and
valuations δ(n) : G(n) → P (n ∈ N):

G∗ = G(0) ⊂ G(1) ⊂ G(2) ⊂ . . . , δ∗ = δ(0) ⊂ δ(1) ⊂ δ(2) ⊂ . . .

such that, for every n > 1, δ(n)|G(n−1) = δ(n−1) and, for every g ∈ G(n−1) and a, b ∈ P , if
δ(n−1)(g) ≤ a∨ b, then g ∈ 〈Oδ(n)(a), Oδ(n) (b)〉 in G(n); here the pair (G(n), δ(n)) is constructed from
the pair (G(n−1), δ(n−1)) as it was done in the first step corresponding to n = 1.

Put
G =

⋃

(G(n) | n ∈ N) and δ =
⋃

(δ(n) | n ∈ N).

Then, by construction, we have G ∈ K and the mapping δ : G → P is a valuation with the
property: for all g ∈ G and a, b ∈ P , the inequality δ(g) ≤ a ∨ b implies g ∈ 〈Oδ(a), Oδ(b)〉, i.e.,
δ satisfies condition (1) of Proposition 1. In addition, δ∗ is surjective and δ|G∗ = δ∗, whence we
deduce that the valuation δ is surjective as well, i.e., it satisfies condition (2) of Proposition 1.
Therefore, by this proposition, there exists a complete embedding of the ideal lattice J(P ) in the
subgroup lattice SubG of the constructed group G ∈ K. This means that the algebraic lattice L,
for which P is the ∨-semilattice of compact elements, is isomorphic to a complete sublattice of
SubG. The derivation is over. �
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The following two constructions of the semidirect product and direct product of group valuations
were introduced by the author in [7].

If a group T acts on a group H, and if δ̂ : T → P and δ̃ : H → P are group valuations such that

δ̃(ht) ≤ δ̂(t) ∨ δ̃(h)

for any h ∈ H and t ∈ T , then the mapping δ̂ ⋌ δ̃ : T ⋌H → P defined by

(δ̂ ⋌ δ̃)(t, h) = δ̂(t) ∨ δ̃(h)

is evidently a group valuation. It extends both δ̃ : H → P and δ̂ : T → P under the canonical
isomorphic embeddings h 7→ (1, h) and t 7→ (t, 1) of H and T respectively into T ⋌H. Thus the
pair (T ⋌H, δ̂ ⋌ δ̃) is an extension both of the pair (H, δ̃) and of the pair (T, δ̂).

Definition 2. The valuation δ̂ ⋌ δ̃ is called the semidirect product of δ̂ and δ̃.

Definition 3. If δi : Gi → P , i = 1, . . . , n, are group valuations, then the mapping
δ1 × · · · × δn : G1 × · · · ×Gn → P defined by

(δ1 × · · · × δn)(g1, . . . , gn) = δ1(g1) ∨ · · · ∨ δn(gn)

is evidently a group valuation extending each δi under the canonical embedding of Gi into
G1 × · · · ×Gn. It is called the direct product of the valuations δi’s.

Let G be a group, δ : G → P be a valuation, and let a, b ∈ G. Consider the group

UT3(p) =
〈

u, v | up = vp = [u, v]p = 1, [u, [u, v]] = [v, [u, v]] = 1
〉

.

Each of its elements can be uniquely written in the form uαvβ[u, v]γ , where α, β, γ ∈ {0, 1, . . . , p−1}.
It is easy to check that the product of two such terms is

uα1vβ1 [u, v]γ1 · uα2vβ2 [u, v]γ2 = uα1+α2vβ1+β2 [u, v]γ1+γ2−β1α2 ,

where exponents are added and multiplied modulo p.
Now we define a mapping δ̂ : UT3(p) → P by the rule:

δ̂(1) = 0, δ̂(uα) = a if 1 ≤ α ≤ p− 1, δ̂(vβ) = b if 1 ≤ β ≤ p− 1,

δ̂(t) = a ∨ b for all other t ∈ UT3(p).

It is easy to see that the mapping δ̂ is a group valuation.

Next we construct an extension δ′ : G ≀ UT3(p) → P of a group valuation δ desired in Proposi-
tion 2 from the group valuation δ̂ : UT3(p) → P and from an additional valuation δ̃ : GUT3(p) → P .
The valuation δ̃ will be the direct product (see Definition 3) of group valuations δt : G → P defined
below for every t ∈ UT3(p). Their constructions generalize the corresponding constructions for
p = 2 given in [7].

We set δt(1) = 0 for any t ∈ UT3(p). For a non-identity element g ∈ G, we set

(1) δ1(g) = δ(g),

(2) δuα(g) = a ∨ δ(g) if 1 ≤ α ≤ p− 1,

(3) δvβ (g) = b ∨ δ(g) if 1 ≤ β ≤ p− 1,
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(4) δ[u,v]γ (g) =

{

0 if δ(g) ≤ a ∨ b,

a ∨ b ∨ δ(g) otherwise
if 1 ≤ γ ≤ p− 1,

(5) δuα[u,v]γ (g) =

{

a if δ(g) ≤ a ∨ b,

a ∨ b ∨ δ(g) otherwise
if 1 ≤ α ≤ p− 1 and 1 ≤ γ ≤ p− 1,

(6) δvβ [u,v]γ(g) =

{

b if δ(g) ≤ a ∨ b,

a ∨ b ∨ δ(g) otherwise
if 1 ≤ β ≤ p− 1 and 1 ≤ γ ≤ p− 1,

(7) δuαvβ [u,v]γ(g) = a ∨ b ∨ δ(g) if 1 ≤ α ≤ p− 1, 1 ≤ β ≤ p− 1 and 0 ≤ γ ≤ p− 1.

Checking that δt is a group valuation for every t ∈ UT3(p) is very simple and completely
identical to checking a similar statement in [7].

Lemma 1. For any w, t ∈ UT3(p) and g ∈ G, the inequality δtw(g) ≤ δ̂(t) ∨ δw(g) holds.

P r o o f. From the definitions of the group valuations δt, it directly follows that the equality
a ∨ b ∨ δw(g) = a ∨ b ∨ δ(g) holds for every w ∈ UT3(p) and g ∈ G. Therefore, if δ̂(t) = a ∨ b, then
we have

δtw(g) ≤ a ∨ b ∨ δ(g) = a ∨ b ∨ δw(g) = δ̂(t) ∨ δw(g).

The case δ̂(t) 6= a ∨ b is true only if

t ∈ {1, uα, vβ | 1 ≤ α ≤ p− 1, 1 ≤ β ≤ p− 1}.

In the case t = 1 the inequality δtw(g) ≤ δ̂(t) ∨ δw(g) is evident.
Let t = uα, where 1 ≤ α ≤ p− 1. Then δ̂(t) = a. Here, if b ≤ δw(g), then again

δtw(g) ≤ a ∨ b ∨ δ(g) = a ∨ b ∨ δw(g) = δ̂(t) ∨ δw(g).

If b 6≤ δw(g), then the following four cases are possible:

(1) w = 1,

(2) w = uα
′

, where 1 ≤ α′ ≤ p− 1 and δw(g) = a ∨ δ(g),

(3) w = [u, v]γ , where 1 ≤ γ ≤ p− 1, δ(g) ≤ a ∨ b and δw(g) = 0,

(4) w = uα
′

[u, v]γ , where 1 ≤ α′ ≤ p− 1, 1 ≤ γ ≤ p− 1, δ(g) ≤ a ∨ b and δw(g) = a.

In case (1), we have δtw(g) = δuα(g) = a ∨ δ(g) = a ∨ δ1(g) = δ̂(t) ∨ δw(g).
In case (2), we have δtw(g) = δuα+α′ (g) ≤ a ∨ δ(g) = a ∨ δw(g) = δ̂(t) ∨ δw(g).

In case (3), we have δtw(g) = δuα[u,v]γ(g) = a ≤ a ∨ δw(g) = δ̂(t) ∨ δw(g).

In case (4), we have δtw(g) = δuα+α′ [u,v]γ(g) ≤ a = δ̂(t) ∨ δw(g).

The case t = vβ , where 1 ≤ β ≤ p− 1, is symmetric to the previous one and can be checked by
a parallel argument. �

Next, as noted above, we set δ̃ : GUT3(p) → P as the direct product of the valuations δt,
t ∈ UT3(p). This is a group valuation extending δ1 = δ and

δ̃(f) =
∨

t∈UT3(p)

δt(f(t))
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for any f : UT3(p) → G.

We then define δ′ : G ≀ UT3(p) → P as the semidirect product of δ̂ : UT3(p) → P and
δ̃ : GUT3(p) → P (see Definition 2). This is an extension of δ̃, hence also of δ. To prove that
the semidirect product δ′ = δ̂ ⋌ δ̃ is indeed a group valuation, we have to check that

δ̃(f t) ≤ δ̂(t) ∨ δ̃(f)

for any f ∈ GUT3(p) and t ∈ UT3(p). But this is easily accomplished using Lemma 1:

δ̃(f t) =
∨

w∈UT3(p)

δw(f
t(w)) =

∨

w∈UT3(p)

δw(f(tw)) =
∨

t−1w∈UT3(p)

δt−1w(f(tt
−1w))

=
∨

t−1w∈UT3(p)

δt−1w(f(w)) ≤
∨

t−1w∈UT3(p)

(

δ̂(t−1) ∨ δw(f(w))
)

= δ̂(t−1) ∨





∨

t−1w∈UT3(p)

δw(f(w))



 = δ̂(t) ∨





∨

w∈UT3(p)

δw(f(w))





= δ̂(t) ∨ δ̃(f).

Thus, we proved that the mapping δ′ : G ≀ UT3(p) → P is a group valuation and the pair
(G ≀ UT3(p), δ

′) is an extension of the pair (G, δ). Now it remains to note that this extension has
the required property, i.e., if δ(g) ≤ a ∨ b for an element g ∈ G, then, in the group G ≀ UT3(p),
the membership g ∈ 〈Oδ′(a), Oδ′(b)〉 holds. Indeed, by construction, δ′(u) = δ̂(u) = a and δ′(v) =
δ̂(v) = b. In addition, the element g ∈ G as an element of the group G ≀ UT3(p) means a function

f(w) ∈ GUT3(p)

such that

f(w) =

{

g, if w = 1,
1, if w 6= 1.

Therefore, for an arbitrary t ∈ UT3(p), we have gt = f t(w) = f(tw) and

δ′(gt) = δ̃(f t) =
∨

w∈UT3(p)

δw(f
t(w)) =

∨

w∈UT3(p)

δw(f(tw))

= δt−1(f(1)) ∨





∨

w 6=t−1

δw(f(tw))



 = δt−1(g) ∨





∨

w 6=t−1

δw(1)



 = δt−1(g).

From here we obtain that δ′(g[v,u]) = δ[u,v](g) = 0 for every element g ∈ G such that δ(g) ≤ a ∨ b.
This implies that

g = [v, u] · g[v,u] · [u, v] ∈ 〈Oδ′(a), Oδ′(b), Oδ′ (0)〉 = 〈Oδ′(a), Oδ′ (b)〉.

The proof of Proposition 2, and with it the Theorem 1, is complete. �
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Abstract: We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting
Asymmetric Traveling Salesman Problem, which has numerous valuable applications in operations research.
An instance of this problem is given by a complete node- and edge-weighted digraph G. Each node of the graph
G can either be visited by the resulting route or skipped, for some penalty, while the arcs of G are weighted
by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed
walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that
an arbitrary α-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an (α + 1)-
approximation for the problem in question. In particular, using the recent (22 + ε)-approximation algorithm of
V.Traub and J.Vygen that improves the seminal result of O. Svensson, J. Tarnavski, and L.Végh, we obtain
(23 + ε)-approximate solutions for the problem.

Keywords: Prize-Collecting Traveling Salesman Problem, Triangle inequality, Approximation algorithm,
Fixed approximation ratio.

1. Introduction

The Prize-Collecting Traveling Salesman Problem (PCTSP) is of the most recognized problems
of combinatorial optimization. Introduced by Egon Balas in [2], it has valuable applications in drone
routing [10], ride-sharing [23], or metal production. Theoretically, the PCTSP is closely related to
the well-known Traveling Salesman Problem (TSP) [17] and Orienteering Problem (OP) [30].

Following to [2], an informal statement of the PCTSP is to find a traveling plan across a given
transportation network, which consists of cities and roads. This network is represented by some
connected graph.

For each city, the salesperson gains a reward or pays a penalty depending on whether he or she
visits this city or not. In addition, traveling on an arbitrary road is charged with an appropriate
transportation cost.

The goal is to find a tour retaining at least the given amount of reward and having the smallest
accumulated costs and penalties.

1.1. Related work

Since PCTSP embeds the classic Traveling Salesman Problem, its general setting is strongly
NP-hard and hard to approximate [27]. Furthermore, the problem remains intractable even in very

1This research was carried out under the financial support of the RSF, grant no. 22-21-00672,
https://rscf.ru/project/22-21-00672/.
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specific settings, e.g. on the Euclidean plane [25]. As for the majority of known combinatorial
problems, algorithmic desingn of this problem develops in the following main directions.

The first direction is related to exact branch-and-bound-and-cut algorithms [5, 11, 12] and goes
back to fundamental results by E. Balas and M. Fischetti and P. Toth that describe facet-inducing
inequalities for the equivalent mixed-integer linear programs [2, 15], see also [20]. Despite the sig-
nificant impact contributed by these polyhedral results to the theory of combinatorial optimization
and notable recent success in hardware development, exact algorithms still remain applicable to
rather small instances of the problem.

The second one deals with developing problem-specific versions of various heuristics and meta-
heuristics including variable neighborhood search [21], tabu search [26], simulated annealing [14],
bio-inspired and genetic algorithms [13], and their combinations. Often heuristics demonstrate
an amazing performance by finding optimal (or close-to-optimal) solutions in a few seconds for
real-life instances that come from industrial applications. Unfortunately, an absence of theoretical
guarantees entails experimental assessment of these algorithms and possible additional tuning of
their external parameters in case of any novel modification of the problem or series of instances.

Finally, the third direction relates to approximation algorithms augmented by theoretical per-
formance guarantees and polynomial (or quasipolynomial) time approximation schemes (PTAS
and QPTAS, respectively). First, we should mention the famous 5/2-approximation algorithm by
D. Bienstock, M. Goemans, D. Simchi-Levi, and D. Williamson [6] for for the metric PCTSP. These
algorithm relies on the classic L.Lovász result for the Euclidean graphs, an original technique of LP-
relaxation rounding, and exploit as a black box the classic Christofides 3/2-approximation algorithm
[9] for the metric TSP. Further, incorporation of the classic primal-dual approach by M.Goemans
and D.Williamson [16] leads to several improvements of this result including (1 − 2/3e−1/3)−1-
approximation algorithm and more recent (2− ε)-approximation algorithm [1].

We should notice that fixed-ratio approximation appears to be the best approximation result
that can be obtained for an arbitrary metric (unless P=NP) since the metric PCTSP is APX-hard.
Nevertheless, for some metrics of a special kind, there exist much more promising results, including
PTAS for the PCTSP formulated on planar graphs [4] and the PCTSP in doubling metrics [7].
The latter PTAS is based on the breakthrough result obtained by Y. Bartal, L.A. Gottlieb, and
R. Krauthgamer [3] for the classic TSP and continued by the series of recent papers (see, e.g.
[8, 19]), where the efficient approximation of the combinatorial optimization problems is managed
to extend beyond the finite dimensional vector spaces.

All the aforementioned results were obtained for the symmetric version of the problem. Mean-
time, approximation of its asymmetric version known as the Prize-Collecting Asymmetric Trav-
eling Salesman Problem (PCATSP) still remains weakly studied. To the best of our knowledge,
(1 + ⌈log n⌉)-approximation algorithm proposed in [24] is the only result obtained in this field so
far. In this paper, we try to bridge this gap.

1.2. Our contribution

For the PCATSP with the triangle inequality, we introduce the first fixed-ratio polynomial time
algorithm, which finds (23 + ε)-approximate solution of the problem for and arbitrary ε > 0. Our
approach appears to be a further extension of the classic splitting-of technique for the Eulerian
graphs and rounding framework of [6], and exploit the seminal recent Svensson-Traub (22 + ε)-
approximation algorithm for the Asymmetric Traveling Salesman Problem (ATSP) with the triangle
inequality, as a main building block.

In Section 2, we give a formulation of the problem in question. Next, in Section 3, we recall
the necessary definitions and notation. Section 4 opens the discussion of novel results. In this
section, we introduce the proposed algorithm, whose approximation ratio and running time bounds
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are proved in Section 5. Finally, in Section 6, we summarize the obtained results and discuss some
open questions.

2. Problem statement

In this paper, we study polynomial approximation of the Profitable Tour Problem (PTP),
introduced by M. Dell’Amico, F. Maffioli, and P. Värbrand in [12], which a simplified version of the
PCATSP introduced by E. Balas in [2]. An arbitrary PTP instance is given by a complete digraph
G = (V,A) augmented by an edge-weighting function c : A → R+ that specifies transportation costs
and fulfills the triangle inequality

c(u, v) + c(v,w) ≥ c(u,w) for any {u, v, w} ⊂ V, (2.1)

and node-weighting function π : V → R+, defining the penalties for skipping nodes of the graph G.
Unlike the classic Asymmetric Traveling Salesman Problem, feasible solution set of the PTP con-
tains an arbitrary closed walk (including the empty tour that skips each node of the graph G). The
problem is to find the minimum cost walk, where a cost of an arbitrary walk T is defined as follows:

cost(T ) =
∑

a∈T

ca +
∑

v 6∈T

πv,

provided T visits some subset W ⊂ V .
Comparing the considered problem with the original one introduced in [2], we should mention

that, similarly to [6]

(i) we assume that transportation costs satisfiy the triangle inequality (2.1),

(ii) visiting of an arbitrary node of the graph G has no additional profit,

(iii) as a consequence, we exclude the knapsack constraint that restricts minimum possible profit
to collect.

3. Preliminaries

Results of this paper are mainly based on approximation algorithms proposed recently for the
ATSP, where the edge-waiting function satisfies the triangle inequality, and on the well-known
splitting-off property of the Eulerian graphs.

In the ATSP, we are given by a complete digraph G = (V,A) and a weighting function c : A →
R+, which specifies transportation costs. Without loss of generality, we assume that c satisfies the
triangle inequality. The goal is to construct a closed route that visits each node of the graph G (a
tour) with the minimum transportation cost.

For our construction, another equivalent formulation of the ATSP appears to be more conve-
nient. In this setting, we are required to find a minimum cost (multi-)subset T ⊂ A, such that (V, T )
is Eulerian connected multigraph. Assuming that each arc a is contained in T with multiplicity xa,
the cost of T is defined by

c(T ) =
∑

a∈T

caxa.

In this context, it is convenient to assume that each tour R is defined by its arc-multiplicity vector
x.

In the following, we need some standard definitions and notation. As usual, by δ(U1, U2) we
denote the set or arcs {(u, v) ∈ A : u ∈ U1, v ∈ U2} for an arbitrary disjoint non-empty subsets
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U1, U2 ⊂ V . In particular case, where U1 = W and U2 = V \W , δ(U1, U2) coincides with classic
notation of outgoing and incoming cuts

δ+(W ) = δ(W,V \W ) = {(u, v) ∈ A : u ∈ W, v /∈ W} and

δ−(W ) = δ(V \W,W ) = {(u, v) ∈ A : u /∈ W, v ∈ W},

respectively and the cut δ(X) = δ+(X) ∪ δ−(X). Next, we use a short notation δ(v) for X = {v}.

Further, we use the classic Held-Karp Mixed Integer Linear (MILP)-model for the ATSP

min
∑

a∈A

caxa (3.1)

s.t. x(δ+(v)) = x(δ−(v)) (v ∈ V ), (3.2)

x(δ(U)) ≥ 2 (∅ 6= U ⊂ V ), (3.3)

xa ∈ Z+ (a ∈ A). (3.4)

Here, equation (3.2) ensures that an arbitrary feasible solution induces a Eulerian multi-subgraph
and (3.3) is the classic subtour elimination constraint. We denote optimum values of problem
(3.1)–(3.4) and its LP-relaxation as ATSP∗ and ATSP-LP∗, respectively.

In their seminal paper [28], O. Svensson, J. Tarnavski, and L. Végh provided the first polynomial
time approximation for the ATSP within a fixed ratio. A few years later, this breakthrough result
was substantially improved by V. Traub and J. Vygen in [29]. We remind this result, since it is
one of the main building blocks of our own contribution.

