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Abstract: In this paper, we introduce the concept of the Bα-classical orthogonal polynomials, where Bα is
the raising operator Bα := x2 · d/dx+

(

2(α− 1)x+1
)

I, with nonzero complex number α and I representing the

identity operator. We show that the Bessel polynomials B
(α)
n (x), n ≥ 0, where α 6= −m/2, m ≥ −2, m ∈ Z, are

the only Bα-classical orthogonal polynomials. As an application, we present some new formulas for polynomial
solution.

Keywords: Classical orthogonal polynomials, Linear functionals, Bessel polynomials, Raising operators,
Connection formulas.

1. Introduction

Let {B
(α)
n }n≥0 be the monic Bessel polynomial sequence. It satisfies the following explicit

expression [10, 23]

B(α)
n (x) =

n
∑

ν=0

(

n

ν

)

2n−νΓ(n+ 2α+ ν − 1)

Γ(2n+ 2α − 1)
xν , n ≥ 0, (1.1)

for α 6= −m/2, m ∈ N. To complete the definition, B
(α)
n (0) is set equal to

B(α)
n (0) = 2n

Γ(n+ 2α− 1)

Γ(2n + 2α − 1)
, n ≥ 0. (1.2)

It is well known that the monic Bessel polynomial sequence is classical and satisfies the following
relations [8, 10, 16, 23]:

–The Second-Order Differential Equation (SODE)

x2B(α)′′
n (x) + 2

(

αx+ 1
)

B(α)′
n (x) = n(n+ 2α− 1)B(α)

n (x), n ≥ 0. (1.3)

–The Lowering Relation (LR)

DB(α)
n (x) = nB

(α+1)
n−1 (x), n ≥ 1, (1.4)

https://doi.org/10.15826/umj.2022.2.001
mailto:Baghdadi.Aloui@fsg.rnu.tn 
mailto:jihadsuissi@gmail.com
mailto:jihad.souissi@fsg.rnu.tn
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where D := d/dx is the standard derivate operator.

After a simple calculation, the SODE can be written for n ≥ 0 as follows

(

x2B(α)′

n (x)
)′

+
(

2
(

(α− 1)x+ 1
)

B(α)
n (x)

)′

= (n+ 1)(n + 2α − 2)B(α)
n (x). (1.5)

Using the LR (1.4), the equation (1.5) becomes for n ≥ 0

(

x2B(α)′
n (x) + 2

(

(α− 1)x+ 1
)

B(α)
n (x)

)′

= (n+ 2α− 2)B
(α−1)′

n+1 (x).

Using the primitive of the last equation, we get

x2B(α)′

n (x) + 2
(

(α− 1)x+ 1
)

B(α)
n (x) = (n+ 2α− 2)B

(α−1)
n+1 (x) +K,

with (α 6= −m/2, m ≥ −2, m ∈ Z), and where, using (1.2), we have

K = 2B(α)
n (0)− (n+ 2α− 2)B

(α−1)
n+1 (0) = 0.

Then we finally obtain the following Raising Relation (RR) satisfied by the monic Bessel polyno-
mials

BαB
(α)
n (x) = (n+ 2α− 2)B

(α−1)
n+1 (x), (1.6)

where Bα := x2D + 2
(

(α − 1)x + 1
)

I is called the degree raising shift operator for the Bessel
polynomials with I representing the identity operator. For more details see also the degree raising
shift operator for the family of classical orthogonal polynomials [13].

In view of (1.6), we can say that {B
(α)
n }n≥0 is an Bα-classical polynomial sequence, since it

satisfies the Hahn’s property with respect to the operators Bα, i.e., it is an orthogonal polynomial
sequence whose sequence of Bα-derivatives is also orthogonal. Note that an orthogonal polynomial
sequence {pn}n≥0 is called classical, if {p′n}n≥0 is also orthogonal (see [16–19]). This characterization
is essentially the Hahn–Sonine characterization (see [11, 21]) of the classical orthogonal polynomials.

In the same context, a natural question arises about the characterization of Bα-classical or-
thogonal polynomials. The purpose of this paper is to introduce the concept of the Bα-classical
polynomial sequence and to give a complete description of this family of orthogonal polynomials.
Note that many researches have been devoted to these topics where lowering, transfer and raising
operators have been used (see for example [1–7, 9, 11, 12, 20]).

The paper is organized as follows: Section 2 gives the basic notations and tools that will be
used throughout the paper. Section 3 deals with Bα-classical orthogonal polynomial sequence. In
Section 4, we put in evidence some differential relations satisfied by the polynomials solution of our
problem. In Section 5, we give a conclusion.

2. Preliminaries

Let P be linear space of polynomials in one variable with complex coefficients and P ′ be its
dual space, whose elements are linear functionals. We write 〈u, p〉 := u(p) (u ∈ P ′, p ∈ P). In
particular, we denote by (u)n := 〈u, xn〉, n ≥ 0, the moments of u. Let us define the following
operations on P ′. For any linear functional u, any polynomial f and any (a, b) ∈ C\{0} × C, let
Du := u′, fu, hau and τbu be the linear functionals defined by the duality [15, 16]

〈fu, p〉 := 〈u, fp〉, 〈u′, p〉 := −〈u, p′〉,

〈hau, p〉 := 〈u, hap〉 = 〈u, p(ax)〉, 〈τbu, p〉 := 〈u, τ−bp〉 = 〈u, p(x+ b)〉.
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A linear functional u is called normalized if it satisfies (u)0 = 1. We assume that the linear
functionals used in this paper are normalized.

Let {pn}n≥0 be a sequence of monic polynomials with deg pn = n, n ≥ 0 (MPS in short) and
let {un}n≥0 be its dual sequence, un ∈ P ′, defined by 〈un, pm〉 = δn,m, n, m ≥ 0. Notice that u0 is
said to be the canonical functional associated with the MPS {pn}n≥0 (see [16–18]).

Let us recall the following result.

Lemma 1 [16, 17]. For any u ∈ P ′ and any integer m ≥ 1, the following statements are equiv-
alent :

(i) 〈u, pm−1〉 6= 0, 〈u, pn〉 = 0, n ≥ m,

(ii) ∃λν ∈ C, 0 ≤ ν ≤ m− 1, λm−1 6= 0 such that u =

m−1
∑

ν=0

λνuν.

As a consequence, the dual sequence {u
[1]
n }n≥0 of {p

[1]
n }n≥0 where

p[1]n (x) := (n+ 1)−1Dpn+1(x), n ≥ 0,

is given by [16, 19] as
Du[1]n = −(n+ 1)un+1, n ≥ 0.

Similarly, the dual sequence {ũn}n≥0 of {p̃n}n≥0, where

p̃n(x) := a−npn(ax+ b)

with (a, b) ∈ C\{0} × C, is given by [16, 19]

ũn = an(ha−1 ◦ τ−b)un, n ≥ 0.

A linear functional u is called regular if we can associate with it a MPS {pn}n≥0 such that [16, 19]
as

〈u, pnpm〉 = rnδn,m, n,m ≥ 0, rn 6= 0, n ≥ 0.

The sequence {pn}n≥0 is then called a monic orthogonal polynomial sequence (MOPS in short)
with respect to u. Note that u = (u)0u0 = u0, since u is normalized.

Proposition 1. [16]. Let {pn}n≥0 be a MPS and let {un}n≥0 be its dual sequence. The follow-
ing statements are equivalent :

(i) {pn}n≥0 is orthogonal with respect to u0,

(ii) {pn}n≥0 satisfies the linear recurrence relation of order two

{

p0(x) = 1, p1(x) = x− β0,
pn+2(x) = (x− βn+1)pn+1(x)− γn+1pn(x), n ≥ 0,

where
βn = 〈u0, xp

2
n〉〈u0, p

2
n〉

−1, n ≥ 0,

and
γn+1 = 〈u0, p

2
n+1〉〈u0, p

2
n〉

−1 6= 0, n ≥ 0,

(iii) the dual sequence {un}n≥0 satisfies:

un = 〈u0, p
2
n〉

−1pnu0, n ≥ 0.
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A MOPS {pn}n≥0 is called D-classical, if {Dpn}n≥0 is also orthogonal (Hermite, Laguerre,
Bessel or Jacobi) [19]. Moreover, if {pn}n≥0 is orthogonal with respect to u0, then there exists a
monic polynomial φ with deg φ ≤ 2 and a polynomial ψ with degψ = 1 such that u0 satisfies the
Pearson’s equation (PE) [19]

D(φu0) + ψu0 = 0.

A second characterization of these polynomials is that they are the only polynomial solutions of
the SODE [8, 19],

φ(x)p′′n+1(x)− ψ(x)p′n+1(x) = λnpn+1(x), n ≥ 0,

where

λn = (n+ 1)
(1

2
φ′′(0)n − ψ′(0)

)

6= 0, n ≥ 0.

Note that if pn(x) = B
(α)
n (x), n ≥ 0, (α 6= −n/2, n ≥ 0) is the monic Bessel polynomial and

we write B(α) for u0, then the regular form B(α) satisfies the following PE [16, 19]

D
(

x2B(α)
)

− 2(αx + 1)B(α) = 0, (2.1)

and B
(α)
n (x), n ≥ 0 satisfies the SODE (1.3).

3. The Bα-classical polynomials

Recall the operator

Bα : P −→ P,

f 7−→ Bα(f) := x2f ′ + 2
(

(α− 1)x+ 1
)

f,

with α 6= −m/2, m ≥ −2, m ∈ Z.
Clearly, the operator Bα raises the degree of any polynomial. Such an operator is called raising

operator [14, 22].

Definition 1. We call a sequence {Pn}n≥0 of orthogonal polynomials Bα-classical if
{BαPn}n≥0 is also orthogonal.

For any MPS {Pn}n≥0 we define

Qn+1(x;α) :=
1

n+ 2α− 2
BαPn(x), n ≥ 0,

or equivalently

(n+ 2α− 2)Qn+1(x;α) := x2P ′
n(x) + 2

(

(α− 1)x+ 1
)

Pn(x), n ≥ 0, (3.1)

with initial value Q0(x;α) = 1.
Clearly, {Qn+1(.;α)}n≥0 is a MPS and

degQn+1(x;α) = n+ 1.

In the sequel, we write
Qn(x) := Qn(x;α), n ≥ 0,

if there is no ambiguity. Our next goal is to describe all the Bα-classical polynomial sequences.
Assume that {Pn}n≥0 and {Qn}n≥0 are MOPS satisfying

Pn+2(x) = (x−̟n+1)Pn+1(x)− γn+1Pn(x), n ≥ 0, (3.2)
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with initial values P0(x) = 1, P1(x) = x−̟0, and

Qn+2(x) = (x− θn+1)Qn+1(x)− ζn+1Qn(x), n ≥ 0, (3.3)

with initial values Q0(x) = 1, Q1(x) = x− θ0.
Next, a first result will be deduced as a consequence of relations (3.1), (3.2) and (3.3).

Proposition 2. The sequences {Pn}n≥0 and {Qn}n≥0 satisfy the following finite type relation

x2Pn(x) = Qn+2(x) + snQn+1(x) + tnQn(x), n ≥ 0,

where

sn = (n+ 2α− 2)
(

̟n − θn+1

)

, n ≥ 0,

tn = (n + 2α− 3)γn − (n+ 2α− 2)ζn+1, n ≥ 0,

with the convention γ0 = 0.

P r o o f. Differentiating (3.2), we obtain

P ′
n+2(x) = (x−̟n+1)P

′
n+1(x)− γn+1P

′
n(x) + Pn+1(x), n ≥ 0.

We multiply the last equation by x2 and the relation (3.2) by 2
(

(α− 1)x+1
)

, take the sum of the
two resulting equations, and substitute (3.1). Then, we get

(n+ 2α)Qn+3(x) = (n+ 2α− 1)(x−̟n+1)Qn+2(x)

−(n+ 2α− 2)γn+1Qn+1(x) + x2Pn+1(x), n ≥ 0.

Using the relation (3.3), we get

x2Pn+1(x) = Qn+3(x) + (n+ 2α− 1)
(

̟n+1 − θn+2

)

Qn+2(x)

+
(

(n + 2α − 2)γn+1 − (n+ 2α− 1)ζn+2

)

Qn+1(x), n ≥ 0.

In fact, this result is valid if n+ 1 is replaced by n with the convention γ0 = 0. Hence we got the
desired result. �

Note that, for n = 0, the Proposition 2 gives

x2 = Q2(x) + (2α − 2)(̟0 − θ1)Q1(x)− (2α − 2)ζ1Q0(x), (3.4)

and using the fact that

Q1(x) = x− θ0 = x+
1

α− 1
,

we obtain
Q2(x) = x2 + (2α− 2)(θ1 −̟0)x+ (2α− 2)ζ1 + 2(θ1 −̟0).

It gives by comparing with (3.3) for n = 0

θ1 =
−θ0 + 2(α − 1)̟0

2α− 1
=

1

(α− 1)(2α − 1)
+

2(α − 1)

2α− 1
̟0,

ζ1 =
θ0θ1 + 2(̟0 − θ1)

2α− 1
=

−1

(α− 1)2
.

Denote by u0 and v0 the regular forms (linear functionals) in P ′ corresponding to {Pn}n≥0 and
{Qn}n≥0 respectively. Then we can state the following result.
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Lemma 2. The following algebraic relation between the regular forms u0 and v0 holds

x2v0 =
2

(α− 1)
u0.

P r o o f. According to Proposition 2, we obtain
〈

x2v0, Pn(x)
〉

= 0, n ≥ 1. (3.5)

On the other hand, by (3.4) we have
〈

x2v0, P0(x)
〉

= 〈v0, Q2(x)〉 + 2(α− 1)(̟0 − θ1)〈v0, Q1(x)〉 − 2(α − 1)ζ1〈v0, Q0(x)〉r

= −2(α− 1)ζ1 =
2

(α− 1)
,

(3.6)

since {Qn}n≥0 is orthogonal with respect to the normalized form v0. According to Lemma 1 and
using (3.5) and (3.6), we obtain the desired result. �

Based on PE satisfied by the linear functional of B(α), we can state the following theorem.

Theorem 1. The sequence of Bessel polynomials {B
(α)
n }n≥0, with α 6= −m/2, m ≥ −2,

m ∈ Z, is the only Bα-classical orthogonal sequence. More precisely, Pn(x) = B
(α)
n (x) and

Qn(x) = B
(α−1)
n (x), n ≥ 0.

P r o o f. If we apply v0 in (3.1), we get for n ≥ 0

〈

v0, (n + 2α− 2)Qn+1(x)
〉

=
〈

v0, x
2P ′

n(x) + 2
(

(α− 1)x+ 1
)

Pn(x)
〉

= 0.

But the right hand side may be read as
〈

−D
(

x2v0
)

+ 2
(

(α− 1)x+ 1
)

v0, Pn(x)
〉

= 0, n ≥ 0.

Hence we have for all polynomials P , expanding P in the basis {Pn}n≥0, the following relation
〈

−D
(

x2v0
)

+ 2
(

(α− 1)x+ 1
)

v0, P (x)
〉

= 0.

In other words we have
(

x2v0
)′
− 2

(

(α− 1)x+ 1
)

v0 = 0. (3.7)

This implies that v0 is the Bessel functional B(α−1) according to the corresponding PE (2.1), i.e.,

Qn(x) = B(α−1)
n (x), n ≥ 0,

with α 6= −m/2, m ≥ −2, m ∈ Z.
Multiplying (3.7) by x2 and using Lemma 2, we obtain

(

x2u0
)′
− 2

(

αx+ 1
)

u0 = 0. (3.8)

Essentially (3.8) corresponds to the PE of linear functional B(α) of the sequence of Bessel

polynomials {B
(α)
n }n≥0. Hence, Pn(x) = B

(α)
n (x), n ≥ 0. �

In conclusion, we give the following relation, which is satisfied by Bessel polynomials

x2B(α)′

n (x) + 2
(

(α− 1)x+ 1
)

B(α)
n (x) = (n+ 2α− 2)B

(α−1)
n+1 (x), n ≥ 0

with α 6= −m/2, m ≥ −2, m ∈ Z.
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4. Representations of Bessel polynomials in terms of the action of linear

differential operators

In this section, we prove some higher order differential relations between the Bessel polynomials
(solution of our problem). First, we need the following fundamental relation

(

xD + (n+ α− 1)I
)

B(α/2)
n (x) = (2n + α− 1)B((α+1)/2)

n (x), (4.1)

which is obtained after a simple calculation from (1.1).

Theorem 2. The representation of Bessel polynomials B
((α+m)/2)
n (x) in terms of action of

linear differential operators on the Bessel polynomials B
(α/2)
n (x) is given by

B((α+m)/2)
n (x) =

Γ(2n+ α− 1)

Γ(2n + α+m− 1)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)
xm−kDm−kB(α/2)

n (x),

n ≥ 0, m ≥ 0.

(4.2)

P r o o f. We prove this by induction on m ∈ N. For m = 0 this is obvious. Now, suppose (4.2)
holds and prove the same for m+1 instead of m. Indeed, by differentiating both sides of (4.2) and
using (1.4), we get, for all n ≥ 1,

B
((α+m+2)/2)
n−1 (x) =

Γ(2n + α− 1)

Γ(2n+ α+m− 1)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)

×
[

(m− k)xm−k−1Dm−k−1 + xm−kDm−k
]

B
((α+2)/2)
n−1 (x), n ≥ 1.

Replacing α+ 1 by α, n− 1 by n and using the identity (4.1) we obtain for all n ≥ 0

B((α+m+1)/2)
n (x) =

Γ(2n+ α− 1)

Γ(2n+ α+m)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)

×
[

(m− k)xm−k−1Dm−k−1 + xm−kDm−k
](

xD + (n+ α− 1)I
)

B(α/2)
n (x), n ≥ 0.

Equivalently

B((α+m+1)/2)
n (x) =

Γ(2n + α− 1)

Γ(2n + α+m)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)

×
[

(m− k)(n + α+m− k − 2)xm−k−1Dm−k−1

+(n+ α+ 2m− 2k − 1)xm−kDm−k + xm+1−kDm+1−k
]

B(α/2)
n (x), n ≥ 0.

After some calculations, we finally obtain for all n ≥ 0

B((α+m+1)/2)
n (x) =

Γ(2n+ α− 1)

Γ(2n+ α+m)

m+1
∑

k=0

(

m+ 1

k

)

Γ(n+ α+m)

Γ(n+ α+m− k)

×xm+1−kDm+1−kB(α/2)
n (x), m ≥ 0.

Hence the desired result is proved. �
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5. Conclusion

We have described the Bα-classical orthogonal polynomials using the Pearson’s equation
that the corresponding linear functionals satisfy. More precisely, we have proved that the Bessel

polynomial sequence {B
(α)
n (x)}n≥0, where α 6= −m/2, m ≥ −2, m ∈ Z, is the only Bα-classical

sequence. As a consequence, some connection formulas between the corresponding polynomials
are deduced.
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Appendix

Table A. Bessel polynomials.

{Bn}n≥0
⊥ B(α)

Φ(x) = x2, Ψ(x) = −2(αx+ 1),

β0 = −
1

α
, βn+1 =

1− α

(n+ α)(n+ α+ 1)
, n ≥ 0,

γn+1 = −
(n+ 1)(n+ 2α− 1)

(2n+ 2α− 1)(n+ α)2(2n+ 2α+ 1)
, n ≥ 0,

x2B′′
n+1(x) + 2(αx+ 1)B′

n+1(x)− (n+ 1)(n+ 2α)Bn+1(x) = 0,

x2B′
n+1(x) = (n+ 1)

(

x−
1

n+ α

)

Bn+1(x) − (2n+ 2α+ 1)γn+1Bn(x),

〈B(α), f〉 = J(α)−1

∫ +∞

0

x2α−2e−2/x

(
∫ +∞

x

ξ−2αe2/ξs(ξ)dξ

)

f(x)dx,

J(α) := 4

∫ +∞

0

t3−8αe2/t
4

e−t sin(t)

(
∫ t4

0

x2α−2e−2/xdx

)

dt,

s(x) =







0, x ≤ 0,

e−x1/4

sinx1/4, x > 0.
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Abstract: In this paper, we consider the output controllability of finite-dimensional control systems governed
by a distributed delayed control. For systems with ordinary controls, this problem was investigated earlier.
Nevertheless, in many practical and technical problems the control acts with some delay. We give the necessary
and sufficient condition for the output controllability. The main goal of our control is to govern the output of
the system to some position on a subspace in a given instant, and then keep this output fixed for the remaining
times. This property is called the long-time output controllability. For this, sufficient conditions are given. The
introduced notions are applied for the investigation of averaged controllability of systems with delayed controls.
The general approach for that is to approximate the system by the ordinary one. Some examples are considered.

Keywords: Output and averaged controllability, Delayed control, Approximation.

1. Introduction

In this paper, we deal with the output controllability of finite-dimensional control systems
governed by a distributed delayed control. For systems with ordinary controls, this problem is
investigated in [2]. It is known that in many practical and technical problems the controlling
actions take place with some delays. The main goal of our control is to govern the output of the
system to some position on a subspace in a given time T > 0, and then keep this output fixed for
the remaining times t > T .

Consider a linear autonomous system with delayed controls and observation:

ẋ(t) = Ax(t) +

∫ 0

−h

dB(s)u(t+ s), t ≥ 0, x(t) ∈ R
n, u(t) ∈ R

m, (1.1)

y(t) = Cx(t), C ∈ R
p×n, (1.2)

where elements of the matrix function B(s) belong to BV [−h, 0] (the space of functions of bounded
variation) and they are left continuous on (−h, 0], B(s) = 0 for ∀s > 0, and B(s) = B(−h) for
∀s ≤ −h. Since the matrix B(s) generates a Borelian measure, any bounded Borelian m-vector
function u(t) can be used as a control. The notion of output controllability is as follows.

Definition 1. We say that the system (1.1) is C-output controllable, if for every x0 ∈ R
n

and every ȳ ∈ imC = {y | y = Cx, x ∈ R
n} there exist an instant T > 0 and a bounded Borelian

control u on [−h, T ] such that the solution x(t) of (1.1) with initial condition x(0) = x0 satisfies

y(T ) = Cx(T ) = ȳ.

1This work was performed as part of research conducted in the Ural Mathematical Center with the
financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement
number 075-02-2022-874).

https://doi.org/10.15826/umj.2022.2.002
mailto:abi@imm.uran.ru
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Let us recall that the ordinary (state) controllability definition of the system (1.1) follows from
Definition 1 when C = In. The symbol In ∈ R

n×n means the unity matrix.

In this paper, we are interested in the conditions for having long-time output controllability.
This controllability notion means that the output of the system enters the subspace and then
remains on it for later times. This is defined as follows.

Definition 2. Given ȳ ∈ imC, the system (1.1) is said to be C-long-time output controllable
(briefly C-LTOC on ȳ), if for every x0 there exist a time T > 0 and a control u such that the

solution of (1.1), with initial condition x(0) = x0 satisfies y(t) = ȳ for every t ∈ [T,∞).

It is obvious that state controllability implies C-output controllability for any matrix C. But in
order to save the property y(t) = ȳ for every t ≥ T we need extra conditions on a delayed control.
In this paper we only assume the C-output controllability of the system and give a criterion for
this. Our main attention is directed to conditions of C-LTOC (or simply LTOC) for systems of the
form (1.1), (1.2) and their applications.

The notions of output controllability and C-LTOC can be applied to averaged controllability
property of finite-dimensional, parameter dependent systems with delayed controls. The averaged
controllability has been introduced in the paper [4]. More precisely, let us consider d realizations
of control systems,

ẋi(t) = Aix(t) +

∫ 0

−h

dBi(s)u(t+ s), t ≥ 0, xi(t) ∈ R
n, u(t) ∈ R

m, i ∈ 1 : d, (1.3)

and d parameters pi > 0,
∑d

i=1 pi = 1. Here the matrices Bi(s) have the same properties as B(s)
in (1.1).

Definition 3. We say that the flock of systems (1.3) is controllable in average for the weights
pi > 0 if for all initial states x10, . . . , xd0 and every ȳ ∈ R

n there exist an instant T > 0
and a bounded Borelian control u on [−h, T ] such that the solutions of (1.3) satisfy the equal-

ity
∑d

i=1 pixi(T ) = ȳ.

Let us use the Matlab notation for matrices and vectors. We can see that the averaged con-
trollability notion is exactly the C-output controllability of (1.1)–(1.2) with matrices:

A = diag [A1, . . . , Ad], B(s) = [B1(s); . . . ;Bd(s)], C = [p1In, . . . , pdIn],

where x = [x1; . . . ;xd] ∈ R
nd. The flock of systems (1.3) is called simultaneously controllable

if corresponding system (1.1) is state controllable. Of course, the simultaneous controllability
of (1.3) implies the averaged controllability. We can also define the notion of long-time averaged

controllability (briefly LTAC on ȳ). We say that systems (1.3) are LTAC on ȳ for the weights pi > 0
if for every initial states x10, . . . , xd0 there exist an instant T > 0 and an admissible control u such
that the corresponding mean value is the following

d
∑

i=1

pixi(t) = ȳ

for every t ∈ [T,∞).

In this paper, we obtain conditions of C-output controllability and C-LTOC for general sys-
tems (1.1)–(1.2) and apply them for the LTAC property of (1.3). Besides, we get the algorithm for
constructing of necessary control in special cases. Some examples are considered.
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2. Output controllability of the system

First, note that the initial condition x0 does not play any role in Definition 1. System (1.1),
(1.2) is C-output controllable iff for every ȳ ∈ imC there exist an instant T > 0 and an admissible
control u on [−h, T ] such that

C

∫ T

0
eA(T−θ)

∫ 0

−h

dB(s)u(θ + s)dθ = ȳ.

Setting α = θ + s we have

∫ 0

−h

dB(s)u(θ + s) =

∫ θ

θ−h

dB(α− θ)u(α),

and by Fubini’s theorem we get the equivalent equality

∫ T

−h

B(T, α)u(α)dα = ȳ, where B(T, α) = C

∫ (α+h)∧T

α∨0
eA(T−θ)dB(α− θ). (2.1)

The n×m-matrix function B(T, α) is of bounded variation with respect to α and, therefore, belongs
to the space Lp×m

2 [−h, T ] (the space of square integrable matrices or vectors). We can prove the
following lemma.

Lemma 1. System (1.1), (1.2) is C-output controllable iff there is a segment [a, b], −h ≤ a <
b ≤ T , such that

rank

(
∫ b

a

B(T, α)B′(T, α)dα

)

= rankC. (2.2)

P r o o f. Let condition (2.2) be satisfied. Since

im

∫ b

a

B(T, α)B′(T, α)dα ⊂ imC,

we obtain the equality of subspaces in this inclusion. For every ȳ ∈ imC there exists a vector
v ∈ R

p such that
∫ b

a

B(T, α)B′(T, α)dαv = ȳ.

Then u(α) = B′(T, α)v is a bounded Borelian control on [a, b]. We can take u(α) = 0, α 6∈ [a, b],
and satisfy (2.1) for any T ≥ b. On the contrary, let condition (2.1) be valid, but there is a vector
ȳ ∈ imC such that

ȳ 6∈ im

∫ T

−h

B(T, α)B′(T, α)dα.

Then we have a contradiction with (2.1) as

Lm
2 [−h, T ] =

{

u(α) : u(α) = B′(T, α)v, v ∈ R
p
}

⊕

{

u(α) :

∫ T

−h

B(T, α)u(α)dα = 0

}

.

Therefore, there are no functions u ∈ Lm
2 [−h, T ] satisfying (2.1). �
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Corollary 1. Condition (2.2) holds iff the equality

l′B(T, α) = 0 a.e. on [a, b] implies that l ∈ kerC ′. (2.3)

P r o o f. Condition (2.2) is equivalent to the equality

kerC ′ = ker

∫ b

a

B(T, α)B′(T, α)dα,

or, in other words, the implication (2.3) is fulfilled. �

Corollary 2. The function B(T, α) from (2.1) can be expressed in the form

B(T, α) = CeA(T−α)
b(T, α), where b(T, α) =

∫ α∧0

(α−T )∨(−h)
eAsdB(s). (2.4)

If T > h and a = 0, b = T − h, then

b(T, α) =

∫ 0

−h

eAsdB(s) = const

on [a, b]. Hence, the implication (2.3) is equivalent to the rank condition

rankC

[
∫ 0

−h

eA(s+h)dB(s), A

∫ 0

−h

eA(s+h)dB(s), . . . , An−1

∫ 0

−h

eA(s+h)dB(s)

]

= rankC. (2.5)

P r o o f. Setting α − θ = s in (2.1) we get (2.4). As b(T, α) = const on segment [a, b], the
relation l′B(T, α) = 0 can be differentiated with respect to α many times. So, we come to the
equivalence of implication (2.3) and rank condition (2.5) by the theorem of Cayley–Hamilton
[5, Theorem 7.2.4]. �

Let us discuss the Lemma 1 and its Corollaries. If condition (2.2) does not hold for some
segment [a, b], it can be hold for grater ones. The rank condition for C-output controllability is
possible if the matrix function B(s) is piecewise-constant as in the case of lumped delays. The
simplest case of lumped delays is given by

B(s) = −B0χ(−∞,0](s)−B1χ(−∞,−1](s), (2.6)

where the indicator function χ(a,b](s) = 1 if s ∈ (a, b], and χ(a,b](s) = 0, elsewhere. Let T > 1.
We can divide the segment [−1, T ] = (T − 1, T ] ∪ [0, T − 1] ∪ [−1, 0) into three parts. On the first
semi-interval the implication

l′CeA(T−α)B0 ≡ 0 ⇒ l ∈ kerC ′

is equivalent to the condition

rankC[B0, AB0, . . . , A
n−1B0] = rankC (2.7)

by the theorem of Cayley–Hamilton. On [0, T − 1] we have

b(T, α) = B0 + e−AB1,

and we are in the conditions of Corollary 2. On the remaining semi-interval the implication

l′CeA(T−α−1)B1 ≡ 0 ⇒ l ∈ kerC ′
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is equivalent to condition

rankCeA(T−1)[B1, AB1, . . . , A
n−1B1] = rankC. (2.8)

If 0 ≤ T < 1, we have only two segments [0, T ] and [−1, T − 1]. Therefore, we get two conditions
in (2.7) and (2.8), where the matrix of eA(T−1) is absent. Conditions (2.5), (2.7) do not depend
on T , but condition in (2.8) nevertheless depends. It distinguishes case of delayed controls from
the ordinary one.