Theorem 1. For an arbitrary positive ε, there exists a polynomial-time algorithm that finds a
feasible tour T for the given ATSP instance, such that

ATSP∗ ≤ c(T ) ≤ (22 + ε) ATSP-LP∗ .

We employ this result to prove the similar approximation result for the special case of the
PCATSP, where all feasible walks are restricted to visit a given pair of nodes {u, v} ⊂ V , we
call this problem PCATSPu,v. Following the known results (see, e.g. [6, 11]), we propose the
MILP-model for this problem:

min
∑

a∈A

caxa +
∑

w∈V

πw(1− yw) (3.5)

s.t. x(δ+(w)) = x(δ−(w)) (w ∈ V ), (3.6)

x(δ(S)) ≥ 2 (S ⊂ V : |S ∩ {u, v}| = 1), (3.7)

x(δ(S)) ≥ 2yw (∅ 6= S ⊆ V \{u, v}, w ∈ S), (3.8)

xa ∈ Z+, yw ∈ {0, 1}, (3.9)

yu = yv = 1, (3.10)

where, for the tour W , the Boolean variable yw indicates of whether W visits the node w ∈ V ,
total transportation costs and node-skipping penalties accumulated by W are represented by the
objective function (3.5), equation (3.6) guarantees that the multigraph (V,W ) is Eulerian and,
together with (3.7)–(3.8), ensures its connectivity.

As for the Held-Karp model, we assign an LP-relaxation PCATSP-LPu,v to the problem
PCATSPu,v, where constraint (3.9) is relaxed by xa ≥ 0 and yw ∈ [0, 1], and denote by PCATSP∗

u,v,
PCATSP-LP∗

u,v, and T C(PCATSP-LPu,v) the optimum values of the problem PCATSPu,v and
problem PCATSP-LPu,v and the time complexity of the PCATSP-LPu,v, respectively.
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4. Approximation algorithm

We start with an approximation algorithm (Algorithm Au,v) for the PCATSPu,v used as a
subroutine in our main Algorithm A for the PCATSP.

Algorithm Au,v employs two outer parameters. The former one is an arbitrary approximation
Algorithm A0 for the asymmetric ATSP. For any ATSP instance I and some α ≥ 0, this algorithm
finds an approximate solution T = T (I), such that:

ATSP∗ ≤ c(T ) ≤ α ·ATSP-LP∗ . (4.1)

The latter parameter gives a threshold value τ separating full-size auxiliary ATSP instances ap-
proximated using algorithm A0 from the smaller ones, which are solved to optimality.

Algorithm Au,v

Input: an instance of the PCATSPu,v

Parameters: an approximation algorithm A0 for the ATSP with triangle inequality,
a threshold τ ≥ 3

Output: an approximate solution Wu,v of this instance

1: find an optimum solution (x̄, ȳ) for the PCATSP-LPu,v

2: define the subset Vu,v ⊂ V as follows:

Vu,v =
{

w ∈ V : ȳw ≥
α

α+ 1

}

,

by construction, {u, v} ⊂ Vu,v

3: consider an ATSP instance Iu,v on the subgraph G〈Vu,v〉 induced by the subset Vu,v

4: if |Vu,v| > τ then

5: set Wu,v to an approximate solution of Iu,v found by Algorithm A0

6: else

7: set Wu,v to an optimum solution of this instance
8: end if

9: output Wu,v

Algorithm A is based on the following simple decomposition idea:

(i) by construction, any feasible solution of the PCATSP is either a closed walk Wu,v visiting at
least two nodes u and v of the input graph G or an empty walk that does not visit any node
at all;

(ii) in the former case, the walk Wu,v is a feasible solution of the appropriate restricted problem
PCATSPu,v and has the cost

cost(Wu,v) =
∑

a∈Wu,v

caxa +
∑

w/∈V ′

πw,

where xa denotes the inclusion multiplicity for the arc a in the walk Wu,v and V ′ is the subset
of nodes visited by this walk;

(iii) in the latter case, the cost of the empty walk is
∑

w∈V πw.
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Finally, the initial PCATSP is decomposed as follows:

PCATSP∗ = min
{

∑

w∈V

πw,min
{

PCATSP∗
u,v : {u, v} ⊂ V

}

}

. (4.2)

Algorithm A

Input: an instance of the PCATSP
Output: an (α + 1)-approximate solution of this instance

1: initialize the set of candidate solutions C = ∅

2: for all {u, v} ⊂ V do

3: construct the auxiliary instance PCATSPu,v

4: employ Algorithm Au,v to find its approximate solution Wu,v

5: append the walk Wu,v to C
6: end for

7: let W̄ = argmin
{

cost(Wu,v) : Wu,v ∈ C
}

8: if cost(W̄ ) ≤
∑

w∈V

πw then

9: output W̄
10: else

11: output the empty walk
12: end if

5. Theoretical guarantees

First of all, we show that Algorithm Au,v, as an algorithm for PCATSPu,v, inherits all the ap-
proximation features of algorithm A0 for the ATSP with the triangle inequality. In particular, if we
take the Svensson-Traub algorithm, then Algorithm Au,v, in polynomial time, will find an approxi-
mate solution of the subproblem PCATSPu,v, whose cost does not exceed (23+ ε) PCATSP-LP∗

u,v.
We start with the following technical lemma.

Lemma 1. For each Vu,v ⊂ V , such that |Vu,v| > 3, the optimum value of the problem

min
∑

caxa (5.1)

s.t. x(δ+(w)) = x(δ−(w)) (w ∈ V ), (5.2)

x(δ(U)) ≥ 2

(

U ⊂ V : Vu,v ∩ U 6= ∅,

Vu,v ∩ V \U 6= ∅

)

, (5.3)

xa ≥ 0 (a ∈ A), (5.4)

x(δ(w))

{

≥ 2, if w ∈ Vu,v,

= 0, otherwise
(5.5)

is equal to the optimum value of problem (5.1)–(5.4).

Lemma 1 can be derived from a much more general result on connectivity of Eulerian graphs
obtained by L. Lovász [22] and B. Jackson [18]. Nevertheless, we prefer to present its direct proof,
since, in our case, it appears to be much simpler.
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P r o o f. Indeed, denote by X∗
1 and X∗

2 optimal sets of the problem (5.1)–(5.4) and (5.1)–(5.5),
respectively. We show that an arbitrary rational solution

x∗ = argmin
{

∑

a∈A

xa : x ∈ X∗
1

}

(5.6)

belongs to X∗
2 . To prove it, it is sufficient to show that x∗(δ(w)) = 0 for an arbitrary w /∈ Vu,v,

since, for any w ∈ Vu,v, inequality x∗(δ(w)) ≥ 2 follows straightforwardly from equation (5.3). By
construction, there exists a number D ≥ 1, such that the vector ξ∗ = D ·x∗ is an integer and fulfills
the following constraints:

ξ(δ+(w)) = ξ(δ−(w)) (w ∈ V ), (5.7)

ξ(δ(S)) ≥ 2D (S ∈ Su,v), (5.8)

ξ ≥ 0, (5.9)

where
Su,v = {S ⊂ V : Vu,v ∩ S 6= ∅, Vu,v \ S 6= ∅}

and ξ∗(δ(S)) is even for an arbitrary S ⊂ V .
Assume that there exists w0 /∈ Vu,v, for which ξ∗(δ(w0)) > 0. Obviously, inequality (5.8) holds

tight for at least one subset S̄ ∈ Su,v. Indeed, otherwise, for some nodes w′ and w′′ neighboring to
w0, for which ξ∗(a) > 0, a ∈ {(w′, w0), (w0, w

′′)}, there exists the vector ξ̃, built as follows:

ξ̃a =











ξ∗a − 1, for a = (w′, w0) or a = (w0, w
′′)

ξ∗a + 1, for a = (w′, w′′)

ξ∗a, for any other arc.

(5.10)

By construction, ξ̃ satisfies equations (5.7)–(5.9). Furthermore,

∑

a∈A

ξ̃a =
∑

a∈A

ξ∗a − 1, and
∑

a∈A

caξ̃a ≤
∑

a∈A

caξ
∗
a,

by triangle inequality. Therefore, the vector x̃ = 1/D · ξ̃ is feasible in the problem (5.1)–(5.4), it
belongs to X∗

1 , and
∑

a∈A

x̃a =
∑

a∈A

x∗a −
1

D

that contradicts to (5.6).
Therefore, we proved that there exists a subset S̄ ∈ Su,v, w0 /∈ S̄ and the neighbors w′, w′′ ∈ S̄,

such that ξ∗(δ(S̄)) = 2D, and ξ̃(δ(S̄)) = 2D − 2. Notice that, even in this case, any time, when
{w′, w′′}∩Vu,v = ∅, transform (5.10) still provides feasible solution x̃ that contradicts to minimality
of x∗. Therefore, in the sequel, we assume without of loss of generality that w′ ∈ Vu,v.

Denote by S′ the maximal subset of V \{w0}, such that S′ ∈ Su,v, w
′ ∈ S′, and ξ∗(δ(S′)) = 2D.

Since
w0 /∈ Vu,v, Vu,v \ (S

′ ∪ {w0}) 6= ∅ and ξ∗(δ(S′ ∪ {w0})) ≥ 2D.

Therefore, S′ cannot contain all the neighbors of w0, since, otherwise (see Fig. 1)

2D ≤ ξ∗(δ(S′ ∪ {w0})) < ξ∗(δ(S′)) = 2D.

Further, consider the subsets S′ and S̄. Since

S′ ∩ S̄ 6= ∅, V \ (S′ ∪ S̄) 6= ∅, S̄ \ S′ 6= ∅, and S′ \ S̄ 6= ∅,
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0
w

S'

Figure 1. Example of subset S′, node w0, and its neighbors.

for an arbitrary vector ξ satisfying (5.7)–(5.9), the following inequalities

ξ(δ(S′ \ S̄)) + ξ(δ(S̄ \ S′)) ≤ ξ(δ(S′)) + ξ(δ(S̄)), (5.11)

ξ(δ(S′ ∪ S̄)) + ξ(δ(S′ ∩ S̄)) ≤ ξ(δ(S′)) + ξ(δ(S̄)) (5.12)

are valid. Indeed, as it follows from Fig. 2,

ξ(δ(S′ \ S̄)) = a+ b+ d, ξ(δ(S̄ \ S′)) = c+ d+ e,

ξ(δ(S′ ∪ S̄)) = a+ e+ f, ξ(δ(S′ ∩ S̄)) = b+ c+ f,

ξ(δ(S′)) = a+ c+ d+ f, ξ(δ(S̄)) = b+ d+ e+ f.

S
S'

a e

Figure 2. Cut sizes: a = |δ(S′\S̄, V \(S′∪S̄)|; b = |δ(S′\S̄, S′∩S̄)|; c = |δ(S̄\S′, S′∩S̄)|; d = |δ(S′\S̄, S̄\S′)|;
e = |δ(S̄ \ S′, V \ (S′ ∪ S̄))|; f = |δ(S′ ∩ S̄, V \ (S′ ∪ S̄))|.

Therefore, inequalities (5.11) and(5.12) hold for any non-negative function c of transportation
costs. Furthermore, for ξ∗,

ξ∗(δ(S′ \ S̄)) + ξ∗(δ(S̄ \ S′)) < ξ∗(δ(S′)) + ξ∗(δ(S̄)), (5.13)

by construction. Next, by assumption, w′ ∈ Vu,v ∩ S′ ∩ S̄, w′′ ∈ S̄ \ S′, and w0 /∈ S′, which imply
ξ∗(δ(S′ ∩ S̄)) ≥ 2D. Thus, we obtain

ξ∗(δ(S′ ∪ S̄)) ≤ 2D,

due to (5.12) and the equality

ξ∗(δ(S′)) = ξ∗(δ(S̄)) = 2D. (5.14)
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Consequently, Vu,v ⊂ S′∪ S̄, since otherwise, taking into account the inequality Vu,v ∩ (S̄∩S′) 6= ∅,
we come to contradiction with the maximality of the subset S′.

Coming back to the subsets S̄ \ S′ and S′ \ S̄, we can easily show that each belong to Su,v,
which implies

ξ∗(δ(S′ \ S̄)) ≥ 2D and ξ∗(δ(S̄ \ S′)) ≥ 2D.

These equations together with (5.14) contradict (5.13). Lemma 1 is proved. �

Theorem 2. If the Algorithm A0 approximates the ATSP in time T C(A0) within the accuracy
bound (4.1), then the Algorithm Au,v, in time T C(A0)+T C(PCATSP-LPu,v), finds an approximate
solution Wu,v of the PCATSPu,v, for which

PCATSP∗
u,v ≤ cost(Wu,v) ≤ (α+ 1) PCATSP-LP∗

u,v . (5.15)

P r o o f. Since the description of the Algorithm Au,v leads to a straightforward upper bound
of its time complexity, we proceed with the bound of its approximation ratio (5.15). Indeed, make
a simple transformation of the fractional solution (x̄, ȳ) obtained at Step 1 of the Algorithm Au,v

as follows:

x̂ =
α+ 1

α
· x̄, ŷw =

{

1, if ȳw ≥ α/(α + 1),

0, otherwise.
(w ∈ V ). (5.16)

Further, the set Vu,v defined at Step 2 of the Algorithm Au,v obeys the equation

Vu,v = {w ∈ V : ŷw = 1},

by construction. We consider the non-trivial case, where |Vu,v| > τ . Then, Wu,v coincides with an
approximate solution of the auxiliary ATSP instance defined on the subgraph G〈Vu,v〉 provided by
Algorithm A0. Denote by x′ the appropriate feasible solution of its MIP-model

min
∑

caxa (5.17)

s.t. x(δ+(w)) = x(δ−(w)) (w ∈ Vu,v), (5.18)

x(δ(U)) ≥ 2 (∅ 6= U ⊂ Vu,v), (5.19)

xa ∈ Z+. (5.20)

By condition,
ATSP∗ ≤ c(x′) ≤ α ·ATSP-LP∗ .

In turn, the LP-relaxation of problem (5.17)–(5.20), the problem ATSPLP, appears to be equivalent
to the problem (5.1)–(5.5), whose optimum value is equal to the optimum value of the problem
(5.1)–(5.4), by Lemma 1.

Further, we prove that the vector x̂ is a feasible solution of problem (5.1)–(5.4). Indeed, equation
(5.2) follows from (3.6), since x̂ = (α + 1)/α · x̄. In order to prove that x̂ satisfies equation (5.3),
notice that, if |{u, v} ∩ S| = 1, it easily follows from (3.7).

Next, suppose that S ∩ {u, v} = ∅ (the case {u, v} ⊂ S can be tackled by analogy). For an
arbitrary w ∈ Vu,v ∩ S, we have ŷw = 1, i.e. ȳw ≥ α/(α + 1). Therefore,

x̂(δ(S)) =
∑

e∈δ(S)

x̂e =
α+ 1

α

∑

e∈δ(S)

x̄e ≥
α+ 1

α
· 2ȳw ≥ 2,

since, x̄(δ(w)) ≥ 2ȳw.
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Thus, we showed that x̂ is a feasible solution of the problem (5.1)–(5.4), whose optimum value
equals to ATSP-LP∗, i.e.

c(x′) ≤ α ·ATSP-LP∗ ≤ α · c(x̂).

Therefore, for the feasible solution (x′, ŷ) (induced by the walk Wu,v) of the problem (3.5)–(3.10),
we have

PCATSP∗
u,v ≤ cost(Wu,v) = c(x′) +

∑

w∈V

πw(1− ŷw) ≤ α · ATSP-LP∗

+
∑

w∈V

πw(1− ŷw) ≤ α · c(x̂) +
∑

w∈V

πw(1− ŷw) = (α+ 1) · c(x̄) +
∑

w∈V

πw(1− ŷw).

Taking into account the inequality

1− ŷw ≤ (α+ 1)(1 − ȳw)

following straightforwardly from (5.16), we obtain

cost(Wu,v)

PCATSP-LP∗
u,v

≤
(α+ 1) · c(x̄) + (α+ 1)

∑

w∈V πw(1− ȳw)

c(x̄) +
∑

w∈V πw(1− ȳw)
= α+ 1.

Theorem 2 is proved. �

Finally, we obtain our main result, which easily follows from Theorem 2.

Theorem 3. From Theorem 2 it follows that Algorithm A finds (α + 1)-approximate feasible
solution of the PCATSP in time

O(n2 · (T C(A0) + T C(PCATSP-LPu,v))). (5.21)

P r o o f. First, we obtain an upper accuracy bound for AlgorithmA. Without loss of generality,
we skip the trivial case, where, for the given PCATSP instance, an arbitrary non-empty walk is
dominated by the empty walk and

PCATSP∗ =
∑

w∈V

πw.

Then, in (4.2), the minimum is achieved at some pair {ũ, ṽ} ⊂ V . Therefore, for the output walk
W̄ , by Theorem 2 we have

PCATSP∗ ≤ cost(W̄ ) ≤ cost(Wū,v̄) ≤ (α+ 1) · PCATSP-LP∗
ũ,ṽ

≤ (α+ 1) · PCATSP∗
ũ,ṽ = (α+ 1) · PCATSP∗ .

In turn, the complexity bound (5.21) easily follows from the construction of Algorithm A and
Theorem 2. Indeed, the running time of Algorithm A is determined by the for-loop statement
located between its Step 2 and Step 6. At each iteration of this loop, we employ Algorithm Au,v

to one of O(n2) auxiliary instances of the PCATSPu,v. Theorem 3 is proved. �

Remark 1. Exploiting the recent (22 + ε)-approximation algorithm for the ATSP, for an
arbitrary ε > 0 we obtain the polynomial-time algorithm for the PCATSP within approximation
ratio (23 + ε).

Remark 2. Since auxiliary instances PCATSPu,v are mutually independent, all of them can be
approximated in parallel. In this case, the running-time bound of Algorithm A coincides asymp-
totically with the running-time bound of Algorithm Au,v.
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6. Conclusion

In this paper, we proposed the first fixed-ratio (23 + ε)-approximation algorithm for the
PCATSP. By its appearance, our algorithm owes to the recent breakthrough results of O. Svensson
and V. Traub [28, 29] for the asymmetric TSP, who make possible polynomial time approximation
for asymmetric versions of other routing problems within fixed ratios. To future work, we postpone
reports on some algorithms of such kind including the algorithm for the general version of the
PCATSP.
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5. Bérubé J. F., Gendreau M., Potvin J.-Y. A branch-and-cut algorithm for the undirected prize collecting
traveling salesman problem. Networks, 2009. Vol. 54, No. 1. P. 56–67. DOI: 10.1002/net.20307

6. Bienstock D., Goemans M.X., Simchi-Levi D., Williamson D. A note on the prize collecting traveling
salesman problem. Math. Program., 1993. Vol. 59. P. 413–420. DOI: 10.1007/BF01581256

7. Chan T.-H.H., Jiang H., Jiang S.H.C. A unified PTAS for prize collecting TSP and Steiner tree problem
in doubling metrics. In: LIPIcs. Leibniz Int. Proc. Inform., vol. 112: 26th Annual European Symposium
on Algorithms (ESA 2018), Y. Azar, H. Bast, G. Herman (eds.). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018. Art. no. 15. P. 1–13. DOI: 10.4230/LIPIcs.ESA.2018.15

8. Chan T.-H.H., Jiang S.H.C. Reducing curse of dimensionality: improved PTAS for TSP (with neigh-
borhoods) in doubling metrics. ACM Trans. Algorithms, 2018. Vol. 14, No. 1. Art. no. 9. P. 1–18.
DOI: 10.1145/3158232

9. Christofides N. Worst-case analysis of a new heuristic for the traveling salesman problem. In: Abstr. of
Symposium on New Directions and Recent Results in Algorithms and Complexity, J.F. Traub (ed.). NY:
Academic Press, 1976. P. 441.

10. Chung S.H., Sah B., Lee J. Optimization for drone and drone-truck combined operations: A re-
view of the state of the art and future directions. Comput. Oper. Res., 2020. Vol. 123. P. 105004.
DOI: 10.1016/j.cor.2020.105004

11. Climaco G., Simonetti L., Rosetti I. A Branch-and-Cut and MIP-based heuristics for the
Prize-Collecting Travelling Salesman Problem. RAIRO-Oper. Res., 2021. Vol. 55. P. S719–S726.
DOI: 10.1051/ro/2020002

12. Dell’Amico M., Maffioli F., Värbrand P. On prize-collecting tours and the asymmetric travelling salesman
problem. Int. Trans. Oper. Res., 1995. Vol. 2, No. 3. P. 297–308. DOI: 10.1016/0969-6016(95)00010-5

13. Dogan O., Alkaya A. F. A novel method for prize collecting traveling salesman problem with time
windows. In: Lect. Notes Networks Systems, vol 307: Intelligent and Fuzzy Techniques for Emerging
Conditions and Digital Transformation, C. Kahraman at al.(eds.). Cham: Springer, 2022. P. 469–476.
DOI: 10.1007/978-3-030-85626-7 55

14. Feillet D., Dejax P., Gendreau M. Traveling salesman problems with profits. Transport. Sci., 2005.
Vol. 39, No. 2. P. 188–205. DOI: 10.1287/trsc.1030.0079

15. Fischetti M., Toth P. An additive approach for the optimal solution of the prize collecting traveling
salesman problem. In: Vehicle Routing: Methods and Studies, B.L. Golden, A.A. Assad (eds.). North-
Holland, 1988. P. 319–343.

16. Goemans M.X., Williamson D.P. A general approximation technique for constrained forest problems.
SIAM J. Comput., 1995. Vol. 24, No. 2. P. 296–317. DOI: 10.1137/S0097539793242618

https://doi.org/10.1137/090771429
https://doi.org/10.1002/net.3230190602
https://doi.org/10.1137/130913328
https://doi.org/10.1137/1.9781611973082.79
https://doi.org/10.1002/net.20307
https://doi.org/10.1007/BF01581256
https://doi.org/10.4230/LIPIcs.ESA.2018.15
https://doi.org/10.1145/3158232
https://doi.org/10.1016/j.cor.2020.105004
https://doi.org/10.1051/ro/2020002
https://doi.org/10.1016/0969-6016(95)00010-5
https://doi.org/10.1007/978-3-030-85626-7_55
https://doi.org/10.1287/trsc.1030.0079
https://doi.org/10.1137/S0097539793242618


146 Ksenia Rizhenko, Katherine Neznakhina and Michael Khachay

17. Gutin G., Punnen A.P. The Traveling Salesman Problem and Its Variations. Boston, MA: Springer US,
2007. 38 p.

18. Jackson B. Some remarks on Arc-connectivity, vertex splitting, and orientation in graphs and digraphs.
J. Graph Theory, 1988. Vol. 12, No. 3. P. 429–436. DOI: 10.1002/jgt.3190120314

19. Khachay M., Ogorodnikov Y., Khachay D. Efficient approximation of the metric CVRP in spaces of fixed
doubling dimension. J. Global Optim., 2021. Vol. 80. P. 679–710. DOI: 10.1007/s10898-020-00990-0

20. Khachai D., Sadykov R., Battaia O., Khachay M. Precedence constrained generalized traveling salesman
problem: Polyhedral study, formulations, and branch-and-cut algorithm. European J. Oper. Res., 2023.
Vol. 309, No. 2. P. 488–505. DOI: 10.1016/j.ejor.2023.01.039

21. Lahyani R., Khemakhem M., Semet F. A unified matheuristic for solving multi-constrained travel-
ing salesman problems with profits. EURO J. Comput. Optim., 2017. Vol. 5, No. 3. P. 393–422.
DOI: 10.1007/s13675-016-0071-1

22. Lovász L. On some connectivity properties of Eulerian graphs. Acta Math. Acad. Scientiarum Hungarica,
1976. Vol. 28, No. 1. P. 129–138. DOI: 10.1007/BF01902503

23. de Medeiros Y.A., Goldbarg M.C., Goldbarg E.F.G. Prize collecting traveling salesman prob-
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Abstract: The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equa-
tions with a generalized action on the right-hand side, for example, containing impulses — delta functions. The
fact that the derivatives in the equation are considered distributions required a correction of the well-known
Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure
the property under study.

Keywords: Hyers–Ulam–Rassias stability, Differential equations, Generalized actions, Discontinuous tra-
jectories.

1. Introduction

The definition of the Hyers–Ulam stability appeared after Hyers gave a solution to the Ulam
problem on conditions for the proximity of an additive mapping and an approximate additive
mapping [1]. Then these results were interpreted for differential equations, which is reflected in
many publications (see, for example, [4, 6] and the references therein). Further development of the
Hyers–Ulam stability concept was developed in [5]. As a result, the concept of the Hyers–Ulam–
Rassias stability arose.

The paper considers sufficient conditions for the Hyers–Ulam–Rassias stability of generalized
solutions to nonlinear differential systems with a generalized action on the right-hand side. These
issues for ordinary differential equations with absolutely continuous trajectories were considered,
for example, in [6]. A distinctive feature of this work is that the right-hand side of the differential
equation contains generalized actions — generalized derivatives of functions of bounded variation.
Solutions are understood as pointwise limits of sequences of absolutely continuous solutions, which
are obtained as a result of approximations of generalized actions on the right-hand side of the
equation by summable functions [2, 8, 11]. The results obtained by the authors differ from [9, 10]
in that [9, 10] use the solution formalization proposed in [7], while we use the solution formalization
described in [8, 11].

For differential equations, the Hyers–Ulam–Rassias stability is defined as follows (see, for ex-
ample, [6]).

Definition 1. The equation

ẋ(t) = f(t, x) (1.1)

is Hyers–Ulam–Rassias stable with respect to a function ϕ (ϕ is a positive, continuous, nondecreas-
ing function) if there exists a number cfϕ > 0 such that, for every ε and every solution y ∈ C1[a, b]

1This work was supported by the Russian Science Foundation (project no. 22-21-00714).

https://doi.org/10.15826/umj.2023.1.013
mailto:a.n.sesekin@urfu.ru
mailto:anna_kandrina@mail.ru
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to the inequality
|y′ − f(t, y)| ≤ εϕ(t), t ∈ [a, b],

there exists a solution x(t) to equation (1.1) satisfying the inequality

|y(t)− x(t)| ≤ cfϕεϕ(t), t ∈ [a, b].

Obviously, such a definition does not apply to equations with a generalized action because the
right-hand side of the equation is unbounded. For linear differential equations of the first and second
orders, the authors of [3] proposed a formalization of the Hyers–Ulam stability for a differential
equation and obtained conditions for the presence of such stability for these equations.

2. Formulation of the problem

We will consider the following differential equation:

ẋ = f(t, x) +B(t, x)v̇(t). (2.1)

Here, x(t) and v(t) are n- and m-dimensional vector functions, respectively, f(t, x) is an n-
dimensional vector function, and B(t, x) is an n × m-matrix function. If the function v(t) is
absolutely continuous, then, under certain assumptions on f(t, x) and B(t, x), there exists a unique
solution to equation (2.1) on the segment [t0, ϑ] satisfying the initial condition x(t0) = x0.

If v(t) is a function of bounded variation, then the derivative in equation (2.1) should be
understood in the generalized sense [11]. As a result, an incorrect operation of multiplication of a
discontinuous function by a generalized function occurs on the right-hand side of the equation. One
of possible ways to solve this problem is based on the definition of the solution on the closure of the
set of smooth solutions in the space of functions of bounded variation [2, 11]. Since the variation
of a vector function can be defined in different ways, we note that, in this paper, the variation of
an m-dimensional vector function v(t) is understood as

var
[t0, t]

v(·) = sup
T

k−1
∑

i=0

|v(ti+1)− v(ti)|,

where T is an arbitrary partition of the segment [t0, t].
According to [11], by an approximable solution of (2.1) corresponding to a function of bounded

variation v(t), we mean a function of bounded variation x(t) which is the pointwise limit of a se-
quence xk(t) generated by a sequence of absolutely continuous functions vk(t) converging pointwise
to v(t) if x(t) does not depend on the choice of the sequence vk(t).

Theorem 1 [11, p. 214]. Assume that, in a domain t ∈ [t0, ϑ], x ∈ R
n, v ∈ R

m, v(·) is a
function of bounded variation, and the components of the vector f(t, x) and the elements of the
matrix B(t, x) are continuous in the set of variables, differentiable with respect to all variables
xi, i ∈ 1, n, and satisfy the inequalities

||f(t, x)|| ≤ κ(1 + ||x||), ||B(t, x)|| ≤ κ(1 + ||x||), (2.2)

||f(t, x)− f(t, y)|| ≤ Lf |x− y|, ||B(t, x)−B(t, y)|| ≤ LB |x− y|, (2.3)

where Lf , LB, and κ are some positive constants. In addition, assume that the following equality
(the Frobenius condition) holds for all admissible t and x:

n
∑

ν=1

∂bij(t, x)

∂xν
bνl(t, x) =

n
∑

ν=1

∂bil(t, x)

∂xν
bνj(t, x), i ∈ 1, n, j, l ∈ 1,m.
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Then, for every vector function v(t) satisfying the above conditions, there exists an approximable
solution x(t) to the Cauchy problem (2.1) that satisfies the integral equation

x(t) = x0 +

t
∫

t0

f(ξ, x(ξ)) dξ +

t
∫

t0

B(ξ, x(ξ)) dvc(ξ)

+
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

+
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

,

(2.4)

where

S(t, x,∆v) = z(1) − x,

ż(ξ) = B(t, z(ξ))∆v(t), z(0) = x, (2.5)

and Ω−(Ω+) is the set left-side discontinuity (right-side discontinuity) points of the vector func-
tion v(t),

∆v(t− 0) = v(t)− v(t− 0), ∆v(t+ 0) = v(t+ 0)− v(t).

Definition 2. We will say that a differential equation (2.1) is Hyers–Ulam–Rassias stable with
respect to a function ϕ (ϕ is a positive, continuous, and nondecreasing function) on [t0, ϑ] if, for
every vector function y ∈ BV [t0, ϑ] satisfying the inequality

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, y(ξ)) dξ −

t
∫

t0

B(ξ, y(ξ)) dvc(ξ)

−
∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

∣

∣

∣

∣

≤ ǫϕ(t),

(2.6)

for all ǫ > 0, and every solution to the inequality (2.6), there exists a positive real number cf,ϕ and
a solution to the equation (2.1) x(t) satisfying the inequality

|y(t)− x(t)| < cf,ϕǫϕ(t)

for all t ∈ [t0, ϑ].

3. Main result

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then the differential equation (2.1)
is Hyers–Ulam–Rassiyas stable.

P r o o f. Let y(t) ∈ BV [t0, ϑ] be the solution to inequality (2.6), and let x(t) be the solution
to equation (2.4). According to (2.4),

|y(t)− x(t)| =

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, x(ξ)) dξ −

t
∫

t0

B(ξ, x(ξ)) dvc(ξ)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣

∣

.
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We add and subtract the following sum under the modulus on the right-hand side of this relation:

t
∫

t0

f(ξ, y(ξ)) dξ +

t
∫

t0

B(ξ, y(ξ)) dvc(ξ) +
∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

+
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

.

After grouping and taking into account the properties of the modulus, we obtain

|y(t)− x(t)| ≤

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, y(ξ)) dξ −

t
∫

t0

B(ξ, y(ξ)) dvc(ξ)

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

(

f(ξ, y(ξ))− f(ξ, x(ξ))
)

dξ

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

(

B(ξ, y(ξ)) −B(ξ, x(ξ))
)

dvc(ξ)

∣

∣

∣

∣

+
∣

∣

∣

∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

+
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣
.

(3.1)

Using the definition of the Stieltjes integral and assumption (2.3), it is not difficult to verify the
validity of the inequality

∣

∣

∣

∣

t
∫

t0

(

B(ξ, y(ξ))−B(ξ, x(ξ))
)

dvc(ξ)

∣

∣

∣

∣

≤

t
∫

t0

LB |y(s)− x(s)| d var
[t0, s]

vc(·). (3.2)

From inequality (3.1), given assumptions (2.3), and inequality (3.2), we get

|y(t)− x(t)| ≤

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, y(ξ)) dξ −

t
∫

t0

B(ξ, y(ξ)) dvc(ξ)

−
∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

Lf |y(ξ)− x(ξ)| dξ

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

LB|y(ξ)− x(ξ)| d var
[t0, ξ]

vc(ξ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣

∣

.

From the above chain of inequalities, taking into account (2.6), we obtain

|y(t)− x(t)| ≤ εϕ(t) +

t
∫

t0

Lf |y(ξ)− x(ξ)| dξ +

t
∫

t0

LB|y(ξ)− x(ξ)| d var
[t0, ξ]

vc(·)
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+

∣

∣

∣

∣

∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣

∣

.

(3.3)

According to definition (2.5) of the function S(t, y,∆v), the following equality holds:

∣

∣S
(

ti, y(ti − 0),∆v(ti − 0)
)

− S
(

ti, x(ti − 0),∆v(ti − 0)
)
∣

∣

=
∣

∣zy(1)− y(ti − 0)−
(

zx(1) − x(ti − 0)
)
∣

∣

=

∣

∣

∣

∣

1
∫

0

(

B(ti − 0, zy(s))−B(ti − 0, zx(s))
)

∆v(ti − 0) ds

∣

∣

∣

∣

.

Hence, using property (2.3), we obtain the inequality

∣

∣zy(1)− y(ti − 0)−
(

zx(1)− x(ti − 0)
)
∣

∣ ≤

1
∫

0

LB|∆v(ti − 0)|
∣

∣zy(s)− zx(s)
∣

∣ ds.

Adding and subtracting y(ti − 0)− x(ti − 0) under the modulus in the integral and then applying
the triangle inequality to this modulus, we get

|zy(1) − y(ti − 0)− (zx(1) − x(ti − 0))| ≤ LB|∆v(ti − 0)|
∣

∣y(ti − 0)− x(ti − 0)
∣

∣

+

1
∫

0

LB|∆v(ti − 0)|
∣

∣zy(s)− y(ti − 0)− (zx(s)− x(ti − 0))
∣

∣ ds.
(3.4)

Using Gronwall’s lemma in (3.4), we get

∣

∣zy(1)− y(ti − 0)−
(

zx(1)− x(ti − 0)
)∣

∣ ≤ LB|∆v(ti − 0)|
∣

∣y(ti − 0)− x(ti − 0)
∣

∣eLB |∆v(ti−0)|. (3.5)

On the right-hand side of (3.5), we use the obvious inequality aeb ≤ eab − 1, a > 0, b ≥ e, which
can be easily proved by means of the Taylor expansion of the exponent and the inequality bn > n

for b ≥ e. As a result, we obtain

∣

∣zy(1)− y(ti − 0)− (zx(1)− x(ti − 0))
∣

∣ ≤ |y(ti − 0)− x(ti − 0)|
(

eeLB |∆v(ti−0)| − 1
)

. (3.6)

It is clear that a similar inequality can also be obtained at the point (ti + 0).

Estimating the differences of the sums in (3.3) with the use of (3.6), we obtain the inequality

|y(t)− x(t)| ≤ εϕ(t) +

t
∫

t0

Lf |y(ξ)− x(ξ)| dξ +

t
∫

t0

LB |y(ξ)− x(ξ)| d var
[t0, ξ]

vc(ξ)

+
∑

ti≤t, ti∈Ω−

|y(ti − 0)− x(ti − 0)|
(

eeLB |∆v(ti−0)| − 1
)

+
∑

ti<t, ti∈Ω+

|y(ti)− x(ti)|
(

eeLB |∆v(ti+0)| − 1
)

.

(3.7)
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Inequality (3.7) obviously implies the inequality

|y(t)− x(t)| ≤ εϕ(t) +

t
∫

t0

max{Lf ;LB}|y(ξ) − x(ξ)| d
(

ξ + var
[t0, ξ]

vc(·)
)

+
∑

ti≤t, ti∈Ω−

|y(ti − 0)− x(ti − 0)|
(

eeLB |∆v(ti−0)| − 1
)

+
∑

ti<t, ti∈Ω+

|y(ti)− x(ti)|
(

eeLB |∆v(ti+0)| − 1
)

.

Applying an estimate from [11, p. 192], we get

|y(t)− x(t)| ≤ εϕ(t)eH(t) ,

where

H(t) = max{Lf ;LB}
(

t− t0 + var
[t0, t]

vc(ξ) +
∑

ti≤t, ti∈Ω−

|∆v(ti − 0)| +
∑

ti≤t, ti∈Ω+

|∆v(ti + 0)|
)

.

Taking into account that H(t) is a monotonically increasing function, we set cfϕ = H(ϑ), which
completes the proof of the theorem.

�

4. Conclusion

The paper presents a formalization of the concept of the Hyers–Ulam–Rassias stability for non-
linear systems of differential equations with a generalized action on the right-hand side. Sufficient
conditions are obtained that ensure such stability.
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Abstract: The paper deals with a digraph with non-negative vertex weights. A subset W of the set of
vertices is called dominating if any vertex that not belongs to it is reachable from the set W within precisely
one step. A dominating set is called minimal if it ceases to be dominating when removing any vertex from it.
The paper investigates the problem of searching for a minimal dominating set of maximum weight in a vertex-
weighted digraph. An integer linear programming model is proposed for this problem. The model is tested
on random instances and the real problem of choosing a family of key indicators in a specific socio-economic
system. The paper compares this model with the problem of choosing a dominating set with a fixed number of
vertices.

Keywords: Combinatorial Optimization, Boolean programming, Minimal dominating set, Key indicators.

1. Introduction

Let G be a directed graph with a vertex set V and an arc set E, |V | = n. Denote by ij
the arc from a vertex i to a vertex j of the digraph G. A set W ⊆ V is called dominating if,
for every vertex j ∈ V \ W , there is a vertex i ∈ W such that ij ∈ E. A dominating subset
W ⊆ V is called minimal dominating if none of its proper subsets is dominating. The problem
of finding a minimal dominant set of maximum cardinality (Upper Domination) is widely known.
In [3], its NP -hardness for the case of an undirected graph was proven. This quickly leads to the
NP -hardness in the case of a directed graph. Some classes of graphs on which Upper Domination
is polynomially solvable are known. This concerns those graphs on which the maximum cardinality
of the minimal dominating set coincides with the independence number (for example, bipartite
graphs), and the independence number for graphs of these classes can be computed in polynomial
time. In addition to bipartite graphs [4], Upper Domination is polynomially solvable for chordal
graphs [7], generalized series-parallel graphs [6], and graphs with bounded clique-width [5]. Much
attention has recently been paid to the approximation properties of this problem. For example,
in [2], it is shown that Upper Domination does not allow for n1−ǫ approximation for any ǫ > 0 unless
P = NP . This makes Upper Domination significantly harder than the problem of the dominating
set (without the condition of minimality) with the cardinality, which is bounded from above. We
consider a weighted Upper Domination on a directed graph with positive vertex weights, which
we will call the Weight MinDom Problem (WMDP). We are interested in using an integer linear
program to find an exact solution to the problem. Let us denote the families of all dominating and

1This work was carried out within the governmental order for Omsk Scientific Center of SB RAS (project
registration number 121022000112-2).
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minimal dominating sets in the digraph G by I(G) and Im(G), respectively. Let ci > 0, i ∈ V , be
weights of vertices P of the graph G. By the weight of the subset S ⊆ V , we mean the number
c(S) =

∑

i∈S ci. In this notation, the combinatorial setting of the WMDP takes the form: find
W ∗ ∈ Im(G) such that c(W ∗) ≥ c(W ) for any W ∈ Im(G). We will associate the vertex set V of
the digraph G with the Euclidean space RV by the one-to-one correspondence between the elements
of the set V and the coordinate axes of the space R

V . In other words, RV is the space of column
vectors whose components are indexed by elements of the set V . For every S ⊆ V we consider its
incidence vector xS ∈ R

V with the coordinates xSi = 1 for i ∈ S and xSi = 0 for i /∈ S. We define
the polytopes of dominating sets and minimal dominating sets as

P (G) = conv{xW ∈ R
V | W ∈ I(G)}

and

Pm(G) = conv{xW ∈ R
V | W ∈ Im(G)},

respectively. Here conv means the convex hull. Note that if c ∈ R
V is a column vector with

components ci, then the following equalities are true for all S ⊆ V :

∑

i∈S

ci =
∑

i∈V

cix
S
i = cTxS,

where T is the transpose sign. Thus, the WMDP can be considered in the polyhedral setting as
the problem of maximizing the linear function cTx on the vertex set of the polytope Pm(G).