Remark 1. Of course, we can also consider partly different Definitions 1–3 with null initial
controls, i.e. when u(t) = 0 for t < 0. Then the integral in (2.1) is considered on [0, T ], the
parameter a ≥ 0 in Lemma 1, and condition (2.8) is not necessary. In addition, we may demand
that u(t) = 0 when t ∈ [T − h, T ], T > h. Then we have 0 ≤ a < b ≤ T − h in Lemma 1.

3. The property of LTOC

Suppose further that system (1.1)–(1.2) is C-output controllable at some instant T > h and
u(t) = 0 if t 6∈ [0, T −h] as in the Remark 1. Then it is easily seen that the C-output controllability
on [0, T ] is equivalent to C-output controllability on [a, T + a] for all a ≥ 0 when u(t) = 0 if
t 6∈ [a, T + a− h]. Therefore, in order to get y(t) ≡ ȳ, ∀t ≥ T , we need to obtain the conditions for
the property

Cx0 = Cx(t) ∀t ≥ 0. (3.1)

By derivation with respect to t in (3.1), we have:

CAx(t) + C

∫ 0

−h

dB(s)u(t+ s) = 0 ∀t ≥ 0. (3.2)

Introduce the subspace

U =

{

x ∈ R
n : ∃ an admissible function u(·) s.t. x =

∫ 0

−h

dB(s)u(s)

}

. (3.3)

To satisfy (3.2), one needs to have the inclusion CAx(t) ∈ CU for ∀t ≥ 0. Since Rp = CU⊕CU⊥, we
can take an orthonormal basis {h1, . . . , hq} in CU⊥, where q = p− dim (CU), and the corresponding
matrix H = [h1, . . . , hq] ∈ R

p×q. As a result, we get a projector P0 = HH ′ ∈ R
p×p on the

subspace CU⊥.
Consequently, condition (3.2) is L0x(t) = 0 ∀t ≥ 0, where L0 = P0CA. Therefore, if we

introduce the matrix C1 = [C;L0] ∈ R
2p×n, then C1x0 = C1x(t) ∀t ≥ 0, as in (3.1).

We can iterate the process similar to ordinary case with no delays as in [2] to define C2 = [C,L1],
L1 = P1C1A, and so on. After k steps we get

Ck+1 = [C;Lk], Lk = PkCkA ∈ R
(k+1)p×n, (3.4)

where Pk ∈ R
(k+1)p×(k+1)p is the orthogonal projector on CkU

⊥. The process stops when
kerCk+1 = kerCk. The condition (3.1) can be fulfilled iff Lkx0 = 0. To be more exact, the
following assertion holds.

Lemma 2. We have kerCk+1 ⊂ kerCk ⊂ R
n and kerLk+1 ⊂ kerLk ⊂ R

n for every k ∈ N∪{0}.
There exists a number K ∈ 0 : n such that kerCK+1 = kerCK . Here C0 = C. For every i ∈ N we

have kerCK+i = kerCK .
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P r o o f. We will argue by induction. As kerC1 = kerC0 ∩ kerL0, we trivially obtain
kerC1 ⊂ kerC0. Suppose that kerCk ⊂ kerCk−1 for some k ∈ N. Then we notice that

Lkx = 0 ⇔ ∃ u ∈ U s.t. Ck(Ax− u) = 0

⇒ Ck−1(Ax− u) = 0 ⇔ Lk−1x = 0.

This means that kerLk ⊂ kerLk−1. Therefore, kerCk+1 ⊂ kerCk. It is obvious that there exists a
number K ∈ 0 : n such that kerCK+1 = kerCK ⊂ R

n. It follows that kerLK+1 = kerLK ⊂ R
n.

Indeed,

LKx = 0 ⇔ ∃ u ∈ U s.t. CK(Ax− u) = 0

⇒ CK+1(Ax− u) = 0 ⇔ LK+1x = 0.

Hence, by induction, we obtain the final assertion. �

Note also that imLk ⊂ imCk for every k ∈ N ∪ {0}. This is equivalent to the inclusion
kerA′C ′

kPk ⊃ kerC ′
k. Indeed, if C

′
kz = 0, then z ⊥ CkU ⇒ z ∈ CkU

⊥ ⇒ Pkz = z.
The problem of control with delays to ensure equality (3.1) is more difficult than for ordinary

controls. Let us prove the lemma.

Lemma 3. Let Ck, k ∈ N ∪ {0}, be the sequence defined by (3.4), and let K ∈ 0 : n such that

kerCK+1 = kerCK . Then there exists a function v(t) ∈ U such that (3.1) holds where

ẋ(t) = Ax(t) + v(t), x(0) = x0, (3.5)

if and only if LKx0 = 0 with LK defined by (3.4).

P r o o f. It follows from (3.1) that CKx0 = CKx(t) and LKx0 = 0. On the contrary, assume
that LKx0 = 0. We need

CKx0 = CKx(t) ∀t ≥ 0.

After derivation we get

CK ẋ(t) = CK(Ax(t) + v(t)), v(t) ∈ U . (3.6)

If we find v(t) with CK ẋ(t) = 0, then the lemma is proved. We can write

CK ẋ(t) = LKx(t) + (I(K+1)p − PK)CKAx(t) + CKv(t).

Here I(K+1)p−PK is a projector on CKU . Hence, there exists a continuous closed-loop control v(x)
such that

(I(K+1)p − PK)CKAx+ CKv(x) = 0.

Relation (3.6) under such a control reduces to

CK ẋ(t) = LKx(t).

Let us write the orthogonal expansion for x(t):

x(t)− x0 = x0(t) + x1(t), (3.7)

where x0(t) ∈ kerCK and x1(t) ∈ imC ′
K . Then

Ckx(t) = CK(x0 + x1(t))
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and

LKx(t) = LKx1(t)

as

kerCK = kerCK+1 = kerC0 ∩ kerLK .

Thus, we get that

CK ẋ1(t) = LKx1(t).

The matrix CK is invertible on the subspace imC ′
K and x1(0) = 0 from (3.7). Therefore, x1(t) = 0

∀t ≥ 0. The lemma is proved. �

It follows from Lemma 3 that conditions

LKx0 = 0 and
(

I(K+1)p − PK

)

CKAx+ CKv(x) = 0

are necessary and sufficient for the solution x(t) of equation (3.5) to satisfy (3.1). They define the
function v̄(t) = v(x(t)), but for our purposes we need a function u(t) such that

∫ 0

(−h)∨(−t)
dB(s)u(t+ s) = v̄(t), t ≥ 0. (3.8)

This is an integral equation. It can have no solutions. Therefore, in next sections we consider the
approximation scheme to exclude equations like (3.8). Now, we formulate the general result.

Theorem 1. Let be given ȳ ∈ imC. For every x0 ∈ R
n there exists an admissible control for

the system (1.1) such that the solution satisfies Cx(t) = ȳ ∀t ≥ T if and only if

[ȳ; 0] ∈ imCK+1

and system (1.1), (1.2) is CK+1-output controllable in the sense of Remark 1, i.e. the condition

like (2.2) holds for some 0 ≤ a < b ≤ T − h with

B(T, α) = CK+1e
A(T−α)

b(T, α)

and rankCK+1. Here Ck is the sequence defined by (3.4) and the number K is defined by Lemma 2.
Besides, equation (3.8) has to be resolved for the function v̄(t) defined in Lemma 3.

P r o o f. According to the Lemma 3 the control exists iff the system is transferred to the
state x(T ) such that CK+1x(T ) = [ȳ; 0]. This is possible for every ȳ ∈ imC and every x0 ∈ R

n iff
the system is CK+1-output controllable. After that we solve the problem as in Lemma 3 which
does not depend of initial instant T . �

We do not give any sufficient conditions for the existence of a solution of integral equation (3.8).
This is considered in some special cases. For example, in simplest case (2.6) we have the difference
equation

B0u(t) +B1u(t− 1) = v̄(t), u(t) = 0 if t < 0

which can be resolved step-by-step on segments [i− 1, i]:

B0ui(t) = v̄(t)−B1ui−1(t− 1), t ∈ [i− 1, i], i ∈ N, (3.9)

where u0(t) = 0.
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Example 1. Consider the flock of two systems of the form:

ẋ11 = −x21 +
∑2

i,j=1 b1ijui(t− j + 1), ẋ21 = x11; first system,

ẋ12 = x12 + 2x22 +
∑2

i,j=1 b2ijui(t− j + 1), ẋ22 = x22; second system,

where we have the case with p1 = p2 = 1/2 and C = [I2, I2]/2. Condition (3.1) reduces to the
requirement: Cx0 = 0 implies Cx(t) = 0 if t ≥ 0. Here x(t) ∈ R

4 is the composed vector. Below
we study the example in detail for various coefficients blij .

4. The system in the infinite-dimensional space

Let us now rewrite the system (1.1)–(1.2) in the infinite-dimensional space following [1]. We
can write

∫ 0

−h

dB(s)u(s) = B0u(0) + Bu, where B0 = −B(0), Bu =

∫

[−h,0)
dB(s)u(s). (4.1)

Formula (4.1) is true for continuous vector-functions u, but we want to use functions {u ∈ H =
Lm
2 [−h, 0]}. In this case we consider the operator B as unbounded with dense domain b(B) = W =

Wm
1,2[−h, 0] (the Sobolev space). If u ∈ W , the function φ(t, s) = u(t+ s) satisfies the equation in

partial derivatives:

φ̇(t, s) = Dφ(t, s), φ(0, s) = u0(s), φ(t, 0) = u(t), (4.2)

with the operator D = d/ds. Equation (4.2) is considered in H with unbounded D. The left-shift
C0-semigroup St on H is defined by

(Stu)(s) =

{

u(t+ s), s ∈ [−h,−t]

0, s ∈ (−t, 0]
if t ≤ h, and (Stu)(s) = 0 if t > h.

The infinitesimal generator for St is D with dense domain

b(D) = W 0 = {u ∈ W : u(0) = 0} ⊂ H.

As shown in [1, Lemma 1.1], the solution

φ(t, s) =

{

u0(t+ s), s ∈ [−h,−t]

u(t+ s), s ∈ (−t, 0]
if t ≤ h, and φ(t, s) = u(t+ s) if t > h,

of equation (4.2), φ(t, ·) ∈ H, can be represented by

φ(t) = Stφ0 +

∫ t

0
St−r∆u(r)dr, (4.3)

where the operator ∆ ∈ L(Rm,W ∗) (the space of linear operators) is given by the relation
(∆u,w) = u′w(0) for all w ∈ W . So, in spite of the fact that equality (4.3) is considered
in W ∗ ⊃ H ⊃ W and the integration is also fulfilled in W ∗, we have φ(t, ·) ∈ H for every
u ∈ Lm

2,loc[0,∞).
Introducing the operators A = [A,B; 0,D], B = [B0;∆], and C0-semigroup T by

Tt−rz =

[

eA(t−r)x+

∫ t

r

eA(t−α)
BSα−rφdα;Sα−rφ

]

,
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where z = [x;φ] ∈ Z = R
n ×H, we can write the mild solution

z(t) = Ttz0 +

∫ t

0
Tt−rBu(r)dr, for the equation (4.4)

ż(t) = Az(t) +Bu(r), z(0) = z0. (4.5)

Here the operator A is unbounded on Z with domains b(A) = R
n ×W 0. For the operator B we

have B ∈ L(Rm,Rn ×W ∗).
Equation (4.5) has no delays in control, but a recurrent procedure like in (3.4) is, unfortunately,

impossible for infinite-dimensional system (4.5) to find a C-LTOC control. Therefore, we pass to
finite-dimensional approximations of the obtained system.

5. Finite-dimensional approximation

We use the averaging approximation of the delayed system following [3]. For every positive
integer N , we define the finite-dimensional linear subspace HN of H by

HN =
{

u ∈ H : u =
N
∑

i=1

viχi, vi ∈ R
m
}

,

where χi denote the characteristic function of [ti, ti−1) for i ∈ 1 : N and ti = −ih/N , i ∈ 0 : N .
The subspace HN is isometrically isomorphic to R

mN by means of the embedding γN : RmN → HN

such that (γNg)(s) = vi, s ∈ [ti, ti−1), i ∈ 1 : N , where g = [v1; . . . ; vN ]. On R
mN , we define the

induced inner product
〈f, g〉N = f ′QNg, f, g ∈ R

mN ,

where
QN = diag [Im, . . . , Im]h/N ∈ R

mN×mN .

The corresponding vector and matrix norms will be denoted by ‖ · ‖N . The dual mapping γN∗ :
HN → R

mN has the natural extension πN : H → R
mN defined by

πNu = [v1; . . . ; vN ], vi =

∫ ti−1

ti

u(s)dsN/h, i ∈ 1 : N.

We have that PN = γNπN is an self-adjoint orthogonal projector onto HN and πNγN = ImN .
Introduce the the following matrices:

BN
i = lim

s↑ti
(B(s+ h/N)−B(s)) = B(ti−1)−B(ti), i ∈ 1 : N.

Note that the matrix B(s) is left-continuous. For φ ∈ H, let πNφ = g = [v1; . . . ; vN ] ∈ R
mN . Then

we can approximate the infinite-dimensional operators as follows:

Bφ ≈ BPNφ =

N
∑

i=1

BN
i vi; Dφ ≈ ∇PNφ =

N
∑

i=1

N(vi−1 − vi)χi/h, v0 = 0;

Bu ≈ [B0u;Nχ1u/h].

Denote by ZN the space Rn×HN . Introduce the approximating operatorsAN = [A,BPN ; 0,∇PN ] :
ZN → ZN and BN = [B0;Nχ1/h] : R

m → ZN . Let T
N
t denote the C0-semigroup generated by

AN on ZN and let π̄N = [In, 0; 0, π
N ], γ̄N = [In, 0; 0, γ

N ] be the operators on Z and on R
n+mN ,

respectively. The following theorem is true.
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Theorem 2 [3, Theorem 3.1]. Let the matrix B(s) have the form

B(s) = −
∑q

i=0 Biχ(−∞,−hi](s)−

∫ 0

s

B01(r)dr, 0 = h0 < · · · < hq = h, (5.1)

where B01(·) ∈ Ln×m
2 [−h, 0]. Then there exist constants M and ω independent of N such that

‖eπ̄
NAN γ̄N t‖N ≤ Meωt.

It follows from definitions of operators that

π̄NAN γ̄N = [A,BγN ; 0, πN∇γN ] ∈ R
(n+mN)×(n+mN).

Therefore, the finite-dimensional approximation for (4.4), (4.5) is written as

ẋ(t) = Ax(t) + BγNg(t) +B0u(t),

ġ(t) = πN∇γNg(t) +N [u(t); 0; . . . ; 0]/h.
(5.2)

Since g(t) = [v1(t); . . . ; vN (t)] we can write the matrices of system (5.2), where the state vector is
[x(t); g(t)], in the following form

AN =
[

A,BN
1 , . . . , BN

N ; 0mN×n, (Q
N )−1V

]

,

V =
[

−Im, 0, . . . , 0, 0;
Im, −Im, . . . , 0, 0;
...

...
...

...
...

0, 0, . . . , Im, −Im
]

,

BN = [B0; ImN/h; . . . ; 0; 0] .

(5.3)

By Trotter–Kato theorem and Theorem 2 the following estimates are true [3, Theorems 4.4 and
4.10].

(i) If z ∈ b(A), then

∥

∥[In;P
N ]Ttz − T

N
t [In;P

N ]z
∥

∥ ≤ α1e
αt(h/N)‖z‖Rn×W , ∀N ∈ N, t > 4h.

(ii) For t > 5h and ∀N > N0,

∥

∥[In;P
N ]Tt − T

N
t [In;P

N ]
∥

∥ ≤ α2e
αt(h/N).

(iii) There exists a positive constant α3, dependent on t but independent on N , such that for
every u(·) ∈ Lm

2 [0, t] and all N ∈ N, we have

∥

∥

∥

∥

∫ t

0
T
N (t− r)BNu(r)dr

∥

∥

∥

∥

ZN

≤ α3‖u‖Lm

2
[0,t].

From (iii) it follows that

lim
N→∞

∫ t

0
T
N (t− r)BNu(r)dr =

∫ t

0
T(t− r)Bu(r)dr.

It is unknown whether estimates in Theorem 2 and in (i)–(iii) without an assumption (5.1) are
true.
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6. Application to averaged controllability and examples

For the flock (1.3), Lemma 1 can be reformulated in the following way.

Lemma 4. The flock of systems (1.3) is controllable in average for the weights pi > 0 iff there

is a segment [a, b], −h ≤ a < b ≤ T , such that

rank

(
∫ b

a

B(T, α)B′(T, α)dα

)

= n, (6.1)

where

B(T, α) =

d
∑

i=1

pi

∫ (α+h)∧T

α∨0
eAi(T−θ)dBi(α− θ).

Of course, the condition (6.1) holds iff the equality

l′B(T, α) = 0 a.e. on [a, b] implies that l = 0. (6.2)

Corollary 2 has the form.

Corollary 3. The function B(T, α) from (6.1) can be expressed in the form

B(T, α) =
d

∑

i=1

pie
Ai(T−α)

bi(T, α), where bi(T, α) =

∫ α∧0

(α−T )∨(−h)
eAisdBi(s).

If T > h and a = 0, b = T − h, then

bi(T, α) =

∫ 0

−h

eAisdBi(s) = const

on [a, b]. Hence, the implication (6.2) is equivalent to the rank condition

rank
[

d
∑

i=1

pi

∫ 0

−h

eAi(s+h)dBi(s),
d

∑

i=1

piAi

∫ 0

−h

eAi(s+h)dBi(s),

. . . ,
d

∑

i=1

piA
nd−1
i

∫ 0

−h

eAi(s+h)dBi(s)
]

= n.

(6.3)

Let us pass to the property of LTAC. For the sake of example, we restrict the analysis to the
case of the null control, i.e. the goal is to steer and keep the average equal to zero. We also consider
the case with d = 2 components, and we chose p1 = p2 = 1/2, and B1(s) = B2(s) = B(s). We do
the remark.

Remark 2. All the statements in Section 3 are still valid, if at step k + 1 in (3.4) we consider
any matrix Ck+1 = [RC; L̃k], with R ∈ R

p×p, detR 6= 0, and L̃k is a matrix of n columns such that
kerC ∩ kerLk = kerC ∩ ker L̃k, where Lk is defined by (3.4). With this modification, ȳ has to be
modified in Rȳ.

Let U be the subspace defined by (3.3). In what follows, P denotes the orthogonal projector
of Rn on U⊥, and we set E = (A1 −A2)/2, F = (A1 +A2)/2.



24 Boris I. Ananyev

Instead of the sequence Ck introduced in (3.4), we use the sequence Ξk defined by

Ξk =
[

In, In;
PE, −PE;
PEF, −PEF ;

...
...

PEF k−1, −PEF k−1
]

∈ R
(k+1)n×2n.

(6.4)

We can note the following.

• For k = 0 Ξ0 = 2C = [In, In].

• For k = 1, let P0 be the orthogonal projector of Rn on Ξ0[U ;U ]
⊥ = U⊥. We see P0 = P .

Then we set L̃1 = [Ξ0;PΞ0A] = [In, In;PA1, PA2]. Since ker L̃1 = kerΞ1, matrix Ξ1 is
suitable, according to Remark 2.

• Assume that at step k the matrix Ξk given by (6.4) is suitable. We define Pk, the orthogonal
projector of R(k+1)n on Ξk[U ;U ]

⊥ = diag [P, In, . . . , In]. Then we set

L̃k+1 = [Ξ0;PkΞkA] =

[

In, In;
PA1, PA2;
PEA1, −PEA2;

...
...

PEF k−1A1, −PEF k−1A2

]

.

It is obvious that ker L̃k+1 = ker Ξk+1. So, Ξk+1 is suitable.

As in Lemma 2, we have ker Ξk+1 ⊂ ker Ξk ⊂ ker Ξ0 ⊂ R
2n. Since dim (ker Ξ0) = n there exists

K ∈ 0 : n such that ker ΞK+1 = ker ΞK, and we have ker ΞK = ker Ξn (see Lemma 2).
As a consequence of Theorem 1 and the above considerations, we obtain the following result.

Corollary 4. Let d = 2 and let A1, A2 ∈ R
n×n, and B1(s) = B2(s). Then for every

x10, x20 ∈ R
n the flock of systems (1.3) is LTAC to 0 for p1 = p2 = 1/2 if and only if the condition

like (2.2) holds for some 0 ≤ a < b ≤ T − h with

B(T, α) = Ξn diag

[

∫ (α+h)∧T

α∨0
eA1(T−θ)dB(α− θ),

∫ (α+h)∧T

α∨0
eA2(T−θ)dB(α− θ)

]

and rankΞn, where the matrix Ξn is given by (6.4) for k = n.

Remark 3. The Corollary 4 ensures that the solutions x1(t) and x2(t) of (1.3) (with d = 2 and
B1(s) = B2(s) = B(s)) can be steered to some [x1(T );x2(T )] ∈ ker Ξn. This condition can be
equivalently rewritten as

x1(T ) + x2(T ) = 0,

x1(T )− x2(T ) ∈
{

g ∈ R
N : EF kg = 0 ∀k ∈ 0 : n− 1

}

.

Let g = (x1 − x2)/2 and f = (x1 + x2)/2. Then for every control v(t) ∈ U we have

{

ḟ = Ff +Eg + v(t),

ġ = Ef + Fg,
⇔

{

ẋ1 = A1x1 + v(t),

ẋ2 = A2x2 + v(t).
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Now it becomes obvious that f(t) = 0 for t ≥ T if and only if v(t) = −Eg(t) and g(t)=eF (t−T )g(T )
such that Eg(t) = 0 for t ≥ T . Note that v(t) ∈ U .

Of course, we need a control u(t), t ≥ T , such that

∫ 0

(−h)∨(T−t)
dB(s)u(t+ s) = v(t), t ≥ T, (6.5)

similarly to (3.8).

Example 2. Let us return to the flock in the Example 1. We have A1 = [0,−1; 1, 0],
A2 = [1, 2; 0, 1]. The system has 8 parameters. Let b111 = b112 = b211 = b212 = 1. Other parameters
are equal to zero. It corresponds to one control with one delay in the form [u(t) + u(t− 1); 0]. The
flock is controllable in average for every T > 1 in the sense of the Remark 1, as condition (6.3) is
fulfilled. Here we have the projector P = [0, 0; 0, 1]. It was shown in [2] that the systems with one
scalar ordinary control:

ẋ1 = A1x1 + [v(t); 0], ẋ2 = A2x2 + [v(t); 0],

are controllable in average, but not simultaneously controllable. Moreover, this system has the
long-time averaged controllability property. Hence, there is a control v(t), t ≥ T , owing to the
Remark 3. We can find a control u(t), t ∈ [0, T − 1], such that x1(T ) + x2(T ) = 0 due to
controllability. Equation (6.5) is u(t) + u(t − 1) = v(t), t ≥ T . As in (3.9), it can be resolved
step-by-step on segments [T + i− 1, T + i]:

ui(t) = v(t)− ui−1(t− 1), t ∈ [T + i− 1, T + i], i ∈ N,

where u0(t) = 0.

We can also analyze the property of LTAC for the case B1(s) 6= B2(s) when d = 2. Then
we use the general considerations of Section 3. Note that equation (3.9) can be easily resolved
only if the matrix B0 is square and detB0 6= 0. For our examples, it corresponds to the condition
det [b111, b121; b211, b221] 6= 0. This determinant equals zero in Example 2, but, nevertheless, we
found the u(t).

Example 3. Let b112 = b211 = 1 and others parameters equal zero. It corresponds to one
control with one delay in the forms [u(t − 1); 0] for the first system and [u(t); 0] for the second
one. The average controllability for every T > 1 is easily verified due to condition (6.3). Introduce
B1 = [0, 1; 0, 0], B2 = [1, 0; 0, 0], and v(t) = [v1(t); v2(t)]. The corresponding systems with ordinary
controls have the form:

ẋ1 = A1x1 +B1v(t), ẋ2 = A2x2 +B2v(t).

This system has the LTAC property with v1(t) 6= v2(t). We cannot solve the equation
u(t− 1) = v2(t), u(t) = v1(t). It may be solved only if v1(t − 1) = v2(t). Let us pass to the
approximation from Section 5. Let b=[1; 0], then our flock of systems is written as

ẋ1(t) = A1x1(t) + bu(t− 1), ẋ2(t) = A2x2(t) + bu(t),

y(t) = (x1(t) + x2(t)) /2.

We need to approximate only the first system. Here m = 1 and ti = −i/N , i ∈ 0 : N . As
B(s) = −bχ(−∞,−1](s), the matrix BN

N = b and BN
i = 0, i ∈ 1 : N − 1. Therefore, matrices (5.3)
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have the form

AN
1 =

[

A1, 02×(N−1), b; 0N×2, (Q
N )−1V

]

,

V =
[

−1, 0, . . . , 0, 0;
1, −1, . . . , 0, 0;
...

...
...

...
...

0, 0, . . . , 1, −1
]

,

bN = [02×1;N ; . . . ; 0; 0] ,

where AN
1 ∈ R

(2+N)×(2+N), V ∈ R
N×N , and bN ∈ R

2+N . We compose the matrices
A =diag

[[

AN
1

]

, A2

]

, B =
[[

bN
]

; b
]

, and C = [I2, 02×N , I2]/2. For the obtained system
ẋ = Ax + Bu, we verify the property of C-LTOC. It does not hold for any N . The flock has
not the property of LTAC for the case b112 = b211 = 1 and others equal zero.

It can be verified that the approximating system in Example 2 has the LTAC property.

7. Conclusion and open problems

In this paper, we considered the notion of output controllability for ordinary systems with
retarded controls and gave the necessary and sufficient condition for that. For the notion of long-
time output controllability, we obtained only sufficient conditions. This notions were applied for
the investigation of averaged controllability of mentioned systems. The general approach for that
is to approximate the systems by the ordinary ones. In connection with the results obtained, a
number of interesting open questions arise.

• Assume that there exists a number N0 ∈ N such that for every N ≥ N0 the approximating
system has the C-LTOC property. Is it sufficient for C-LTOC property of the original
system? And vice versa, if the original system has C-LTOC property, whether it is sufficient
for C-LTOC of the approximating system?

• How to obtain any rank conditions for output controllability of systems with delays in the
state and control? The same question about the C-LTOC property of such a systems.

• We considered the LTAC property for flocks with finite number of members. Can the results
be extended for flocks with infinite members?

• Does output controllability imply output feedback stabilisation? Suppose that the system is
output controllable, does it exist a feedback control u(t) = Ky(t) such that y(t) goes to zero
as t goes to ∞?
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Abstract: We study the sharp inequality between the uniform norm and Lp(0, π/2)-norm of polynomials in
the system C = {cos(2k+1)x}∞

k=0
of cosines with odd harmonics. We investigate the limit behavior of the best

constant in this inequality with respect to the order n of polynomials as n → ∞ and provide a characterization
of the extremal polynomial in the inequality for a fixed order of polynomials.

Keywords: Trigonometric cosine polynomial in odd harmonics, Nikol’skii different metrics inequality.

1. Problem statement, backgroung, and some preliminaries

1.1. Some notation

This paper considers classical spaces of complex-valued functions of one variable; in fact, we
use not the spaces themselves but the norms of these spaces on some subspaces of polynomials. Let
I = [a, b] be an interval on the real axis, and let υ be a nonnegative, integrable function on I called
a weight. For 0 < p < ∞, the space Lp

υ = Lp
υ(I) consists of complex-valued, Lebesgue measurable

on I functions f such that the function υ|f |p is integrable on I. The functional

‖f‖p = ‖f‖Lp
υ(I) =

(

1

b− a

∫ b

a
|f(x)|pυ(x) dx

)1/p

, f ∈ Lp
υ, (1.1)

is a norm in the space Lp
υ = Lp

υ(I) for 1 ≤ p < ∞, but not for 0 < p < 1. Nevertheless, for all
0 < p <∞, we will refer to (1.1) as a norm or, more precisely, as a p-norm. The space L2

υ = L2
υ(I)

(here p = 2) is a Hilbert space with the inner product

〈f, g〉 = 1

b− a

∫ b

a
f(x)g(x)υ(x) dx, f, g ∈ L2

υ.
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In the case of unit weight υ(x) ≡ 1, the weight symbol is omitted in the notation of spaces and
their norms. By L∞ = L∞(I) we mean the space C = C(I) of functions continuous (bounded) on
the interval I with the uniform norm

‖f‖∞ = ‖f‖C(I) = max
{

|f(x)| : x ∈ (I)
}

.