In this paper, we obtain the following results. First, the nonlinear characterization of minimal
dominating sets is extended from the case of an undirected graph to a directed graph. Second, a
linear integer programming model is constructed for the problem under consideration. This model
requires the introduction of additional variables different from the variables of the space R

V . This
increases the dimension of the problem but allows us to formalize the condition of minimality of
dominating sets in terms of linear inequalities. Third, we propose an ILP model for the approxi-
mate solution to the problem. This model is defined by replacing the minimality condition of the
dominating set with the fixation of its cardinality. Since the power of the dominating set does not
exceed n, we can use enumeration by cardinality. This increases the number of ILP problems to be
solved. But, as the computational experiment shows, the time to solve each of them is significantly
shorter than that of the original exact model.

The paper is structured as follows: Section 2 contains a nonlinear model in the space R
V that

describes the set of incidence vectors of minimal dominating sets; Section 3 contains a Boolean linear
programming model for the WMDP; Section 4 contains a description of the applied problem of the
key indicators system, a brief overview of the results of the research conducted by economists, and
the ways to formalize this problem in terms of WMDP; Section 5 presents the results of a numerical
experiment.

2. Nonlinear characterization of minimal dominating sets

For every vertex i ∈ V , define

N−[i] = {j ∈ V | ji ∈ E} ∪ {i},

N+[i] = {j ∈ V | ij ∈ E} ∪ {i}.

In this notation, the dominating set in a graph G is a set W ⊆ V such that the condition
N−[i] ∩W 6= 0 is satisfied for each vertex i ∈ V .
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Lemma 1. The dominating set W in a digraph G is minimal if and only if, for every vertex
i ∈ W, there exists a vertex j ∈ N+[i] such that N−[j] ∩W = {i}.

P r o o f. Necessity. Let W be the minimal dominating set. Let us suppose that there exists a
vertex k ∈ W such that N−[j]∩W 6= {k} for all j ∈ N+[k]. Since the vertex k obviously belongs to
both sets N−[j] and W , this assumption means that their intersection contains at least one more
vertex in addition to the vertex k. Consequently, for every vertex j ∈ N+[k], the set (N−[j]∩W )\{k}
is nonempty. Let us prove that the set W ′ = W \ {k} is dominating. It must be shown that the
condition N−[j] ∩ W ′ 6= 0 holds for all j ∈ V \ W ′. It is clear that V \ W ′ = (V \W ) ∪ {k}. If
j = k, then in view of that k ∈ N+[k] and the assumption made, we have N−[k]∩W ′ 6= 0. Assume
that j ∈ V \W . If j ∈ N+[k], then, as it is shown above, N−[j] ∩W ′ = (N−[j] ∩ W ) \ {k} 6= 0.
Finally, according to the definition of the dominating set, if j /∈ N+[k], then it is reachable from a
vertex of the set W different from k. Thus, the set W ′ = W \ {k} is dominating, which contradicts
the minimality of the dominating set W .

Sufficiency. We will show that no single vertex of the set W can be discarded without losing
the dominance property. Take an arbitrary vertex k ∈ W and consider the set W ′ = W \ {k}.
Since k ∈ W , by the assumption, there is a vertex j ∈ N+[k] such that N−[j] ∩W = {k}. Then
N−[j] ∩W ′ = (N−[j] ∩W ) \ {k}, which means that the set W ′ is not dominating. Hence, due to
the arbitrariness of the vertex k ∈ W , the set W is a minimal dominating one.

The lemma is proved. �

It is easy to see that an integer vector x ∈ R
V is an incidence vector of a dominating set

(without the minimality condition) if and only if it satisfies the constraints

∑

j∈N
−
[i]

xj ≥ 1, i ∈ V, (2.1)

0 ≤ xi ≤ 1, i ∈ V. (2.2)

The following theorem immediately follows from Lemma 1.

Theorem 1. An integer vector x ∈ RV satisfying conditions (2.1)–(2.2) is an incidence vector
of a minimal dominating set if and only if it satisfies the system of constraints

xi ·
∏

j∈N+[i]

(1−
∑

k∈N
−
[j]

xk) = 0, i ∈ V.

In [3], a similar characterization of minimal dominating sets without the condition of the direc-
tivity of the original graph was described.

3. Linear integer model

To use integer linear programming, first of all, it is necessary to have good polyhedral relaxation
of the polytope Pm(G). Under “good” polyhedral relaxation, we mean a system of linear equations
and inequalities in the space R

V whose integer solutions are no other but all vertices of the poly-
tope Pm(G). It is easy to see that, for the polytope P (G) of dominating sets without the minimality
condition, the polyhedral relaxation satisfying these requirements is the polyhedron M(G) defined
by the constraints (2.1)–(2.2). For this polyhedron, we will also use the matrix notation

M(G) = {x ∈ R
V | Ax ≥ 1, 0 ≤ x ≤ 1},
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where A is an (n×n)-matrix with coefficients aji = 1 for j ∈ N−[i] and aji = 0 in other cases. Since
Pm(G) is obviously a subset of the polyhedron M(G), we can consider the polyhedron M(G) to be
a relaxation of minimal dominating sets polytope. However, M(G) contains incidence vectors of
all dominating sets, including those that do not have the minimality property. We will construct a
system of linear equations and inequalities that will allow us to formalize the WMDP as a Boolean
linear programming problem. The model will use additional variables yij ∈ {0, 1}, i, j = 1, 2, . . . , n.

Theorem 2. The system of inequalities with respect to variables xk, yik ∈ {0, 1},
i, k = 1, 2, . . . , n,

n
∑

j=1

aijxj ≥ 1, i = 1, 2, . . . , n, (3.1)

n
∑

i=1

yik − xk ≥ 0, i = 1, 2, . . . , n, (3.2)

n
∑

j=1

aijxj − aikxk ≤ n(1− yik), i, k = 1, 2, . . . , n, (3.3)

xk, yik ∈ {0, 1}, i, k = 1, 2, . . . , n, (3.4)

has a solution if and only if the (0, 1)-vector x is the incidence vector of the minimal dominating
set of the graph G.

P r o o f. Let (x, y) be a solution of system (3.1)–(3.4). By constraints (3.1), the vector x is
an incidence vector of a set W ∈ I(G). Assume that W /∈ Im(G). Then there is k ∈ W such that
W \ {k} ∈ I(G). This means that constraints (3.1) are also satisfied for the vector xW\{k}. This
and constraints (3.3) result in that

n(1− yik) ≥

n
∑

j=1

aijx
W
j − aikx

W
k =

W
∑

j=1

aijx
W\{k}
j ≥ 1,

for all i = 1, 2, . . . , n. Hence, yik = 0. However, (3.2) implies

n
∑

i=1

yik ≥ xWk = 1,

a contradiction. Now let W ∈ Im(G). Define the following values of the variables yik for
i, k = 1, 2, . . . , n:

yik =











0 if k /∈ W ;
0 if k ∈ W and

∑n
j=1 aijx

W
j − aikx

W
k ≥ 1;

1 if k ∈ W and
∑n

j=1 aijx
W
j − aikx

W
k < 1.

We will show that the pair (xW , y) is a solution to system (3.1)–(3.4). Inequalities (3.1) hold
because W ∈ Im(G). Inequality (3.3) is always true for yik = 0 and holds for yik = 1 by con-
struction. Inequalities (3.2) are obviously true for all xWk = 0. Let us show that they are also true
for xWk = 1. Since W ∈ Im(G), we have xW\{k} /∈ Im(G). Therefore, for all k ∈ W , there exists
l ∈ {1, 2, . . . , n} such that

n
∑

j=1

aljx
W
j − alkx

W
k =

n
∑

j=1

aljx
W\{k}
j = 0.
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Then ylk = 1 by construction. Therefore, for all xWk = 1, we have

n
∑

i=1

yik − xWk ≥ ylk − xWk = 0.

The proof is complete. �

Thus, the integer formulation of the WMDP is to maximize the function c(x) = cTx under
conditions (3.1)–(3.4).

4. Practical application for key indicators problem

Recently, in data analysis, an approach based on selecting a specific subset from a large number
of indicators has been used. Using this subset of indicators, we can conclude the state of the whole
system. This subset, as a rule, should fully reflect the state of the system, have a high sensitivity to
the changes in the situation, and interact with other indicators to a sufficiently strong degree. In
other words, we distinguish some “key” indicators from the list of indicators. In modern economic
science, when analyzing the state of the regional economy, much attention is paid to creating an
indicative evaluation system. This approach is based on the selection of a system of key indicators
and the analysis of their values. The number of approaches to the formation of key indicator systems
grows with each new publication (see, for example, [8–10, 12], etc.). However, the ambiguity of the
proposed formulations, the methodological inconsistency of concepts, and especially the lack of a
sound methodology for calculating the numerical characteristics make it difficult, in our opinion, to
build an objective concept of an indicative assessment of the economic situation. In the literature
on economics, the criteria for selecting these limited indicators set are not clear. In this case,
when analyzing the existing systems of key indicators, we again come across the opinions of the
experts, the number of which often prevail over the number of indicators themselves. We propose
to consider the minimal dominating sets of a special graph associated with the economic system
as key indicator systems. We are far from thinking that this approach is the best. It should be
considered as a means applicable for a certain range of situations, as an element of a hybrid analysis
of not only the economic condition but also a wider range of tasks. In [1, 11] there is a comparison
of different key indicator systems of economic security, among which there is a system obtained in
the framework of our approach.

So, let V = {1, 2, . . . , n} be a particular set of indicators given a priori, for each of which there
are a technique for calculating its value at each given moment in time and a set of these values for
a certain period (several years, months, days, etc.). We believe that the statistics available allow us
to calculate the sample correlation coefficients k(i, j) between any pair of indicators i, j ∈ V . We
will introduce two additional considerations to the correlation matrix. First, from a practical point
of view, the value of the correlation coefficient may turn out to be so small that the dependence
on the corresponding indicators can be neglected. In this regard, as a control parameter of the
model, we introduce the value α — the dependence threshold — thus assuming that if |k(i, j)| < α,
then |k(i, j)| = 0. Second, if there is a relationship between the two indicators in terms of a
causal relationship, the following alternative is important: “i determines j” or “j determines i.”
For example, if the random variable i is the number of fires in the village, and j is the number of
fire brigade visits during the same period, then it is clear that “i determines j” and not vice versa.
Such a causal relationship is denoted by i → j. Nevertheless, in some cases, a situation is possible
where the primary and secondary indicators cannot be determined, or they are interdependent. In
such cases, we will write i ↔ j, which, basically, is equivalent to a pair of conditions i → j and
j → i. As a result, for any chosen dependence threshold α, we will fix the correlation matrix K(α).
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Now we will associate our set of exponents V and the correlation matrix K(α) with the directed
graph Gα, the vertex set of which is the set of indicators V , and the set of arcs E is defined as
follows: from i to j there is an arc if and only if |k(i, j)| ≥ α and i → j. The graph Gα is called
the α-correlation graph of the set of indicators under consideration. A subset W ⊆ V is called
a key indicators system if W is a minimal dominating set in the graph Gα. In this approach, an
important feature of a key indicators system is that the indicators belonging to the system are key
ones only in the aggregate. This consideration becomes more noticeable because, in general, there
are many minimal dominating sets in a graph. We will define the weight (degree of influence) of
the indicator i as

ci =
∑

j∈V |ij∈E

|k(i, j)|

and the weight of the subset S ⊆ V as

c(S) =
∑

i∈S

ci.

5. Numerical experiment

Using the constructed WMDP model in numerical experiments on random data, we noticed
that, for a relatively large dimension (n > 60), it takes too much time to solve the problem (more
than 3 hours). We used a computer Intel(R) Celeron(R) CPU N2830 2.16GHz and the commercial
package IBM ILOG CPLEX Optimization Studio 12.10. Initially, the interest in the problem of the
minimal dominating set of maximum weight was caused by the problem of finding a system of key
indicators among some a priori given set of indicators of economic security discussed in the previous
section. These indicators and their values were withdrawn from the website of the Federal State
Statistics Service of the Russian Federation. Their number is estimated at several hundred. In this
regard, a question arose of using additional considerations that would allow us to find acceptable
solutions to practical problems in a reasonable time.

To achieve this goal, we consider one more model for choosing a system of key indicators. We
discard the minimality condition of the dominating sets and replace this condition with a search
for the maximum weight of the dominating set of a given cardinality. From an economic point of
view, this approach also makes sense. It is true that when distinguishing a system of key indicators
at a practical level, two basic considerations are important. Firstly, there should be relatively few
key indicators and, secondly, they should have a significant impact on the situation. For this, in
principle, the dominance condition is sufficient. The number of key indicators can be considered as
an external condition. Under this assumption, the problem is formalized as a Boolean programming
problem of the following form

max
{

cTx| Ax ≥ 1,
n
∑

i=1

xi = h, x ∈ {0, 1}V
}

. (5.1)

We will denote such a problem by WDP(h). In this approach, we can solve a series of WDP(h)
problems by decreasing the value of the h parameter until the problem ceases to have a solution. It
is clear that, in this case, we also get the minimal dominating set of the least cardinality. However,
it remains an open question, whether it will be the minimum dominating set of maximum weight.
Since the dimension of WDP(h) is less than the dimension of WMDP, this approach may be
computationally less time-consuming than using the WMDP model directly. In this regard, our
computational experiment has the following objectives.
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1. Evaluation of solutions obtained using the WDP(h) procedure. The comparison is carried
out both in terms of the weight and power of the obtained obtained.

2. The behavior of the WDP(h) procedure concerning the structural properties of the digraph G.

We will use the following notation:
WDP(h) — the procedure based on a monotonic decrease in the values of the parameter h in

the model (5.1). The procedure ends when WDP(h) has a solution, and WDP(h−1) does not have
one;

WMDP — the model (3.1)–(3.4) with the objective function f(x) = cTx;
f1, h1 — the optimal value of the objective function in the WDP(h) procedure and the cardi-

nality of the optimal solution, respectively;
f2, h2 — the optimal value of the objective function in the WMDP and the cardinality of the

optimal solution, respectively;

∆ =
f2− f1

f2
— the relative error of the WDP(h) procedure;

h1

h2
— the ratio of cardinalities of optimal solutions in WDP(h) and WMDP;

time1, time2 — the time to solve the problem by the WDP(h) and WMDP algorithms, respec-
tively (in minutes);

ρ =
|E|

n2 − n
— the density of the digraph G;

α — the dependence threshold (see Section 4).

The comparison was carried out on ten problems with random data. For each problem, the
input correlation matrix was K(0) for n = 40. From the matrixK(0), K(α) problems were obtained
for α = 0.2, 0.4, 0.5, 0.7, 0.8. The objective function was formed by the formula

ci =
∑

j∈V |ij∈E

|k(i, j)|,

where k(i, j) ∈ [−1, 1] are the coefficients of the corresponding matrix K(α). As a result, for
each value of α, we got ten problems with random input data. As mentioned above, to solve the
integer linear programming problems arising in the experiment, we used the IBM ILOG CPLEX
Optimization Studio 12.10 package.

Table 1 shows the average values (for ten instances) of the above parameters for each α.
As we can see, with an increase in the dependence threshold, the characteristics ∆ and (h1/h2)

of WDP(h) procedure improve. However, it should be noted that, with the growth of α, the weights
of optimal solutions to WMDP problems decrease. This is important for the key indicators problem
since the weight of the found dominating set characterizes the degree of its influence on the set of
indicators as a whole. In this regard, it is advisable to choose α equal to 0.7 or 0.8.

In addition to these problems on 40 vertices, ten instances on 50 vertices with α = 0.7 were
considered. The relative error and the ratio of cardinalities of optimal solutions turned out to
be comparable with a similar situation for n = 40. However, the average time to solve these ten
instances using WMDP was 46 minutes. Problems with n > 70 and α = 0.7 were not resolved in 3
hours.

And finally, the third observation. As mentioned above, we withdrew 63 indicators of economic
security characterizing the socio-economic situation in the Omsk region of Russia from the website
of the Federal State Statistics Service of the Russian Federation. The correlation coefficients were
calculated for the period of 2010–2017. These indicators and the rationale for their choice are
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Table 1. Comparison of the WDP(h) and WMDP procedures in terms of time, relative error, and the ratio
of cardinalities of optimal solutions for n = 40.

α ρmed (time2)med (time1)med ∆med (h1/h2)med

0.2 0.43 3.56 0.02 0.44 0.48
0.4 0.32 3.81 0.03 0.5 0.44
0.5 0.27 3.99 0.04 0.47 0.46
0.7 0.16 2.46 0.03 0.39 0.53
0.8 0.11 0.99 0.02 0.31 0.61

Table 2. The results of solving the problems with real data for n = 63 and n = 50.

n α ρ time2 f2 h2 time1 f1 h1 ∆ h1/h2

63 0.7 0.18 0.06 182.5 15 0.04 127.5 11 0.30 0.73
63 0.8 0.12 0.08 126.4 19 0.06 123.7 18 0.02 0.95

50(63) 0.7 0.18 0.08 0.05 0.27 0.79

described in detail in [11]. The problem was solved using the WMDP and WDP(h) models. In
the same work, the found key system of indicators was compared with other approaches proposed
by various researchers and organizations, including the Economic Security Strategy of the Russian
Federation until 2030. As it turned out, the problem with real data on 63 indicators with the use of
the WMDP model was solved quite quickly (see Table 2). In addition, to prove the algorithm on real
data, 50 indicators (10 samples) were randomly chosen from the given 63 indicators. The average
values of the results for these ten samples are also shown in Table 2 (the row titled “50(63)”)2 .

Noteworthy that the problems on real data, in contrast to random instances, are quickly solved
by using the WMDP model. This observation makes reasonable the further investigation of the
minimal dominating set problem.

6. Conclusion

In this paper, we propose an integer linear model of formalizing the problem of a weighted
minimal dominating set in a directed graph. This is a generalization of the Upper Domination
problem about the minimal dominating set of maximum cardinality in an ordinary graph, which
is widely discussed in the works today. A model for an approximate solution to the problem is
proposed. This model is based on discarding the minimality condition of the dominant set. An
experimental analysis of this approximation is carried out. The average values of relative error
estimates are obtained both for the weight and the cardinality of optimal solutions. It is noted
that the relative error of the approximate solution decreases with lesser graph density.

As an application of the results obtained, a formalization of a key indicators system concept
is proposed. This concept is widely used within the indicator approach to the analysis of socio-
economic systems. We define the set of key indicators as a subset of the original set of indicators
that has the most significant impact on the situation. Unfortunately, this approach does not ex-
clude the participation of the expert community in selecting key indicators since our algorithms
provide more than one solution. We believe that our approach should be considered as an appa-
ratus applicable for a certain range of situations as an element of a hybrid analysis not only for

2Some empty cells in the third row of Table 2 are because this row contains the average values of the
results.
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economic security but also for a wider range of economic and social problems. The calculations
based on real data characterizing the economic security of the Omsk region of the Russian Feder-
ation are made. These calculations should be considered primarily as an example of our approach
being applied. Implemention-wise, the foundation for the proposed approach is the thesis that the
same key indicators system cannot be universal for different socio-economic entities since the deep
interconnections between the indicators can have a different nature determined by the territory
specifics.
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Abstract: In this study, a batch arrival single service queue with two stages of service (second stage is
optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any
time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find
the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly
the corresponding steady state results. Furthermore, numerous measures indicating system performances, such
as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results
and graphical representations were also presented.

Keywords: Non-Markovian queue, Second optional service, Working breakdown.

1. Introduction

Queueing theory refer to the study of people, their object and movement in line. It is working to
create a well balanced system that serves customers faster and works efficiently without being too
expensive. Queueing is widely performed to analyze and streamline staffing needs, scheduling, and
inventory in order to enhance overall customer service. The system may have either a limited or
an unlimited capacity for holding customers. The sources from which the customers come may be
finite or infinite. Queueing models with a second optional service imply that all arriving consumers
will receive the first essential service, while only few will request the second optional service.

Yang and Chen [17] examined M/M/1 queueing system which has optional service. The server
is assumed to malfunction. Together they derived the condition at which the stability is obtained
and have found the probability stationary distribution using Matrix geometric method. A queueing
model M [X]/G/1 queue with two phases of service was presented by Maragathasundari and Srini-
vasan [10]. In their study they have clearly analysed the steady state results and some performance
measures. Finally, they demonstrated some good applications related to the model such as large
scale industrial production lines which also include computer communication networks.

Second optional service with general service time distribution was studied by Al-Jararha and
Madan [2]. They used the supplementary variable technique to study the model with respect to
both the first essential and second optional service. They consider service time to follow general
distribution. Madan [9] proposed the concept of a single server queue with a second optional service
and furnished its real time applications.

Choudary and Paul [4] discussed an M [X]/G/1 queueing system with a second optional service
channel under N -policy. Only when minimum N customers are present in queue, server starts
serving present customers in the queue which is stated as N -policy. They found the queue size
distribution at random epoch and departure epoch.

https://doi.org/10.15826/umj.2023.1.015
mailto:somu.b92@gmail.com
mailto:karpagammaths19@gmail.com
mailto:rlokesh1020@gmail.com
mailto:kavinmary28@gmail.com


An M [X]/G/1 Queue with Optional Service and Working Breakdown 163

Maragathasundari and Srinivasan [11] discussed a non-Markovian queueing model with multi-
stage of service. The numerical results of this model have been presented in graphical form, and
they have also discussed the practical large-scale industrial applications.

Thangaraj and Vanitha [16] investigated an M/G/1 queue with two-stage heterogeneous service
and random breakdowns. They have modelled the queueing system that could unexpectedly fail,
causing the server to stop operating until the system is fixed. Gupta et al. [6] studied the steady-
state behaviour of the M [X]/G/1 with server breakdown. Customers will arrive to the system
in varied sizes of batches, but will be served one by one, according to this study. The repair
process does not begin immediately after a breakdown, and there is a time delay for repairs to
start. Choudary and Tadj [5] analysed an M/G/1 queue with two service phases that was subject
to server failure and delayed repair. An M [X]/G/1 queue with second optional service and server
breakdown was explored by Singh and Kaur [15]. Their study has numerous applications in everyday
life, including tremendous utility for system designers and managements.

Santhi [14] developed a single server retrial queue with a second optional service and working
vacation, assuming that there is no available waiting space for an arriving client. They can abandon
the service area and join an orbit consisting of a pool of blocked clients. Rajadurai et al. [13] looked
into an M/G/1 feedback retrial queue that was subjected to server breakdown, repair and multiple
working vacations. To investigate the system’s impact they presented a cost optimization analysis.
This model is a generalised version of a number of current queueing models.

Working breakdown is very common in many manufacturing industries and production process.
In queueing models, it is the most used parameter. Kalidass and Kasturi [7] have studied a queueing
model with working breakdown. According to their research, if a server crashes at a certain point
but doesn’t completely shut down, the server continues to run at a slower speed. Kim and Lee [8]
have analysed an M/G/1 queueing system with disaster and working breakdown. This study
presents an extension of the queueing system and results may provide a better decision making
for many practical system. Yang et al. [18] presented a two-server queue with multiple vacations
and working breakdowns. They have used Matrix-geometric method to obtain the steady state
probabilities and performance measures.

Rajadurai [12] recently investigated a retrial queueing system with several features. One of his
assumptions is that disaster causes all clients to exit the system, and at the same time the main
server fails. After that, the main server is sent to the repair station, and the repair process begins
immediately. Finally, cost optimization analysis and some numerical results are presented. Ammar
et al. [3] analysed the preemptive priority retrial queueing system with disaster under working
breakdown. This model has some good applications in computer processing systems. The inclusion
of a preemptive priority retrial queueing system in the presence of working breakdown services is a
unique feature of this study. The optimization analysis of the N-policy M/G/1 queue with working
breakdown was discussed by Yen et al. [19]. They have illustrated the effectiveness of the two-stage
optimization model in this study, as well as some numerical results have been shown. Ayyappan
et al. [1] studied a single server queue which serves two classes of customers under non-preemptive
priority services, working breakdown, Bernoulli vacation, admission and balking.

Our model is potentially applicable to cellular networks, as we know that in cellular network
each cell has a base station that controls the call admissions and the quality of service of the
network. If we want to model the base station properly and adequately, we should consider the
possibility of many users (customers) accessing the internet on their mobiles at the same time. Thus
the services provided by the base station controller is required. As any other electronic component,
the server is also exposed to risks due to external shocks, and therefore subject to breakdowns. At
the same time, the services to mobile users are very important. Hence, the service providers cannot
afford full interruptions in their services leading to backup servers being relied upon to provide
services at reduced rates whenever the main sever is under repair.
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2. Mathematical model description

The following assumptions for this model are:

• Customers enter the system in batches of varying sizes according to compound Poisson process
with rate λ, and they are served one by one under ‘first come-first served’ basis.

• Let λci(i = 1, 2, 3, ...) be the first order probability that a batch of i customers arrives at the
system during a short interval of time (t, t+ dt), where 0 ≤ ci ≤ 1 and

∑∞
i=1ci = 1 and λ > 0

is the mean arrival.

• The first essential service is required by all arriving customers, and its distribution function
and density function are B1(x) and b1(x) respectively.

• Let µ1(x)dx be the conditional probability of completion of the first essential service during
(x, x+ dx], given that the elapsed service time is x. Then

µ1(x) =
b1(x)

1−B1(x)
,

and therefore b1(v) = µ1(v)e
−

∫
v

0
µ1(x)dx.

• When a customer’s first essential service is completely finished, the customer opts for the
II-optional service with probability p and this optional service will immediately start. Oth-
erwise, with probability (1 − p) they may decide to exit the system, in which case a new
customer (if any) is picked for their first essential service from the head of the queue.

• The second optional service time is also assumed to follow the general distribution, with
distribution function density function as B2(x) and b2(x) respectively.

• Let µ2(x)dx be the conditional probability of completion of the II-optional service during
(x, x+ dx], given that the elapsed service time is x. Then

µ2(x) =
b2(x)

1−B2(x)
,

and therefore b2(v) = µ2(v)e
−

∫
v

0
µ2(x)dx.

• When servicing a customer at first stage or second stage, the system may get breakdown and
the breakdown times are supposed to occur under Poisson process with parameter α.

• After breakdown, instead of stopping the service completely, the server will complete the
current service at a slower rates β1(x) and β2(x) for first essential service and optional
service respectively.

• The working breakdown service (both essential and optional) time is also assumed to follow
the general distribution, with distribution function density function are Qi(x) and qi(x),
i = 1, 2 respectively. Then

βi(x) =
qi(x)

1−Qi(x)

and therefore qi(v) = βi(v)e
−

∫
v

0
βi(x)dx, i = 1, 2.

• On completion of current service at a slower rate, the server is sent to repair. The repair
time follows general distribution with the rate of η(x).
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• Meanwhile after the repair, when the server returns to the system and when there are no
customers throughout the system, the server remains in the idle state and waits for the
customers to arrive.

• Various stochastic process taking part in the system are considered to be independent of each
other.

The structure of the system representation in Fig. 1.

Figure 1. Diagrammatic representation of this model.

3. Notations and equations governing the system

Let σ(t) denotes the server state: Ns(t) denotes the number of customers in the service station,
Nq(t) denotes the number of customers in the queue.

Notations Meaning

σ(t) = first essential service,

P
(1)
n (x, t) Ns(t) = 1 and Nq(t) = n(≥ 0),

with elapsed service duration x at time t
σ(t) = first essential service,

P
(1)
n (t) =

∫∞

x=0 P
(1)
n (x, t)dx Ns(t) = 1 and Nq(t) = n(≥ 0),

irrespective of the value of x
σ(t) = second optional service,

P
(2)
n (x, t) Ns(t) = 1 and Nq(t) = n(≥ 0),

with elapsed service duration x at time t
σ(t) = second optional service,

P
(2)
n (t) =

∫∞

x=0 P
(2)
n (x, t)dx Ns(t) = 1 and Nq(t) = n(≥ 0),

irrespective of the value of x
σ(t) = first essential service at slower rate,

Q
(1)
n (x, t) Ns(t) = 1 and Nq(t) = n(≥ 0),

with elapsed service duration x at time t
σ(t) = first essential service at slower rate,

Q
(1)
n (t) =

∫∞

x=0Q
(1)
n (x, t)dx Ns(t) = 1 and Nq(t) = n(≥ 0),

irrespective of the value of x
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σ(t) = second optional service at slower rate,

Q
(2)
n (x, t) Ns(t) = 1 and Nq(t) = n(≥ 0),

with elapsed service duration x at time t
σ(t) = second optional service at slower rate,

Q
(2)
n (t) =

∫∞

x=0Q
(2)
n (x, t)dx Ns(t) = 1 and Nq(t) = n(≥ 0),

irrespective of the value of x
σ(t) = repair,

Rn(x, t) Nq(t) = n(≥ 0),
with elapsed repair duration x at time t
σ(t) = repair,

Rn(t) =
∫∞

x=0Rn(x, t)dx Nq(t) = n(≥ 0),
irrespective of the value of x

I(t) σ(t) = Idle,
Nq(t) = 0 at time t

The Kolmogorov forward equations to govern the model are the following:

∂

∂x
P (1)
n (x, t)+

∂

∂t
P (1)
n (x, t)

= −(λ+ µ1(x) + α)P (1)
n (x, t)+(1− δ0n)λ

n
∑

i=1

ciP
(1)
n−i(x, t), n = 1, 2, ...,

(3.1)

∂

∂x
P (2)
n (x, t)+

∂

∂t
P (2)
n (x, t)

= −(λ+ µ2(x) + α)P (2)
n (x, t)+(1− δ0n)λ

n
∑

i=1

ciP
(2)
n−i(x, t), n = 1, 2, ...,

(3.2)

∂

∂x
Q(1)

n (x, t)+
∂

∂t
Q(1)

n (x, t)

= −(λ+ β1(x))Q
(1)
n (x, t)+(1− δ0n)λ

n
∑

i=1

ciQ
(1)
n−i(x, t), n = 1, 2, ...,

(3.3)

∂

∂x
Q(2)

n (x, t)+
∂

∂t
Q(2)

n (x, t)

= −(λ+ β2(x))Q
(2)
n (x, t)+(1− δ0n)λ

n
∑

i=1

ciQ
(2)
n−i(x, t), n = 1, 2, ...,

(3.4)

∂

∂x
Rn(x, t)+

∂

∂t
Rn(x, t)

= −(λ+ η(x))Rn(x, t)+(1− δ0n)λ

n
∑

i=1

ciRn−i(x, t), n = 1, 2, ...,
(3.5)

d

dt
I(t) = −λI(t) + (1− p)

∫ ∞

0
P

(1)
0 (x, t)µ1(x)dx+

∫ ∞

0
P

(2)
0 (x, t)µ2(x)dx

+

∫ ∞

0
R0(x, t)η(x)dx, n = 1, 2, ... .

(3.6)

Equations (3.1) to (3.6) are to be solved subject to the following boundary conditions at x = 0.

P (1)
n (0, t) = λcn+1I(t) + (1− p)

∫ ∞

0
P

(1)
n+1(x, t)µ1(x)dx+

∫ ∞

0
P

(2)
n+1(x, t)µ1(x)dx

+

∫ ∞

0
Rn+1η(x)(x, t)γ(x)dx,

(3.7)
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P (2)
n (0, t) = p

∫ ∞

0
P (1)
n (x, t)µ1(x)dx, (3.8)

Q(1)
n (0, t) = α

∫ ∞

0
P (1)
n (x, t)dx, (3.9)

Q(2)
n (0, t) = α

∫ ∞

0
P (2)
n (x, t)dx+ p

∫ ∞

0
Q(1)

n (x, t)β1(x)dx, (3.10)

Rn(0, t) = (1− p)

∫ ∞

0
Q(1)

n (x, t)β1(x)dx+

∫ ∞

0
Q(2)

n (x, t)β2(x)dx. (3.11)

The initial conditions are

I(0) = 1, P (1)(0) = P (2)(0) = Q(1)(0) = Q(2)(0) = R(0) = 0. (3.12)

4. Generating functions of the queue length: the time-dependent solution

We define the probability generating functions,

Aq(x, z, t) =

∞
∑

n=0

znAn(x, t), C(z) =

∞
∑

n=1

zncn(t).

Here A = P (1), P (2), Q(1), Q(2), R which are convergent inside the circle given by |z| ≤ 1. By taking
Laplace transform from equations from (3.1) to (3.11) and solving those equations we get,

P̄ (1)
q (x, z, s) = P̄ (1)

q (0, z, s)e−(s+λ(1−C(z)+α)x−
∫

x

0
µ1(t)dt, (4.1)

P̄ (2)
q (x, z, s) = P̄ (2)

q (0, z, s)e−(s+λ(1−C(z)+α)x−
∫

x

0
µ2(t)dt, (4.2)

Q̄(1)
q (x, z, s) = Q̄(1)

q (0, z, s)e−(s+λ(1−C(z))x−
∫

x

0
β1(t)dt, (4.3)

Q̄(2)
q (x, z, s) = Q̄(2)

q (0, z, s)e−(s+λ(1−C(z))x−
∫

x

0
β2(t)dt, (4.4)

R̄q(x, z, s) = R̄q(0, z, s)e
−(s+λ(1−C(z))x−

∫
x

0
η(t)dt. (4.5)

Again on integrating equations from (4.1) to (4.5) by parts with respect to x we get

P̄ (1)
q (z, s) = P̄ (1)

q (0, z, s)

[

1− B̄1(f(z))

[f(z)]

]

, (4.6)

P̄ (2)
q (z, s) = P̄ (2)

q (0, z, s)

[

1− B̄2[f(z)]

[f(z)]

]

, (4.7)

Q̄(1)
q (z, s) = Q̄(1)

q (0, z, s)

[

1− Q̄1[g(z)]

[g(z)]

]

, (4.8)

Q̄(2)
q (z, s) = Q̄(2)

q (0, z, s)

[

1− Q̄2[g(z)]

[g(z)]

]

, (4.9)

R̄q(z, s) = R̄q(0, z, s)

[

1− R̄[g(z)]

[g(z)]

]

, (4.10)

where
f(z) = s+ λ(1− C(z)) + α, g(z) = s+ λ(1− C(z)).

Now multiplying both sides of equation (4.1) by µ1(x) and equation (4.2) by µ2(x) and equa-
tion (4.3) by β1(x), equation (4.4) by β2(x) and equation (4.5) by η(x) and then integrating over x
we obtain

∫ ∞

0
P̄ (1)
q (x, z, s)µ1(x)dx = P̄ (1)

q (0, z, s)B̄1[f(z)], (4.11)
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∫ ∞

0
P̄ (2)
q (x, z, s)µ2(x)dx = P̄ (2)

q (0, z, s)B̄2[f(z)], (4.12)

∫ ∞

0
Q̄(1)

q (x, z, s)β1(x)dx = Q̄(1)
q (0, z, s)Q̄1[g(z)], (4.13)

∫ ∞

0
Q̄(2)

q (x, z, s)β2(x)dx = Q̄(2)
q (0, z, s)Q̄2[g(z)], (4.14)

∫ ∞

0
R̄q(x, z, s)η(x) = R̄q(0, z, s)R̄[g(z)]. (4.15)

Using equations (4.11) and (3.8), we get

P̄ (2)
q (0, z, s) = p[P̄ (1)

q (0, z, s)B̄1[f(z)]].

Using equations (4.6) and (3.9), we get

Q̄(2)
q (0, z, s) = αP̄ (1)

q (0, z, s)

[

1− B̄1[f(z)]

[f(z)]

]

.

Performing similar operation in equations (3.10) and (3.11), we obtain

Q̄(1)
q (0, z, s) = αpP̄ (1)

q (0, z, s)

{

B̄1[f(z)]

[

1− B̄1[f(z)]

[f(z)]

]

+ Q̄1[g(z)]

[

1− B̄1[f(z)]

[f(z)]

]}

,

R̄q(0, z, s) = P̄ (1)
q (0, z, s)

{

(1− p)αQ̄1[g(z)]

[

1− B̄1

[f(z)]

]

+ αpB̄1[f(z)]Q̄2[g(z)]

[

1− B̄2[f(z)]

[f(z)]

]

+αpQ̄1[f(z)]Q̄2[g(z)]

[

1− B̄2[f(z)]

[f(z)]

]}

.

Using equations (4.11), (4.12) and (4.15), to solve P̄
(1)
q (0, z, s)

P̄ (1)
q (0, z, s) =

1− [g(z)]Ī(s))


































z − (1− p)B̄1[f(z)] + pB̄2[f(z)]B̄2[g(z)] + (1− p)αQ̄1[g(z)]
[

1− B̄1[f(z)]

[f(z)]

]

+ αpB̄1[f(z)]Q̄2[g(z)]

[

1− B̄2[f(z)]

[f(z)]

]

+αpQ̄1[g(z)]Q̄2[g(z)]R̄[g(z)]

[

1− B̄1[f(z)]

[f(z)]

]



































.

We see that equations (4.6) to (4.10) become to be as follows

P̄ (1)
q (z, s) = P̄ (1)

q (0, z, s)

[

1− B̄1[f(z)]

[f(z)]

]

, (4.16)

P̄ (2)
q (z, s) = pP̄ (1)

q (0, z, s)B̄1[f(z)]

[

1− B̄2[f(z)]

[f(z)]

]

, (4.17)

Q̄(1)
q (z, s) = αP̄ (1)

q (0, z, s)

[

1− B̄1[f(z)]

[f(z)]

][

1− Q̄1[g(x)]

[g(x)]

]

, (4.18)

Q̄(2)
q (z, s) = αpP̄ (1)

q (0, z, s)B̄1[f(z)]

[

1− B̄2[f(z)]

f(z)

][

1− Q̄2[g(z)]

[g(z)]

]

+αpP̄ (1)
q (z, 0)Q̄1[g(z)]

[

1− B̄1[f(z)]

[f(z)]

][

1− Q̄2[g(z)]

[g(z)]

]

,

(4.19)
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R̄q(z, s) = P̄q(0, z, s)

{

α(1 − p)Q̄1[g(z)]

[

1− B̄1[f(z)]

[f(z)]

][

1− R̄[g(z)]

[g(z)]

]

+αpP̄q(z, 0)B̄1[f(z)]Q̄2[g(z)]

[

1− B̄2[f(z)]

[f(z)]

][

1− R̄[g(z)]

[g(z)]

]

+αpP̄q(z, 0)Q̄1[g(z)]Q̄2[g(z)]

[

1− B̄1[f(z)]

[f(z)]

]}[

1− R̄[g(z)]

[g(z)]

]

.

(4.20)

5. The steady state results

For the steady state probabilities, we suppress the argument t wherever it appears in the time-
dependent analysis. This can be obtained by applying the well-known Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t).

Let P (z) denote the probability generating function of the queue size irrespective of the state
of the system. Then adding equations (4.16) to (4.20) we obtain

P (z) =



























I[1−B1(g(z))][f(z)] + pB1(g(z))[1 −B2(g(z))][f(z)]

+α[1−B1(g(z))][1 −Q1(f(z))]

+αp[1−B2(g(z))][1 −Q2(f(z))]B1[g(z)]

+αpQ1[f(z)][1 −B1(g(z))][1 −Q2(f(z))]

+α(1− p)[Q1(f(z))][1 −B1(g(z))][1 −R(f(z))]

+αp[B1(f(z))][Q2(f(z))][1 −B2(g(z))][1 −R(f(z))]

+αp[Q1(f(z))][Q2(f(z))][1 −B1(g(z))][1 −R(f(z))]





































z(g(z)) − (1− p)B1[g(z)]g(z) + pB1[g(z)]B2[g(z)]g(z)

+α(1 − p)Q1[f(z)]R[f(z)][1 −B1(g(z))]

+αpB1[g(z)]Q2[f(z)]R[f(z)][1 −B2[g(z)]]

+αpQ1[f(z)]Q2[f(z)]R[g(z)][1 −B1[g(z)]]











. (5.1)

We see that for z = 1, P (z) is indeterminate of the form 0/0. Therefore, we apply L’Hopital’s rule
and after simplification we obtain,

Q1(0) = 1, Q2(0) = 1, R(0) = 1, −Q′
1(0) = E(Q1), −Q′

2(0) = E(Q2),

−R′(0) = E(R), Q′′
1(0) = E(Q2), Q′′

2(0) = E(Q2), R′′(0) = E(R2).