The space C = C(I) contains the subspace C0 = C(I)0 of functions f vanishing at the right end
point of the interval: f(b) = 0. In what follows, the parameter a is equal to zero: a = 0, and b is 1,
π/2, or π depending on the situation.

We define the spaces of 2π-periodic functions accordingly: the spaces Lp
2π, 0 < p < ∞, with

p-norm

‖f‖p = ‖f‖Lp
2π

=

(

1

2π

∫ π

−π
|f(x)|pdx

)1/p

and the space C2π of continuous 2π-periodic functions with the uniform norm

‖f‖∞ = ‖f‖C2π
= max{|f(x)| : x ∈ R} = max{|f(x)| : x ∈ [−π, π]}.

1.2. Nikol’skii C–Lp inequality: the classical case

Let Fn = Fn(C), n ≥ 1, be the set of trigonometric polynomials

fn(x) =
a0
2

+
n
∑

k=1

(ak cos kx+ bk sin kx)

of order (at most) n with complex coefficients. In function theory and its applications, inequalities
between two different norms of polynomials are of great importance. Such inequalities arose in
Jackson’s paper [19], but they were thoroughly investigated and applied by Nikol’skii [25]; [26,
Ch. 3, Sect. 3.3], in this connection, they are called Nikol’skii inequalities or inequalities of different
metrics. Large studies have been devoted to such inequalities, see [25]; [26, Ch. 3, Sect. 3.3];
[21, Ch. 3, Sects. 3.5–3.6]; [11, Ch. 8, Sect. 8.4]; [17, 24] and the bibliography therein. In this
paper, the authors will need some information about the Nikol’skii inequalities

‖fn‖∞ ≤ C(n)p‖fn‖p, fn ∈ Fn, (1.2)

between the uniform norm and p-norm of polynomials (see, the same sources [21, Ch. 3,
Sects. 3.5, 3.6]; [17, 24]). We assume that C(n)p is the best (the smallest possible) constant in
this inequality. Employing harmonic analysis, it is easy to obtain (see, for example, [21, Ch. 3,
Sect. 3.5, Theorem 3.5.1]) that if p = 2, then

C(n)2 =
√
2n+ 1 (1.3)

and inequality (1.2) becomes an equality at the Dirichlet kernel

Dn(x) =
1

2
+

n
∑

k=1

cos kx, (1.4)

i.e., the Dirichlet kernel is an extremal polynomial. The exact values of C(n)p for p 6= 2 are
unknown. There are constructive estimates for C(n)p, 0 < p <∞,mostly upper ones; see [11, Ch. 8,
Sect. 8.4]; [1]; [12, Sect. 7.2]; [15–18] and the bibliography therein. Note for the future the upper
estimate of Badkov [12, Sect. 7.2, Theorem 7.2]

C(n)p ≤ 4n1/p, 0 < p <∞. (1.5)
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It is not the best at the moment, but sufficient for us in what follows.
Much research has been devoted to inequality (1.2) for p = 1; information about the history

and results related to this inequality can be found in [10, 15–17, 29, 30]. The following estimates
are simple and quite rough:

n+ 1 ≤ C(n)1 ≤ 2n+ 1. (1.6)

The upper estimate follows from the representation of polynomials fn ∈ Fn in the form of convo-
lution

fn(x) =
1

π

∫ π

−π
fn(t)Dn(x− t)dt, fn ∈ Fn,

with the Dirichlet kernel (1.4). The Fejér kernel

Fn(t) =

n
∑

k=0

Dk(t) =

=
n+ 1

2
+

n
∑

k=1

(n+ 1− k) cos kt =
1

2

(

sin(n+ 1) t2
sin t

2

)2

, t 6= 2νπ, ν ∈ Z,

provides the former inequality in (1.6). This kernel is nonnegative (see, for example, [27, Vol. 2,
Part 6, Sect. 3, Problem 18]) and such that

‖Fn‖∞ = Fn(0) =
(n+ 1)2

2
, ‖Fn‖1 =

1

π

∫ π

0
Fn(t)dt =

n+ 1

2
.

This implies the former inequality in (1.6).
Taikov in [29] gives the result of S.B. Stechkin that (for p = 1) there exists a constant c > 0

such that
C(n)1 = c n+ o(n), n→ ∞. (1.7)

Stechkin’s proof of this result is given in [30]. Estimates (1.6) imply that 1 ≤ c ≤ 2. Taikov [29]
obtained substantially closer two-sided bounds for the constant c. Hörmander and Bernhardsson
have obtained [14] the best estimates currently:

1.081857643 ≤ c ≤ 1.081857645.

Let E(σ) be the space of entire functions of exponential type (at most) σ > 0, and let E(σ)p for
0 < p ≤ ∞ be the space of functions f ∈ E(σ) belonging on the real axis to the spaces Lp = Lp(R)
with finite norms

‖f‖p = ‖f‖Lp(R) =

(
∫

R

|f(x)|pdx
)1/p

, 0 < p <∞,

‖f‖∞ = ‖f‖C(R) = sup{|f(x)| : x ∈ R}, p = ∞.

For any 0 < p <∞ on E(σ)p, we have the inequality

‖f‖∞ ≤ Apσ
1/p‖f‖p, f ∈ E(σ)p, (1.8)

ascending to Nikol’skii [25]; [26, Ch. 3, Sect. 3.3], in which Ap is a finite constant depending only
on the parameter p; see details in [15, 16]. In what follows, we assume that Ap is the least possible,
i.e., best constant in (1.8). The exact value of this quantity is currently known only for p = 2;
namely, A2 = 1/

√
π; see, for example, [31, Ch. IV, Sect. 4.9, Subsect. 4.9.53, (28)].

Gorbachev [16] obtained a significantly more informative assertion in comparison with (1.7).
Namely, he proved that the following limit relation is true:

lim
n→∞

C(n)1
2πn

= A1. (1.9)
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Actuality, Gorbachev obtained [16] an even more precise result; namely, he proved the following
two-sided inequality:

A1 ≤
C(n)1
2πn

≤ n+ 1

n
A1,

which entails, in particular, (1.9).

The following statement belongs to Levin and Lubinsky [22, Theorem 2.1, (2.1)]; it means that
a relation similar to (1.9) holds for all 0 < p <∞.

Theorem A. The following limit relation is valid for 0 < p <∞:

lim
n→∞

C(n)p

(2πn)1/p
= Ap. (1.10)

This statement is part of a more general result of Ganzburg and Tikhonov [15, Theo-
rem 1.5, (1.19)]. Nikol’skii inequalities and, more generally, Bernstein–Nikol’skii inequalities

‖f (r)n ‖q ≤ C(r)(n)p,q‖fn‖p, fn ∈ Fn, (1.11)

for trigonometric polynomials and similar inequalities for entire functions are a broad area of
function theory. Ganzburg and Tikhonov, in the already cited paper [15], and Gorbachev and
Mart’yanov in [18] studied the relationship between exact constants in Bernstein–Nikol’skii (C,Lp)-
inequalities and, more generally, (Lq, Lp)-inequalities for polynomials and entire functions of expo-
nential type. We presented here in Theorem A only some results on this topic, which we will need
in what follows; for a rich overview of these studies, see [17].

Over the last century, extensive investigations have been carried out on sharp inequalities,
i.e., the study of exact constants and extremal functions in inequalities (1.11) for trigonometric
polynomials, as well as for algebraic polynomials and entire functions of exponential type; for
specific results and further references, see [1, 2, 10, 12, 13, 15, 17, 21, 23, 24, 28, 31].

1.3. Nikol’skii inequality between the uniform norm and Lp-norm on the
interval [0, π/2] for polynomials in the cosine system with odd harmonics

1.3.1. Nikol’skii inequality for Cn-polynomials

Let Cn = Cn(C), n ≥ 0, be the set of polynomials

φn(x) =

n
∑

k=0

ak cos(2k + 1)x (1.12)

with complex coefficients in the cosine system with odd harmonics

C = {cos(2k + 1)x}∞k=0. (1.13)

The functions (1.12) will be called Cn-polynomials or C -polynomials of order n. The functions (1.12)
are trigonometric polynomials; as trigonometric polynomials they have order 2n+1. Note that the
functions (1.12) vanish at the point x = π/2: ϕn(π/2) = 0, so none of them is the identical unity.

The main goal of this paper is to study the sharp inequality

‖φn‖∞ ≤M(n)p‖φn‖p, φn ∈ Cn, (1.14)
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between the uniform norm

‖φn‖∞ = ‖φn‖C[0,π/2] = max
{

|φn(x)| : t ∈ [0, π/2]
}

,

and integral p-norm (0 < p <∞)

‖φn‖p = ‖φn‖Lp(0,π/2) =

(

2

π

∫ π/2

0
|φn(x)|pdx

)1/p

of Cn-polynomials on the interval [0, π/2]. Inequality (1.14) appeared in the authors’ paper [8] in
connection with the study of a variant of the generalized translation in system (1.13) on an interval.

In connection with inequality (1.14), the question naturally arises of the sharp pointwise in-
equality

|ϕn(t)| ≤M(n, t)p‖ϕn‖Lp(0,π/2), ϕn ∈ Cn, (1.15)

for points t ∈ [0, π/2]. Especially important, as will be seen from what follows, is the inequal-
ity (1.15) at the end point t = 0:

|ϕn(0)| ≤M(n, 0)p‖ϕn‖Lp(0,π/2), ϕn ∈ Cn. (1.16)

The study of inequalities (1.14), (1.15), and (1.16) includes, in particular, the study of the
properties of extremal polynomials at which the inequalities turn into equalities. It is clear that if
the polynomial φ∗n is extremal in one of these inequalities, then, for any constant c, the polynomial
c φ∗n is also extremal. If any extremal polynomial of this inequality has the form c φ∗n with some
constant c, then φ∗n is said to be the unique extremal polynomial.

The following statement is proved in the authors’ paper [8, Theorem 4].

Theorem B. For 1 ≤ p <∞ and n ≥ 0, the following statements hold.
(1) The best constants in inequalities (1.14) and (1.16) coincide:

M(n)p =M(n, 0)p. (1.17)

(2) The polynomial ϕ∗
n extremal in inequality (1.16) attains its uniform norm at the point 0

and is also extremal in inequality (1.14).

The authors do not know whether equality (1.17) holds for 0 < p < 1; in this case, we can only
state that M(n, 0)p ≤M(n)p.

1.3.2. Approximation interpretation of inequalities

The problems of studying inequalities (1.14), (1.15), and (1.16) can be reformulated as approxima-
tion problems; we will do this only for inequality (1.16). Consider the set

Cn[0] = {φn ∈ Cn : φn(0) = 1} (1.18)

of polynomials with fixed value at the point 0: φn(0) = 1. On this set, we define the value

En[0]p = inf
{

‖φn‖Lp(0,π/2) : φn ∈ Cn[0]
}

(1.19)

of the least deviation from zero of the class of polynomials (1.18) in the space Lp(0, π/2). It is clear
that

En[0]p = 1/M(n, 0)p.
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Moreover, extremal polynomials in problem (1.19) and inequality (1.16) coincide. More precisely,
(every) extremal polynomial in (1.19) is also extremal in (1.16); conversely, if ϕ is an extremal
polynomial of inequality (1.16), then the polynomial ϕ/ϕ(0) is extremal in (1.19). Thus, the
problem of sharp inequality (1.16) is equivalent to problem (1.19) on the least deviation from zero
of the class (1.18).

1.3.3. Christoffel–Darboux kernel for system (1.13)

Sometimes, we will use the following shorter notation for the functions of system (1.13):

ηk(x) = cos(2k + 1)x, x ∈ [0, π/2]. (1.20)

This system of functions is orthogonal with respect to the inner product

〈f, g〉 = 2

π

∫ π/2

0
f(t)g(t) dt.

More precisely, as is easy to see, for k,m ≥ 1, the inner products

δk,m = 〈ηk, ηm〉 = 2

π

∫ π/2

0
cos(2k + 1)t cos(2m+ 1)t dt

have the following values: δk,m = 0, k 6= m, and δk,k = 1/2.
Due to the orthogonality of the system {ηk}k≥1, the coefficients of the polynomial

φ(x) =
n
∑

k=0

ak cos(2k + 1)x (1.21)

are expressed in terms of the polynomial itself by the formulas ak = 2〈φ, ηk〉. Substituting these
expressions into (1.21), we obtain

φ(x) =
n
∑

k=0

akηk(x) = 2
n
∑

k=0

〈φ, ηk〉ηk(x) =
〈

φ, 2
n
∑

k=0

ηk(x)ηk

〉

,

which can be written in the form

φ(x) =
2

π

∫ π/2

0
φ(t)Kn(x, t)dt,

where

Kn(x, t) = 2

n
∑

k=0

ηk(x)ηk(t) (1.22)

is the Christoffel–Darboux kernel for the system Cn. Convolute this kernel. Using the formula

2 cos a cos b = cos(a+ b) + cos(a− b), (1.23)

we find

Kn(x, t) = 2

n
∑

k=0

ηk(x)ηk(t) = 2

n
∑

k=0

cos ((2k + 1)x) cos ((2k + 1)t) =

=

n
∑

k=0

(cos ((2k + 1)(x+ t)) + cos ((2k + 1)(x− t))) .
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Using the formula (see, for example, [27, Part 6, Sect. 3, Problem 16])

n
∑

k=0

cos(2k + 1)θ =
sin 2(n + 1)θ

2 sin θ
, θ 6= νπ, ν ∈ Z,

we obtain the following representation for the Christoffel–Darboux kernel:

Kn(x, t) =
1

2

(

sin 2(n + 1)(x+ t)

sin(x+ t)
+

sin 2(n+ 1)(x − t)

sin(x− t)

)

.

The orthogonality of the system of functions (1.20) implies that, for a pair of polynomials

φ(x) =

n
∑

k=0

ak cos(2k + 1)x, ψ(x) =

n
∑

k=0

bk cos(2k + 1)x,

a generalized version of Parceval’s identity holds:

2〈φ, g〉 =
n
∑

k=1

akbk.

In particular, the norm of the polynomial φ ∈ Cn is expressed in terms of its Fourier coefficients {ak}
by Parceval’s identity

2‖φ‖2L2(0,π/2)
=

n
∑

k=0

|ak|2.

Using this equality and Hölder’s inequality, we obtain the inequality

|φ(0)| =
∣

∣

∣

n
∑

k=0

ak

∣

∣

∣
≤

√
n+ 1

( n
∑

k=0

|ak|2
)1/2

=
√

2(n+ 1) ‖φ‖L2(0,π/2),

which at the kernel (1.22) turns into an equality. Thus, in the space L2(0, π/2), we have

M(n)2 =
√

2(n+ 1), n ≥ 0. (1.24)

It is useful to compare this result with the corresponding result (1.2)–(1.3) for the classical case.

1.4. Main results

The authors consider the following statements to be the main ones in this paper.

1.4.1. Limit behavior of the best constants in inequalities (1.14) and (1.16)

For the best constant in inequality (1.14), we have an analog of the above Theorem A.

Theorem 1. The following limit relation holds for constants M(n)p in inequality (1.14) for
0 < p <∞:

lim
n→∞

M(n)p

(2πn)1/p
= Ap. (1.25)
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1.4.2. Characterization of a polynomial extremal in inequality (1.16)

Denote by ϕ∗
n = ϕ∗

n,p ∈ Cn a polynomial of order n ≥ 1 with unit leading coefficient that deviates
least from zero in the space Lp

w(0, π/2) with the weight

w(x) = sin2 x (1.26)

on the interval (0, π/2). In other words, ϕ∗
n is a solution to the problem

min{‖φn‖Lp
w(0,π/2) : φn ∈ C

1
n} = ‖ϕ∗

n‖Lp
w(0,π/2)

on the set C 1
n of polynomials (1.12) of order n with leading coefficient 1: an = 1.

Theorem 2. For all 1 ≤ p < ∞ and n ≥ 1, the polynomial ϕ∗
n of order n with unit leading

coefficient that deviates least from zero in the space Lp
w(0, π/2) with weight (1.26) is the unique

extremal polynomial in inequality (1.16).

There are statements similar to Theorem 2 in [5, Theorem 1; 6, Theorem 2; 7, Theorem 2;
9, Theorem 3; 4, Theorem 2; 3].

We will also give some estimates for the best constant M(n)p in inequality (1.14); see, in
particular, Section 2.4.

2. Behavior with respect to n of the best constant in the Nikol’skii inequality
for C -polynomials

2.1. Case p = 2

According to (1.3) and (1.24), for n ≥ 0, we have

C(n)2 =
√
2n + 1,

M(n)2 =
√

2(n + 1).

Thus,

lim
n→∞

M(n)2

n1/2
= lim

n→∞

C(n)2

n1/2
=

√
2.

Both limits exist and coincide; this fact served as an argument for the authors that this property
of the quantities M(n)p will hold for all 0 < p <∞.

2.2. Expression of C -polynomials in terms of the classical trigonometric
polynomials

Let Cn be the set of even (complex) trigonometric polynomials

fn(x) =
n
∑

k=0

ak cos kx

of order (at most) n ≥ 1. On this set, we consider the uniform norm

‖fn‖∞ = ‖fn‖C[0,π] = max
{

|fn(x)| : x ∈ [0, π]
}
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and the integral p-norm (for 0 < p <∞)

‖fn‖p = ‖fn‖Lp(0,π) =

(

1

π

∫ π

0
|fn(x)|pdx

)1/p

.

It is well known (however, it is easy to show) that the best constants C(n)p in inequality (1.2) and
the inequality

|fn(0)| ≤ C(n)p ‖fn‖p, fn ∈ Cn, (2.1)

coincide.

Lemma 1. For fn ∈ Cn, the function

φn(x) = fn(2x) cos x (2.2)

is a Cn-polynomial. Conversely, every Cn-polynomial φn can be represented in the form (2.2), where
fn ∈ Cn. Thus, formula (2.2) establishes one-to-one correspondence between Cn and Cn.

P r o o f. Let fn ∈ Cn be a trigonometric polynomial. Let

φ(x) = fn(2x) cos x =
n
∑

k=0

ak cos 2kx cos x.

Applying again formula (1.23), we have

2 cos 2kx cos x = cos(2k + 1)x+ cos(2k − 1)x.

Using this relation, we find

2φ(x) = 2fn(2x) cos x = 2

n
∑

k=0

ak cos 2kx cos x =

=
n
∑

k=0

ak cos(2k + 1)x+
n
∑

k=0

ak cos(2k − 1)x =
n
∑

k=0

ak cos(2k + 1)x+
n−1
∑

k=−1

ak+1 cos(2k + 1)x.

As a result, we obtain the representation

2φ(x) =

n
∑

k=−1

(ak + ak+1) cos(2k + 1)x = (2a0 + a1) cos x+

n
∑

k=1

(ak + ak+1) cos(2k + 1)x, (2.3)

where a−1 = 0 and an+1 = 0. The function (2.3) is a Cn-polynomial.
Let us prove the inverse statement, i.e., let us prove that an arbitrary Cn-polynomial

φ(x) =

n
∑

k=0

λk cos(2k + 1)x

can be represented in the form (2.2). Rewrite this polynomial in the form

φ(x) =

n
∑

k=−1

λ′k cos(2k + 1)x, (2.4)

where λ′−1 = λ′0 = λ0/2 and λ′k = λk, 1 ≤ k ≤ n.
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It suffices to represent the polynomial 2φ in the form (2.3). The latter means that the coefficients
{λ′k}nk=−1 of the polynomial (2.4) can be represented as

λ′k = ak + ak+1, −1 ≤ k ≤ n; a−1 = 0, an+1 = 0. (2.5)

It is easy to see that the formulas

ak =

n−k
∑

ℓ=0

(−1)ℓλ′k+ℓ = λ′k − ak+1, k = n, n− 1, . . . , 0,

give a solution to system (2.5). Lemma 1 is proved. �

Representation (2.2) implies that inequality (1.16) is equivalent to the inequality

|fn(0)| ≤ C(n, σ)p‖fn‖Lp
σ(0,π)

, fn ∈ Cn, (2.6)

on the set Cn with weight σ(t) = cosp(t/2). More exactly, the following assertion holds.

Lemma 2. For 0 < p < ∞ and n ≥ 1, inequality (1.16) on the set Cn and inequality (2.6)
on Cn are equivalent ; specifically :

(1) the best constants in inequalities (2.6) and (1.16) are related by the equality

C(n, σ)p =M(n, 0)p; (2.7)

(2) extremal polynomials in these inequalities are related by (2.2).

P r o o f. Using relation (2.2), we find that, for an arbitrary polynomial φn ∈ Cn,

|fn(0)| = |φn(0)| ≤M(n, 0)p‖φn‖Lp(0,π/2),

where

‖φn‖Lp(0,π/2) =

(

2

π

∫ π/2

0
|fn(2x) cos x|pdx

)1/p

=

(

1

π

∫ π

0
|fn(t) cos(t/2)|pdt

)1/p

= ‖fn‖Lp
σ(0,π).

Lemma 2 is proved. �

The following statement contains a quantitative relation between the constants in inequali-
ties (1.14), (1.16), and (1.2).

Lemma 3. For 0 < p <∞ and n ≥ 1, the best constants in inequalities (1.14), (1.16), and (2.1)
(or, equivalently, (1.2)) are related as follows:

C(n)p ≤M(n, 0)p, (2.8)

M(n)p ≤ C(n+ 1)p. (2.9)

P r o o f. For polynomials fn ∈ Cn, we have ‖fn‖Lp
σ(0,π) ≤ ‖fn‖Lp(0,π). Therefore, the best con-

stants in (2.1) and (2.6) are related by the inequality C(n)p ≤ C(n, σ)p. This and (2.7) imply (2.8).
Let us prove inequality (2.9). A polynomial φn ∈ Cn has the form

φn(x) =

n
∑

k=0

ak cos(2k + 1)x.
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Writing it in exponential form, we find

2φn(x) =
n
∑

k=0

ak

(

ei(2k+1)x + e−i(2k+1)x
)

=
n
∑

k=0

ake
i(2k+1)x +

n
∑

k=0

ake
−i(2k+1)x =

= e−ix
n
∑

k=0

ake
i2(k+1)x + e−ix

n
∑

k=0

ake
−i2kx = e−ix

( n+1
∑

k=1

ak−1e
i2kx +

n−1
∑

k=0

ak+1e
−i2kx

)

.

The function

gn+1(x) =

n+1
∑

k=1

ak−1e
ikx +

n−1
∑

k=0

ak+1e
−ikx

is a trigonometric polynomial of order n + 1. The functions 2φn and gn+1 are related as
2φn(x) = e−ixgn+1(2x), x ∈ R, or, equivalently, as

2φn(x/2) = e−ix/2gn+1(x), x ∈ R. (2.10)

The following inequality holds for the polynomial gn+1 (cf. (1.2)):

‖gn+1‖C2π
≤ C(n+ 1)p‖gn+1‖Lp

2π
. (2.11)

As a consequence of (2.10), we have ‖gn+1‖C2π
= 2‖φn‖C[0,π/2] and

‖gn+1‖Lp
2π

=

(

1

2π

∫ 2π

0
|gn+1(x)|pdx

)1/p

= [x/2 = t] = 2

(

1

π

∫ π

0
|φn(t)|pdt

)1/p

=

= 2

(

2

π

∫ π/2

0
|φn(t)|pdt

)1/p

= 2‖φn‖Lp(0,π/2).

Consequently, inequality (2.11) is equivalent to the inequality

‖φn‖C[0,π/2] ≤ C(n+ 1)p‖φn‖Lp(0,π/2).

Comparing this inequality with (1.14), we conclude that inequality (2.9) holds. Lemma 3 is proved
completely. �

2.3. Proof of Theorem 1

By Lemma 3, for all 0 < p <∞ and n ≥ 1, we have the inequalities

C(n)p ≤M(n)p ≤ C(n+ 1)p.

As a consequence, we have

C(n)p

(2πn)1/p
≤ M(n)p

(2πn)1/p
≤ C(n+ 1)p

(2π(n + 1))1/p

(

n

n+ 1

)1/p

.

Passing here to the limit as n → ∞ and using the result (1.10) of Theorem A, we obtain (1.25).
Theorem 1 is proved. �
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2.4. Estimates

2.4.1. Monotonicity of a constant in (1.14) in p

Let 0 < p1 < p2 <∞. For an arbitrary φn ∈ Cn, we have

‖φ‖p2 =

(

2

π

∫ π/2

0
|φ(t)|p2dt

)1/p2

=

(

2

π

∫ π/2

0
|φ(t)|p1 |φ(t)|p2−p1dt

)1/p2

≤

≤
(

2

π

∫ π/2

0
|φ(t)|p1dt

)1/p2
(

‖φ‖C[0,π/2]

)(p2−p1)/p2 = (‖φ‖p1)p1/p2
(

‖φ‖C[0,π/2]

)(p2−p1)/p2 .

Consider inequality (1.14) with the parameter p2:

‖φ‖C[0,π/2] ≤M(n)p2‖φ‖p2 ≤M(n)p2 (‖φ‖p1)p1/p2
(

‖φ‖C[0,π/2]

)(p2−p1)/p2 .

Dividing by the latter factor, we obtain the inequality

(

‖φ‖C[0,π/2]

)p1/p2 ≤M(n)p2 (‖φ‖p1)p1/p2 .

Raise it to the power p2/p1:

‖φ‖C[0,π/2] ≤ (M(n)p2)
p2/p1 ‖φ‖p1 .

This inequality holds for any polynomial φ ∈ Cn; hence,

M(n)p1 ≤ (M(n)p2)
p2/p1 ,

or

(M(n)p1)
p1 ≤ (M(n)p2)

p2 , 0 < p1 < p2 <∞; (2.12)

this is the required property of monotonicity.

2.4.2. Estimates for a constant in (1.14)

As a special case of (2.12), we have the inequality

M(n)p ≥ (M(n)1)
1/p , 1 < p <∞.

Using now inequalities (2.8) and (1.6), we obtain the lower estimate

M(n)p ≥ (n+ 1)1/p , 1 ≤ p <∞.

Using (2.12) and (1.24), we obtain the estimates

M(n)p ≤ (2(n+ 1))1/p , 0 < p ≤ 2,

M(n)p ≥ (2(n + 1))1/p , p ≥ 2.

Finally, inequalities (2.9) and (1.5) imply the estimate

M(n)p ≤ 4(n+ 1)1/p, 0 < p <∞.
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3. Characterization of an extremal C -polynomial in the Nikol’skii inequality

The primary purpose of this section is to prove Theorem 2, which characterizes the extremal Cn-
polynomial in the Nikol’skii inequality (1.16). As mentioned above, statements similar to Theorem 2
can be found in the authors’ papers, personal and with co-authors: [5–7, 9]. The ideas contained
in these statements have been summarized in [3]. The fact that we need [3] holds for inequalities
similar to inequality (1.16) for algebraic polynomials in spaces Lp with weight. Because of this, we
first rewrite inequality (1.16) in terms of algebraic polynomials, use Theorem 4 from [3], and then
make a conclusion related to inequality (1.16).

3.1. Equivalent to (1.16) inequality for algebraic polynomials on an interval

We can associate inequalities (1.14) and (1.16) on the set Cn with equivalent inequalities on the
set of algebraic polynomials. For this, we describe C -polynomials in terms of algebraic polynomials.
Denote by Pn the set of algebraic polynomials

ρn(t) =

n
∑

ℓ=0

cℓt
ℓ (3.1)

of degree (at most) n with complex coefficients. In further consideration, we will need some
properties of the Chebyshev polynomials

Tν(t) = cos(νx), x = arccos t, t ∈ [−1, 1], (3.2)

of the first kind of degree ν ≥ 0; these properties can be found, for example, in [21, Ch. 2, Sect. 2.2]).
A polynomial Tν , ν ≥ 1, can be represented as

Tν(t) =
ν

2

[ν/2]
∑

k=0

(−1)k

ν − k
Ck
ν−k(2t)

ν−k = 2ν−1tν − ν2ν−3tν−2 + · · · . (3.3)

A polynomial Tν is even or odd in accordance with the evenness of the number ν, and its leading
coefficient (for ν ≥ 1) is 2ν−1.

Lemma 4. For n ≥ 1, the relation

φn(x) = tρn(t
2), t = cos x, x ∈ [0, π], t ∈ [−1, 1], (3.4)

establishes a bijection between the set of polynomials φn ∈ Cn of order n and the set Pn of alge-
braic polynomials ρn of degree n. Under this correspondence, the leading coefficient an(φn) of a
C -polynomial φn and the leading coefficient cn(ρn) of the polynomial ρn are related by the formula

cn(ρn) = 22nan(φn); (3.5)

in addition, the following equalities hold :

φn(0) = ρn(1), (3.6)

‖φn‖Lp(0,π/2) = ‖ρn‖Lp
υ(0,1), υ(u) = υ(u)p =

u(p−1)/2

π
√
1− u

. (3.7)



40 Vitalii Arestov and Marina Deikalova

P r o o f. First, let us show that an arbitrary C -polynomial

φn(x) =

n
∑

k=0

ak cos(2k + 1)x (3.8)

of order n ≥ 0 can be presented in the form (3.4), where ρn is an algebraic polynomial (3.1) of
degree n. Replace cos(2k + 1)x with T2k+1(t), t = cos x, t ∈ [−1, 1], in (3.8). A polynomial T2k+1

is odd, and consequently, can be represented in the form T2k+1(t) = tRk(t
2), where Rk is a real

algebraic polynomial of degree k. The leading coefficient of the polynomial Rk is 22k and Rk(1) = 1.
Therefore, polynomial (3.8) can be represented as (3.4), where ρn is some algebraic polynomial (3.1)
of degree n; the leading coefficients of the polynomials φn and ρn satisfy the relation (3.5).

Conversely, let ρn ∈ Pn. Consider the function f(x) = cos x ρn(cos
2 x). Based on the represen-

tation (3.1), we have

f(x) = cosx ρn(cos
2 x) =

n
∑

ℓ=0

cℓ cos
2ℓ+1 x. (3.9)

The function cos2ℓ+1 x is an even trigonometric polynomial of order 2ℓ+ 1:

cos2ℓ+1 x =

ℓ
∑

k=0

ρℓ,k cos(2k + 1)x. (3.10)

This fact is, of course, known. However, it is easy to obtain (by induction on ℓ) starting from the
representations (3.2) and (3.3). In particular, it follows from (3.3) that the leading coefficient of
the representation (3.10) is ρℓ,ℓ = 2−2ℓ. Thus, function (3.9) is a C -polynomial of the form (3.8).

Relation (3.4) establishes a bijection between Cn and Pn. Formula (3.6) is obvious. Let us
verify (3.7):

‖φn‖Lp(0,π/2) =

(

2

π

∫ π/2

0
|φn(x)|pdx

)1/p

=

(

2

π

∫ π/2

0
| cos xρn(cos2 x)|pdx

)1/p

= [cos x = t] =

=

(

2

π

∫ 1

0
|tρn(t2)|p

dt√
1− t2

)1/p

=
[

t2 = u
]

=

(

1

π

∫ 1

0
|ρn(u)|p

u(p−1)/2du√
1− u

)1/p

=

=

(
∫ 1

0
|ρn(u)|pυ(u)du

)1/p

, υ(u) = υ(u)p =
u(p−1)/2

π
√
1− u

.

Thus, we obtain equality (3.7). Lemma 4 is proved completely. �

Corollary 1. The representation (3.4) implies that for n ≥ 1 the polynomial φ ∈ Cn, φ 6≡ 0, can
have on [0, π/2) at most n zeros, taking into account their multiplicities, i.e., Cn is the Chebyshev
system on [0, π/2).

Corollary 2. Lemma 4 implies that inequalities (1.14) and (1.16) can be associated with equiv-
alent sharp inequalities on the set of algebraic polynomials:

‖ρn‖∞ ≤ M(n)p‖ρn‖Lp
υ(0,1), ρn ∈ Pn, (3.11)

with constant M(n)p =M(n)p and

|ρn(1)| ≤ M(n, 1)p‖ρn‖Lp
υ(0,1), ρn ∈ Pn, (3.12)

with constant M(n, 1)p = M(n, 0)p. Moreover, a polynomial ̺n ∈ Pn is extremal in inequali-
ties (3.11) and (3.12) if and only if the polynomial ϕn ∈ Cn related to ̺n by formula (3.4) is
extremal in inequalities (1.14) and (1.16).
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Let us reformulate the problem of studying inequality (3.12) as an approximation problem.
Consider the set

Pn[1] =
{

ρn ∈ Pn : ρn(1) = 1
}

(3.13)

of polynomials with a fixed unit value at unity: ρn(1) = 1. On this set, we define the value

en[1]p = inf
{

‖ρn‖Lp
υ(0,1) : ρn ∈ Pn[1]

}

(3.14)

of the least deviation from zero in the space Lp
υ(0, 1) of the class of polynomials (3.13). It is clear that

en[1]p = 1/M(n, 1)p. Moreover, polynomials extremal in problem (3.14) and in inequality (3.12)
coincide (up to a multiplicative constant). Thus, the problem on the sharp inequality (3.12) is
equivalent to problem (3.14) on the least deviation from zero of the class (3.13).

Lemma 5. For 1 ≤ p <∞ and n ≥ 1, the following statements hold for a polynomial ̺n ∈ Pn

extremal in inequality (3.12) and such that ̺n(1) = 1.

(1) The polynomial ̺n is characterized by the property

∫ 1

0
ρn−1(u)(1 − u)υ(u)|̺n(u)|p−1sign ̺n(u)du = 0, ρn−1 ∈ Pn−1. (3.15)

(2) The polynomial ̺n has degree n, all its n roots are real, simple, and lie on the interval (0, 1);
in this sense, the polynomial ̺n is real.

(3) The polynomial ̺n is unique.

P r o o f. Most of the results of this lemma are contained in [3]. We find it difficult in some cases
to make precise references to this paper. Therefore, we have to repeat some arguments from [3]
with clarifications and explanations.

In Theorem 4 of [3], in particular, the following properties of a polynomial ̺n extremal in the
inequality (3.12) were proved.

(1′) The polynomial ̺n is real; more exactly, it has real coefficients and, hence, takes real values
on the real axis.

(2′) The polynomial ̺n is characterized by the property (3.15).

It follows that the polynomial ̺n has n sign changes on the interval (0, 1). Otherwise, the
polynomial with simple zeros at the sign change points of the polynomial ̺n would have order at
most n− 1 and the property (3.15) would not hold on it.

Finally, let us verify that an extremal polynomial ̺n is unique for all 1 ≤ p <∞. In fact,
let ̺n and ζn be two polynomials that solve problem (3.14). By the inequality ‖̺n + ζn‖Lp

υ
≤

‖̺n‖Lp
υ
+ ‖ζn‖Lp

υ
, their half-sum (̺n + ζn)/2 has the same property; hence, we have the equality

‖̺n + ζn‖Lp
υ
= ‖̺n‖Lp

υ
+ ‖ζn‖Lp

υ
. For 1 < p < ∞, since the space Lp

υ(0, 1) is strictly normalized,
it immediately follows that ζn = ̺n. If p = 1, then we can only assert so far that the signs of the
polynomials ζn and ̺n coincide almost everywhere on [0, 1]. The zeros of these polynomials are
simple and lie on the interval (0, 1), so the polynomials ζn and ̺n have the same set of zeros and
the same value at the point u = 1: ζn(1) = ̺n(1) = 1, hence, these polynomials coincide. Thus,
the extremal polynomial is unique for p = 1 too.

Lemma 5 is proved completely. �

Based on the weight υ defined in (3.7), let us define the following weight on the interval (0, 1):

̟(x) = (1− u)υ(u) =
u(p−1)/2

√
1− u

π
. (3.16)
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Consider the problem on the least deviation from zero

u(P1
n)Lp

̟(0,1) = min{‖ρn‖Lp
̟(0,1) : ρn ∈ P1

n} (3.17)

in the space Lp
̟(0, 1) of the set P1

n of algebraic polynomials of degree n whose leading coefficient
is 1. Denote by ̺∗n = ̺∗n,̟,p a polynomial solving this problem:

u(P1
n)Lp

̟(0,1) = ‖̺∗n‖Lp
̟(0,1);

it is called a polynomial of degree n with unit leading coefficient that deviates least from zero in
the space Lp

̟(0, 1).

Theorem 3. For all 1 ≤ p < ∞ and n ≥ 1, the polynomial ̺∗n of degree n with unit leading
coefficient that deviates least from zero in the space Lp

̟(0, 1) with weight (3.16) is the unique
extremal polynomial in inequality (3.12).

P r o o f. The polynomial ̺∗n is characterized by the property that the function |̺∗n|p−1sign ̺∗n
is orthogonal to the space Pn−1 (see, for example, [20, Ch. 3, Sect. 3.3, Theorems 3.3.1 and 3.3.2]):

∫ 1

0
̟(x) ρn−1(x)|̺∗n(x)|p−1sign ̺∗n(x) dx = 0, ρn−1 ∈ Pn−1.

This property is the same as property (3.15). Therefore, the polynomials ̺n and ̺∗n can differ only
by a multiplicative constant. Theorem 3 is proved. �

3.2. Characterization of a C -polynomial extremal in inequality (1.16)

Let us apply the results of the previous section to describing the characteristic properties of
Cn-polynomials extremal in inequalities (1.14) and (1.16).

3.2.1. An analog of Lemma 5 in the set of C -polynomials

Let us reformulate Lemma 5 for the extremal Cn-polynomial of inequality (1.16).

Lemma 6. For 1 ≤ p < ∞ and n ≥ 1, the following statements hold for polynomials ϕn ∈ Cn

extremal in inequality (1.16) and such that ϕn(0) = 1.
(1) The polynomial ϕn is characterized by the property

∫ π/2

0
φn−1(t)(sin

2 t) |ϕn(t)|p−1signϕn(t)dt = 0, φn−1 ∈ Cn−1. (3.18)

(2) The polynomial ϕn has order n. The polynomial ϕn has n simple roots on the inter-
val (0, π/2).

(3) The polynomial ϕn is unique.

P r o o f. Let us employ the statements of Lemmas 4 and 5. Let ̺n ∈ Pn be an extremal
(algebraic) polynomial in inequality (1.16) with the property ̺n(1) = 1. The polynomial ̺n and
the polynomial ϕn are related by (3.4).

Let us check that the relation (3.18) coincides with (is equivalent to) (3.15). For this, we
transform the functional on the left-hand side of (3.15). For a polynomial ρn−1 ∈ Pn−1, we define a
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polynomial φn−1 ∈ Cn−1 that is expressed in terms of ρn−1 by formula (3.4). Based on the left-hand
side of (3.15), we find

∫ 1

0
ρn−1(u)(1 − u)υ(u)|̺n(u)|p−1sign ̺n(u)du =

=
1

π

∫ 1

0
ρn−1(u)(1 − u)

1√
1− u

|
√
u̺n(u)|p−1sign ̺n(u)du =

=
1

π

∫ 1

0
ρn−1(u)

√
1− u|

√
u̺n(u)|p−1sign ̺n(u)du =

[

u = t2
]

=

=
2

π

∫ 1

0
tρn−1(t

2)
√

1− t2|t̺n(t2)|p−1sign ̺n(t
2)dt = [t = cos x] =

=
2

π

∫ π/2

0
φn−1(x) sin

2 x |ϕn(x)|p−1signϕn(x)dt.

Now you can see that the conditions (3.18) and (3.15) hold or do not hold simultaneously.
Lemma 6 is proved. �

Consider a problem similar (3.17) on the value

U(C 1
n )Lp

σ(0,π/2) = min{‖φn‖Lp
σ(0,π/2) : φn ∈ C

1
n} (3.19)

of the least deviation from zero in the space Lp
σ(0, π/2) with weight σ(x) = sin2 x of the set C 1

n

of algebraic polynomials of degree n whose leading coefficient is 1. Denote by ϕ∗
n = ϕ∗

n,σ,p the
polynomial of degree n with unit leading coefficient that deviates least from zero in the space
Lp
σ(0, π/2), i.e., the polynomial that solves problem (3.19):

U(C 1
n )Lp

σ(0,π/2) = ‖ϕ∗
n‖Lp

σ(0,π/2).

Lemma 7. For 1 ≤ p < ∞ and n ≥ 1, the following statements hold for problems (3.17)
and (3.19).

(1) The values of the problems are related by the equality

U(C 1
n )Lp

σ(0,π/2) = 22n u(P1
n)Lp

̟(0,1).

(2) A polynomial ̺∗n ∈ P1
n extremal in problem (3.17) and a polynomial ϕ∗

n ∈ C 1
n extremal in

problem (3.19) are related by the equality

ϕ∗
n(x) = 22nt ̺∗n(t

2), t = cos x, x ∈ [0, π/2], t ∈ [0, 1].

P r o o f. Let ρn ∈ Pn, and let φn ∈ Cn be the polynomial expressed in terms of ρn by
formula (3.4). We have

‖ρn‖pLp
̟(0,1)

=
1

π

∫ 1

0
u(p−1)/2

√
1− u|ρn(u)|pdu = [u = t2] =

=
2

π

∫ 1

0

√

1− t2|tρn(t2)|pdt = [t = cos x] =
2

π

∫ π/2

0
sin2 x|φn(x)|pdx = ‖φn‖pLp

σ(0,π/2)
.

Consequently, the norms satisfy the equality

‖ρn‖Lp
̟(0,1) = ‖φn‖Lp

σ(0,π/2).

According to (3.5), we have
φn ∈ C

1
n ⇐⇒ 2−2nρn ∈ P1

n.

From here, all the assertions of Lemma 7 follow. Lemma 7 is proven. �
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3.2.2. The proof of Theorem 2

For an algebraic polynomial ρ ∈ Pn and a Cn-polynomial φ ∈ Cn related by (3.4), we will say that
they are (3.4)-related.

(1) According to Corollary 2, the polynomials ̺ ∈ Pn and φ ∈ Cn extremal in the Nikol’skii
inequalities (1.14) and (1.16) and inequalities (3.11) and (3.12), respectively, are (3.4)-related.
According to Lemmas 5 and 6, these polynomials are unique up to numerical factors.

(2) Let ̺∗ ∈ P1
n and ϕ∗

n ∈ C 1
n be extremal polynomials, i.e., polynomials that deviate least

from zero in problems (3.17) and (3.19), respectively. According to Lemma 7, the polynomials ρ∗n
and 22nϕ∗ are also (3.4)-related.

(3) According to Theorem 3, the polynomial ̺∗ is extremal in inequalities (3.11) and (3.12).
Consequently, ϕ∗ is also extremal in inequalities (1.14) and (1.16).

Thus, Theorem 2 is proved. �

4. Conclusions

The system of functions (1.20) is in some sense a “quarter” of the classical trigonometric system.
However, as it turned out (see Theorem 1 and Lemma 3), the best constants in inequalities (1.2)
and (1.14) are very close. The reason for this is not clear to the authors. What will be the situation
with other extremal problems in these systems, the authors also do not know.
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4. Arestov V., Babenko A., Deikalova M., Horváth Á. Nikol’skii inequality between the uniform norm and
integral norm with Bessel weight for entire functions of exponential type on the half-line. Anal. Math.,
2018. Vol. 44, No. 1. P. 21–42. DOI: 10.1007/s10476-018-0103-6

5. Arestov V.V., Deikalova M.V. Nikol’skii inequality for algebraic polynomials on a multidi-
mensional Euclidean sphere. Proc. Steklov Inst. Math., 2014. Vol. 284, Suppl. 1. P. 9–23.
DOI: 10.1134/S0081543814020023

6. Arestov V., Deikalova M. Nikol’skii inequality between the uniform norm and Lq-norm with ultraspheri-
cal weight of algebraic polynomials on an interval. Comput. Methods Funct. Theory, 2015. Vol. 15, No. 4.
P. 689–708. DOI: 10.1007/s40315-015-0134-y

7. Arestov V., Deikalova M. Nikol’skii inequality between the uniform norm and Lq-norm with Jacobi
weight of algebraic polynomials on an interval. Analysis Math., 2016. Vol. 42, No. 2. P. 91–120.
DOI: 10.1007/s10476-016-0201-2

8. Arestov V.V., Deikalova M.V. On one generalized translation and the corresponding inequality of
different metrics. Trudy Inst. Mat. Mekh. UrO RAN, 2022. Vol. 28, No. 4. (in Russian)
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Abstract: In the present paper, we study simple algebras, which do not belong to the well-known classes
of algebras (associative algebras, alternative algebras, Lie algebras, Jordan algebras, etc.). The simple finite-
dimensional algebras over a field of characteristic 0 without finite basis of identities, constructed by Kislitsin,
are such algebras. In the present paper, we consider two such algebras: the simple seven-dimensional anticom-
mutative algebra D and the seven-dimensional central simple commutative algebra C. We prove that every local
derivation of these algebras D and C is a derivation, and every 2-local derivation of these algebras D and C is
also a derivation. We also prove that every local automorphism of these algebras D and C is an automorphism,
and every 2-local automorphism of these algebras D and C is also an automorphism.

Keywords: Simple algebra, Derivation, Local derivation, 2-Local derivation, Automorphism, Local auto-
morphism, 2-Local automorphism, Basis of identities.

1. Introduction

In the present paper, we study local and 2-local derivations and automorphisms of simple finite-
dimensional algebras without finite basis of identities, constructed by Kislitsin in [19] and [20].
Kadison in [12] introduced and investigated a notion of local derivations. He proved that each
continuous local derivation from a von Neumann algebra into its dual Banach bimodule is a deriva-
tion. Šemrl introduced a similar notion of 2-local derivations. He proved that any 2-local derivation
of the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert
space H is a derivation [24]. After, numerous new results related to the description of local and
2-local derivations of associative algebras have appeared. For example, papers [1, 3, 4, 15, 16, 22]
are devoted to local and 2-local derivations of associative algebras.

The study of local and 2-local derivations of nonassociative algebras was initiated in papers [5, 6]
of Ayupov and Kudaybergenov (for the case of Lie algebras). They proved that each local and
2-local derivation on a semisimple finite-dimensional Lie algebra are derivations. In [8], examples
of 2-local derivations on nilpotent Lie algebras that are not derivations are given. After the cited
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works, the study of local and 2-local derivations was continued for Leibniz algebras [7] and Jordan
algebras [2]. Local and 2-local automorphisms were also studied in many cases. For example, local
and 2-local automorphisms on Lie algebras have been studied in [5, 10].

The variety of Malcev algebras is a generalization of the variety of Lie algebras [23]. It is
closely related to other classes of nonassociative structures: it is a proper subvariety of binary
Lie algebras, and, under the multiplication ab− ba, an alternative algebra is a Malcev algebra.
Moreover, it is connected with various classes of algebraic systems such as Moufang loops, Poisson–
Malcev algebras, etc. The study of generalizations of derivations of simple Malcev algebras was
initiated by Filippov in [11] and continued in some papers of Kaygorodov and Popov [13, 14].

Now, a linear operator ∇ on A is called a local automorphism if, for every x ∈ A, there
exists an automorphism φx of A, depending on x, such that ∇(x) = φx(x). The concept of local
automorphism was introduced by Larson and Sourour [21] in 1990. They proved that invertible local
automorphisms of the algebra of all bounded linear operators on an infinite-dimensional Banach
space X are automorphisms.

A similar notion, which characterizes non-linear generalizations of automorphisms, was intro-
duced by Šemrl in [24] as 2-local automorphisms. Namely, a map ∆ : A → A (not necessarily linear)
is called a 2-local automorphism if, for every x, y ∈ A, there exists an automorphism φx,y : A → A
such that ∆(x) = φx,y(x) and ∆(y) = φx,y(y). After the work of Šemrl, it appeared numerous new
results related to the description of local and 2-local automorphisms of algebras (see, for example,
[5, 7, 9, 10, 16]).

In the present paper, we continue the study of derivations and automorphisms of simple algebras.
We study derivations and automorphisms of simple algebras, which do not belong to well-known
classes of algebras (commutative, associative, alternative, Lie, Jordan, etc.). The simple finite-
dimensional algebras without finite basis of identities, constructed by Kislitsin are such algebras.
Namely, we prove that any local derivation (automorphism) of the simple finite-dimensional algebras
without finite basis of identities, constructed by Kislitsin in [19] and [20], is a derivation (an
automorphism, respectively), and every 2-local derivation (automorphism) of these algebras is also
a derivation (an automorphism, respectively). Note that central simple finite-dimensional algebras
which has no finite basis of identities were considered in the works [17] and [18] of Isaev and
Kislitsin.

2. A simple finite-dimensional algebra without finite basis of identities

Let D = 〈e, v1, v2, e11, e12, e22, p〉F be an algebra over a field F of characteristic 0 whose nonzero
products of basis elements from

{e, v1, v2, e11, e12, e22, p} (2.1)

are defined by the rules

vieij = −eijvi = vj , v2p = −pv2 = e, vie = −evi = vi,

eije = −eeij = eij , pe = −ep = p.

Then D is a simple anticommutative algebra without finite basis of identities [20]. Let a be an
element in D. Then we can write

a = a1e+ a2v1 + a3v2 + a4e11 + a5e12 + a6e22 + a7p

for some elements a1, a2, a3, a4, a5, a6, and a7 in F. Throughout the paper, let

a = (a1, a2, a3, a4, a5, a6, a7)
T .
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Conversely, if v = (a1, a2, a3, a4, a5, a6, a7)
T is a column vector with a1, a2, a3, a4, a5, a6, and a7 in F,

then, throughout the paper, we will denote by v̂ the element

a1e+ a2v1 + a3v2 + a4e11 + a5e12 + a6e22 + a7p;

i.e.,

v̂ = a1e+ a2v1 + a3v2 + a4e11 + a5e12 + a6e22 + a7p.

Let A be an algebra. A linear map D : A → A is called a derivation if

D(xy) = D(x)y + xD(y)

for any two elements x, y ∈ A.

Our principal tool for the description of local and 2-local derivations of D is the following
proposition.

Proposition 1. A linear map D : D → D is a derivation if and only if the matrix of D in the
standard basis (2.1) has the following form:




0 0 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 0 a2,2 + a5,5 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 a5,5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −(a2,2 + a5,5)




.

Here the action of D corresponds to multiplying the matrix by a column on the right.

P r o o f. The proof is carried out by checking the derivation property on the algebra D.

Let A = (ai,j)
7
i,j=1 be the matrix of the derivation D. Then

Avieij = −Aeijvi = Avj, Av2p = −Apv2 = Ae, Avie = −Aevi = Avi,

Aeije = −Aeeij = Aeij , Ape = −Aep = Ap.

On the other hand,

Âvieij = Âvieij + viÂeij .

Hence,

Âvj = Âvieij + viÂeij .

So,

Âv1 = Âv1e11 + v1Âe11,

a1,2e+ a2,2v1 + a3,2v2 + a4,2e11 + a5,2e12 + a6,2e22 + a7,2p

= (a1,2e+ a2,2v1 + a3,2v2 + a4,2e11 + a5,2e12 + a6,2e22 + a7,2p)e11

+v1(a1,4e+ a2,4v1 + a3,4v2 + a4,4e11 + a5,4e12 + a6,4e22 + a7,4p)
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if i = 1, j = 1, and

a1,2e+ a2,2v1 + a3,2v2 + a4,2e11 + a5,2e12 + a6,2e22 + a7,2p

= −a1,2e11 + a2,2v1 + a1,4v1 + a4,4v1 + a5,4v2.

This implies that

a1,2 = 0, a1,4 + a4,4 = 0, a3,2 = a5,4, a4,2 = −a1,2 = 0, a5,2 = 0, a6,2 = 0, a7,2 = 0.

In addition, if i = 1 and j = 2, then

Âv2 = Âv1e12 + v1Âe12

and

a1,3e+ a2,3v1 + a3,3v2 + a4,3e11 + a5,3e12 + a6,3e22 + a7,3p

= (a1,2e+ a2,2v1 + a3,2v2 + a4,2e11 + a5,2e12 + a6,2e22 + a7,2p)e12

+v1(a1,5e+ a2,5v1 + a3,5v2 + a4,5e11 + a5,5e12 + a6,5e22 + a7,5p)

= −a1,2e12 + a2,2v2 + a1,5v1 + a4,5v1 + a5,5v2.

This implies that

a1,3 = 0, a2,3 = a1,5 + a4,5, a3,3 = a2,2 + a5,5,

a4,3 = 0, a5,3 = −a1,2, a6,3 = 0, a7,3 = 0.

Besides, if i = 2 and j = 2, then

Âv2 = Âv2e22 + v2Âe22

and

a1,3e+ a2,3v1 + a3,3v2 + a4,3e11 + a5,3e12 + a6,3e22 + a7,3p

= (a1,3e+ a2,3v1 + a3,3v2 + a4,3e11 + a5,3e12 + a6,3e22 + a7,3p)e22

+v2(a1,6e+ a2,6v1 + a3,6v2 + a4,6e11 + a5,6e12 + a6,6e22 + a7,6p)

= −a1,3e22 + a3,3v2 + a1,6v2 + a6,6v2 + a7,6e.

This implies that

a1,3 = a7,6 = 0, a2,3 = 0, a1,6 + a6,6 = 0, a4,3 = 0,

a5,3 = 0, a6,3 = −a1,3 = 0, a7,3 = 0.

Similarly, we have

a3,3 = −a7,7, a2,1 = 0, a1,7 = 0, a6,7 = 0, a4,1 = 0, a5,1 = 0, a6,1 = 0,

a1,2 = 0, a4,1 = 0, a5,1 = 0, a1,3 = 0, a7,1 = 0, a6,1 = 0,

a1,4 = 0, a2,1 = 0, a1,1 = 0, a1,5 = 0, a1,6 = 0, a3,1 = 0, a1,7 = 0,

a6,2 = 0, a7,2 = 0, a4,3 = 0, a3,6 = 0, a3,7 = 0, a3,5 = 0, a2,7 = 0,

a3,4 = 0, a1,2 = 0, a3,2 = 0, a4,7 = 0, a5,7 = 0, a2,6 = 0, a3,4 = 0, a2,4 = 0,

a2,5 = 0, a1,2 = 0, a5,6 = 0, a4,6 = 0, a1,3 = 0, a2,3 = 0, a6,5 = 0, a7,5 = 0,

a6,4 = 0, a7,4 = 0.

As a result, we get the matrix from Proposition 1. The proof is complete. �

Let A be an algebra. A linear map ∇ : A → A is called a local derivation if, for any element
x ∈ A, there exists a derivation D : A → A such that ∇(x) = D(x).
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Theorem 1. Each local derivation on the simple algebra D is a derivation.

P r o o f. Let ∇ be a local derivation on D, and let A = (ai,j)
7
i,j=1 be the matrix of ∇. Then

∇(v1) = av12,2v1 = a2,2v1, ∇(v2) = (av22,2 + av25,5)v2 = a3,3v2,

∇(e1,2) = a
e1,2
5,5 e1,2 = a5,5e1,2, ∇(p) = −(ap2,2 + a

p
5,5)p = a7,7p,

and the remaining components of the matrix A are equal to zero. At the same time,

∇(v1 + v2 + e1,2 + p) = ∇(v1) +∇(v2) +∇(e1,2) +∇(p) (2.2)

and

∇(v1 + v2 + e1,2 + p) = a
v1+v2+e1,2+p
2,2 v1 + (a

v1+v2+e1,2+p
2,2 + a

v1+v2+e1,2+p
5,5 )v2

+a
v1+v2+e1,2+p
5,5 e1,2 − (a

v1+v2+e1,2+p
2,2 + a

v1+v2+e1,2+p
5,5 )p.

By 2.2, we have

a
v1+v2+e1,2+p

2,2 v1 + (a
v1+v2+e1,2+p

2,2 + a
v1+v2+e1,2+p

5,5 )v2

+a
v1+v2+e1,2+p
5,5 e1,2 − (a

v1+v2+e1,2+p
2,2 + a

v1+v2+e1,2+p
5,5 )p

= av12,2v1 + (av22,2 + av25,5)v2 + a
e1,2
5,5 e1,2 − (ap2,2 + a

p
5,5)p.

Hence,

a
v1+v2+e1,2+p

2,2 = av12,2, a
v1+v2+e1,2+p

2,2 + a
v1+v2+e1,2+p

5,5 = av22,2 + av25,5,

a
v1+v2+e1,2+p
5,5 = a

e1,2
5,5 , a

v1+v2+e1,2+p
2,2 + a

v1+v2+e1,2+p
5,5 = a

p
2,2 + a

p
5,5.

This implies that

av22,2 + av25,5 = av12,2 + a
e1,2
5,5 , a

p
2,2 + a

p
5,5 = av12,2 + a

e1,2
5,5

and

A =




0 0 0 0 0 0 0
0 av12,2 0 0 0 0 0

0 0 av12,2 + a
e1,2
5,5 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 a

e1,2
5,5 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 −(av12,2 + a

e1,2
5,5 )




.

Hence, by Proposition 1, ∇ is a derivation. This completes the proof. �

We give another characterization of derivations on the algebra D in the following theorem.

Let A be an algebra. A (not necessary linear) map ∆ : A → A is called a 2-local derivation
if, for all elements x, y ∈ A, there exists a derivation Dx,y : A → A such that ∆(x) = Dx,y(x) and
∆(y) = Dx,y(y).

Theorem 2. Each 2-local derivation on the simple algebra D is a derivation.
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P r o o f. Suppose that ∆ is a 2-local derivation on D and, for elements a, b ∈ D, Da,b is a

derivation on D such that Da,b(a) = ∆(a) and Da,b(b) = ∆(b). Let Aa,b = (aa,bi,j )
7
i,j=1 be the matrix

of Da,b.
Let

a = λ1e+ λ2v1 + λ3v2 + λ4e1,1 + λ5e1,2 + λ6e2,2 + λ7p

be an arbitrary element from D. For every v ∈ D, there exists a derivation Dv,a such that

∆(v) = Dv,a(v), ∆(a) = Dv,a(a).