P (1) =







−Iλ[E(X)]{1 −B1(α)] + p[B1(α)][1 −B2(α)] + α[1−B1(α)]

[E(Q1)] + α[E(R)][1 −B1(α)] + αp[B1(α)E(Q2)[1−B2(α)]

+B1(α) +B1(α)E(R)[1 −B1(α)] + E(Q2)[1 −B1(α)]]}













α− λ[E(X)]
{

1−B1(α) + P [B1(α)] + α
[

E(Q1)[1−B1(α)] + E(R)

[1−B1(α)]
]

+ αp
[

B1(α)E(Q2)[1−B2(α)]

+B1(α)E(R)[1 −B2(α)] −B1(α)B
′
2(α)

]}







. (5.2)

In order to determine I, we use the normalizing condition

P (1)
q (1) + P (2)

q (1) +Q(1)
q (1) +Q(2)

q (1) +Rq(1) + I = 1 (5.3)
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and we get

I =







α− λ[E(x)][1 −B1(α)] + α[E(Q1) + E(R)][1 −B1(α)]

+p[B1(α)] + αp
{

B1(α)E(Q2)[1−B2(α)]

+B1(α)E(R)[1 −B2(α)]
}

−B1(α)B
′
2(α)













α− λ[E(x)]
{

[1−B1(α)] + α[E(Q1) + E(R)][1 −B1(α)] + p[B1(α)]

+αp
{

B1(α)E(Q2)[1−B2(α)] +B1(α)E(R)[1 −B2(α)]
}

−pB1(α)B2(α) + αp[E(Q2)[1−B1(α)] −B1(α)B
′
2(α)]

}







. (5.4)

Hence the utilization factor ρ of the system is given by

ρ = 1− I, (5.5)

where ρ < 1 is the stability condition under which the steady state exists. Equation (5.4) gives the
probability that the server is idle.

6. Performance measures

Let Lq denote the mean number of customers in the queue under the steady state. Then

Lq = lim
z→1

d

dt
Pq(z), (6.1)

Lq = lim
z→1

d

dt

N(z)

D(z)
, (6.2)

where

N(z) = I[1−B1(g(z))][f(z)] + pB1(g(z))[1 −B2(g(z))][f(z)] + α[1−B1(g(z))][1 −Q1(f(z))]

+αp[1−B2(g(z))][1 −Q2(f(z))]B1[g(z)] + αpQ1[f(z)][1 −B1(g(z))][1 −Q2(f(z))]

+α(1− p)[Q1(f(z))][1 −B1(g(z))][1 −R(f(z))]

+αp[B1(f(z))][Q2(f(z))][1 −B2(g(z))][1 −R(f(z))]

+αp[Q1(f(z))][Q2(f(z))][1 −B1(g(z))][1 −R(f(z))],

D(z) = z(g(z)) − (1− p)B1[g(z)]g(z) + pB1[g(z)]B2[g(z)]g(z)

+α(1− p)Q1[f(z)]R[f(z)][1 −B1(g(z))] + αpB1[g(z)]Q2[f(z)]R[f(z)][1 −B2[g(z)]]

+αpQ1[f(z)]Q2[f(z)]R[g(z)][1 −B1[g(z)]],

therefore

Lq =
[D′(1)N ′′(1)−N ′(1)D′′(1)]

2[D′(1)]2
,

N ′(1) = −Iλ[E(X)]
{

[1−B1(α)] + p[B1(α)][1 −B2(α)] + α[E(Q1)][1 −B1(α)]

+α[E(R)][1 −B1(α)] + αp
[

B1(α) +B1(α)E(Q2)[1−B2(α)]

+B1(α)E(R)[1 −B2(α)] + E(Q2)[1−B1(α)]
]}

,
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N ′′(1) = λ2[E(X)]2
{

−B′
1(α) + p

[

B′
1(α)−B′

1(α)B2(α)−B1(α)B
′
2(α)

]

−α
[

B′
1(α)E(Q1) +B′

1(α)E(R) + E(Q2
1)[1−B2(α)]− E(R2)[1−B1(α)]

+E(Q1)E(R)[1 −B1(α)]
]

− αp
[

B1(α)B
′
2(α)E(Q2) +B1(α)B2(α)

−B′
1(α)E(Q2)[1−B1(α)] +B′

1(α)E(Q2) + E(Q1)E(Q2)[1 −B1(α)]

+E(Q1)E(R)[1 −B1(α)] −B1(α)E(Q2)E(R) +B1(α)E(R2)[1−B2(α)]

+E(Q2)E(R) + E(Q2
2)
]}

+ λE(X2)
{

[1−B1(α)] − pB1(α)[1 −B2(α)]

−α
[

E(Q1)[1−B1(α)] + E(R)[1−B1(α)]
]

− αp
[

E(R)B1(α)[1 −B2(α)]

+E(Q2)−B1(α)E(R)[1 −B2(α)]
]}

,

D′(1) = α− λ[E(X)]
{

1−B1(α) + P [B1(α)] + α
[

E(Q1)[1−B1(α)] + E(R)[1 −B1(α)]
]

+αp
[

B1(α)E(Q2)[1−B2(α)] +B1(α)E(R)[1 −B2(α)] −B1(α)B
′
2(α)

]}

,

D′′(1) = −2λ[E(X)] − λ2[E(X)]2
{

(1− p)[2B′
1(α) + 2B′

2(α)]

+p
[

αB′′
1 (α)B2(α) + αB1(α)B

′′
2 (α) + 2B′

1(α)B2(α) + 2B1(α)B
′
2(α) + 2αB′

1(α)B
′
2(α)

]

+α(1− p)
[

E(Q2
1)[1−B1(α)] + E(R2)[1−B1(α)] + 2E(Q1)B

′
1(α)

+2E(R)B′
1(α) + 2E(Q1)E(R)[1 −B1(α)]

]

+αp
[

B′′
1 (α)[1 −B2(α)] −B1(α)B

′′
2 (α) +B1(α)E(Q2

2)[1−B2(α)]

+B1(α)E(R2)[1−B2(α)] + 2B1(α)B
′
2(α)E(Q2) + 2B1(α)B

′
2(α)E(R)

]

−2B′
1(α)B

′
2(α)− 2B′

1(α)E(Q2)[1 −B2(α)]− 2B′
1(α)E(R)[1 −B2(α)]

+2B1(α)E(Q2)E(R)[1 −B2(α)]
}

− λ[E(X2)]
{

z + (1− p)[αB′
1(α) −B1(α)]

+p
[

αB′
1(α)B2(α) + αB1(α)B

′
2(α) +B1(α)B2(α)

]

+ α(1− p)
[

E(Q1)[1−B1(α)]

+E(R)[1−B1(α)] +B1(α)
]

+ αp
[

B′
1(α) −B′

1(α)B2(α) −B1(α)B
′
2(α)

]

−E(Q2)B1(α)[1 −B2(α)]− E(R)B1(α)[1 −B2(α)]
}

.

Let Wq denote the average waiting time of customers in the queue by Little’s formula

Wq =
Lq

λ
.

Idle I has been found in (5.4) and substituting values of N ′(1), N ′′(1), D′(1) and D′′(1) in (6.2)
we obtain Lq in closed form, further we define the average system size L by using Little’s formula.
Thus, we have

L = Lq + ρ,

where Lq has been found in equation (6.2) and ρ is obtained from equation (5.5) as

ρ = 1− I.

7. Numerical results

This section presents numerical examples related to specific work. Various parameters specified
for the system performance measures are illustrated using MATLAB. We consider service times
and working breakdown times are exponentially distributed. Analytical results are validated with
numerical results. The set of values which satisfy the stability condition, are taken for the table
calculation.

For the Table 1, we choose the following arbitrary values

λ = 2, µ1 = 3, µ2 = 3, β1 = 2.6, β2 = 2.6, η = 5, p = 0.6.
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It clearly shows that as long as the breakdown rate (α) increases, the idle time (I) decreases, the
mean queue size (Lq) increases and the mean waiting time of the customers (Wq) also increases.
Fig. 2 shows that the idle time I decreases for the increasing values of the breakdown rate (α).

Table 1. Effective of breakdown.

α I Lq Wq

0.20 0.0055 0.2609 0.1304

0.25 0.0054 0.2868 0.1434

0.30 0.0048 0.3149 0.1575

0.35 0.0038 0.3461 0.1730

0.40 0.0024 0.3811 0.1905

Similarly, Fig. 3 and Fig. 4 show that both the average queue length (Lq) and the average waiting
time of the customers in the queue (Wq) for the increasing values of the breakdown rate (α).

From the Table 2, we choose the following values

λ = 1.3, µ2 = 0.3, β1 = 17, β2 = 0.36, η = 0.95, α = 0.9, p = 0.6.

For increasing service rate (µ1), the idle time (I) increases, the mean queue size (Lq) decreases and
the mean waiting time of the customers (Wq) also decreases.

Table 2. Effective of service rate.

µ1 I Lq Wq

11 0.4916 9.6167 7.3975

12 0.4940 9.4750 7.2884

13 0.4960 9.3573 7.1979

14 0.4977 9.2580 7.1216

15 0.4992 9.1732 7.0563

Fig. 5 shows that the idle time (I) increases for the increasing values of the service rate (µ).
Similarly, Fig. 6 and Fig. 7 show that the average queue length (Lq) and the average waiting

time in the queue (Wq) decrease for the increasing values of the service rate (µ).

8. Conclusion

We considered an M [X]/G/1 queue with second optional service and working breakdown. Us-
ing the supplementary variable method, important performance measures are derived. Numerical
illustrations are made to examine the validity of analytical results. Slower rate service instead
of stopping service can reduce waiting time and queue length. It helps to avoid heavy loss in
production and manufacturing industries.
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Abstract: The objective of this paper is to propose two new hybrid root finding algorithms for solving
transcendental equations. The proposed algorithms are based on the well-known root finding methods namely
the Halley’s method, regula-falsi method and exponential method. We show using numerical examples that
the proposed algorithms converge faster than other related methods. The first hybrid algorithm consists of
regula-falsi method and exponential method (RF-EXP). In the second hybrid algorithm, we use regula-falsi
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1. Introduction

The applications of nonlinear equations of the type f(x) = 0 arise in various branches of pure
and applied sciences, such as computer science, chemical engineering, physics, etc. Getting the
root of transcendental equations is of great importance. In recent time, several scientists and
engineers have focused to solve nonlinear equations numerically as well as analytically. There
are several iterative (hybrid) methods/algorithms available in the literature that are derived from
various methods, see, for example [1–3, 10, 11, 15, 17–26]. In general, the roots of nonlinear or
transcendental equations cannot be expressed in closed form or cannot be computed analytically.
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Root finding algorithms allow us to compute approximations to roots, these approximations are
expressed as either as small isolating intervals or as floating point numbers. The concept of creating
hybrid methods, combining two or more classic approaches is not new and has a long history. One of
the oldest hybrid root-finding method is Dekker’s method, see for example [8], introduced in 1969.
The main idea of this method is the combination of the classical methods i.e. bisection method
and secant method. Using the idea of the Dekker’s method, Richard P. Brent proposed a new
hybrid root-finding method in 1973, see for example [5], which is based on the bisection method,
the secant method and inverse quadratic interpolation. Since the Brent’s method uses the idea of
the Dekker’s method, the method is also known as the Brent-Dekker method. In 1979, Ridders
proposed a root-finding algorithm [13, 16] which is simpler than Brent’s method and Dekker’s
method. This algorithm is based on the regula-falsi method and the exponential function. Badr
et al. [1] proposed two hybrid algorithms. The first hybrid algorithm is based on the false-position
method and the modified secant method (FP-MSe), and the second algorithm is based on the
false-position method and the trigonometric secant method (FP-TMSe). Novak et al. [14] proposed
a hybrid secant-bisection approach in 1995. Sabharwal [17] proposed a new hybrid method that
combines two bracketing techniques (bisection-false position). Badr et al. [2], on the other hand,
created a hybrid algorithm that combines two closed algorithms (trisection-false position). They
tested their strategy on fifteen nonlinear and linear equations as a benchmark. They came to the
conclusion that their algorithm outperformed Sabharwal’s.

In this paper, we develop two new hybrid root finding algorithms for solving transcendental
equations. These algorithms are created using the well-known root finding methods, namely the
Halley’s method, regula-falsi method and exponential method. Using numerical examples, we show
that the proposed algorithms converge faster than the other related methods. The main idea of
the first hybrid algorithm is based on the regula-falsi method and the exponential method (RF-
EXP) and the second hybrid algorithm is based on the regula-falsi method and the Halley’s method
(RF-Halley). Several numerical examples are presented to illustrate the proposed algorithms. The
comparisons are made to compare the results of calculations using the proposed algorithms with
other existing methods to show efficiency and accuracy. Implementation of the proposed algorithms
is presented in MS Excel and Maple.

The rest of the paper is organized as follows: in Section 2, we present two new hybrid root-
finding algorithms with methodology and steps involving in the proposed algorithms; Section 3
discusses the analysis of convergence; Section 4 presents several numerical examples to illustrate
and validate the proposed methods/algorithms; and finally Section 5 presents the implementation
of the proposed algorithms in MS Excel and of the mathematical software tool Maple with examples
of computations.

2. New hybrid algorithms

In this section, we present two blended root-finding algorithms. These algorithms have the
advantages of open methods (fast) and bracketing method (convergent).

2.1. New hybrid Algorithm 1 (regula falsi-exponential algorithm)

In this section, we present a new hybrid algorithm using the regula-falsi method and the expo-
nential method (RF-EXP). The regula-false method guarantees the existence of the root, while the
exponential method gives faster convergence. The iterative formula used in exponential method is
as follows, more details about this method can be found in [23]

xn+1 = xn exp

(

−f(xn)

xnf ′(xn)

)

, n = 0, 1, 2, . . . . (2.1)
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In regula-falsi method [4, 7, 9, 12], we take two initial guesses, say a and b, such that f(a)f(b) < 0.
The approximate root is calculated by finding the point of intersection of the straight line joining
the points (a, f(a)) and (b, f(b)) with the x-axis. Hence the approximate root can be calculated
using the formula

xr = a−
f(a)(b− a)

f(b)− f(a)
. (2.2)

Now, we have to choose the appropriate interval to compute the second iteration. We have the
following possible cases:

1. If f(a)f(xr) < 0, then the root exists in [a, xr], and we set b = xr to find the second iteration
using formula (2.2).

2. If f(a)f(xr) > 0, then the root exists in [xr, b], and we set a = xr to find the second
approximate root using (2.2).

3. If f(xr) = 0, then the required root is xr and we terminate the process.

Algorithm 1. In this algorithm, we have:
the input: the function f(x), the interval [a, b] where the exact root lies in, the absolute error eps,
the number of iterations n; the output: the approximate root x, the function value f(x). The steps
of the algorithm are as follows:

1. i = 0
2. while i! = n do
3. i = i+ 1;

4. xrf = a−
f(a)(b− a)

f(b)− f(a)

5. xi = xrf exp

(

−f(xrf)

xrff ′(xrf )

)

6. if |a− xi| ≤ eps then
7. return xi, f(xi) break;
8. else if f(xi) ∗ f(a) < 0 then b = xi
9. else a = xi
10. end (if)
11. end (while)

In section 4, we present several examples to illustrate this algorithm and to show its efficiency.

2.2. New hybrid Algorithm 2 (regula falsi-Halley algorithm)

In this section, we present another new hybrid algorithm using regula-falsi method and Halley’s
method (RF-Halley). Similar to the previous new algorithm, the regula-false method guarantees
the existence of the root and the Halley’s method gives the fast convergence. The Halley’s method is
invented by Edmond Halley. In this method, we need one initial approximation as in the Newton’s
method with a continuous second derivative, and this method produces a sequence of approxima-
tions to the root. We compute the sequence of iterations using the Halley’s method formula [6, 7]
as

xn+1 = xn −
2f(xn)f

′(xn)

2[f ′(xn)]
2 − f(xn)f ′′(xn)

with an initial approximation x0.
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Algorithm 2. In this algorithm, we have: the input: the function f(x), the interval [a, b]
where the exact root lies in, the absolute error eps, the number of iterations n; the output: the
approximate root x, the function value f(x). The steps of the algorithm are as follows:

1. i = 0
2. while i! = n do
3. i = i+ 1;

4. xrf = a−
f(a)(b− a)

f(b)− f(a)

5. xi = xrf −
2f(xrf )f

′(xrf )

2[f ′(xrf )]
2 − f(xrf )f ′′(xrf )

6. if |a− xi| ≤ eps then
7. return xi, f(xi) break;
8. else if f(xi) ∗ f(a) < 0 then b = xi
9. else a = xi
10. end (if)
11. end (while)

2.3. Flow-diagrams

In this section, we present the flow diagrams of the proposed algorithms. In Fig. 1, we present
the flow diagram of Algorithm 1 and the Fig. 2 presents the flow diagram of Algorithm 2.

Figure 1. Flow-diagram of Algorithm 1.
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Figure 2. Flow-diagram of Algorithm 2.

In Section 4, we present several examples to illustrate this algorithm and to show the efficiency
of the algorithm.

3. Convergence analysis

The main idea of the proposed algorithms is the combination of the open methods and the closed
methods. Hence, the proposed algorithms converge to the approximate root faster. On the other
hand, when the open methods (exponential method or Halley’s method) fail, the closed method
(false position) continues to get the next approximations, so the proposed algorithms RF-EXP and
RF-Halley are convergent faster with a guaranteed root.

4. Numerical examples

In this section, we present several numerical examples to illustrate the proposed algorithms,
and comparisons are made to confirm that the proposed algorithms give a solution faster than some
existing methods. The following Example 1 and Example 2 illustrate the proposed algorithms.

Example 1. Consider the nonlinear equation

e−x − x = 0, (4.1)

with the initial approximations a = 0 and b = 1. Following the proposed Algorithm 1, we have

xrf = 0.612699837,

x1 = 0.568452077, f(x1) = −0.00205057.
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Now, we verify the possible three conditions given in regula-falsi method, and we get the required
interval where the exact root lies in, as [0, 0.568452077]. Repeat the process for higher iterations,
and we have

xrf = 0.567288811,

x2 = 0.567143305, f(x2) = −2.32442 × 10−8,

xrf = 0.567143292,

x3 = 0.56714329, f(x3) ≅ 0.

The nonlinear equation in (4.1) is solved using well known methods to compare the results (see Ta-
ble 1) with the proposed Algorithm 1 up to 8 correct decimal places.

In Table 1, BM, RFM, NRM, Halley, Steffensen and PA indicate the bisection method, regula-
falsi method, Newton-Raphson method, Halley’s method, Steffensen’s method and the proposed
algorithm (PA) respectively.

Table 1. Numerical results and comparisons.

BM RFM NRM Halley Steffensen PA

24 8 4 3 4 3

Example 2. We apply the Algorithm 2 to the function

f(x) = ex − 3x− 2

with initial approximations a = 2 and b = 3. Following the proposed Algorithm 2 similar to
Example 1, we have

xrf = 2.063006766,

x1 = 2.12530056, f(x1) = −0.000487257.

Now, we verify the possible three conditions given in regula-falsi method, and we get the required
interval where the exact root lies in, as [2.12530056, 3]. Repeat the process for higher iterations.
So we have

xrf = 2.125347467,

x2 = 2.1253911988111, f(x2) = −1.56319 × 10−13,

xrf = 2.12539119881112,

x3 = 2.12539119881113, f(x3) ≅ 0.

Example 3. In this example, we present a comparison between various existing methods
and the proposed algorithms to show the efficiency and simplicity of the proposed algorithms in
computation of a root. Consider ten standard nonlinear equations given in Table 2.

Using various numerical existing methods, we compute the roots of the ten equations given in
Table 2 to ten decimal places. In Table 3, we present the number of iterations required to obtain
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Table 2. Ten nonlinear equations for comparison with various methods.

S.No. Equation Initial approximations Exact root

Eq.1 ex − 3x− 2 = 0 a = 2, b = 3 2.1253911988

Eq.2 x− cosx = 0 a = 0, b = 1 0.7390851332

Eq.3 e−x − x = 0 a = 0, b = 1 0.5671432904

Eq.4 x2 − 5 a = 2, b = 7 2.2360679775

Eq.5 x2 + ex/2 − 5 a = 1, b = 2 1.6490132683

Eq.6 sin x− x2 a = 0.5, b = 1 0.8767262154

Eq.7 x2 − ex − 3x+ 2 a = 0, b = 1 0.2575302854

Eq.8 x3 − 10 a = 2, b = 3 2.154434690

Eq.9 xe−x − 0.1 a = 0, b = 1 0.1118325592

Eq.10 cos x− x a = 0, b = 1 0.7390851332

Table 3. Numerical results and comparisons.