Then from

Dv1,v(v1) = Dv1,a(v1), v ∈ D,

it follows that

a
v1,v
2,2 v1 = a

v1,a
2,2 v1.

Hence,

a
v1,v
2,2 = a

v1,a
2,2 .

Therefore,

∆(a) = Dv1,a(a) = a
v1,v
2,2 λ2v1 + (av1,a2,2 + a

v1,a
5,5 )λ3v2 + a

v1,a
5,5 λ5e1,2 − (av1,a2,2 + a

v1,a
5,5 )λ7p.

Similarly, from

Dv2,v(v2) = Dv2,a(v2), v ∈ D,

it follows that

∆(a) = Dv2,a(a) = a
v2,a
2,2 λ2v1 + (av2,v2,2 + a

v2,v
5,5 )λ3v2 + a

v2,a
5,5 λ5e1,2 − (av2,a2,2 + a

v2,a
5,5 )λ7p.

Similarly, we have

∆(a) = De1,2,a(a) = a
e1,2,a
2,2 λ2v1 + (a

e1,2,a
2,2 + a

e1,2,a
5,5 )λ3v2 + a

e1,2,v
5,5 λ5e1,2 − (a

e1,2,a
2,2 + a

e1,2,a
5,5 )λ7p,

∆(a) = Dp,a(a) = a
p,a
2,2λ2v1 + (ap,a2,2 + a

p,a
5,5)λ3v2 + a

p,a
5,5λ5e1,2 − (ap,v2,2 + a

p,v
5,5)λ7p.

Hence,

∆(a) = Dv1,a(a) = Dv2,a(a) = De1,2,a(a) = Dp,a(a) =

a
v1,v
2,2 λ2v1 + (av2,w2,2 + a

v2,w
5,5 )λ3v2 + a

e1,2,z
5,5 λ5e1,2 − (ap,t2,2 + a

p,t
5,5)λ7p

for any v,w, z, t ∈ D. Note that the components in the last sum do not depend on the element a.
Therefore, the map ∆ is linear and it is a local derivation. The linear operator ∆ has the following
matrix:

A =




0 0 0 0 0 0 0
0 a

v1,v
2,2 0 0 0 0 0

0 0 a
v2,w
2,2 + a

v2,w
5,5 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 a

e1,2,z
5,5 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −(ap,t2,2 + a
p,t
5,5)




.
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From ∆(v2 + p) = ∆(v2) + ∆(p), we get

(aa,v2+p
2,2 + a

a,v2+p
5,5 )v2 − (aa,v2+p

2,2 + a
a,v2+p
5,5 )p = (av2,w2,2 + a

v2,w
5,5 )v2 − (ap,t2,2 + a

p,t
5,5)p.

Hence,

a
a,v2+p
2,2 + a

a,v2+p
5,5 = a

v2,w
2,2 + a

v2,w
5,5 = a

p,t
2,2 + a

p,t
5,5. (2.3)

From ∆(v1 + v2 + e1,2) = ∆(v1) + ∆(v2) + ∆(e1,2), we get

a
a,v1+v2+e1,2
2,2 = a

v1,v
2,2 ,

a
a,v1+v2+e1,2
2,2 + a

a,v1+v2+e1,2
5,5 = a

v2,w
2,2 + a

v2,w
5,5 ,

a
a,v1+v2+e1,2
5,5 = a

e1,2,z
5,5 .

Hence,

a
v2,w
2,2 + a

v2,w
5,5 = a

v1,v
2,2 + a

e1,2,z

5,5 .

By (2.3), we also have

a
p,t
2,2 + a

p,t
5,5 = a

v1,v
2,2 + a

e1,2,z
5,5 .

Thus,

A =




0 0 0 0 0 0 0
0 a

v1,v
2,2 0 0 0 0 0

0 0 a
v1,v
2,2 + a

e1,2,z
5,5 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 a

e1,2,z
5,5 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 −(av1,v2,2 + a

e1,2,z
5,5 )




.

Therefore, by Proposition 1, ∆ is a derivation. This completes the proof. �

Let A be an algebra. A linear bijective map Φ: A → A is called an automorphism if
Φ(xy) = Φ(x)Φ(y) for any two elements x, y ∈ A.

Our principal tool for the description of local and 2-local automorphisms of D is the following
proposition.

Proposition 2. A linear map Φ: D → D is an automorphism if and only if the matrix of Φ
in the standard basis (2.1) has the following form:




1 0 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 0 a2,2a5,5 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 a5,5 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

a2,2a5,5




,

where a2,2 and a5,5 are nonzero elements from F. Here the action of Φ corresponds to multiplying
the matrix by a column on the right.
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P r o o f. Let B = (bi,j)
7
i,j=1 be the matrix of the automorphism Φ. Then there exists a

derivation D such that

B = eA,

where A is the matrix of D. It is known that

eA = E +A+
A2

2!
+

A3

3!
+ . . . ,

where E is the unit matrix. Hence,

B = E +A+
A2

2!
+

A3

3!
+ . . . . (2.4)

By (2.4) and Proposition 1, B is equal to




1 0 0 0 0 0 0

0
∑

∞

i=0

ai
2,2

i! 0 0 0 0 0

0 0
∑

∞

i=0
(a2,2+a5,5)i

i! 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0
∑

∞

i=0

ai
5,5

i! 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0
∑

∞

i=0
(−1)i(a2,2+a5,5)i

i!




=




1 0 0 0 0 0 0
0 ea2,2 0 0 0 0 0
0 0 ea2,2+a5,5 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 ea5,5 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 e−(a2,2+a5,5)




.

The latter matrix gives the desired form. This completes the proof. �

Let A be an algebra. A linear map ∇ : A → A is called a local automorphism if, for every
element x ∈ A, there exists an automorphism φx : A → A such that ∇(x) = φx(x).

Theorem 3. Each local automorphism on the simple algebra D is an automorphism.

P r o o f. Let ∇ be a local automorphism on D, and let A = (ai,j)
7
i,j=1 be the matrix of ∇.

Then

∇(v1) = av12,2v1 = a2,2v1, ∇(v2) = av22,2a
v2
5,5v2 = a3,3v2,

∇(e1,2) = a
e1,2
5,5 e1,2 = a5,5e1,2, ∇(p) =

1

a
p
2,2a

p
5,5

p = a7,7p

and the remaining components of the matrix A are equal to zero. At the same time,

∇(v1 + v2 + e1,2 + p) = ∇(v1) +∇(v2) +∇(e1,2) +∇(p) (2.5)
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and

∇(v1 + v2 + e1,2 + p) = a
v1+v2+e1,2+p
2,2 v1 + a

v1+v2+e1,2+p
2,2 a

v1+v2+e1,2+p
5,5 v2+

a
v1+v2+e1,2+p

5,5 e1,2 +
1

a
v1+v2+e1,2+p
2,2 a

v1+v2+e1,2+p
5,5

p.

By (2.5), we have

a
v1+v2+e1,2+p

2,2 v1 + a
v1+v2+e1,2+p

2,2 a
v1+v2+e1,2+p

5,5 )v2 + a
v1+v2+e1,2+p

5,5 e1,2 +
1

a
v1+v2+e1,2+p
2,2 a

v1+v2+e1,2+p
5,5

p

= av12,2v1 + av22,2a
v2
5,5v2 + a

e1,2
5,5 e1,2 +

1

a
p
2,2a

p
5,5

p.

Hence,

a
v1+v2+e1,2+p

2,2 = av12,2, a
v1+v2+e1,2+p

2,2 a
v1+v2+e1,2+p

5,5 = av22,2a
v2
5,5,

a
v1+v2+e1,2+p
5,5 = a

e1,2
5,5 , a

v1+v2+e1,2+p
2,2 a

v1+v2+e1,2+p
5,5 = a

p
2,2a

p
5,5.

This implies that

av22,2a
v2
5,5 = av12,2a

e1,2
5,5 , a

p
2,2a

p
5,5 = av12,2a

e1,2
5,5

and

A =




1 0 0 0 0 0 0
0 av12,2 0 0 0 0 0

0 0 av12,2a
e1,2
5,5 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 a

e1,2
5,5 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

a
v1
2,2a

e1,2
5,5




.

Hence, by Proposition 2, ∇ is an automorphism. This completes the proof. �

A (not necessary linear) map ∆ : A → A is called a 2-local automorphism if, for all elements
x, y ∈ A, there exists an automorphism φx,y : A → A such that ∆(x) = φx,y(x) and ∆(y) = φx,y(y).

Theorem 4. Each 2-local automorphism on the simple algebra D is an automorphism.

P r o o f. Suppose that ∆ is a 2-local automorphism on D and, for elements a, b ∈ D, Φa,b is

an automorphism on D such that Φa,b(a) = ∆(a) and Φa,b(b) = ∆(b). Let Aa,b = (aa,bi,j )
7
i,j=1 be the

matrix of Φa,b. Then, for all v, z ∈ D, there exists an automorphism Φv,z such that

∆(v) = Φv,z(v), ∆(z) = Φv,z(z).

Let Av,z = (av,zi,j )
n
i,j=1 be the matrix of the automorphism Φv,z.

Let
a = λ1e+ λ2v1 + λ3v2 + λ4e1,1 + λ5e1,2 + λ6e2,2 + λ7p

be an arbitrary element from D. For every v ∈ D, there exists an automorphism Φv,a such that

∆(v) = Φv,a(v), ∆(a) = Φv,a(a).
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Then from

Φv1,v(v1) = Φv1,a(v1), v ∈ D,

it follows that

a
v1,v
2,2 v1 = a

v1,a
2,2 v1.

Hence,

a
v1,v
2,2 = a

v1,a
2,2 .

Therefore,

∆(a) = Φv1,a(a) = λ1e+ a
v1,v
2,2 λ2v1 + a

v1,a
2,2 a

v1,a
5,5 λ3v2 + λ4e1,1

+a
v1,a
5,5 λ5e1,2 + λ6e2,2 +

1

a
v1,a
2,2 a

v1,a
5,5

λ7p.

Similarly, from

Φv2,v(v2) = Φv2,a(v2), v ∈ D,

it follows that

∆(a) = Φv2,a(a) = λ1e+ a
v2,a
2,2 λ2v1 + a

v2,v
2,2 a

v2,v
5,5 λ3v2 + λ4e1,1

+a
v2,a
5,5 λ5e1,2 + λ6e2,2 +

1

a
v2,a
2,2 a

v2,a
5,5

λ7p.

Similarly, we have

∆(a) = Φe1,2,a(a) = +λ1e+ a
e1,2,a

2,2 λ2v1 + a
e1,2,a

2,2 a
e1,2,a

5,5 λ3v2

+λ4e1,1 + a
e1,2,v
5,5 λ5e1,2 + λ6e2,2 +

1

a
e1,2,a
2,2 a

e1,2,a
5,5

λ7p,

∆(a) = Φp,a(a) = λ1e+ a
p,a
2,2λ2v1 + a

p,a
2,2a

p,a
5,5λ3v2

+λ4e1,1 + a
p,a
5,5λ5e1,2 + λ6e2,2 +

1

a
p,v
2,2a

p,v
5,5

λ7p.

Hence,

∆(a) = Φv1,a(a) = Φv2,a(a) = Φe1,2,a(a) = Φp,a(a) =

λ1e+ a
v1,v
2,2 λ2v1 + a

v2,w
2,2 a

v2,w
5,5 λ3v2 + λ4e1,1 + a

e1,2,z

5,5 λ5e1,2 + λ6e2,2 +
1

a
p,t
2,2a

p,t
5,5

λ7p

for any v,w, z, t ∈ D. Note that the components in the last sum do not depend on the element a.
Therefore, the map ∆ is linear and it is a local automorphism. The linear operator ∆ has the
following matrix:

A =




1 0 0 0 0 0 0
0 a

v1,v
2,2 0 0 0 0 0

0 0 a
v2,w
2,2 a

v2,w
5,5 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 a

e1,2,z
5,5 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

a
p,t

2,2a
p,t

5,5




.
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From ∆(v2 + p) = ∆(v2) + ∆(p), we get

a
a,v2+p
2,2 a

a,v2+p
5,5 v2 +

1

a
a,v2+p
2,2 a

a,v2+p
5,5

p = a
v2,w
2,2 a

v2,w
5,5 v2 +

1

a
p,t
2,2a

p,t
5,5

p.

Hence,

a
a,v2+p
2,2 a

a,v2+p
5,5 = a

v2,w
2,2 a

v2,w
5,5 = a

p,t
2,2a

p,t
5,5. (2.6)

From ∆(v1 + v2 + e1,2) = ∆(v1) + ∆(v2) + ∆(e1,2), we get

a
a,v1+v2+e1,2
2,2 = a

v1,v
2,2 , a

a,v1+v2+e1,2
2,2 a

a,v1+v2+e1,2
5,5 = a

v2,w
2,2 a

v2,w
5,5 ,

a
a,v1+v2+e1,2
5,5 = a

e1,2,z
5,5 .

Hence,

a
v2,w
2,2 a

v2,w
5,5 = a

v1,v
2,2 a

e1,2,z
5,5 .

By (2.6), we also have

a
p,t
2,2a

p,t
5,5 = a

v1,v
2,2 a

e1,2,z
5,5 .

Thus,

A =




1 0 0 0 0 0 0
0 a

v1,v
2,2 0 0 0 0 0

0 0 a
v1,v
2,2 a

e1,2,z
5,5 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 a

e1,2,z

5,5 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

a
v1,v

2,2 a
e1,2,z

5,5




.

Therefore, by Proposition 2, ∆ is an automorphism. This completes the proof. �

3. A simple central commutative algebra with no finite basis of identities

Let C = 〈1, v1, v2, e11, e12, e22, p〉F be an algebra over a field F of characteristic 0, where 1 is
unity and nonzero products of basis elements

{1, v1, v2, e11, e12, e22, p} (3.1)

other than 1 are defined as follows:

vieij = eijvi = vj , v2p = pv2 = 1.

Then the algebra C is a simple central commutative algebra with no finite basis of identities [19].
Let a be an element in C. Then we can write

a = a1e+ a2v1 + a3v2 + a4e11 + a5e12 + a6e22 + a7p,
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for some elements a1, a2, a3, a4, a5, a6, and a7 in F. Throughout the paper, let

a = (a1, a2, a3, a4, a5, a6, a7)
T .

Conversely, if v = (a1, a2, a3, a4, a5, a6, a7)
T is a column vector with a1, a2, a3, a4, a5, a6, and a7 in F,

then, throughout the paper, we will denote by v̂ the element

a1e+ a2v1 + a3v2 + a4e11 + a5e12 + a6e22 + a7p,

i.e.,

v̂ = a1e+ a2v1 + a3v2 + a4e11 + a5e12 + a6e22 + a7p.

Our principal tool for the description of local and 2-local derivations of C is the following
proposition.

Proposition 3. A linear map D : C → C is a derivation if and only if the matrix of D in the
basis (3.1) has the following form:




0 0 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 0 a2,2 + a5,5 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 a5,5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −(a2,2 + a5,5)




.

Here the action of D corresponds to multiplying the matrix by a column on the right.

P r o o f. The proof of this proposition is similar to the proof of Proposition 1. �

Theorem 5. Each local (2-local) derivation on the simple algebra C is a derivation.

P r o o f. The proof of this theorem is similar to the proofs of Theorems 1 and 2. �

Proposition 4. A linear map Φ: C → C is an automorphism if and only if the matrix of Φ in
the standard basis (3.1) has the following form:




1 0 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 0 a2,2a5,5 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 a5,5 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

a2,2a5,5




,

where a2,2 and a5,5 are nonzero elements from F. Here the action of Φ corresponds to multiplying
the matrix by a column on the right.

Theorem 6. Each local (2-local) automorphism on the simple algebra C is an automorphism.

P r o o f. The proof of this theorem is similar to the proofs of Theorems 3 and 4. �
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Abstract: In this paper we consider a class of impulsive stochastic functional differential equations driven
simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence
and uniqueness result and we establish some conditions ensuring the approximate controllability for the mild
solution by means of the Banach fixed point principle. At the end we provide a practical example in order to
illustrate the viability of our result.

Keywords: Approximate controllability, Fixed point theorem, Rosenblatt process, Mild solution stochastic
impulsive systems.

1. Introduction

It is well known that approximate controllability is one of the fundamental concepts in math-
ematical control theory for infinite differential systems and plays a significant role in both deter-
ministic and in stochastic dynamical systems. Approximate controllability means that the system
can be moved to an arbitrary small neighborhood of the final state. Some recent researches on the
existence results of approximate controllability are [8, 9, 14, 25].

Recently, there has been increasing interest in the analysis of control synthesis problems for im-
pulsive systems due to their significance both in theory and applications, for example, in problems
of sudden environmental changes, radiation of electromagnetic waves and changes in the intercon-
nections of subsystems. For some recent researches on the existence results for impulsive stochastic
differential equations, we refer the reader to monographs [3–5, 10, 23, 24, 29]. In these models,
the processes are characterized by the fact that they undergo abrupt changes of state at certain
moments of time between intervals of continuous evolution. For basic concepts about the impulsive
systems see [12, 17].

In recent years, there has been a growing interest in stochastic functional differential equations
driven by the Rosenblatt process [2, 19, 20, 22]. The theory of Rosenblatt process has been devel-
oped accordingly due to its nice properties see [13, 16, 27]. Tudor [28] investigated the Rosenblatt
process which is Gaussian and the calculus for it is much easier than other processes. However,
in concrete situations where the Gaussianity is not plausible for the model, one can employ the
Rosenblatt process. There is corresponding literature devoted to various theoretical aspects of
impulse systems controlled by Rosenblatt processes [7, 15, 18, 20].

Some dynamical systems of a special kind require a mixed process to model their dynamics [1,
26].

Inspired by the above studies, this article is devoted to demonstrating the approximate control-
lability of a soft solution for a class of neutral functional-stochastic differential equations controlled

https://doi.org/10.15826/umj.2022.2.005
mailto:benchaabane.abbes@univ-guelma.dz
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by a Wiener process and a Rosenblatt process independent of the form














dx(t) = Ax(t)dt+Bu(t)dt+ f (t, x(t)) dt+ g (t, x(t)) dW (t) + σ(t)dZH (t),
t ∈ [0, T ], t 6= tk,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t

−
k )), k = 1, 2, ...,m,

x(0) = x0 ∈ X,

(1.1)

where x(·) takes values in the separable Hilbert space X, A : D(A) ⊂ X → X is a closed, linear,
and densely defined operator on X. Let B be a bounded linear operator from the Hilbert space U
into X.

Let the control u ∈ LF
2 ([0, T ], U) which is the Hilbert space of all square integrable and Ft-

adapted processes with values in U . Let QK be a positive, self adjoint and trace class operator
on K and let L2(K,X) be the space of all QK-Hilbert–Schmidt operators acting between K and
X equipped with the Hilbert–Schmidt norm ‖.‖L2

. The W is a QK-Wiener process on Hilbert
space K.

Let Q be a positive, self adjoint and trace class operator on Y and let L0
2(Y,X) be the space

of all Q -Hilbert–Schmidt operators acting between Y and X equipped with the Hilbert–Schmidt
norm ‖.‖L0

2

. Let ZH be a Q-Rosenblatt process on a Hilbert space Y . The process W and ZH are
independent. The functions f, g and σ will be specified later. Moreover, the fixed moments of
times tk satisfy 0 = t0 < t1 < ... < tm < tm+1 = T , x(t+k ) and x(t−k ) represent the right and left
limits of x(t) at t = tk. Here ∆x(tk) = x(t+k )− x(t−k ) represents the jump in the state x at time tk,
where Ik determines the size of the jump.

Let (Ω,FT , P ) be the complete probability space with the natural filtration {Ft | t ∈ [0, T ]}
generated by random variables {ZH(s), W (s), s ∈ [0, T ]}. Let x0 be an F0-measurable random
variable independent of W and ZH satisfying E ‖x0‖

2 < ∞. We define the following classes of func-
tions: let L2(Ω,FT ,X) be the Hilbert space of all FT−measurable, square integrable variables with
values in X, LF

2 ([0, T ],X) is the Hilbert space of all square integrable and Ft−adapted processes
with values in X.

The space C ([0, T ],L2(Ω,FT ,X)) is the Banach space of continuous maps except for a finite
number of points tk at which x(t−k ) and x(t+) exists and x(t−k ) = x(tk) satisfying the condition

supt∈[0,T ]E ‖x(t)‖2 < ∞

and ΛT
2 is the closed subspace of C ([0, T ],L2(Ω,FT ,X)) consisting of measurable and Ft-adapted

processes x(t), then ΛT
2 is a Banach space with the norm defined by

‖x‖ΛT

2

=
(

supt∈[0,T ]E ‖x(t)‖2
)1/2

.

Let {ZH(t), t ∈ [0, T ]} be the one-dimensional Rosenblatt process with parameter H ∈ (1/2, 1),
ZH has the following representation (see Tudor [28])

ZH(t) = d(H)

∫ t

0

∫ t

0

[
∫ t

y1∨y2

∂KH
′

∂u
(u, y1)

∂KH
′

∂u
(u, y2)du

]

dB(y1)dB(y2),

where






































B(t)t∈[0,T ] is the Wiener process,

B(·, ·) is the Beta function,

H
′

=
H + 1

2
, d(H) =

1

H + 1

√

H

2(2H − 1)
, cH =

√

H(2H − 1)

B(2− 2H,H − 1/2)
,

KH(t, s) = 1{t>s}cHs1/2−H

∫ t

s
(u− s)H−3/2uH−1/2du.
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Let X and Y be two real separable Hilbert spaces, L(Y ;X) be the space of bounded linear operator
from Y to X, Q ∈ L(Y ;X) be an operator defined by Qen = λnen with finite trace

trQ =

∞
∑

n=1

λn < ∞, λn ≥ 0

and {en} is a complete orthonormal basis in Y .
We define the infinite dimensional Q-Rosenblatt process on Y as

ZH(t) =

∞
∑

n=1

√

λnenzn(t),

where (zn)n≥0 is a family of real independent Rosenblatt processes. Consider the following funda-
mental inequality.

Lemma 1 [21]. If φ : [0, T ] → L0
2(Y ;X) satisfies

∫ T

0
‖φ(s)‖2L0

2

ds < ∞,

then we have

E
∥

∥

∥

∫ t

0
φ(s)dZH(s)

∥

∥

∥

2
≤ 2Ht2H−1

∫ t

0
‖φ(s)‖2L0

2

ds.

Definition 1. For each u ∈ LF
2 ([0, T ], U), a stochastic process x ∈ ΛT

2 is a mild solution

of (1.1) if we have

x(t) = S(t)x0 +

∫ t

0
S(t− s) (Bu(s) + f(s, x(s))) ds

+

∫ t

0
S(t− s)g(s, x(s))dW (s) +

∫ t

0
S(t− s)σ(s)dZH(s) +

∑

0<tk<t

S(t− tk)Ik(x(t
−
k )).

Let x(T ;u) be the state value of system (1.1) at terminal time T corresponding to control u.
The set

R(T ) =
{

x(T ;u) : u ∈ LF
2 ([0, T ], U)

}

is called the reachable set of (1.1) at the terminal time T .

Definition 2. The stochastic control system (1.1) is called approximately controllable on the

interval [0, T ] if
R(T ) = L2(Ω,FT ,X).

For the proof of the main result, we impose the following conditions on data of the problem.

(Hyp 1) A is the infinitesimal generator of a compact semigroup {S(t), t ≥ 0} on X such that
‖S(t)‖ ≤ M , for some constant M > 0.

(Hyp 2) 1. The function f : [0, T ] ×X → X is continuous and there exists a constant Cf such that
for x, y ∈ X and t ∈ [0, T ]

‖f(t, x)‖2 ≤ Cf (1 + ‖x‖2),

‖f(t, x)− f(t, y)‖2 ≤ Cf ‖x− y‖2 .
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2. The function g : [0, T ]×X → L2(K,X) is continuous and there exists a constant Cg such
that for x, y ∈ X and t ∈ [0, T ]

‖g(t, x)‖2L2
≤ Cg(1 + ‖x‖2),

‖g(t, x) − g(t, y)‖2L2
≤ Cg ‖x− y‖2 .

(Hyp 3) The function σ : [0, T ] → L0
2 is bounded by a positive constant L for all t ∈ [0, T ].

(Hyp 4) Ik : X → X is continuous and there exist constants dk, qk > 0 such that, for x, y ∈ X

(i) ‖Ik(x)− Ik(y)‖
2 ≤ dk ‖x− y‖2 , k ∈ {1, ...,m} ,

(ii) ‖Ik(x)‖
2 ≤ qk

(

1 + ‖x‖2
)

, k ∈ {1, ...,m} ,

(iii) M2m
( m
∑

k=1

dk

)

<
1

4
.

(Hyp 5) For each 0 ≤ t < T , the operator α(αI + ΓT
t )

−1 → 0 in the strong operator topology as
α → 0+, with ΓT

s ∈ L(X,X) and

ΓT
s =

∫ T

s
S(T − t)BB∗S∗(T − t)dt.

(Hyp 6) 1. The function f : [0, T ] ×X → X is continuous and there exists a constant Cf such that
for x, y ∈ X and t ∈ [0, T ]

‖f(t, x)− f(t, y)‖2 ≤ Cf ‖x− y‖2 .

2. The function g : [0, T ]×X → L2(K,X) is continuous and there exists a constant Cg such
that for x, y ∈ X and t ∈ [0, T ]

‖g(t, x) − g(t, y)‖2L2
≤ Cg ‖x− y‖2 .

3. The functions f and g are uniformly bounded, then there exists C > 0 such that

‖f(s, x(s)‖2 + ‖g(s, x(s)‖2L2
≤ C.

Lemma 2 [6]. For any xT ∈ L2(Ω,FT ,X) there exists a unique Ψ ∈ LF
2 ([0, T ];L2(K,X)) such

that

xT = E(xT ) +

∫ T

0
Ψ(s)dW (s).

For any α > 0 and an arbitrary function x(.), we define the control function for system (1.1) in
the following form

uα(t, x) = B∗S∗(T − t)(αI + ΓT
0 )

−1 (E(xT )− S(T )x0)

+B∗S∗(T − t)

∫ t

0
(αI + ΓT

s )
−1Ψ(s)dW (s)−B∗S∗(T − t)

∫ t

0
(αI + ΓT

s )
−1S(T − s)σ(s))dZH(s)

−B∗S∗(T − t)

∫ t

0
(αI + ΓT

s )
−1S(T − s)f(s, x(s))ds

−B∗S∗(T − t)

∫ t

0
(αI + ΓT

s )
−1S(T − s)g(s, x(s))dW (s)

−B∗S∗(T − t)(αI + ΓT
0 )

−1
∑

0<tk<t

S(t− tk)Ik(x(t
−
k )),

the function uα(t, x) is defined so that the system driven by this command has a unique solution
(see Theorem 1) and moreover the system is approximately controllable (see Theorem 2).
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Lemma 3. There exists positive real constant Mu such that, for all x, y ∈ ΛT
2 we have

E ‖uα(t, x)− uα(t, y)‖2 ≤
Mu

α2
‖x− y‖2

ΛT

2

, (1.2)

E ‖uα(t, x)‖2 ≤
Mu

α2

(

1 + ‖x‖2ΛT

2

)

. (1.3)

P r o o f. Let x, y ∈ ΛT
2 , we have

E
∥

∥uα(t, x)− uα(t, y)
∥

∥

2
≤ 3E

∥

∥

∥
B∗S∗(T − t)

∫ t

0
(αI + ΓT

s )
−1S(T − s) [f(s, x(s))− f(s, y(s))] ds

∥

∥

∥

2

+3E
∥

∥

∥
B∗S∗(T − t)

∫ t

0
(αI + ΓT

s )
−1S(T − s) [g(s, x(s)) − g(s, y(s))] dW (s)

∥

∥

∥

2

+3E
∥

∥

∥
B∗S∗(T − t)(αI + ΓT

0 )
−1

m
∑

k=1

S(T − tk)
[

Ik(x(t
−
k ))− Ik(y(t

−
k ))
]

∥

∥

∥

2
.

Using the Holder inequality, Ito isometric theorem and the assumptions on the data, we obtain

E ‖uα(t, x)− uα(t, y)‖2 ≤
3

α2
‖B‖2 M4TCf

∫ t

0
E ‖x(s)− y(s)‖2 ds

+
3

α2
‖B‖2M4Cg

∫ t

0
E ‖x(s)− y(s)‖2 ds+

3

α2
‖B‖2 M4m

(

m
∑

k=1

dk

)

E
∥

∥

[

Ik(x(t
−
k ))− Ik(y(t

−
k ))
]
∥

∥

2

≤
3

α2
‖B‖2 M4TCfT sup

s∈[0,T ]
E ‖x(s)− y(s)‖2

+
3

α2
‖B‖2 M4CgT sup

s∈[0,T ]
E ‖x(s)− y(s)‖2 +m

(

m
∑

k=1

dk

)

sup
s∈[0,T ]

E ‖x(s)− y(s)‖2

≤
3

α2
‖B‖2 M4

[

T 2Cf + TCg +m
(

m
∑

k=1

dk

)

]

‖x− y‖2ΛT

2

=
Mu

α2
‖x− y‖2

ΛT

2

,

where

Mµ = 3 ‖B‖2 M4

[

T 2Cf + TCg +m
(

m
∑

k=1

dk

)

]

.

The proof of the second (1.3) is similar. �

2. Approximate controllability

For any α > 0, define the operator Fα : ΛT
2 → ΛT

2 by

(Fαx)(t) = S(t)x0 +

∫ t

0
S(t− s) (Buα(s, x) + f(s, x(s))) ds

+

∫ t

0
S(t− s)g(s, x(s))dW (s) +

∫ t

0
S(t− s)σ(s)dZH(s) +

∑

0<tk<t

S(t− tk)Ik(x(t
−
k )).

The first main result is the following theorem.
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Theorem 1. Under assumptions (Hyp 1)–(Hyp 5), the system (1.1) has a mild solution

on [0, T ].

P r o o f. Step 1. Let 0 ≤ t1 ≤ t2 ≤ T. Then for any fixed x ∈ ΛT
2

E ‖(Fαx)(t2)− (Fαx)(t1)‖
2 ≤ 6E ‖(S(t2)− S(t1)) x0‖

2

+6E
∥

∥

∥

∫ t2

0
S(t2 − s)f(s, x(s))ds −

∫ t1

0
S(t1 − s)f(s, x(s))ds

∥

∥

∥

2

+6E
∥

∥

∥

∫ t2

0
S(t2 − s)g(s, x(s))dW (s) −

∫ t1

0
S(t1 − s)g(s, x(s))dW (s)

∥

∥

∥

2

+6E
∥

∥

∥

∫ t2

0
S(t2 − s)σ(s)dZH(s)−

∫ t1

0
S(t1 − s)σ(s)dZH(s)

∥

∥

∥

2

+6E
∥

∥

∥

∑

0<tk<t2

S(t2 − tk)Ik(x(t
−
k ))−

∑

0<tk<t1

S(t1 − tk)Ik(x(t
−
k ))
∥

∥

∥

2

+6E
∥

∥

∥

∫ t2

0
S(t2 − s)Buα(s, x(s))ds −

∫ t1

0
S(t1 − s)Buα(s, x(s))ds

∥

∥

∥

2

= 6 (J1 + J2 + J3 + J4 + J5 + J6) .

Thus we obtain by Holder inequality, Ito isometric theorem and the assumptions (Hyp 1)–(Hyp 5)

J1 ≤ ‖S(t2)− S(t1)‖
2
E ‖x0‖

2 ,

J2 ≤ 2E
∥

∥

∥

∫ t1

0
(S(t2 − s)− S(t1 − s)) f(s, x(s))ds

∥

∥

∥

2
+ 2E

∥

∥

∥

∫ t2

t1

S(t2 − s)f(s, x(s))ds
∥

∥

∥

2

≤ 2t1

∫ t1

0
E ‖(S(t2 − s)− S(t1 − s)) f(s, x(s))‖2 ds+ 2M2(t2 − t1)

∫ t2

t1

E ‖f(s, x(s))‖2 ds,

J3 ≤ 2E
∥

∥

∥

∫ t1

0
(S(t2 − s)− S(t1 − s)) g(s, x(s))dW (s)

∥

∥

∥

2
2 +E

∥

∥

∥

∫ t2

t1

S(t2 − s)g(s, x(s))dW (s)
∥

∥

∥

2

≤ 2

∫ t1

0
E

∥

∥

∥
(S(t2 − s)− S(t1 − s)) g(s, x(s))

∥

∥

∥

2

L2

ds+ 2M2

∫ t2

t1

E ‖g(s, x(s))‖2L2
ds,

J4 ≤ 2E
∥

∥

∥

∫ t1

0
(S(t2 − s)− S(t1 − s)) σ(s)dZH(s)

∥

∥

∥

2
+ 2E

∥

∥

∥

∫ t2

t1

S(t2 − s)σ(s)dZH(s)
∥

∥

∥

2

≤ 4Ht2H−1
1

∫ t1

0
E ‖(S(t2 − s)− S(t1 − s))σ(s)‖2L0

2

ds+ 4M2H
(

t2H−1
2 − t2H−1

1

)

∫ t2

t1

‖σ(s)‖2L0

2

ds,

J5 ≤ 2m
∑

t1<tk<t2

E
∥

∥S(t2 − s)Ik(x(t
−
k ))
∥

∥

2
+ 2m

∑

0<tk<t1

E
∥

∥(S(t2 − s)− S(t1 − s)) Ik(x(t
−
k ))
∥

∥

2

≤ 2mM2
∑

t1<tk<t2

E
∥

∥Ik(x(t
−
k ))
∥

∥

2
+ 2m

∑

0<tk<t1

E
∥

∥(S(t2 − s)− S(t1 − s)) Ik(x(t
−
k ))
∥

∥

2
,

J6 ≤ 2E
∥

∥

∥

∫ t1

0
(S(t2 − s)− S(t1 − s))Buα(s, x)ds

∥

∥

∥

2
+ 2E

∥

∥

∥

∫ t2

t1

S(t2 − s)Buα(s, x)ds
∥

∥

∥

2

≤ 2t1

∫ t1

0
E ‖(S(t2 − s)− S(t1 − s))Buα(s, x)‖2 ds+ 2M2 ‖B‖2 (t2 − t1)

∫ t2

t1

E ‖uα(s, x)‖2 ds.

Consequently, using the strong continuity of S(t), as well as the Lebesgue’s dominated convergence
theorem, we conclude that the right side of the above inequality tends to zero when t2 − t1 → 0.
Thus we conclude that (Fαx)(t) is continuous in [0, T ].
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Step 2. Let x ∈ ΛT
2 , then we have

E ‖(Fαx)(t)‖
2 ≤ 6E ‖S(t)x0‖

2 + 6E
∥

∥

∥

∫ t

0
S(t− s)Buα(s, x)ds

∥

∥

∥

2

+6E
∥

∥

∥

∫ t

0
S(t− s)f(s, x(s))ds

∥

∥

∥

2
+ 6E

∥

∥

∥

∫ t

0
S(t2 − s)g(s, x(s))dW (s)

∥

∥

∥

2

+6E
∥

∥

∥

∫ t

0
S(t− s)σ(s)dZH(s)

∥

∥

∥

2
+ 6E

∥

∥

∥

∑

0<tk<t

S(t− tk)Ik(x(t
−
k ))
∥

∥

∥

2
.

By Holder inequality, Lemma 3, Ito isometric theorem and the assumptions (Hyp 1)–(Hyp 5), we
have

E ‖(Fαx)(t)‖
2 ≤ 6E ‖S(t)x0‖

2 + 6M2 ‖B‖2 TE

∫ t

0
‖uα(s, x)‖2 ds

+6M2TE

∫ t

0
‖f(s, x(s))‖2 ds + 6M2E

∫ t

0
‖g(s, x(s))‖2L2

ds

+12M2HT 2H−1E

∫ t

0
‖σ(s)‖2L0

2

ds+ 6mM2
m
∑

k=1

E
∥

∥Ik(x(t
−
k ))
∥

∥

2
.

Hence

E ‖(Fαx)(t)‖
2 ≤ 6M2E ‖x0‖

2 + 6M2 ‖B‖2 T 2Mu

α2

(

1 + ‖x‖2
ΛT

2

)

+6M2T 2Cf

(

1 + ‖x‖2
ΛT

2

)

+ 6M2TCg

(

1 + ‖x‖2
ΛT

2

)

+12M2HT 2H−1TL+ 6mM2
(

m
∑

k=1

qk

)(

1 + ‖x‖2
ΛT

2

)

≤ 6M2
(

E ‖x0‖
2 + 2HT 2H−1TL

)

+6M2

(

‖B‖2 T 2
[Mu

α2
+ Cf

]

+ TCg +m
(

m
∑

k=1

qk

)

)

(

1 + ‖x‖2ΛT

2

)

,

we thus obtain that ‖(Fαx)‖
2
ΛT

2

< ∞. Since (Fαx)(t) is continuous on [0, T ], therefore Fα maps ΛT
2 ,

in itself.

Step 3. Let x, y ∈ ΛT
2 , then for any fixed t ∈ [0, T ] we have

‖(Fαx)(t)− (Fαy)(t)‖
2 ≤ 4E

∥

∥

∥

∫ t

0
S(t− s)B (uα(s, x)− uα(s, y)) ds

∥

∥

∥

2

+4E
∥

∥

∥

∫ t

0
S(t− s) (f(s, x(s))− f(s, y(s))) ds

∥

∥

∥

2

+4E
∥

∥

∥

∫ t

0
S(t− s) (g(s, x(s)) − g(s, y(s))) dW (s)

∥

∥

∥

2

+4E
∥

∥

∥

∑

0<tk<t

S(t− tk)
(

Ik(x(t
−
k ))− Ik(y(t

−
k ))
)

∥

∥

∥

2
.

By assumptions (Hyp 1)–(Hyp 5) combined with Hölder’s inequality, Lemma 3 and Ito isometric
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theorem, we get that

‖(Fαx)(t)− (Fαy)(t)‖
2

≤ 4M2 ‖B‖2 t

∫ t

0
‖uα(s, x)− uα(s, y)‖2 ds+ 4M2t

∫ t

0
‖f(s, x(s))− f(s, y(s))‖2 ds

+4M2

∫ t

0
‖g(s, x(s)) − g(s, y(s))‖2L2

ds + 4M2m
(

m
∑

k=1

dk

)

∥

∥Ik(x(t
−
k ))− Ik(y(t

−
k ))
∥

∥

2
.

Therefore,

‖(Fαx)(t)− (Fαy)(t)‖
2

≤ 4M2 ‖B‖2 t
Mµ

α2

∫ t

0
‖x(s)− y(s)‖2 ds+ 4M2tCf

∫ t

0
‖x(s)− y(s)‖2 ds

+4M2Cg

∫ t

0
‖x(s)− y(s)‖2 ds+ 4M2m

(

m
∑

k=1

dk

)

∥

∥x(t−k )− y(t−k )
∥

∥

2
.

Then we have

sup
s∈[0,t]

E ‖(Fαx)(t)− (Fαy)(t)‖
2

≤ 4M2

(

‖B‖2 t2
Mµ

α2
+ t(tCf + Cg) +m

(

m
∑

k=1

dk

)

)

sup
s∈[0,t]

E ‖x(s)− y(s)‖2

= ϕ(t) sup
s∈[0,t]

E ‖x(s)− y(s)‖2 ,

where

ϕ(t) = 4M2 ‖B‖2 t2
Mµ

α2
+ 4M2t(tCf + Cg) + 4M2m

(

m
∑

k=1

dk

)

.

We have (see (Hyp 4)–(iii))

ϕ(0) = 4M2m

(

m
∑

k=1

dk

)

< 1.

So there is T1 with 0 < T1 ≤ T such that 0 < ϕ(T1) < 1 and Fα is a contraction mapping on ΛT1

2

and consequently has a unique fixed point. So by repeating the procedure, we extend the solution
to the interval [0, T ] in several finite steps. �

The second main result is the following theorem.

Theorem 2. Under assumptions (Hyp 1), (Hyp 3), (Hyp 4), (Hyp 5) and (Hyp 6), the sys-

tem (1.1) is approximately controllable on [0, T ].

P r o o f. Let xα the solution of system (1.1) corresponding to µ(t, x) = µα(t, x). We obtain
by the stochastic Fubini theorem

xα(T ) = xT − α(αI + ΓT
0 )

−1 (Ex̄T − S(T )x0)

+α

∫ T

0
(αI + ΓT

s )
−1S(T − s)f(s, x(s)ds+ α

∫ T

0
(αI + ΓT

s )
−1 [S(T − s)g(s, x(s)−Ψ(s)] dW (s)

+α

∫ T

0
(αI + ΓT

s )
−1S(T − s)σ(s)dZH(s) + α(αI + ΓT

0 )
−1

m
∑

k=1

S(T − tk)Ik(x
α(t−k )).
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By the hypotheses (Hyp 6–2), there is a subsequence still designated by {f(s, xα(s), g(s, xα(s)}
which converges weakly to some {f(s), g(s)} in X × L2 and

{

Ik(x
α(t−k ))

}

weakly converging to
{Ik(w)} in X. By the compactness of {S(t) : t ≥ 0}, we have

S(T − s)f(s, xα(s) → S(T − s)f(s),

S(T − s)g(s, xα(s) → S(T − s)g(s),

S(T − tk)Ik(x
α(t−k )) → S(T − tk)Ik(w).

By hypothesis (Hyp 5), we have
{

α(αI + ΓT
s )

−1 → 0 strongly as α → 0+, for all 0 ≤ s ≤ T,
∥

∥α(αI + ΓT
s )

−1
∥

∥ ≤ 1.

So, by the Lebesgue dominated convergence theorem we obtain

E ‖xα(T )− xT ‖
2 ≤ 9E

∥

∥α(αI + ΓT
0 )

−1 (ExT − S(T )x0)
∥

∥

2
+ 9E

∫ T

0

∥

∥α(αI + ΓT
s )

−1Ψ(s)
∥

∥

2

L2

ds

+18HT 2H−1

∫ T

0

∥

∥α(αI + ΓT
s )

−1S(T − s)σ(s)
∥

∥

2

L0

2

ds+ 9E
(

∫ T

0

∥

∥α(αI + ΓT
s )

−1S(T − s)f(s)
∥

∥ ds
)2

+9E
(

∫ T

0

∥

∥α(αI + ΓT
s )

−1
∥

∥ ‖S(T − s) (f(s, xα(s))− f(s))‖ ds
)2

+9E

∫ T

0

∥

∥α(αI + ΓT
s )

−1S(T − s)g(s)
∥

∥

2

L2

ds

+9E

∫ T

0

∥

∥α(αI + ΓT
s )

−1
∥

∥

2
‖S(T − s) (g(s, xα(s))− g(s))‖2L2

ds

+9E
∥

∥

∥

m
∑

k=1

α(αI + ΓT
s )

−1S(T − tk)Ik(w)
∥

∥

∥

2

+9E
∥

∥α(αI + ΓT
s )

−1
∥

∥

2
∥

∥

∥

m
∑

k=1

S(T − tk)Ik(x
α(t−k ))−

m
∑

k=1

S(T − tk)Ik(w)
∥

∥

∥

2
→ 0 as α → 0+.

Then the system (1.1) is approximately controllable. �

3. Example

In this section we present an example. Let X = L2[0, π], U = L2[0, π] and x0 ∈ L2[0, π].
Let A ⊂ D(A) : X → X be the linear operator given by Ay = y′′, where

D(A) = {y ∈ X / y, y′ are absolutely continuous y′′ ∈ X, y(0) = y(π) = 0}.

Let B ∈ L(R,X) be defined as

(Bu)(z) = b(x)u, 0 ≤ z ≤ π, u ∈ R, b(x) ∈ L2[0, π].

Here W (t) denotes a one dimensional standard Brownian motion and ZH is a Rosenblatt process,
the processes W and ZH are independent.

Consider the control system driven by the process W and ZH to illustrate the obtained theory


































dx(t, z) =
( ∂2

∂z2
x(t, z) + b(z)u(t) + f1 (t, x(t, z))

)

dt

+g1 (t, x(t, z)) dw(t) + σ(t)dZH , t ∈ [0, T ] , z ∈ [0, π],

∆x(tk, z) = x(t+k , z)− x(t−k , z) =
1

2k
x(tk, z), t = tk, k = 1, ...,m,

x(t, 0) = x(t, π) = 0, t ∈ [0, T ] ,
x(0, z) = x0(z), z ∈ [0, π].

(3.1)
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Suppose f1, g1: R
+ × R → R are continuous, satisfy the Lipschitz condition and the linear growth

condition and are uniformly bounded.

First of all, note that there exists a complete orthonormal set {en}n≥1 of eigenvectors of A with

en(z) =
√

(2/π) sinnz, 0 ≤ z ≤ π, n = 1, 2, ...

and the compact semigroup S(t), t ≥ 0, that is generated by A such that

Ay = −
∞
∑

n=1
n2 〈y, en〉 en(y), y ∈ D(A),

S(t)y =
∞
∑

n=1
e−n2t 〈x, en〉 en(y), y ∈ X.

Now define the functions: f : [0, T ]×X → X, g : [0, T ] ×X → L(K;X) as follows

f(t, x)(z) = f1(t, x(z)),

g(t, x)(z) = g1(t, x(z))

for t ∈ [0, T ], x ∈ X and 0 < z < π. Consequently, by [11, Theorem 4.1.7], we have that the
deterministic linear system (3.1) is approximately controllable on every [0, t], t > 0, provided that

∫ π

0
b(z)en(z)dz 6= 0, for n = 1, 2, 3, ... .

Hence, all conditions of Theorem 2 are satisfied, and consequently system (3.1) is approximately
controllable on [0, T ].

4. Conclusion

Approximate controllability of a class of impulsive stochastic functional differential equations
driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space
are obtained. The controllability problem is transformed into a fixed point problem for an appro-
priate nonlinear operator in a function space. By using some famous fixed point theorems and the
approximating technique some new existence and controllability results are obtained.

We also remark that the same idea can be used to study the controllability and the exponential
stability of impulsive stochastic functional differential equations driven simultaneously by a Rosen-
blatt process and standard Brownian motion under non-Lipschitz condition and with non local
conditions.
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Abstract: The present work mainly probes into the existence and uniqueness of periodic solutions for a
class of second-order neutral differential equations with multiple delays. Our approach is based on using Banach
and Krasnoselskii’s fixed point theorems as well as the Green’s function method. Besides, two examples are
exhibited to validate the effectiveness of our findings which complement and extend some relevant ones in the
literature.
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1. Introduction

We frequently encounter neutral delay differential equations in the modeling of many
phenomena in various domains such as physics, biology, population dynamics, medicine, epidemi-
ology, economics, etc.

The investigation on such equations has been one of the most attracting topics in the literature.
Recently, these equations have received a considerable attention and many researchers have sought
to study them. For some related works, we refer the interested reader to some of them [1, 2, 4, 6,
8–10, 12, 13] and the references cited therein.

Stimulated by the aforementioned publications, we propose the following class of second order
neutral differential equations

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t) +

d2

dt2

[

k (t) x (t)−

n
∑

ℓ=1

cℓ (t)x (t− τℓ (t))
]

= e(t), (1.1)
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where p, q ∈ C (R, (0,∞)), k, cℓ, τℓ ∈ C2 (R, (0,∞)) , ℓ = 1, n and e ∈ C (R, [0,∞)) are T -periodic
functions.

In the current work, the authors aim is to establish sufficient conditions under which Banach
and Krasnoselskii’s fixed point theorems are guaranteed to work and hence the existence and
uniqueness of periodic solutions of the equation (1.1) are proved. The general idea of our technique
is to convert the equation (1.1) into an equivalent integral one in order to pave the way for the
application of Banach and Krasnoselskii’s fixed point theorems. Indeed, this last one with the help
of Arzelà-Ascoli theorem and some properties of the obtained Green’s kernel, is a proper means for
achieving our desired goals.

The key contributions of this work can be summarized as follows.

(i) New sufficient conditions that ensure the existence of periodic solutions of the equation (1.1)
are established.

(ii) The studied problems in [1, 3–5, 7, 9, 12] are with globally Lipschitz source terms while this
condition is not required here.

The basic frame of this paper is as follows. Section 2, provides some preliminary results and
prerequisites that will be used in the sequel. Section 3 is dedicated to the statements and the
proofs of our main results. In Section 4, we present two examples to which our main findings can
be applied. The conclusion is included in the last section.

2. Preliminaries

Let
PT =

{

x ∈ C(R,Rt), x(t+ T ) = x(t)
}

, T > 0,

endowed with the supremum norm

‖x‖ = sup
t∈R

|x (t)| = sup
t∈[0,T ]

|x (t)| ,

be a Banach space.
Throughout this paper we will assume that the following hypothesis are fulfilled.

Here p, q, k, e, cℓ and τℓ are T -periodic real-valued functions such that

p(t+ T ) = p(t), q(t+ T ) = q(t), k(t+ T ) = k(t),

e(t+ T ) = e(t), cℓ(t+ T ) = cℓ(t), τℓ (t+ T ) = τℓ(t), ℓ = 1, n,
(2.1)

and
∫ T

0
p(s)ds > 0,

∫ T

0
q(s)ds > 0, τℓ(t) ≥ τ∗ℓ > 0, ℓ = 1, n. (2.2)

Lemma 1 [10]. If (2.1) and (2.2) hold and

R1

[

exp

(
∫ T

0
p (u) du

)

− 1

]

Q1T
≥ 1, (2.3)

where

R1 = max
t∈[0,T ]

∣

∣

∣

∣

∣

∫ t+T

t

exp

(
∫ s

t
p (u) du

)

exp

(
∫ T

0
p (u) du

)

− 1

q(s)ds

∣

∣

∣

∣

∣

,
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and

Q1 =

(

1 + exp

(
∫ T

0
p (u) du

))2

R2
1,

then there are continuous and T -periodic functions a and b such that

b (t) > 0,

∫ T

0
a(u)du > 0, a (t) + b(t) = p(t),

and
d

dt
b(t) + a(t)b(t) = q(t),

for all t ∈ R. Furthermore, if φ ∈ PT then the equation

x′′(t) + p(t)x′(t) + q(t)x(t) = φ (t)

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x(t) =

∫ t+T

t
G(t, s)φ(s)ds,

where

G(t, s) =

∫ s

t
exp

[
∫ u

t
b (v) dv +

∫ s

u
a (v) dv

]

du

[

exp

(
∫ T

0
a (u) du

)

− 1

] [

exp

(
∫ T

0
b (u) du

)

− 1

]

+

∫ t+T

s
exp

[
∫ u

t
b (v) dv +

∫ s+T

u
a (v) dv

]

du

[

exp

(
∫ T

0
a (u) du

)

− 1

] [

exp

(
∫ T

0
b (u) du

)

− 1

]

.

(2.4)

Corollary 1 [12]. If G is the Green’s function given by (2.4), then G satisfies

G(t, t + T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂

∂s
G(t, s) = a(s)G(t, s)−

exp

(
∫ s

t
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

∂

∂t
G(t, s) = −b(t)G(t, s) +

exp

(
∫ s

t
a (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

∂2

∂s2
G(t, s) =

(

a(s) + a′(s)
)

G(t, s)− (a(s) + b(s))

exp

(
∫ s

t
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

.
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Furthermore, by putting

A =

∫ T

0
p (u) du, B = T 2 exp

(

1

T

∫ T

0
ln (q (u)) du

)

,

M1 =
1

2

(

A−
√

A2 − 4b
)

, M2 =
1

2

(

A+
√

A2 + 4b
)

,

α1 =
T

(eM2 − 1)2
, α2 =

T exp

(
∫ T

0
p (u) du

)

(eM1 − 1)2
,

H (t, s) =

exp

(
∫ s

t
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

, β =

exp

(
∫ T

0
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

H∗ (t, s) =

exp

(
∫ s

t
a (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

, β∗ =

exp

(
∫ T

0
a (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

and if A2 ≥ 4B, then we have

0 < α1 ≤ G(t, s) ≤ α2, |H(t, s)| ≤ β, |H∗(t, s)| ≤ β∗.

3. Existence and uniqueness of periodic solutions

Lemma 2. Suppose that (2.1)–(2.3) hold. If x ∈ PT ∩ C2 (R,R), then x is a solution of (1.1)
if and only if x is a solution of the following equation

x (t) =
1

1 + k (t)

n
∑

ℓ=1

cℓ (t)x (t− τℓ (t)) +
1

1 + k (t)

∫ t+T

t
e (s)G (t, s) ds

+

∫ t+T

t

a(s) + b(s)

1 + k (t)

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
]

H (t, s) ds

−

∫ t+T

t

a(s) + a′(s)

1 + k (t)

[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
]

G(t, s)ds.

(3.1)

P r o o f. Let x ∈ PT ∩ C2 (R,R). From Lemma 1, we get

x (t) =

∫ t+T

t

{

∂

∂s

[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
]

}

∂

∂s
G (t, s) ds+

∫ t+T

t
e (s)G (t, s) ds

=
[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
] ∂

∂s
G (t, s)

∣

∣

∣

∣

t+T

t

−

∫ t+T

t

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
] ∂2

∂s2
G (t, s) ds+

∫ t+T

t
e (s)G (t, s) ds.
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Since

[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
] ∂

∂s
G (t, s)

∣

∣

∣

∣

t+T

t

= −k (t)x (t) +
n
∑

ℓ=1

cℓ (t) x (t− τℓ (t)) ,

and
∂2

∂s2
G(t, s) =

(

a(s) + a′(s)
)

G(t, s) − (a(s) + b(s))H (t, s) ,

then

(1 + k (t))x (t) =
n
∑

ℓ=1

cℓ (t) x (t− τℓ (t)) +

∫ t+T

t
e (s)G (t, s) ds

+

∫ t+T

t
(a(s) + b(s))

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))

]

H (t, s) ds

−

∫ t+T

t

(

a(s) + a′(s)
)

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))

]

G(t, s)ds.

Dividing both sides of the above equation by 1 + k (t), we obtain (3.1). The converse implication
can be obtained by the derivation of (3.1). �

Fore ease of exposition, we will use the following notations

λ1 = max
t∈[0,T ]

|a (t)| , λ∗

1 = max
t∈[0,T ]

∣

∣a′ (t)
∣

∣ , σ = max
t∈[0,T ]

|e (t)| ,

µ1 = max
t∈[0,T ]

|b (t)| , δℓ = max
t∈[0,T ]

|cℓ (t)| , ℓ = 1, n,

ρ0 = min
t∈[0,T ]

|k (t)| , ρ1 = max
t∈[0,T ]

|k (t)| , ρ∗1 = max
t∈[0,T ]

∣

∣k′ (t)
∣

∣ .

Furthermore, we suppose that

Γ1 =
1

1 + ρ0

n
∑

ℓ=1

δℓ < 1, (3.2)

and there exists L > 0 which satisfies the following estimate

Γ2 =
Tα2σ

1 + ρ0
+ Γ3L ≤ L, (3.3)

where

Γ3 =
1

1 + ρ0

(

T
(

ρ1 +
n
∑

ℓ=1

δℓ

)(

β (λ1 + µ1) + α2 (λ1 + λ∗

1)
)

+
n
∑

ℓ=1

δℓ

)

.

For employing Krasnoselskii’s fixed point theorem, we need to define an operator that can be
expressed as a sum of two operators, one of which is continuous and compact and the other is a
contraction.

Indeed, from Lemma 2, we can define an operator S : PT −→ PT as follows

(Sϕ) (t) = (S1ϕ) (t) + (S2ϕ) (t) ,
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where

(S1ϕ) (t) =
1

1 + k (t)

n
∑

ℓ=1

cℓ (t)ϕ (t− τℓ (t)) +
1

1 + k (t)

∫ t+T

t
e (s)G(t, s)ds,

and

(S2ϕ) (t) =

∫ t+T

t

a(s) + b(s)

1 + k (t)

[

k (s)ϕ (s)−
n
∑

ℓ=1

cℓ (s)ϕ (s− τℓ (s))

]

H (t, s) ds

−

∫ t+T

t

a(s) + a′(s)

1 + k (t)

[

k (s)ϕ (s)−

n
∑

ℓ=1

cℓ (s)ϕ (s− τℓ (s))

]

G(t, s)ds.

Clearly, (Siϕ) (t+ T ) = (Siϕ) (t) , i = 1, 2 which shows that operators Si are well defined.

To reach our target, it suffices to prove the existence of at least one fixed point of the opera-
tor S1 + S2. This is due to the fact that the sought solution of equation (1.1) is just a fixed point
of S1 + S2 and vice versa.

Theorem 1. Suppose that conditions (2.1)–(2.3), (3.2) and (3.3) hold. Then equation (1.1)
admits at least one periodic solution x ∈ PT which satisfies ‖x‖ ≤ L.

P r o o f. For establishing the existence of periodic solutions, we use Krasnoselskii’s fixed point
theorem ([11]). The proof will be made in three steps.

Step 1. We show that S1 is a contraction mapping.

Let ϕ1, ϕ2 ∈ PT , we have

|(S1ϕ1) (t)− (S1ϕ2) (t)| ≤

n
∑

ℓ=1

cℓ (t)

1 + k (t)
|ϕ1 (t− τℓ (t))− ϕ2 (t− τℓ (t))| ≤ Γ1 ‖ϕ1 − ϕ2‖ .

From (3.2), we deduce that S1 is a contraction mapping.

Step 2. We show that S2 is continuous and compact mapping.

Let ϕ1, ϕ2 ∈ PT . For ε > 0 and η = Λε, where

Λ =
1 + ρ0

T

(

ρ1 +
n
∑

ℓ=1

δℓ

)

(β (λ1 + µ1) + α2 (λ1 + λ∗

1))

,

we obtain

‖ϕ1 − ϕ2‖ ≤ η =⇒ ‖S2ϕ1 − S2ϕ2‖ < ε,

which shows the continuity of S2.