S.No. BM RFM NRM Halley Steffensen EXP TRIG Alg.1 Alg.2

Eq.1 29 25 6 4 5 4 4 3 3

Eq.2 31 9 5 3 5 3 3 3 2

Eq.3 32 11 4 3 4 5 4 3 2

Eq.4 32 28 4 3 6 3 5 3 2

Eq.5 30 10 5 4 5 5 6 4 2

Eq.6 30 12 5 4 4 4 5 4 2

Eq.7 32 7 4 4 4 3 4 3 1

Eq.8 29 17 5 3 21 3 4 3 1

Eq.9 34 12 5 8 6 5 5 2 2

Eq.10 31 9 4 3 5 4 4 3 1

the required root; and the terms BM, RFM, NRF, Halley, Steffensen, EXP, TRIG, Alg. 1 and
Alg. 2 indicate bisection method, regula-falsi method, Newton-Raphson method, Helley’s method,
Steffensen’s method, exponential method [23], trigonometric method [18], proposed Algorithm 1
and proposed Algorithm 2 respectively.

From Table 3, one can observe that the proposed algorithms required less number of iterations
by comparing with other existing methods.

5. Implementation

In this section, we discuss the implementation of the proposed algorithms in MS Excel and
Maple. We can also implement these algorithms in other mathematical software tools such as
MATLAB, SCIlab, Mathematica, Singular etc.
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5.1. Implementation in MS Excel

The proposed algorithms can be computed in Excel as follows. The number of iterations r,
initial guesses xl, xu and f(xl), f(xu), xr1, f(xr1), f

′(xr1), f
′′(xr1), xr, f(xr) are entered in the

MS Excel cells, for example, at A5, B5, C5, D5, E5, F5, G5, H5, I5, J5, K5 respectively. Enter the
respective values in 6th row, i.e., r = 1, xl, xu and “=f(B6)”, “=f(C6)”, “=(B6*E6-C6*D6)/(E6-
D6)”, “=f(F6)”, “=f’(F6)”, “=f”(F6)”. Now the first estimated root using Algorithm 1 is obtained
by entering the formula in J6 as “=F6*EXP((-G6)/(F6*H6))”; and the first estimated root using Al-
gorithm 2 is obtained by entering the formula in J6 as “=F6-((2*G6*H6)/((2*(H6)∧2)-(G6*I6)))”,
where F6 in both algorithms is obtained using “=(B6*E6-C6*D6)/(E6-D6)”. In the last column
K6, we check the function value at the estimated root f(xr) as “=f(J6)”. For second iteration, we
need to check the three conditions in the method and the entries of 18th row of the excel sheet are
as follows. The iteration r is entered with “=A6+1” in A18. The important steps in this algorithm
(selection of appropriate sub-interval for next iterations) are entered in B7 and C7 with commands
“=IF(D6*K6<0,B6,J6)” and “=IF(E6*K6<0, C6,J6)” respectively. The last columns, D6–K6 are
drag down for next iteration value. Finally, drag down the entire 7th row until the required number
of iterations.

Sample computations using MS Excel

Consider the function f(x) = e−x − x with initial approximations xl = 0 and xu = 1 and we
have f ′(x) = −e−x − 1, f ′′(x) = e−x. Now following the procedure given in Section 5.1, we have
computations using Algorithm 1 as in Table 4 and computations using Algorithm 2 as in Table 5.

Table 4. Proposed Algorithm 1 in Excel.

r xl xu f(xl) f(xu) xr1 f(xr1) f ′(xr1) xr f(xr1)

1 0 1 1 -0.6321 0.6127 -0.07081 -1.5419 0.5671 -0.0021

2 0 0.5685 1 -0.0021 0.5673 -2.99E-04 -1.5671 0.5671 -2.3E-08

3 0 0.5671 1 -2.3E-08 0.5671 -2.59E-09 -1.5671 0.5671 0

Table 5. Proposed Algorithm 2 in Excel.

r xl xu f(xl) f(xu) xr1 f(xr1) f ′(xr1) f ′′(xr1) xr f(xr1)

1 0 1 1 -0.6321 0.6127 -0.07081 -1.5419 0.54189 0.5671 4.1E-06

2 0.5671 1 4.1E-06 -0.6321 0.5671 -2.99E-07 -1.5671 0.5671 0.5671 0

5.2. Maple implementation

In this section, we present the maple implementation of the proposed algorithms with sample
computations as follows.

Algorithm 1 in Maple

RFEXP := proc (a, b, Eq, eps, n)
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local a1, b1, f, c, i, c1;

i := 0;

a1 := evalf(a);

b1 := evalf(b);

f := unapply(lhs(Eq), x);

if f(a1) = 0 then

return a1

else if f(b1) = 0 then

return b1

else if 0 < f(a1)*f(b1) then

error "Should be f(a)*f(b)<0"

end if;

end if;

end if;

do

c1 := (a1*f(b1)-b1*f(a1))/(f(b1)-f(a1));

c := c1*exp(-f(c1)/(c1*(D(f))(c1)));

i := i+1;

if f(c) = 0 or |c-a1| < eps or i = n then

return c

else if f(a1)*f(c) < 0 then

b1 := c

else a1 := c

end if;

end if;

printf("Iteration %g : x = %g \n", i, c)

end do

end proc

Algorithm 2 in Maple

RFHalley := proc (a, b, Eq, eps, n)

local a1, b1, f, c, i, c1;

i := 0;

a1 := evalf(a);

b1 := evalf(b);

f := unapply(lhs(Eq), x);

if f(a1) = 0 then

return a1

else if f(b1) = 0 then

return b1

else if 0 < f(a1)*f(b1) then

error "Should be f(a)*f(b)<0"

end if;

end if;

end if;

do

c1 := (a1*f(b1)-b1*f(a1))/(f(b1)-f(a1));

c := c1-(2*f(c1)*f’(c1)/(2*f’(c1)^2-f(c1)*(f’’(c1))))
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i := i+1;

if f(c) = 0 or |c-a1| < eps or i = n then

return c

else if f(a1)*f(c) < 0 then

b1 := c

else a1 := c

end if;

end if;

printf("Iteration %g : x = %g \n", i, c)

end do

end proc

Sample computations using Maple

Consider a function f(x) = x− cos x with initial conditions a = 0 and b = 1 with ǫ = 10−10. Now
applying the maple implementation, we have the following computations using Algorithm 1 and
Algorithm 2.
> RFEXP(0, 1, x-cos(x) = 0, 10∧(-10), 10);

Iteration 1 : x = 0.742009

Iteration 2 : x = 0.739086

Iteration 3 : x = 0.739085

0.7390851332

> RFHalley(0, 1, x-cos(x) = 0, 10∧(-10), 10);

Iteration 1 : x = 0.739066

0.7390851332

6. Conclusion

In this paper, we propose two hybrid root finding algorithms to solve the given transcendental
equations. The algorithms are based on the Halley’s method, regula-falsi method and exponential
method. Several numerical examples are presented to illustrate the proposed algorithms. The first
hybrid algorithm consists of regula-falsi method and exponential method, and the second hybrid
algorithm consists of regula-falsi method and Halley’s method. MS Excel and Maple implemen-
tation of the proposed algorithms are presented with sample computations. One can implement
these algorithms in other software tools such as Matlab, SCIlab, Mathematica etc. The proposed
algorithms perform faster than some existing methods.
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Abstract: Let D′(Rn) and E ′(Rn) be the spaces of distributions and compactly supported distributions
on Rn, n ≥ 2, respectively, let E ′

♮(R
n) be the space of all radial (invariant under rotations of the space Rn)

distributions in E ′(Rn), let T̃ be the spherical transform (Fourier–Bessel transform) of a distribution T ∈ E ′
♮(R

n),

and let Z+(T̃ ) be the set of all zeros of an even entire function T̃ lying in the half-plane Re z ≥ 0 and not
belonging to the negative part of the imaginary axis. Let σr be the surface delta function concentrated on the
sphere Sr = {x ∈ Rn : |x| = r}. The problem of L. Zalcman on reconstructing a distribution f ∈ D′(Rn) from
known convolutions f ∗ σr1 and f ∗ σr2 is studied. This problem is correctly posed only under the condition
r1/r2 /∈ Mn, where Mn is the set of all possible ratios of positive zeros of the Bessel function Jn/2−1. The paper
shows that if r1/r2 /∈ Mn, then an arbitrary distribution f ∈ D′(Rn) can be expanded into an unconditionally
convergent series

f =
∑

λ∈Z+(Ω̃r1
)

∑

µ∈Z+(Ω̃r2
)

4λµ

(λ2 − µ2)Ω̃
′

r1
(λ)Ω̃

′

r2
(µ)

(
Pr2(∆)

(
(f ∗ σr2 ) ∗ Ωλ

r1

)
− Pr1(∆)

(
(f ∗ σr1) ∗ Ωµ

r2

))

in the space D′(Rn), where ∆ is the Laplace operator in Rn, Pr is an explicitly given polynomial of degree
[(n + 5)/4], and Ωr and Ωλ

r are explicitly constructed radial distributions supported in the ball |x| ≤ r. The
proof uses the methods of harmonic analysis, as well as the theory of entire and special functions. By a similar
technique, it is possible to obtain inversion formulas for other convolution operators with radial distributions.

Keywords: Compactly supported distributions, Fourier–Bessel transform, Two-radii theorem, Inversion
formulas.

1. Introduction

The study of functions f ∈ C(R2) with zero integrals over all sets congruent to a given compact
set of positive Lebesgue measure (for example, with zero integrals over all discs of a fixed radius
in R2) goes back to Pompeiu [17, 18]. Motivated by the works of Pompeiu, Nicolesco in his
paper [16] presents the following erroneous statement concerning integrals over circles of a fixed
radius: if a real-valued function u(x, y) belongs to the class Cs(R2) for some s ∈ Z+, r is a fixed
positive number, and the function

vs(x, y, r) =

∫ 2π

0
u(x+ r cos θ, y + r sin θ)eisθdθ

does not depend on (x, y), then u(x, y) is a solution to the equation
(
∂

∂x
+ i

∂

∂y

)s

u(x, y) = const.

https://doi.org/10.15826/umj.2023.1.017
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mailto:volna936@gmail.com


188 Natalia P. Volchkova and Vitaliy V. Volchkov

In particular, if u ∈ C(R2) and u has constant integrals over all circles of fixed radius, then
u = const. The impossibility of such a result is shown by the following proposition from a paper
by Radon published back in 1917 (see [19, Sect. C]).

Proposition 1. Let r > 0 be fixed, and let λr be an arbitrary positive zero of the Bessel
function J0. Then, for any k ∈ Z, the function

Ik(z) = Jk(λρ)e
ikϕ (ρ and ϕ are the polar coordinates of z)

has zero integrals over all circles of radius r.

Similar examples related to the zeros of the Bessel function Jn/2−1 can also be constructed
for spherical means in Rn for n ≥ 2. This shows that knowing the averages of a function f over
all spheres of the same radius is insufficient to reconstruct f uniquely. Subsequently, the class of
functions f ∈ C(Rn) that have zero integrals over all spheres of fixed radius in Rn was studied by
many authors see [2, 23, 25, 27, 35, 36], and the references therein). A well-known result in this
direction is the following analog of Delsarte’s famous two-radius theorem [6] for harmonic functions.

Theorem 1 [7, 33]. Let r1, r2 ∈ (0,+∞), let Υn = {γ1, γ2, . . .} be the sequence of all positive
zeros of the function Jn/2−1 numbered in ascending order, and let Mn be the set of numbers of the
form α/β, where α, β ∈ Υn.

(1) If r1/r2 /∈Mn, f ∈ C(Rn), and

∫

|x−y|=r1

f(x)dσ(x) =

∫

|x−y|=r2

f(x)dσ(x) = 0, y ∈ Rn, (1.1)

(dσ is the area element), then f = 0.

(2) If r1/r2 ∈ Mn, then there exists a nonzero real analytic function f : Rn → C satisfying the
relations in (1.1).

In terms of convolutions (see formula (2.2) below), Theorem 1 means that the operator

Pf = (f ∗ σr1 , f ∗ σr2), f ∈ C(Rn) (1.2)

is injective if and only if r1/r2 /∈ Mn. Hereinafter, σr is a surface delta function concentrated on
the sphere

Sr = {x ∈ Rn : |x| = r},

that is,

〈σr, ϕ〉 =
∫

Sr

ϕ(x)dσ(x), ϕ ∈ C(Rn).

In this regard, Zalcman [34, Sect. 8] posed the problem of finding an explicit inversion formula
for the operator P under the condition r1/r2 /∈ Mn (see also [19, Sect. C]). A similar question for
ball means values was studied by Berenstein, Yger, Taylor, and others (see [1, 3, 4]). Note that
their methods are also applicable in the case of spherical means. In particular, the following local
result is valid (see the proof of Theorem 9 in [1]).
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Theorem 2. Let

r1/r2 /∈Mn, R > r1 + r2, BR = {x ∈ Rn : |x| < R},

and let {εk}∞k=1 be a strictly increasing sequence of positive numbers with limit

R/(r1 + r2)− 1, Rk = (r1 + r2)(1 + εk), R0 = 0.

Then, for all r > 0, r ∈ [Rk−1, Rk), and every spherical harmonic Y of degree m on the unit sphere
Sn−1, one can explicitly construct two sequences Cl and Dl of compactly supported distributions
in BR−r1 and BR−r2 , respectively, such that the following estimate holds for l > cm2 and every
function f ∈ C∞(BR):

∣∣∣∣
∫

Sn−1

f(rσ)Y (σ)dσ − 〈Cl, f ∗ σr1〉 − 〈Dl, f ∗ σr2〉
∣∣∣∣ 6

γ

l
(R− r)−Nr−(n−3)/2max

|α|6N
|x|≤R′

k

∣∣∣∣
∂|α|

∂xα
f(x)

∣∣∣∣, (1.3)

where

N = [(n+ 13)/2] + 1, R′
k = (2R +Rk)/3,

and γ and c are positive constants depending on r1, r2, R, n, and ε1.

Here it is appropriate to make a few remarks. The distributions Cl and Dl have a very complex
form and are constructed as inverse Fourier–Bessel transforms to some linear combinations of
products of rational and Bessel functions (see the proof of Proposition 8 and Theorem 9 in [1]).
Further, every function f ∈ C∞(BR) can be represented as a Fourier series

f(x) =
∞∑

m=0

dm∑

j=1

fm,j(r)Y
(m)
j (σ), x = rσ, σ ∈ Sn−1, (1.4)

converging in the space C∞(BR), where {Y (m)
j }dmj=1 is a fixed orthonormal basis in the space of

spherical harmonics of degree m on Sn−1,

fm,j(r) =

∫

Sn−1

f(rσ)Y
(m)
j (σ)dσ

(see, for example, [10, Ch. 1, Sect. 2, Proposition 2.7], [24, Sect. 1]). Therefore, estimate (1.3) as
l → ∞ and expansion (1.4) imply the reconstruction of a function f ∈ C∞(BR) from its spherical
means f ∗σr1 and f ∗σr2 in the ball BR. The transition to the class C(BR) can be done by smoothing
f by convolutions of the form f ∗ ϕε, where ϕε ∈ C∞(Rn), suppϕε ⊂ Bε (see [1, Sect. 3]).

The above remarks and Theorem 2 for R = ∞ give a procedure for finding a function from its
two spherical means. However, “explicit” inversion formulas for the operator (1.2) were unknown.
This work aims to solve this problem.

2. Statement of the main result

In what follows, as usual, Cn is an n-dimensional complex space with the Hermitian scalar
product

(ζ, ς) =
n∑

j=1

ζj ςj, ζ = (ζ1, . . . , ζn), ς = (ς1, . . . , ςn),
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D′(Rn) and E ′(Rn) are the spaces of distributions and compactly supported distributions on Rn,
respectively.

The Fourier–Laplace transform of a distribution T ∈ E ′(Rn) is the entire function

T̂ (ζ) = 〈T (x), e−i(ζ,x)〉, ζ ∈ Cn.

In this case, T̂ grows on Rn not faster than a polynomial and

〈T̂ , ψ〉 = 〈T, ψ̂ 〉, ψ ∈ S(Rn), (2.1)

where S(Rn) is the Schwartz space of rapidly decreasing functions from C∞(Rn) (see [13, Ch. 7]). If
T1, T2 ∈ D′(Rn) and at least one of these distributions has compact support, then their convolution
T1 ∗ T2 is a distribution in D′(Rn) acting according to the rule

〈T1 ∗ T2, ϕ〉 =
〈
T2(y), 〈T1(x), ϕ(x + y)〉

〉
, ϕ ∈ D(Rn), (2.2)

where D(Rn) is the space of finite infinitely differentiable functions on Rn. For T1, T2 ∈ E ′(Rn), the
Borel formula

T̂1 ∗ T2 = T̂1 T̂2 (2.3)

is valid.
Let E ′

♮(R
n) be the space of radial (invariant under rotations of the space Rn) distributions

in E ′(Rn), n ≥ 2. The simplest example of distribution in the class E ′
♮(R

n) is the Dirac delta
function δ with support at zero. We set

Iν(z) =
Jν(z)

zν
, ν ∈ C.

The spherical transform T̃ of a distribution T ∈ E ′
♮(R

n) is defined as

T̃ (z) = 〈T, ϕz〉, z ∈ C, (2.4)

where ϕz is a spherical function on Rn, i.e.,

ϕz(x) = 2n/2−1Γ
(n
2

)
In/2−1(z|x|), x ∈ Rn

(see [9, Ch. 4]). The function ϕz is uniquely determined by the following conditions:

(1) ϕz is radial and ϕz(0) = 1;

(2) ϕz satisfies the Helmholtz differential equation

∆(ϕz) + z2ϕz = 0. (2.5)

We note that T̃ is an even entire function of exponential type and the Fourier transform T̂ is
expressed in terms of T̃ as

T̂ (ζ) = T̃
(√

ζ21 + . . .+ ζ2n
)
, ζ ∈ Cn. (2.6)

The set of all zeros of the function T̃ that lie in the half-plane Re z ≥ 0 and do not belong to the
negative part of the imaginary axis will be denoted by Z+(T̃ ).

For T = σr, we have (see [27, Part 2, Ch. 3, formula (3.90)])

σ̃r(z) = (2π)n/2rn−1In/2−1(rz). (2.7)
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Hence, by the formula

I′ν(z) = −zIν+1(z) (2.8)

(see [12, Ch. 7, Sect. 7.2.8, formula (51)]), we find

σ̃′r(z) = −(2π)n/2rn+1zIn/2(rz). (2.9)

Using the well-known properties of zeros of Bessel functions (see, for example, [12, Ch. 7, Sect. 7.9]),
one can obtain the corresponding information about the set Z+(σ̃r). In particular, all zeros of σ̃r
are simple, belong to R\{0}, and

Z+(σ̃r) =
{γ1
r
,
γ2
r
, . . .

}
. (2.10)

In addition, since the functions Jn/2−1 and Jn/2 do not have common zeros on R\{0}, the function

σλr (x) = − 1

rλ2
In/2−1(λ|x|)
In/2(λr)

χr(x), λ ∈ Z+(σ̃r),

is well defined, where χr is the indicator of the ball Br.

Let

Pr(z) =
m∏

j=1

(
z −

(γj
r

)2)
, m =

[
n+ 5

4

]
, (2.11)

Ωr = Pr(∆)σr. (2.12)

Then, by the formula

p̃(∆)T (z) = p(−z2)T̃ (z) (p is an algebraic polynomial), (2.13)

we have

Ω̃r(z) = Pr(−z2)σ̃r(z), (2.14)

Z+

(
Ω̃r

)
=
{γ1
r
,
γ2
r
, . . .

}
∪
{
iγ1
r
,
iγ2
r
, . . . ,

iγm
r

}
, (2.15)

and all zeros of Ω̃r are simple. Besides,

Z+

(
Ω̃r1

)
∩ Z+

(
Ω̃r2

)
= ∅ ⇔ r1

r2
/∈Mn. (2.16)

For λ ∈ Z+

(
Ω̃r

)
, we set

Ωλ
r = Pr(∆)σλr (2.17)

if λ ∈ Z+(σ̃r) and

Ωλ
r = Qr,λ(∆)σr (2.18)

if Pr(−λ2) = 0, where

Qr,λ(z) = − Pr(z)

z + λ2
. (2.19)

The main result of this work is the following theorem.
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Theorem 3. Let
r1
r2

/∈Mn, f ∈ D′(Rn), n ≥ 2.

Then

f =
∑

λ∈Z+(Ω̃r1 )

∑

µ∈Z+(Ω̃r2 )

4λµ

(λ2 − µ2)Ω̃
′

r1(λ)Ω̃
′

r2(µ)

(
Pr2(∆)

(
(f ∗ σr2) ∗ Ωλ

r1

)

−Pr1(∆)
(
(f ∗ σr1) ∗ Ωµ

r2

))
,

(2.20)

where the series (2.20) converges unconditionally in the space D′(Rn).

Equality (2.20) reconstruct a distribution f ∈ D′(Rn) from its known convolutions f ∗ σr1
and f ∗ σr2 (see (2.11), (2.14), (2.15), and (2.17)–(2.19)). Thus, Theorem 3 gives a solution to
the Zalcman problem formulated above. Note that there is great arbitrariness in the choice of
polynomials Pr1 and Pr2 in formula (2.20) (see the proof of Corollary 1 and Lemma 5 in Section 3).
In particular, they can be defined fully explicitly without using the zeros of the function Jn/2−1. For
other results related to the inversion of the spherical mean operator, see [5, 8, 11, 20, 21, 26, 28–32].

3. Auxiliary statements

Let us first describe the properties of the functions Iν, which we will need later.

Lemma 1. (1) The following inequality holds for ν > −1/2 and z ∈ C:

|Iν(z)| ≤
e|Im z|

2νΓ(ν + 1)
. (3.1)

(2) If ν ∈ R, then

|Iν(z)| ∼
1√
2π

e|Im z|

|z|ν+1/2
, Im z → ∞. (3.2)

(3) Let ν > −1 and let {γν,j}∞j=1 be the sequence of all positive zeros of the function Iν numbered
in ascending order. Then

γν,j = π

(
j +

ν

2
− 1

4

)
+O

(
1

j

)
, j → ∞. (3.3)

In addition,

lim
j→∞

(
γν,j
)ν+3/2 |Iν+1(γν,j)| =

√
2

π
. (3.4)

P r o o f. (1) By the Poisson integral representation [12, Ch. 7, Sect. 7.12, formula (8)], we
have

Iν(z) =
21−ν

√
πΓ(ν + 1/2)

1∫

0

cos(uz)(1 − u2)ν−1/2du.

Hence,

|Iν(z)| ≤
21−ν

√
πΓ(ν + 1/2)

1∫

0

eu|Im z|(1− u2)ν−1/2du
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≤ 21−ν

√
πΓ(ν + 1/2)

1

2
B

(
1

2
, ν +

1

2

)
e|Im z| =

e|Im z|

2νΓ(ν + 1)
,

which is required.
(2) The asymptotic expansion of Bessel functions [12, Ch. 7, Sect. 7.13.1, formula (3)] implies

the equality

Iν(z) =

√
2

π
z−ν−1/2

(
cos
(
z − πν

2
− π

4

)
+O

(
e|Im z|

|z|

))
, z → ∞, −π < arg z < π. (3.5)

Considering that

| cosw| ∼ e|Imw|

2
, Imw → ∞,

by (3.5), we obtain (3.2).
(3) The asymptotic behavior (3.3) for the zeros of Iν is well known (see, for example, [25, Ch. 7,

formula (7.9)]). Then

cos
(
γν,j −

πν

2
− π

4

)
= cos

(
πj − π

2
+O

(
1

j

))
= O

(
1

j

)
, j → ∞.

It follows that
lim
j→∞

∣∣∣sin
(
γν,j −

πν

2
− π

4

)∣∣∣ = 1.

Using this relation and the equality

Iν+1(z) =

√
2

π
z−ν−3/2

(
sin
(
z − πν

2
− π

4

)
+O

(
e|Im z|

|z|

))
, z → ∞, −π < arg z < π,

(see (3.5)), we arrive at (3.4). �

Corollary 1. For all r > 0,

∑

λ∈Z+(Ω̃r)

1

|Ω̃ ′

r (λ)|
< +∞. (3.6)

P r o o f. Using (2.14) and (2.9), we find

Ω̃
′

r (λ)=Pr(−λ2)σ̃′r(λ)− 2λP ′
r(−λ2)σ̃r(λ) = −(2π)n/2rn+1λPr(−λ2)In/2(rλ)− 2λP ′

r(−λ2)σ̃r(λ).

Now, from (2.10) and (2.15), we have

∑

λ∈Z+(Ω̃r)

1

|Ω̃ ′

r (λ)|
=

m∑

j=1

1

|Ω̃ ′

r (iγj/r)|
+

1

(2π)n/2rn

∞∑

j=1

1

γj|Pr(−γ2j /r2)||In/2(γj)|
.

This series is comparable with the convergent series

∞∑

j=1

1

j2m−(n−1)/2

(see (2.11), (3.3), and (3.4)). Hence, we obtain the required assertion. �
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Lemma 2. Let g : C → C be an even entire function, and let g(λ) = 0 for some λ ∈ C. Then
∣∣∣∣
λg(z)

z2 − λ2

∣∣∣∣ ≤ max
|ζ−z|≤2

|g(ζ)|, z ∈ C; (3.7)

the left-hand side in (3.7) for z = ±λ is extended by continuity.

P r o o f. We have
∣∣∣∣
2λg(z)

z2 − λ2

∣∣∣∣ =
∣∣∣∣
g(z)

z − λ
− g(z)

z + λ

∣∣∣∣ ≤
∣∣∣∣
g(z)

z − λ

∣∣∣∣+
∣∣∣∣
g(z)

z + λ

∣∣∣∣ . (3.8)

Let us estimate the first term on the right-hand side of (3.8).
If |z − λ| > 1, then ∣∣∣∣

g(z)

z − λ

∣∣∣∣ ≤ |g(z)| ≤ max
|ζ−z|≤2

|g(ζ)|. (3.9)

Assume that |z − λ| ≤ 1. Then, applying the maximum-modulus principle to the entire function
g(ζ)/(ζ − λ), we obtain ∣∣∣∣

g(z)

z − λ

∣∣∣∣ ≤ max
|ζ−λ|≤1

∣∣∣∣
g(ζ)

ζ − λ

∣∣∣∣ = max
|ζ−λ|=1

|g(ζ)|.

Considering that the circle |ζ−λ| = 1 is contained in the disc |ζ − z| ≤ 2, we arrive at the estimate
∣∣∣∣
g(z)

z − λ

∣∣∣∣ ≤ max
|ζ−z|≤2

|g(ζ)|, (3.10)

which is valid for all z ∈ C (see (3.9)).
Similarly, ∣∣∣∣

g(z)

z + λ

∣∣∣∣ ≤ max
|ζ−z|≤2

|g(ζ)|, z ∈ C, (3.11)

because g(−λ) = 0. From (3.10), (3.11), and (3.8) the required assertion follows. �

Lemma 3. The function σλr satisfies the equation

∆(σλr ) + λ2σλr = −σr, λ ∈ Z+(σ̃r). (3.12)

P r o o f. For every function ϕ ∈ D(Rn), we have

〈∆(σλr ) + λ2σλr , ϕ〉 = 〈σλr , (∆ + λ2)ϕ〉

= − 1

rλ2

∫

|x|≤r

In/2−1(λ|x|)
In/2(λr)

∆ϕ(x)dx− 1

r

∫

|x|≤r

In/2−1(λ|x|)
In/2(λr)

ϕ(x)dx.

We apply Green’s formula
∫

G
(v∆u− u∆v)dx =

∫

∂G

(
v
∂u

∂n
− u

∂v

∂n

)
dσ

to the former integral (see, for example, [22, Ch. 5, Sect. 21.2]). Since λ ∈ Z+(σ̃r), we have

〈∆(σλr ) + λ2σλr , ϕ〉 = − 1

rλ2

∫

|x|≤r
∆

(
In/2−1(λ|x|)
In/2(λr)

)
ϕ(x)dx

+
1

rλ2

∫

Sr

ϕ(x)
∂

∂n

(
In/2−1(λ|x|)
In/2(λr)

)
dσ(x)− 1

r

∫

|x|≤r

In/2−1(λ|x|)
In/2(λr)

ϕ(x)dx.
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Hence, by (2.5), we obtain

〈∆(σλr ) + λ2σλr , ϕ〉 =
1

rλ2

∫

Sr

ϕ(x)
∂

∂n

(
In/2−1(λ|x|)
In/2(λr)

)
dσ(x).

Now, using the formula
∂

∂n

(
f(|x|)

)
= f ′(|x|), n =

x

|x| ,

and relation (2.8), we find

〈∆(σλr ) + λ2σλr , ϕ〉 = −1

r

∫

Sr

ϕ(x) |x|
In/2(λ|x|)
In/2(λr)

dσ(x) = −
∫

Sr

ϕ(x)dσ(x) = −〈σr, ϕ〉.

This proves equality (3.12). �

Remark 1. From (2.13) and the injectivity of the spherical transform, it follows that, for
distributions U, T ∈ E ′

♮(R
n) and λ ∈ Z+(T̃ ),

∆U + λ2U = −T ⇔ Ũ(z) =
T̃ (z)

z2 − λ2
. (3.13)

Therefore, relation (3.12) implies the equality

σ̃λr (z) =
σ̃r(z)

z2 − λ2
, λ ∈ Z+(σ̃r). (3.14)

Lemma 4. Let λ ∈ Z+(Ω̃r). Then

Ω̃λ
r (z) =

Ω̃r(z)

z2 − λ2
. (3.15)

P r o o f. Formula (3.15) easily follows from (2.13) and Remark 1. Indeed, if λ ∈ Z+(σ̃r), then,
by (2.17), (2.13), (3.14), and (2.14), we have

Ω̃λ
r (z) = Pr(−z2)σ̃λr (z) =

Pr(−z2)σ̃r(z)
z2 − λ2

=
Ω̃r(z)

z2 − λ2
.

Similarly, if Pr(−λ2) = 0, then

Ω̃λ
r (z) = Qr,λ(−z2)σ̃r(z) =

Pr(−z2)σ̃r(z)
z2 − λ2

=
Ω̃r(z)

z2 − λ2

(see (2.18), (2.19), (2.13), and (2.14)). �

Lemma 5. Let

Ψλ
r =

2λ

Ω̃
′

r (λ)
Ωλ
r , λ ∈ Z+

(
Ω̃r

)
. (3.16)

Then ∑

λ∈Z+(Ω̃r)

Ψλ
r = δ, (3.17)

where the series in (3.17) converges unconditionally in the space D′(Rn).
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P r o o f. For an arbitrary function ϕ ∈ D(Rn), we define a function ψ ∈ S(Rn) as follows:

ψ(y) =
1

(2π)n

∫

Rn

ϕ(x)ei(x,y)dx, y ∈ Rn.

Then (see (2.1), (2.6), and (3.15))

〈
Ψλ

r , ϕ
〉
=
〈
Ψλ

r , ψ̂
〉
=
〈
Ψ̂λ

r , ψ
〉
=

∫

Rn

ψ(x)Ψ̃λ
r (|x|)dx =

2

Ω̃
′

r (λ)

∫

Rn

ψ(x)
λΩ̃r(|x|)
|x|2 − λ2

dx.

Using this representation and Lemma 2, we get

∣∣〈Ψλ
r , ϕ〉

∣∣ ≤ 2
∣∣Ω̃ ′

r (λ)
∣∣

∫

Rn

|ψ(x)| max
|ζ−|x||≤2

∣∣Ω̃r(ζ)
∣∣dx.

From (2.14), (2.7), and (3.1), we obtain

max
|ζ−|x||≤2

∣∣Ω̃r(ζ)
∣∣ = (2π)n/2rn−1 max

|ζ−|x||≤2

∣∣Pr(−ζ2)
∣∣∣∣In/2−1(rζ)

∣∣

≤ 2πn/2rn−1

Γ (n/2)
max

|ζ−|x||≤2

∣∣Pr(−ζ2)
∣∣ · er|Imζ| ≤ 2πn/2rn−1e2r

Γ (n/2)
max

|ζ−|x||≤2

∣∣Pr(−ζ2)
∣∣.

Therefore,
∣∣∣〈Ψλ

r , ϕ〉
∣∣∣ ≤ 4πn/2rn−1e2r

Γ (n/2)
∣∣Ω̃ ′

r (λ)
∣∣

∫

Rn

|ψ(x)| max
|ζ−|x||≤2

∣∣Pr(−ζ2)
∣∣dx. (3.18)

This inequality and Corollary 1 show that the series in (3.17) converges unconditionally in the
space D′(Rn) to some distribution f supported in Br. By Lemma 4, the spherical transform of this
distribution satisfies the equality

f̃(z) =
∑

λ∈Z+(Ω̃r)

Ψ̃λ
r (z) =

∑

λ∈Z+(Ω̃r)

2λ

Ω̃
′

r (λ)

Ω̃r(z)

z2 − λ2
. (3.19)

In this case, if µ ∈ Z+(Ω̃r), then

f̃(µ) =
2µ

Ω̃
′

r (µ)
lim
z→µ

Ω̃r(z)

z2 − µ2
= 1. (3.20)

Further, since f̃(z) − 1 and Ω̃r(z) are even entire functions of exponential type, by (3.20) and the
simplicity of the zeros of Ω̃r, their ratio

h(z) =
f̃(z) − 1

Ω̃r(z)

is an entire function of at most first order (see [15, Ch. 1, Sect. 9, Corollary of Theorem 12]). For
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Im z = ±Re z, z 6= 0, it is estimated as follows:

|h(z)| ≤ |f̃(z)|
|Ω̃r(z)|

+
1

|Ω̃r(z)|

=

∣∣∣∣∣∣
∑

λ∈Z+(Ω̃r)

1

Ω̃
′

r (λ)

(
1

z − λ
− 1

z + λ

)∣∣∣∣∣∣
+

1

(2π)n/2rn−1|Pr(−z2)In/2−1(rz)|

≤
∑

λ∈Z+(Ω̃r)

1
∣∣Ω̃ ′

r (λ)
∣∣

(
1

|z − λ| +
1

|z + λ|

)
+

1

(2π)n/2rn−1|Pr(−z2)In/2−1(rz)|

≤ 2
√
2

|z|
∑

λ∈Z+(Ω̃r)

1
∣∣Ω̃ ′

r (λ)
∣∣ +

1

(2π)n/2rn−1|Pr(−z2)In/2−1(rz)|
.

It can be seen from this estimate and relations (3.6) and (3.2) that

lim
z→∞

Im z=±Re z

h(z) = 0. (3.21)

Then, according to the Phragmén–Lindelöf principle, h is bounded on C. Now it follows from (3.21)
and Liouville’s theorem that h = 0. Hence, f̃ = 1, i.e., f = δ. Thus, Lemma 5 is proved. �

Lemma 6. Let λ ∈ Z+(Ω̃r1), µ ∈ Z+(Ω̃r2). Then

(λ2 − µ2)Ψλ
r1 ∗Ψ

µ
r2 =

4λµ

Ω̃
′

r1(λ)Ω̃
′

r2(µ)

(
Ωr2 ∗Ωλ

r1 − Ωr1 ∗ Ωµ
r2

)
. (3.22)

P r o o f. By (3.15), (3.13), and (3.16), we have

(∆ + λ2)
(
Ψλ

r1

)
= − 2λ

Ω̃
′

r1(λ)
Ωr1 , (3.23)

(∆ + µ2)
(
Ψµ

r2

)
= − 2µ

Ω̃
′

r2(µ)
Ωr2 . (3.24)

From (3.23), (3.16) and the permutation of the differentiation operator with convolution, we obtain

(∆ + λ2)
(
Ψλ

r1 ∗Ψ
µ
r2

)
=

−4λµ

Ω̃
′

r1(λ)Ω̃
′

r2(µ)
Ωr1 ∗Ωµ

r2 .

Similarly, it follows from (3.24) that

−(∆ + µ2)
(
Ψλ

r1 ∗Ψ
µ
r2

)
=

4λµ

Ω̃
′

r1(λ)Ω̃
′

r2(µ)
Ωr2 ∗Ωλ

r1 .

Adding the last two equalities, we arrive at relation (3.22). �
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4. Proof of Theorem 3

By Lemma 5, we obtain

∑

λ∈Z+(Ω̃r1 )

Ψλ
r1 = δ,

∑

µ∈Z+(Ω̃r2 )

Ψµ
r2 = δ. (4.1)

We claim that ∑

λ∈Z+(Ω̃r1 )

∑

µ∈Z+(Ω̃r2 )

Ψλ
r1 ∗Ψ

µ
r2 = δ, (4.2)

where the series in (4.2) converges unconditionally in the space D′(Rn). Let ϕ ∈ D(Rn), ψ ∈ S(Rn),
and let ϕ = ψ̂. For λ ∈ Z+(Ω̃r1) and µ ∈ Z+(Ω̃r2), we have (see (2.3) and the proof of esti-
mate (3.18))

∣∣〈Ψλ
r1 ∗Ψ

µ
r2 , ϕ

〉∣∣ =
∣∣〈Ψλ

r1 ∗Ψ
µ
r2 , ψ̂

〉∣∣ =
∣∣〈Ψ̂λ

r1 Ψ̂
µ
r2 , ψ

〉∣∣ =
∣∣∣∣
∫

Rn

ψ(x)Ψ̃λ
r1(|x|)Ψ̃

µ
r2(|x|)dx

∣∣∣∣

=
4

∣∣Ω̃ ′

r1(λ)Ω̃
′

r2(µ)
∣∣

∣∣∣∣∣

∫

Rn

ψ(x)
λΩ̃r1(|x|)
|x|2 − λ2

µΩ̃r2(|x|)
|x|2 − µ2

dx

∣∣∣∣∣

≤ 16πn(r1r2)
n−1e2(r1+r2)

∣∣Ω̃ ′

r1(λ)Ω̃
′

r2(µ)
∣∣Γ2 (n/2)

∫

Rn

|ψ(x)| max
|ζ−|x||≤2

∣∣Pr1(−ζ2)
∣∣ max
|ζ−|x||≤2

∣∣Pr2(−ζ2)
∣∣dx.

This and (3.6) imply that

∑

λ∈Z+(Ω̃r1 )

( ∑

µ∈Z+(Ω̃r2 )

∣∣〈Ψλ
r1 ∗Ψ

µ
r2 , ϕ

〉∣∣
)
<∞.

Therefore (see, for example, [14, Ch. 1, Theorem 1.24]), the series in (4.2) converges unconditionally
in the space D′(Rn). In addition (see (2.2) and (4.1)),

∑

λ∈Z+(Ω̃r1 )

∑

µ∈Z+(Ω̃r2 )

〈Ψλ
r1 ∗Ψ

µ
r2 , ϕ

〉
=

∑

λ∈Z+(Ω̃r1 )

( ∑

µ∈Z+(Ω̃r2 )

〈
Ψµ

r2(y), 〈Ψ
λ
r1(x), ϕ(x + y)〉

〉)

=
∑

λ∈Z+(Ω̃r1 )

〈Ψλ
r1(x), ϕ(x)〉 = ϕ(0),

which proves (4.2).

Convolving both parts of (4.2) with f and taking into account the separate continuity of the
convolution of f ∈ D′(Rn) with g ∈ E ′(Rn), (3.22) and (2.16), we find

f =
∑

λ∈Z+(Ω̃r1 )

∑

µ∈Z+(Ω̃r2 )

4λµ

(λ2 − µ2)Ω̃
′

r1(λ)Ω̃
′

r2(µ)

(
f ∗ (Ωr2 ∗Ωλ

r1)− f ∗ (Ωr1 ∗ Ωµ
r2)
)
. (4.3)

Finally, using (4.3), (2.12), and the commutativity of the convolution operator with the differenti-
ation operator, we arrive at formula (2.20). Thus, Theorem 3 is proved. �
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5. Conclusion

The proof of Theorem 3 shows that the key role in formula (2.20) is played by the expansion
of the delta function into a series of distributions Ψλ

r , λ ∈ Z+(Ω̃r) (see Lemma 5). This system of
distributions is biorthogonal to the system of spherical functions ϕµ, µ ∈ Z+(Ω̃r), i.e.,

〈Ψλ
r , ϕµ〉 =

{
0 if µ 6= λ,

1 if µ = λ

(see (2.4), (3.15) and (3.16)). Using similar expansions, it is possible to obtain inversion formulas
for other convolution operators with radial distributions.
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16. Nicolesco M. Sur un théorème de M. Pompeiu. Bull Sci. Acad. Royale Belgique (5), 1930. Vol. 16.
P. 817–822. (in French)
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