On the other hand, let ℏ > 0, K = {ϕ ∈ PT , ‖ϕ‖ ≤ ℏ} and {ϕn}n∈N be a sequence from K. We
have

‖S2ϕn‖ ≤

Tℏ

(

ρ1 +
n
∑

ℓ=1

δℓ

)

1 + ρ0
(β (λ1 + µ1) + α2 (λ1 + λ∗

1)) , (3.4)
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and

d

dt
(S2ϕn) (t) =

a(t) + b(t)

1 + k (t)

[

k (t)ϕn (t)−

n
∑

ℓ=1

cℓ (t)ϕn (t− τℓ (t))

]

−
b (t) (1 + k (t)) + k′ (t)

(1 + k (t))2

∫ t+T

t
(a(s) + b(s))

[

k (s)ϕn (s)−

n
∑

ℓ=1

cℓ (s)ϕn (s− τℓ (s))

]

H (t, s) ds

+
b(t) (1 + k (t)) + k′ (t)

(1 + k (t))2

∫ t+T

t

(

a(s) + a′(s)
)

[

k (s)ϕn (s)−
n
∑

ℓ=1

cℓ (s)ϕn (s− τℓ (s))

]

G(t, s)ds

−
1

1 + k (t)

∫ t+T

t

(

a(s) + a′(s)
)

[

k (s)ϕn (s)−

n
∑

ℓ=1

cℓ (s)ϕn (s− τℓ (s))

]

H∗ (t, s) ds.

Hence
∣

∣

∣

∣

d

dt
(S2ϕn) (t)

∣

∣

∣

∣

≤ Γ4, (3.5)

where

Γ4 = ℏ

(

ρ1 +

n
∑

ℓ=1

δℓ

)

(

(λ1 + µ1) + Tβ∗ (λ1 + λ∗

1)

1 + ρ0

+T
(µ1 (1 + ρ1) + ρ∗1) (β (λ1 + µ1) + α2 (λ1 + λ∗

1))

(1 + ρ0)
2

)

.

It follows from (3.4), (3.5) and the Arzelà-Ascoli theorem [14] that S2 is a compact operator.

Step 3. If L is defined as in (3.3), let

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L} .

In view of (3.3), if ϕ1, ϕ2 ∈ M, then

‖S1ϕ1 + S2ϕ2‖ ≤ Γ2 ≤ L,

which proves that

S1ϕ1 + S2ϕ2 ∈ M, ∀ϕ1, ϕ2 ∈ M.

From these three steps, we conclude that the operator S2 + S2 has at least one fixed point
x ∈ PT with ‖x‖ ≤ L. Consequently, the equation (1.1) has at least one periodic solution in M. �

Theorem 2. Suppose that conditions (2.1)–(2.3) and (3.2) hold. If Γ3 < 1, then the equa-

tion (1.1) has a unique periodic solution x ∈ PT .

P r o o f. Let ϕ1, ϕ2 ∈ PT , we have

|(Sϕ1) (t)− (Sϕ2) (t)| ≤ Γ3 ‖ϕ1 − ϕ2‖ .

Since Γ3 < 1, the Banach fixed point theorem [11] guarantees that the operator S has a unique
fixed point which is the unique periodic solution of the equation (1.1). �
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4. Examples

Example 1. Let L = 3π. We consider the following equation

x′′ (t) +
5

12
x′ (t) +

1

24
x (t) +

(

1

100
x (t)−

(

1

120
sin2 2πt

)

x
(

t− π sin2 2πt
)

−

(

1

150
cos2 2πt

)

x
(

t− 2π cos4 2πt
)

)

′′

=
1

10
sin4 2πt.

(4.1)

Here

p (t) =
5

12
, p (t) =

1

24
, k (t) =

1

100
, c1 (t) =

1

120
sin2 2πt,

c2 (t) =
1

150
cos2 2πt, τ1 (t) = π sin2 2πt, τ2 (t) = 2π cos4 2πt,

e (t) =
100

1010
sin4 2πt, T = 1,

which implies

A =
5

12
, B =

1

24
, A2 =

25

144
> 4B2 =

1

6
, R1 =

1

10
,

Q1 =
1

100

(

e5/12 + 1
)2

,

R1

[

exp

(
∫ T

0
p (u) du

)

− 1

]

Q1T
≃ 22.367 > 1,

M1 =
1

6
, M2 =

1

4
, α2 ≃ 46.118, β ≃ 6.5139, Γ1 =

3

202
< 1,

Γ2 ≃ 8.0746 < L = 3π, Γ3 ≃ 0.36742 < 1.

It follows from Theorem 2 that the equation (4.1) has a unique solution x ∈ PT which satis-
fies ‖x‖ ≤ 3π.

The following example shows the usefulness of Theorem 1 when the Banach fixed point theorem
cannot be applied.

Example 2. We consider the following equation

x′′ (t) +
5

12
x′ (t) +

1

24
x (t) +

((

6

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
x(t)

)

−

(

2

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
sin2 2πt

)

x
(

t− π sin2 2πt
)

−

(

4

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
sin2 2πt

)

x
(

t− 2π cos4 2πt
)

)

′′

= 0.

(4.2)

Here

p (t) =
5

12
, p (t) =

1

24
, k (t) = 6

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
,

c1 (t) = 2

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
sin2 2πt, c2 (t) = 4

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
cos2 2πt,

τ1 (t) = π sin2 2πt, τ2 (t) = 2π cos4 2πt, e (t) = 0, T = 1,
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which implies

A =
5

12
, B =

1

24
, A2 =

25

144
> 4B2 =

1

6
, R1 =

1

10
,

Q1 =
1

100

(

e5/12 + 1
)2

,

R1

[

exp

(
∫ T

0
p (u) du

)

− 1

]

Q1T
≃ 22.367 > 1,

M1 =
1

6
, M2 =

1

4
, α2 ≃ 46.118, β ≃ 6.513 9, Γ1 = 0.03391 < 1,

Γ2 = L ≤ L, ∀L > 0, Γ3 = 1.

Since Γ3 = 1, we can not use Theorem 2, but Γ2 = L ≤ L, so we can apply Theorem 1 to prove
that the equation (4.2) has at least one periodic solution x ∈ PT which satisfies ‖x‖ ≤ L.

5. Conclusion

In this paper, by utilizing both the Banach and Krasnoselskii’s fixed point theorems and the
Green’s functions method, a class of second-order neutral differential equations with multiple delays
has been investigated. To be more precise, we have discussed the existence and uniqueness of
periodic solutions by transforming the equation (1.1) into an equivalent integral one and then by
using the Banach and Krasnoselskii’s fixed point theorems.
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Abstract: A restrained Roman dominating function (RRD-function) on a graph G = (V, E) is a function f

from V into {0, 1, 2} satisfying: (i) every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2; (ii) the
subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an RRD-function
is the sum of its function value over the whole set of vertices, and the restrained Roman domination number
is the minimum weight of an RRD-function on G. In this paper, we begin the study of the restrained Roman
reinforcement number rrR(G) of a graph G defined as the cardinality of a smallest set of edges that we must
add to the graph to decrease its restrained Roman domination number. We first show that the decision problem
associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as
some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established
that rrR(T ) = 1 for every tree T of order at least three.

Keywords: Restrained Roman domination, Restrained Roman reinforcement.

1. Introduction

For definitions and notations not given here we refer the reader to [8]. We consider simple
graphs G with vertex set V = V (G) and edge set E = E(G). The order of G is n = n(G) =
|V |. The open neighborhood of a vertex v, denoted by N(v) (or NG(v) to refer to G) is the set
{u ∈ V (G) | uv ∈ E} and its closed neighborhood is the set N [v] = NG[v] = N(v)∪{v}. The degree
of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The maximum and minimum degree in G are denoted
by ∆ = ∆(G) and δ = δ(G), respectively. A vertex of degree one is called a leaf and its neighbor is
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called a support vertex. As usual, the path (cycle, complete p-partite graph, respectively) of order
n is denoted by Pn (Cn, Kn1,n2,...,np , respectively). A star of order n ≥ 2 is the graph K1,n−1. For
a subset S ⊆ V , the subgraph induced by S in G is denoted as G[S].

A subset S ⊆ V is a dominating set of G if every vertex in V \ S has a neighbor in S. The
domination number γ(G) is the minimum cardinality of a dominating set of G.

As an application, in the design of networks for example, it is essential to study the effect of
some modifications of the graph parameters on its structure. These modifications can be deletion or
addition of vertices, deletion or addition of edges. We refer the reader to chapter 7 of [8] when the
graph parameter is the domination number. The reinforcement number r(G) of a graph G is the
minimum number of edges that have to be added to the graph G in order to decrease the domination
number. Of course for graphs G with domination number one it was assumed that r(G) = 0.
The concept of the reinforcement number was introduced in 1990 by Kok and Mynhardt [10],
and since then it has been defined and studied for several other domination parameters, such as
Roman domination [9], total Roman domination [1], quasi-total Roman domination [5], Italian
domination [7], double Roman domination [4] and rainbow domination [3, 13].

In 2015, Leely Pushpam and Padmapriea [11] introduced the concept of restrained Roman
domination as a new variation of Roman domination. A restrained Roman dominating function

(RRD-function, for short) on a graph G is a function f : V −→ {0, 1, 2} having the properties
that (i) every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2; and (ii) the
subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an
RRD-function f is the sum

w(f) =
∑

v∈V (G)

f(v)

and the restrained Roman domination number of G denoted by γrR(G), is the minimum weight of
an RRD-function on G. Any RRD-function f on G can simply be referred as f = (V0, V1, V2), where
Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2}. For further studies on restrained Roman domination
and its variants, see [2, 12, 14–16].

In this paper, we are interested in starting the study of the restrained Roman reinforcement

number rrR(G) of a graph G defined as the cardinality of a smallest set of edges F ⊆ E(G) such
that γrR(G + F ) < γrR(G), where G denotes the complement graph of G. If there is no subset
of edges F satisfying γrR(G + F ) < γrI(G), then we define rrR(G) = 0. Since for any nontrivial
connected graph G, γrR(G) ≥ 2, we deduce that rrR(G) = 0 for all nontrivial connected graphs
with γrR(G) = 2. Moreover, a subset E′ ⊆ E(G) is called an rrR(G)-set if |E′| = rrR(G) and
γrR(G+ E′) < γrR(G).

Further, we will prove that the decision problem associated with the Restrained Roman rein-
forcement is NP-hard. Then various properties of the restrained Roman reinforcement number are
investigated and some sharp bounds on it are presented.

We finish this section by observing that any rrR(G)-set of a connected graph G with γrR(G) ≥ 3
can decrease the restrained Roman domination number of G by at most two.

Proposition 1. Let G be a connected graph with γrR(G) ≥ 3. If F is an rrR(G)-set, then

γrR(G)− 2 ≤ γrR(G+ F ) ≤ γrR(G) − 1.

Both bounds are sharp.

P r o o f. By assumption, γrR(G + F ) < γrR(G), whence the upper bound follows. To show
the lower bound, let us assume that

γrR(G+ F ) ≤ γrR(G) − 3.
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Let f be a γrR(G + F )-function and let uv ∈ F such that 0 ∈ {f(u), f(v)}. If such an edge does
not exist, then f is an RRD-function of G leading to the contradiction

γrR(G) ≤ γrR(G+ F ).

Hence we suppose that uv exists, and let F ′ = F − {uv}. Without loss of generality, suppose that
f(u) = 0. If f(v) = 1, then f is an RRD-function of G leading to the contradiction

γrR(G) ≤ γrR(G+ F )

too. Hence assume that f(v) 6= 1.

First let f(v) = 2. If u has a neighbor w in G+ F ′ with f(w) ≥ 1, then the function g defined
by g(w) = 2 and g(x) = f(x) otherwise, is an RRD-function of G + F ′ yielding as above to the
contradiction γrR(G+F ′) < γrR(G). Hence we assume that each neighbor u in G+F ′ is assigned 0
under f . Let x1, . . . , xk be the neighbors of u in G+F ′. If k = 1 and x1 has a neighbor assigned 0
other than u, then the function g(u) = 1 and g(x) = f(x) otherwise, is an RRD-function of G+F ′

yielding

γrR(G+ F ′) ≤ γrR(G+ F ) + 1 < γrR(G),

this is a contradiction. If k = 1 and x1 has no neighbor assigned 0 other than u, then the function
g(u) = g(x1) = 1 and g(x) = f(x) otherwise, is an RRD-function of G+ F ′ and thus

γrR(G+ F ′) ≤ γrR(G+ F ) + 2 < γrR(G),

it is a contradiction too. Hence assume that k ≥ 2. If some xi has no neighbor assigned 0 other
than u, then the function g(xi) = 2 and g(x) = f(x) otherwise, is an RRD-function of G + F ′

yielding again γrR(G + F ′) < γrR(G). Hence we assume that for each i, xi has at least two
neighbors assigned 0 under f. In this case, we have g(u) = 1 and g(x) = f(x) otherwise, it is an
RRD-function of G+ F ′ and thus

γrR(G+ F ′) < γrR(G).

Finally, assume that f(v) = 0. Since F is an rrR(G)-set, we can suppose, without loss of
generality, that all neighbors of u in G+F ′ have positive labels under f . Now, if v has a neighbor
with weight 0 in G+F ′, then the function g(u) = 1 and g(x) = f(x) otherwise, it is an RRD-function
of G + F ′ while if v has no neighbor with weight 0 in G + F ′, then the function g(u) = g(v) = 1
and g(x) = f(x) otherwise, is an RRD-function of G+ F ′. Both situations yield the contradiction
γrR(G+ F ′) < γrR(G). Consequently,

γrR(G+ F ) ≥ γrR(G) − 2.

The upper bound of Proposition 1 is attained for the cycle C4, while the lower bound is
attained for the cycle C6. �

2. NP-hardness result

The aim of this section, is to show that the decision problem associated with the Restrained
Roman reinforcement is NP-hard. Consider the following decision problem.
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zi yi

xi xi

Li

s1

s3

s2

s4

H1

s′1

s′3

s′2

H2

Figure 1. The graphs Li and H = H1 ∪H2.

Restrained Roman reinforcement problem (RR-reinforcement)

Instance: A nonempty graph G and a positive integer k.
Question: Is rrR(G) ≤ k?

We show that the NP-hardness of the RR-reinforcement problem by transforming the
well-known 3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified
below was proven to be NP-complete in [6].

3-SAT problem

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set X of variables such
that |Cj | = 3 for every j ∈ {1, 2, . . . ,m}.

Question: Is there a truth assignment for X that satisfies all the clauses in C?

Theorem 1. Problem RR-reinforcement is NP-hard for an arbitrary graph.

P r o o f. Let X = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm} be an arbitrary instance of 3-
SAT problem. We will build a graph G and a positive integer k such that rrR(G) ≤ k if and only
if C is satisfiable.

For each i ∈ {1, 2, . . . , n}, we associate to the variable xi ∈ X a copy of the graph Li as depicted
in Figure 1, and for each j ∈ {1, 2, . . . ,m}, we associate to the clause Cj = {uj , vj , wj} ∈ C a
vertex cj by adding the edge-set Ej = {cjuj, cjvj, cjwj}. Finally, we enclose the graph H illustrated
in Figure 1 by connecting vertices s1, s

′
1 to every vertex cj . Clearly, the resulting graph G is of order

8n+m+19 and size 11n+5m+27 and hence G can be built in polynomial time. Set k = 1. Figure 2
provides an example of the resulting graph when X = {x1, x2, x3, x4} and C = {C1, C2, C3}, where
C1 = {x1, x2, x̄3}, C2 = {x̄1, x2, x4} and C3 = {x̄2, x3, x4}.

It is easy to verify that for any γrR(G)-function g we must have

∑

v∈V (Lj)

g(v) ≥ 4

for each j ∈ {1, 2, . . . , n}. Moreover, to restrained Roman dominate all vertices of V (H), we need
that

m
∑

i=1

g(ci) + g(V (H)) ≥ 6.

Therefore
γrR(G) = w(g) ≥ 4n+ 6.
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z1 y1

x1 x1

z2 y2

x2 x2

z3 y3

x3 x3

z4 y4

x4 x4

c1 c2 c3

s1

s3

s2

s4
s′1

s′3

Figure 2. An instance of the restrained Roman reinforcement number problem resulting from an instance of
3-SAT. Here k = 1 and γrR(G) = 22, where the black vertex p means there is a RRDF f with f(p) = 2.

Basing on the assignment given to the graph in Figure 2, one can easily define an RRD-function
of G with weight 4n+ 6, which consequently leads to γrR(G) = 4n+ 6.

In the following, we show that C is satisfiable if and only if rrR(G) = 1. Let C be satisfiable
and t : X → {T, F} a satisfying function for C. We build a subset S of vertices of G as follows.
If t(xi) = T , then put the vertices xi and yi in S; while if t(xi) = F , then put the vertices xi and
zi in S. So |S| = 2n. Define the function h on V (G) by h(x) = 2 for every x ∈ S, h(s1) = 1,
h(s3) = h(s′3) = 2 and h(y) = 0 for the remaining vertices. It is easy to verify that h is an
RRD-function of G+ s4s3 of weight

4n+ 5 < γrR(G) = 4n+ 6,

and hence rrR(G) = 1.

Conversely, let rrR(G) = 1. Then, there is an edge e = uv ∈ E(G) for which

γrR(G+ e) < 4n+ 6.

Let g = (V0, V1, V2) be a γrR(G + e)-function. Since whatever the added edge e, we
have g(V (Li)) ≥ 4, and thus vertices u and v cannot both belong to V (Li) (for otherwise
γrR(G+ e) ≥ 4n + 6). On the other hand, since rrR(G) = 1 and g(V (Li)) ≥ 4, we must have

m
∑

j=1

g(cj) + g(V (H)) < 6.

Since also whatever the added edge e, we have g(V (H)) ≥ 5, we conclude that g(V (H)) = 5. In
particular, this is only possible if g(s′1) = 0, g(s1) ≤ 1 and

m
∑

j=1

g(cj) = 0.
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In addition, we note that if {xi, x̄i} ⊆ V2 or {xi, x̄i} ∩ V1 6= ∅ for some i, then g(V (Li)) ≥ 5 which
results in the contradiction

γrR(G+ e) ≥ 4n+ 6.

Thus, |{xi, x̄i} ∩ V2| ≤ 1 and {xi, x̄i} ∩ V1 = ∅ for every i ∈ {1, . . . , n}. Therefore each vertex cj
must have a neighbor in {xi, x̄i} for some i which is assigned a 2. In this case, define the mapping
t : X → {T, F} by

t(xi) =

{

T if f(xi) = 2,

F otherwise
(2.1)

for i ∈ {1, . . . , n}.
We show that t satisfies the truth assignment for C. It is enough to show that every clause in

C is satisfied by t. Consider an arbitrary clause Cj ∈ C for some j ∈ {1, . . . ,m}. If cj is dominated
by xi, then g(xi) = 2 and so t(xi) = T . If cj is dominated by x̄i, then g(x̄i) = 2 and hence t(xi) = F
and t(x̄i) = T . Therefore, in either case the clause Cj is satisfied. The arbitrariness of j shows that
all clauses in C are satisfied by t, that is, C is satisfiable. This completes the proof of the theorem. �

3. Exact values

In this section, we determine the restrained Roman reinforcement number of some classes of
graphs including paths, cycles and complete p-partite graphs for any integer p ≥ 2. As observed
in [11], for every connected graph G of order n ≥ 2, we have 2 ≤ γrR(G) ≤ n. A characterization
of all connected graphs of order n with γrR(G) ∈ {2, 3, n} was provided in [11, 14] as follows.

The graph B4. The graph B3,2.

u1 u1

u2 u2

u3u3

u5 u5 u4u4

Figure 3. Graphs B4 and B3,2.

Let C := (u1u2u3u4u5) be a cycle of length 5 and let Bp be the graph obtained from C by
adding p ≥ 1 new vertices attached by edges at u1 and let Bp,q be the graph obtained from C
by adding p ≥ 1 new vertices attached by edges at u1 and q ≥ 1 other new vertices attached by
edges at u3 (see Fig. 3). Recall that the diameter, diam(G), of a graph G is the maximum distance
between the pair of vertices.

Proposition 2 [11]. Let G be a connected graph of order n ≥ 2. Then

(a) γrR(G) = 2 if and only if n = 2 or ∆(G) = n− 1 and δ(G) ≥ 2;

(b) γrR(G) = n if and only if G ≃ C4, C5, Bp, Bp,q or G is a tree with diam(G) ≤ 5.

Proposition 3 [14]. Let G be a connected graph of order n ≥ 4. Then γrR(G) = 3 if and only

if G satisfies one of the following conditions:
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(i) ∆(G) = n− 1 and G has exactly one leaf ;

(ii) ∆(G) = n− 2 and G has a vertex u of degree n− 2 such that the induced subgraph G[N(u)]
has no isolated vertex.

On the other hand, the exact values of the restrained Roman domination number have been
established in [11] for paths, cycles and complete p-partite graphs.

Proposition 4 [11]. The following conditions holds:

(a) γrR(Pn) = n for 1 ≤ n ≤ 6 and γrR(Pn) = ⌈(2n+ 1)/3⌉ + 1 for n ≥ 7;

(b) γrR(Cn) = 2 ⌈n/3⌉ when n 6≡ 2 (mod 3) and γrR(Cn) = 2 ⌈n/3⌉+ 1 otherwise;

(c) γrR(Km,n) = 4 for m,n ≥ 2;

(d) if Kn1,n2,...,np is the complete p-partite graph such that p ≥ 3 and n1 ≤ n2 ≤ . . . ≤ np, then
γrR(K1,n2,...,np) = 2, γrR(K2,n2,...,np) = 3 and γrR(Kn1,n2,...,np) = 4 for n1 ≥ 3.

Now we are ready to find the restrained Roman reinforcement number for paths, cycles and
complete p-partite graphs, p ≥ 2.

Proposition 5. For n ≥ 3, rrR(Pn) = 1.

P r o o f. Let Pn := w1w2 . . . wn. If n ≡ 0 (mod 3), then the function g defined by

g(w3i+1) = 2

for 0 ≤ i ≤ (n − 3)/3 and g(w) = 0 otherwise, is an RRD-function of Pn + w1wn of weight 2n/3.
If n ≡ 2 (mod 3), then the function g defined by g(wn) = 2, g(w3i+1) = 2 for 0 ≤ i ≤ (n − 5)/3
and g(x) = 0 otherwise, is an RRD-function of Pn + w1wn−2 of weight (2n+ 2)/3. Finally, if
n ≡ 1 (mod 3), then the function g defined by g(wn) = 1, g(w3i+1) = 2 for 0 ≤ i ≤ (n − 4)/3 and
g(w) = 0 otherwise, is an RRD-function of Pn +w1wn−1 of weight (2n+ 1)/3. All considered cases
show that rrR(Pn) = 1. �

Proposition 6. For n ≥ 4,

rrR(Cn) =

{

2 if n ≡ 0 (mod 3),
1 otherwise.

P r o o f. Assume that Cn := (w1w2 . . . wn) be a cycle on n vertices. If n ≡ r (mod 3) with
r ∈ {1, 2}, then by a similar argument to that used in the proof of Proposition 5, we can see
that rrR(Cn) = 1. Hence we assume that n ≡ 0 (mod 3). First, since the function g defined by
g(wn−2) = 1, g(w3i+1) = 2 for 0 ≤ i ≤ (n − 6)/3 and g(x) = 0 otherwise, is an RRD-function of
Cn + {w1wn−1, w1wn−3} of weight (2n − 3)/3 = γrR(Cn) − 1 (Proposition 4-(b)), we deduce that
rrR(Cn) ≤ 2.

Now we prove the inverse inequality. For this purpose, we need only to show that adding an
arbitrary edge e cannot decrease γrR(Cn). Observe that for any edge e ∈ Cn,

γrR(Cn + e) ≤ γrR(Cn).

Let e be an arbitrary edge in Cn and let f be a γrR(Cn + e)-function. Suppose first that there are
three consecutive vertices wi, wi+1, wi+2 such that f(wi) = f(wi+1) = f(wi+2) = 0, say for i = 1.
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Then the edge e must join w2 to some vertex assigned 2, say wk, with k /∈ {1, 3}. Also, to restrained
Roman dominate w1 and w3, we must also have f(w4) = f(wn) = 2.

Consider the cycles C ′ := (w2w3 . . . wk) of order k − 1 and C ′′ := (w2wk . . . wnw1) of order
n − k + 3. Let k − 1 ≡ s1 (mod 3) and n − k + 3 ≡ s2 (mod 3). Notice that s1 = 0 and s2 = 2;
s1 = 2 and s2 = 0 or s1 = s2 = 1. Assume that k− 1 ≡ 0 (mod 3) (the case n− k+3 ≡ 0 (mod 3)
is similar). Then n − k + 3 ≡ 2 (mod 3), and since the restrictions of f on V (C ′) and V (C ′′) are
RRD-functions, we deduce from Proposition 4-(b), that

γrR(Cn + e) = f(V (C ′)) + f(V (C ′′))− 2

≥ γrR(C
′) + γrR(C

′′)− 2 =
2(k − 1)

3
+

2(n− k + 3) + 3 + 2

3
− 2 =

2n+ 3

3
> γrR(Cn).

Assume now that s1 = s2 = 1. Then, as above, it follows from Proposition 4-(b) that

γrR(Cn + e) = f(V (C ′)) + f(V (C ′′))− 2

≥ γrR(C
′) + γrR(C

′′)− 2 =
2(k − 1) + 3 + 1

3
+

2(n− k + 3) + 3 + 1

3
− 2 =

2n+ 6

3
> γrR(Cn).

Thus in either case we obtain a contradiction. Next suppose there are three consecutive vertices
wi, wi+1, wi+2 such that f(wi) + f(wi+1) + f(wi+2) = 1, say for i = 1.

If f(w2) = 1, then f(w1) = f(w3) = 0 and each of w1 and w3 must be adjacent a vertex
assigned 2 as well as to a vertex assigned 0. This possible only if e = w1w3 and so

H = (Cn + e)− w2

is a cycle on n− 1 vertices, where the restriction of f to H is an RRD-function. It follows that

γrR(Cn + e) = f(V (H)) + 1 ≥ γrR(H) + 1,

and by Proposition 4-(b), we obtain

γrR(Cn + e) ≥
2(n − 1) + 3 + 2

3
+ 1 > γrR(Cn)

which is a contradiction. Hence we can assume that f(w2) = 0. Without loss of generality, let
f(w1) = 1 and f(w3) = 0. To restrained Roman dominate w2, the edge e must join w2 to a
vertex with label 2, say wk. Likewise for w3 we must have f(w4) = 2. Now, consider the cycles
C ′ := (w2w3 . . . wk) of order k − 1 and the path P ′ := wk . . . wnw1 of order n− k + 2.

Let k− 1 ≡ s1 (mod 3) and n− k+2 ≡ s2 (mod 3). Notice that s1 = 0 and s2 = 1; s1 = 1 and
s2 = 0 or s1 = s2 = 2. Notice also that the restrictions of f on V (C ′) and V (P ′) are RRD-functions,
and thus

γrR(Cn + e) = f(V (C ′)) + f(V (P ′))− 2 ≥ γrR(C
′) + γrR(P

′)− 2.

Now using Propositions 4-(a,b), we get a contradiction as before.
Finally, let

f(wi) + f(wi+1) + f(wi+2) ≥ 2

for each 1 ≤ i ≤ n, where the sum in indices is taken modulo n. Then we have

γrR(Cn + e) =
1

3

n
∑

i=1

(f(wi) + f(wi+1) + f(wi+2)) ≥
2n

3
= γrR(Cn),

and therefore, γrR(Cn + e) = γrR(G). Consequently, rrR(Cn) = 2 as desired. �
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Proposition 7. For integers 1 ≤ r ≤ s with r + s ≥ 3,

rrR(Kr,s) =

{

1 if r = 1, 2, 3,
r − 2 if r ≥ 4.

P r o o f. Let X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys} be the partite sets of Kr,s.

If r = 1, then the function g defined by g(x1) = 2, g(y1) = g(y2) = 0 and g(x) = 1 otherwise,
is an RRD-function of K1,s + y1y2 of weight n − 1 and it follows from Proposition 2-(b) that
rrR(K1,s) = 1.

If r = 2, then the function g defined by g(x1) = 2 and g(x) = 0 otherwise, is an RRD-function
of K2,s + x1x2 of weight 2 and we get from Proposition 2-(a) that rrR(K2,s) = 1.

If r = 3, then the function g defined by g(x1) = 2, g(x2) = 1 and g(x) = 0 otherwise, is an
RRD-function of K3,s + x1x3 of weight 3 and by Proposition 4-(c), we have rrR(K3,s) = 1.

Let r ≥ 4. First we observe that the function g defined by g(x1) = 2, g(x2) = 1 and g(x) = 0
otherwise, is an RRD-function of Kr,s+{x1xi | 3 ≤ i ≤ r} of weight 3 and thus by Proposition 4-(c),
rrR(Kr,s) ≤ r − 2.

To show that rrR(Kr,s) ≥ r − 2, let F be an rrR(Kr,s)-set. Then

2 ≤ γrR(Kr,s + F ) ≤ 3.

By Propositions 2-(a) and 3 we must have ∆(Kr,s+F ) ≥ r+s−2 and this implies that |F | ≥ r−2.
Therefore rrR(Kr,s) = r − 2 and the proof is complete. �

Proposition 8. Let Kn1,n2,...,np be the complete p-partite graph such that p ≥ 3 and

3 ≤ n1 ≤ n2 ≤ . . . ≤ np. Then rrR(Kn1,n2,...,np) = n1 − 2.

P r o o f. Let G = Kn1,n2,...,np and X1 = {x1, . . . , xn1
}, X2 = {y1, . . . , yn2

}, . . . ,Xp be the
partite sets of G. Let F be an rrR(G)-set. By Proposition 4-(d) we deduce that γrR(G+F ) ∈ {2, 3},
and by Propositions 2-(a) and 3 we must have

∆(G+ F ) ≥ n1 + · · ·+ np − 2

implying that |F | ≥ n1−2. On the other hand, the function g defined by f(x1) = 2, f(x2) = 1 and
f(x) = 0 otherwise, is an RRD-function of G+ {xix1 | 3 ≤ i ≤ n1} yielding rrR(G) ≤ |F | = n1 − 2.
Consequently, rrR(G) = n1 − 2. �

4. Graphs with small restrained Roman reinforcement number

In this section, we study graphs with small restrained Roman reinforcement number. We begin
with the following lemma.

Lemma 1. If G is a connected graph of order n ≥ 3 with γrR(G) = n, then rrR(G) = 1.

P r o o f. By Proposition 2, G ≃ C4, C5, Bp, Bp,q or G is a tree with diam(G) ≤ 5. If
G ∈ {C4, C5}, then the desired result follows from Proposition 6. If G ∈ {Bp, Bp,q}, then the
function g defined by g(u1) = 2, g(u2) = g(u5) = 0 and g(x) = 1 otherwise, is an RRD-function of
G+ u2u5 and hence rrR(G) = 1. Hence, we assume that G is a tree with diameter at most 5.

Let v1v2 . . . vk (k ≥ 3) be a diametral path in G. Define the function f by f(v1) = f(v3) = 0,
f(v2) = 2 and f(x) = 1 for the remaining vertices. Clearly, f is an RRD-function of G+ v1v3 and
hence rrR(G) = 1. �
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Proposition 9. Let G be a connected graph of order n ≥ 4 with γrI(G) ≥ 3. If f = (V0, V1, V2)
is a γrR(G)-function with V1 6= ∅, then

rrR(G) = 1.

P r o o f. Let f = (V0, V1, V2) be a γrR(G)-function such that V1 6= ∅. If γrR(G) = n, then the
desired result comes from Lemma 1.

Hence assume that γrR(G) < n. Then V0 6= ∅ and so V2 6= ∅. Since G is connected and V1 6= ∅,
there exists a vertex w ∈ V1 such that w is dominated by V0 ∪ V2. Note that if w has a neighbor in
V0 and another one in V2, then reassigning w provides an RRD-function with weight γrR(G)− 1, a
contradiction.

Now, if w is adjacent to a vertex in V2, then the function g defined by g(w) = 0 and g(x) = f(x)
otherwise, is an RRD-function of G + wz where z ∈ V0, of weight less than γrR(G), and thus
rrR(G) = 1. If w is adjacent to a vertex in V0, then the function g defined by g(w) = 0 and
g(x) = f(x) otherwise, is an RRD-function of G + wu where u ∈ V2, of weight less than γrR(G)
and so rrR(G) = 1. This completes the proof. �

Proposition 10. Let G be a connected graph of order n with γrR(G) ≥ 3. Then rrR(G) = 1 if

and only if γrR(G) = n or G has a function f = (V0, V1, V2) of weight less than γrR(G) such that

one of the following conditions holds:

(i) G[V0] has at most two isolated vertices and V2 dominates V0;

(ii) G[V0] has no isolated vertices and there is exactly one vertex v ∈ V0 which is not dominated

by V2.

P r o o f. If γrR(G) = n, then by Lemma 1 we have rrR(G) = 1. Hence suppose that
γrR(G) < n, and let f = (V0, V1, V2) be a function on G with weight less than γrR(G) satisfy-
ing (i) or (ii). Since ω(f) < γrR(G) ≤ n − 2, we have |V0| ≥ 2. In the case V2 is non-empty, let
u ∈ V2. Now, if (ii) holds, then V2 6= ∅ and f is an RRD-function of G+ uv.

Assume now that (i) holds. If G[V0] has two isolated vertices w, v, then f is an RRD-function
of G + {wv} and if G[V0] has exactly one isolated vertex, say w, then f is an RRD-function of
G+ {wz}, where z is any vertex in V0 − {w}. Hence in either case rrR(G) = 1.

Conversely, let rrR(G) = 1 and suppose that {uv} is an rrR(G)-set. If γrR(G) = n, then we
are done. Hence suppose that γrR(G) ≤ n − 1 and let f be a γrR(G + {uv})-function. Notice
that vertices u and v cannot be assigned both positive values under f (otherwise f is an RRD-
function of G). Without loss of generality, assume that f(u) = 0. If f(v) = 0, then f is a function
satisfying (i). Hence assume that f(v) ≥ 1. If u is adjacent to a vertex with label 2 other than v,
then f is an RRD-function of G. Hence u is not dominated by V2 in G and so f is a function
satisfying (ii). This completes the proof. �

Proposition 11. Let G be a connected graph of order n with γrR(G) ≥ 3. If δ(G) = 1, then
rrR(G) = 1.

P r o o f. First note that n ≥ 3, since γrR(G) ≥ 3. If γrR(G) = n, then the result comes from
Lemma 1. Hence we assume that γrR(G) < n, and let f = (V0, V1, V2) be a γrR(G)-function. We
have V0 6= ∅ (because γrR(G) < n) and thus V2 6= ∅.

Let u be a support vertex of G and u1 a leaf neighbor of u. By definition we have f(u1) ≥ 1.
If f(u1) = 1 or f(u) = 1, then the desired result comes from Proposition 9.

Hence we assume that f(u1) = 2 and f(u) 6= 1. The minimality of f implies that f(u) = 0.
Note that u1 is the only neighbor of u which assigned a 2, for otherwise u1 can be reassigned the
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value 1 instead of 2. Let w be a neighbor of u with label 0. To Roman dominate w, there is a
vertex v such that f(v) = 2. Then the function g defined on G+ uv by g(u1) = 1 and g(x) = f(x)
otherwise, is an RRD-function of G+ {uv} with weight ω(f)− 1. Consequently, rrR(G) = 1. �

Corollary 1. For any tree T of order n ≥ 3, rrR(T ) = 1.

5. Bounds on rrR(G)

In this section, we present some sharp upper bounds on the restrained Roman reinforcement
number of a graph. Given a set S ⊆ V of vertices in a graph G and a vertex v ∈ S, the external

private neighborhood of v with respect to S in the set

epn(v, S) =
{

u ∈ V − S | N(u) ∩ S = {v}
}

.

Proposition 12. Let G be a connected graph with γrI(G) ≥ 3. If f = (V0, V1, V2) is a

γrR(G)-function with V2 6= ∅, then

rrR(G) ≤ min
{

|epn(v, V2) ∩ V0| : v ∈ V2

}

.

P r o o f. Let f = (V0, V1, V2) be a γrR(G)-function with V2 6= ∅. If |epn(v, V2) ∩ V0| = 0 for
some vertex v ∈ V2, then reassigning v the value 1 instead of 2 provides an RRD-function of weight
less than γrR(G) leading to a contradiction. Hence |epn(v, V2) ∩ V0| ≥ 1 for every v ∈ V2. Let u be
a vertex in V2 such that

|epn(u, V2) ∩ V0| = min{|epn(v, V2) ∩ V0| : v ∈ V2}

and let epn(u, V2) ∩ V0 = {u1, . . . , uǫ}. If |V2| ≥ 2 and w ∈ V2 − {u}, then the function g defined
by g(u) = 1 and g(x) = f(x) otherwise, is an RRD-function of G + {wx | x ∈ epn(v, V2) ∩ V0} of
weight less than γrR(G) and so

rrR(G) ≤ min{|epn(v, V2) ∩ V0| : v ∈ V2}.

Hence assume that V2 = {u}. Then u dominates all vertices in V0. Since γrR(G) ≥ 3, we have
V1 6= ∅ and the desired result follows from Proposition 9. �

We observe that for any γrR(G)-function f = (V0, V1, V2), every vertex u of V2 can have at most
dG(u) neighbors in V0. Whence we have the following corollary.

Corollary 2. Let G be a connected graph with γrR(G) ≥ 3 and f = (V0, V1, V2) a

γrR(G)-function with |V2| ≥ 1. Then rrR(G) ≤ ∆.

Corollary 3. Let G be a connected graph with γrR(G) ≥ 3 containing a path v1v2v3v4v5 in

which dG(vi) = 2 for i ∈ {2, 3, 4}. Then rrR(G) ≤ 2.

P r o o f. If γrR(G) = n, then the result is immediate from Lemma 1. Hence we assume that
γrR(G) < n, and let f = (V0, V1, V2) be a γrR(G)-function. By Proposition 9, we may assume that
V1 = ∅. Then we must have 2 ∈ {f(v2), f(v3), f(v4)} and the result follows from Proposition 12. �

Using Propositions 9 and 12 we obtain the next result.
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x

y

Figure 4. A graph G of order 18 and rrR(G) = 4.

Theorem 2. For any graph G of order n ≥ 3, we have

rrR(G) ≤ max{1, (2n − γrR(G))/γrR(G)}.

Moreover, the bound is sharp.

P r o o f. If γrR(G) = 2, then rrR(G) = 0 and the result is true.

If γrR(G) = n, then by Lemma 1, rrR(G) = 1 and the desired result follows.

Hence we assume that 3 ≤ γrR(G) < n, and let f = (V0, V1, V2) be a γrR(G)-function. If V1 6= ∅,
then the result follows from Proposition 9. Thus suppose that V1 = ∅. Then γrR(G)/2 = |V2| ≥ 2
and clearly

|epn(u, V2) ∩ V0| ≤ (2n− γrR(G))/γrR(G)

for some u ∈ V2. Now, the result is immediate by Proposition 9.

To show the sharpness, consider the graph G illustrated in Figure 4. It is easy to see that
γrR(G) = 4 and the function f on G defined by f(x) = f(y) = 2 and f(z) = 0 otherwise, is the
unique γrR(G)-function. Then

rrR(G) ≤ (2n − γrR(G))/γrR(G) = 8.

Now let F be an rrR(G)-set. Then γrR(G+F ) ≤ 3 and so ∆(G+F ) ≥ n−2 (see Propositions 2-(a)
and 3). This implies that |F | ≥ 8, and consequently,

rrR(G) = 8 = (2n − γrR(G))/γrR(G).

�

6. Conclusion

The main objective of this paper was to start the study of the restrained Roman reinforcement
number rrR(G) of a graph G. We first showed that the decision problem associated with the
restrained Roman reinforcement problem is NP-hard, and then various properties as well as some
sharp bounds of the restrained Roman reinforcement number have been established. In particular
we showed that rrR(T ) = 1 for every tree T of order at least three and that rrR(G) ≤ ∆(G) for
any connected graph G with γrR(G) ≥ 3. As a future work, one can focus on the problem of
characterizing all connected graphs G such that rrR(G) = ∆(G).
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Abstract: Let G = (V, E) be a graph with a vertex set V and an edge set E. The graph G is said to be with a
local irregular vertex coloring if there is a function f called a local irregularity vertex coloring with the properties:
(i) l : (V (G)) → {1, 2, ..., k} as a vertex irregular k-labeling and w : V (G) → N, for every uv ∈ E(G),
w(u) 6= w(v) where w(u) =

∑
v∈N(u) l(i) and (ii) opt(l) = min{max{li : li is a vertex irregular labeling}}. The

chromatic number of the local irregularity vertex coloring of G denoted by χlis(G), is the minimum cardinality
of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular
vertex coloring of Pm

⊙
G when G is a family of tree graphs, centipede Cn, double star graph (S2,n), Weed

graph (S3,n), and E graph (E3,n).

Keywords: Local irregularity, Corona product, Tree graph family.

1. Introduction

Let G(V,E) be a connected and simple graph with a vertex set V and an edge set E. In
this paper, we combine two concepts, namely the local antimagic vertex coloring and the distance
irregular labelling, with a local irregularity of vertex coloring. This concept firstly was introduced
by Kristiana [2, 3], et. al. The latest research was conducted by Azzahra [4], who examined the
local irregularity vertex coloring of a grid graph family. In this paper we study the local irregularity
of vertex coloring of corona product graph of a tree graph family.

Definition 1. Suppose l : V (G) → {1, 2, ..., k} and w : V (G) → N , where

w(u) =
∑

v∈N(u)

l(v),

then l(v) is called the vertex irregular k-labeling and w(u) is called the local irregularity of vertex

coloring if

(i) opt(l) = min{max{li} : li vertex irregular labeling};

(ii) for every uv ∈ E(G), w(u) 6= w(v).

Definition 2. The chromatic number of local irregular graph G denoted by χlis(G), is the

minimum of cardinality of the local irregularity of vertex coloring.

https://doi.org/10.15826/umj.2022.2.008
mailto:arika.fkip@unej.ac.id
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In this paper, we will use the following lemma which gives a lower bound on the chromatic
number of local irregular vertex coloring:

Lemma 1 [2]. Let G be a simple and connected graph, then χlis(G) ≥ χ(G).

Proposition 1 [2]. Let G be a graph each two adjacent vertices of which have a different vertex

degree then opt(l) = 1.

Proposition 2 [2]. Let G be a graph each two adjacent vertices have the same vertex degree

then opt(l) ≥ 2.

Definition 3 [1]. Let G and H be two connected graphs. Let o be a vertex of H. The corona

product of the combination of two graphs G and H is defined as the graph obtained by taking a

duplicate of graph G and |V (G)| a duplicate of graph H, namely Hi; i = 1, 2, 3, ...|V (G)| then

connects each vertex i in G to each vertex in Hi. The corona product of the graphs G and H is

denoted by G
⊙

H.

2. Result and discussion

In this paper, we analyze the new result of the chromatic number of local irregular vertex
coloring of corona product by family of tree graph (Pm

⊙

G) where G is centipede graph (Cn),
double star graph (S2,n), and Weed graph (S3,n).

Theorem 1. Let G = Pm

⊙

Cpn, be a corona product of a path graph of order m and a

centipede graph of order n for n,m ≥ 2, then

χlis(Pm

⊙

Cpn) =















5, for m = 3 and n = 2, 3,
6, for m = 2 and n = 2, 3 or for m = 3 and n ≥ 4,
7, for m = 2 and n ≥ 4 or for m ≥ 4 and n = 2, 3,
8, for m ≥ 4 and n ≥ 4,

with opt(l) defined as

opt(l)(Pm

⊙

Cpn) =















1, for m = 3 and n = 3,
1, 2, for m = 2 and n = 2 or

for m = 3 and n = 2 or
for m ≥ 3 and n ≥ 4.

P r o o f. Vertex set is

V (Pm

⊙

CPn) = {xi; 1 ≤ i ≤ m} ∪ {xij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and the edge set is

E(Pm

⊙

CPn) = {xixi+1; 1 ≤ i ≤ m− 1} ∪ {xijxij+1; 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}

∪{xijyij; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {xixij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {xiyij; 1 ≤ i ≤ m, 1 ≤ j ≤ n},

the order and size respectively are 2mn+m and 4mn− 1.

Case 1: m 6= p, m ≥ 2, p ≥ 2, n ≥ 3.



96 A. I. Kristiana et al.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1,
we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) = 4, let χlis(Pm

⊙

Cpn) = 4, if l(x1) = l(x3) = 1, l(x2) = 2,
l(xij) = l(yij) = 1 then w(x1) = w(x2), then there are 2 adjacent vertices that have the same
color, it contradicts the definition of vertex coloring. If

l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ 3, j = 1, l(yij) = 2, 1 ≤ i ≤ 3, j = 2,

l(xi) = 1 → w(xi) 6= w(xi+1), w(xi1) 6= (xi2),

then χlis(Pm

⊙

Cpn) ≥ 5. Based on this, we have the lower bound χlis(Pm

⊙

Cpn) ≥ 5.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn). Furthermore, the upper bound
for the chromatic number of local irregular (Pm

⊙

Cpn), we define l : V (Pm

⊙

Cpn) → {1, 2} with
the vertex irregular 2-labelling as follows:

l(xi) = 1, l(xij) = 1,

l(yij) =

{

1, for 1 ≤ i ≤ 3 and j = 1,

2, for 1 ≤ i ≤ 3 and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

6, for i = 1, 3,

8, for i = 2,

w(xij) =

{

3, for 1 ≤ i ≤ 3 and j = 1,

4, for 1 ≤ i ≤ 3 and j = 2,

w(yij) = 2, for 1 ≤ i ≤ 3 and j = 1, 2.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 5, and we have 5 ≤ χlis(Pm

⊙

Cpn) ≤ 5, so
χlis(Pm

⊙

Cpn) = 5 for m = 3 and n = 2.

Case 2: m = n = 3.
Based on Proposition 1, opt(l) = 1. So the lower bound of (Pm

⊙

Cpn) is

χlis(Pm

⊙

Cpn) ≥ 5.

Hence opt(l) = 1 and the labelling provides the vertex-weight as follows:

w(xi) =

{

7, for i = 1, 3,

8, for i = 2,

w(yij) =

{

3, for 1 ≤ i ≤ 3 and j ≡ 1, 3 (mod 4),

4, for 1 ≤ i ≤ 3 and j = 2,

w(xij) = 2, for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 5. We have 5 ≤ χlis(Pm

⊙

Cpn) ≤ 5, so
χlis(Pm

⊙

Cpn) = 5 for m = 3 and n = 3.

Case 3: m = n = 2.
First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
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Assume χlis(Pm

⊙

Cpn) = 5, if l(x1) = 1, l(x2) = 2, l(xij) = l(yij) = 1, then w(x11) = w(x12)
and there are 2 adjacent vertices, that have the same color, it contradicts the definition of vertex
coloring. If

l(x1) = 1, l(x2) = 2, l(xij) = 1, l(yi1) = 1, i = 1, 2, l(yi2) = 2, i = 1, 2,

then w(x1) 6= w(x2), w(xi1) 6= w(xi2). Based on that we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 6.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i = 1,

2, for i = 2,
l(xij) = 1, l(yij) =

{

1, for i = 1, 2 and j = 1,

2, for i = 1, 2 and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

6, for i = 2,

7, for i = 1,

w(xij) =











3, for i = 1 and j = 1

4, for i = 1 and j = 1, or for i = 2 and j = 1,

5, for i = 2 and j = 2,

w(yij) =

{

2, for i = 1 and j = 1, 2,

3, for i = 2 and j = 1, 2.

We have the following upper bound χlis(Pm

⊙

Cpn) ≤ 6. We have 6 ≤ χlis(Pm

⊙

Cpn) ≤ 6, so
χlis(Pm

⊙

Cpn) = 6 for m = 2 and n = 2.

Case 4: m = 2 and n = 3.

First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, if

l(xi) = l(xij) = 1, l(y1j) = 1, l(y2j) = 1, j = 1, 2, l(yi3) = 2,

then w(x22) = w(x23), so there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(x1) = 1, l(x2) = 2, l(xij) = 1, l(yij) = 1,

then w(x1) 6= w(x2), w(xi,1) 6= w(xi,2). Based on that we have the lower bound χlis(Pm

⊙

Cpn) ≥ 6.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i = 1,

2, for i = 2,
l(xij) = 1, w(yij) = 1.
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Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

7, for i = 2,

8, for i = 1,

w(xij) =











3, for i = 1 and j = 1, 3,

4, for i = 1 and j = 2, or for i = 2 and j = 1, 3,

5, for i = 2 and j = 2,

w(yij) =

{

2, for i = 1 and 1 ≤ j ≤ 3,

3, for i = 2 and 1 ≤ j ≤ 3.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 6. So we have χlis(Pm

⊙

Cpn) = 6 for m = 2 and
n = 3.

Case 5: m = 3 and n ≥ 4.

First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

CPn). Based
on Lemma 1, we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, if l(x1) = l(x3) = 1, l(x2) = 2, l(xij) = l(yij) = 1, then w(x1) =
w(x2) so there are 2 adjacent vertices with the have same color, it contradicts the definition of
vertex coloring. If

l(xi) = l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ 3, j = 1, n, j ≡ 0 (mod 2),

l(yij) = 2, 1 ≤ i ≤ 3, j ≡ 1, 3 (mod 4), j 6= 1, n,

with the w(xi) 6= w(xi+1), w(xij) = w(xij+1). Therefore we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 6.

After that, we will find the upper bound for χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(yij) =

{

1, for 1 ≤ i ≤ 3 and j = 1, n or for 1 ≤ i ≤ 3 and j ≡ 0 (mod 2),

2, for 1 ≤ i ≤ 3 and j ≡ 1, 3 (mod 4), j 6= 1, n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =























2n+ n/2, for i = 1, 3 and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 1, 3 and n ≡ 1, 3 (mod 4),

3n+ 1− n/2, for i = 2 and n ≡ 0 (mod 2),

3n+ 1− ⌈n/2⌉ , for i = 2 and n ≡ 1, 3 (mod 4),

w(xij) =











3, for 1 ≤ i ≤ 3 and j = 1, n,

4, for 1 ≤ i ≤ 3 and j ≡ 0 (mod 2),

5, for 1 ≤ i ≤ 3 and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) = 2.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 6. So χlis(Pm

⊙

Cpn) = 6 for m = 3 and n ≥ 4.

Case 6: m ≡ 0 (mod 2), m ≥ 4 and n = 2.
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First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, let χlis(Pm

⊙

Cpn) = 5, if

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4), l(xij) = l(yij) = 1

then w(xij) = w(xij+1), then there are 2 adjacent vertices that have same color, this contradicts
the definition of vertex coloring. If

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4),

l(xij) = 1l(yij) = 1, j = 2, l(yij) = 2, j = 1,

then w(xij) 6= w(xij+1);w(xi+1) 6= w(xi+2). So we have the lower bound χlis(Pm

⊙

Cpn) ≥ 7.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1, 3 (mod 4) or for i ≡ 2 (mod 4),

2, for i ≡ 0 (mod 4),

l(xij) = 1, l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1,

2, for 1 ≤ i ≤ m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











6, for i = 1,m,

7, for i ≡ 0 (mod 2), i 6= m,

8, for i ≡ 1, 3 (mod 4), i 6= 1,

w(xij) =























3, for i ≡ 1, 3 (mod 4) and j = 1 or for i ≡ 2 (mod 4) and j = 1,

4, for i ≡ 1, 3 (mod 4) and j = 2 or for i ≡ 2 (mod 4) and j = 2 or

for i ≡ 0 (mod 4) and j = 1,

5, for i ≡ 0 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1, 3 (mod 4) and j = 1, 2 or for i ≡ 2 (mod 4) and j = 1, 2,

3, for i = 0 (mod 4) and j = 1, 2.

We have the upper bound χlis(Pm

⊙

Cpn) ≤ 7. So χlis(Pm

⊙

Cpn) = 7 for m ≥ 4 and n = 2.

Case 7: m ≡ 0 (mod 2), m ≥ 4 and n = 3.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1,
we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, in this case if

l(xi) = l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ m, j = 3, l(yij) = 2, 1 ≤ i ≤ m, j = 1, 2,

then w(xi) = w(xi+1), then there are 2 adjacent vertices that have the same color, this contradicts
the definition of vertex coloring. If

l(xi) = 1 i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 2), l(yij) = l(xij) = 1,
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then w(xi+1) 6= w(xi+2), w(xi1) 6= w(xi2), w(xi1) 6= w(yi2). Therefore we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1, 3 (mod 4) or for i ≡ 2 (mod 4),

2, for i ≡ 0 (mod 4),

l(xij) = 1, l(yij) = 1.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











7, for i = 1,m,

8, for i ≡ 0 (mod 2), i 6= m,

9, for i ≡ 1, 3 (mod 4), i 6= 1,

w(xij) =























3, for i ≡ 1, 3 (mod 4) and j = 1, 3 or for i ≡ 2 (mod 4) and j = 1, 3,

4, for i ≡ 1, 3 (mod 4) and j = 2 or for i ≡ 2 (mod 4) and j = 2 or

for i ≡ 0 (mod 4) and j = 1, 3,

5, for i ≡ 0 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ 3 or for i ≡ 2 (mod 4) and 1 ≤ j ≤ 3,

3, for i = 0 (mod4) and 1 ≤ j ≤ 3.

We have the upper bound χlis(Pm

⊙

Cpn) ≤ 7. So χlis(Pm

⊙

Cpn) = 7 for m ≥ 4 and n = 3.

Case 8: m = 2 and n ≥ 4.
First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 7, let χlis(Pm

⊙

Cpn) = 6, if

l(x1) = 1, l(x2) = 2, l(xij) = l(yij) = 1,

then w(xij+1) = w(xij+2), then there are 2 adjacent vertices that have same color, it contradicts
the definition of vertex coloring. If

l(x1) = 1, l(x2) = 2, l(xij) = 1, l(yij) = 1, j ≡ 0 (mod 2), j = 1, n,

l(yij) = 2, j ≡ 1, 3 (mod 4), j 6= 1, n → w(x1) 6= w(x2), w(xij+1) 6= w(xij+2),

then we have the lower bound χlis(Pm

⊙

Cpn) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i = 1,

2, for i = 2,

l(xij) = 1,

l(yij) =

{

1, for i = 1, 2 and j = 1, n or for i = 1, 2 and j ≡ 0 (mod 2),

2, for i = 1, 2 and j ≡ 1, 3 (mod 4), j 6= 1, n.
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Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =























3n+ 1− n/2, for i = 1 and n ≡ 0 (mod 2),

3n+ 1− ⌈n/2⌉ , for i = 1 and n ≡ 1, 3 (mod 4),

2n+ n/2, for i = 2 and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 2 and n ≡ 1, 3 (mod 4),

w(xij) =























3, for i = 1 and j = 1, n,

4, for i = 1 and j ≡ 0 (mod 2), j 6= n or for i = 2 and j = 1, n,

5, for i = 1 and j ≡ 1, 3 (mod 4), j 6= 1, n or for i = 2 and j ≡ 0 (mod 2), j 6= n,

6, for i = 2 and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) =

{

2, for i = 1 and 1 ≤ j ≤ n,

3, for i = 2 and 1 ≤ j ≤ n.

The upper bound χlis(Pm

⊙

Cpn) ≤ 7 is true. So χlis(Pm

⊙

Cpn) = 7 for m = 2 and n ≥ 4.

Case 9: m ≡ 1, 3 (mod 4), m ≥ 5 and n = 2.

First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

CPn). Based
on Lemma 1, we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) < 7, and let χlis(Pm

⊙

Cpn) = 6, if

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = l(yij) = 1,

then w(xi1) = w(xi2), w(xi+1) = w(xi+2), then there are 2 adjacent vertices that have same color,
it contradicts the definition of vertex coloring. If

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4),

l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ m, j = 1, l(yij) = 2, 1 ≤ i ≤ m, j = 2,

then w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2). Therefore we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 7.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1 (mod 4) or for i ≡ 0 (mod 2),

2, for i ≡ 3 (mod 4),

w(xij) = 1; l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1,

2, for 1 ≤ i ≤ m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











6, for i = 1,m,

7, for i ≡ 1, 3 (mod 4), i 6= 1,

8, for i ≡ 0 (mod 2), i 6= m,
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w(xij) =























3, for i ≡ 1 (mod 4) and j = 1 or for i ≡ 0 (mod 2) and j = 1,

4, for i ≡ 1 (mod 4) and j = 2 or for i ≡ 0 (mod 2) and j = 2 or

for i ≡ 3 (mod 4) and j = 1,

5, for i ≡ 3 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1 (mod 4) and j = 1, 2 or for i ≡ 0 (mod 2) and j = 1, 2,

3, for i = 3 (mod 4) and j = 1, 2.

The upper bound χlis(Pm

⊙

Cpn) ≤ 7 is true. So χlis(Pm

⊙

Cpn) = 7 for m ≡ 1, 3 (mod 4),
m ≥ 5 and n = 2.

Case 10: m ≡ 1, 3 (mod 4), m ≥ 5 and n = 3.
First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 7, let χlis(Pm

⊙

Cpn) = 6, if

l(xi) = l(xij) = 1, l(yi1) = 1, l(yij) = 2, j = 2, 3,

then w(xi+1) = w(xi+2), then we have that there are 2 adjacent vertices that have same color, it
contradicts the definition of vertex coloring. If

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = 1; l(yij) = 1,

then w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2). Based on that we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1 (mod 4) or for i ≡ 0 (mod 2),

2, for i ≡ 3 (mod 4),

l(xij) = 1, l(yij) = 1.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











7, for i = 1,m,

8, for i ≡ 1, 3 (mod 4), i 6= 1,m,

9, for i ≡ 0 (mod 2),

w(xij) =























3, for i ≡ 1 (mod 4) and j = 1, 3 or for i ≡ 0 (mod 2) and j = 1, 3,

4, for i ≡ 1 (mod 4) and j = 2 or for i ≡ 0 (mod 2) and j = 2 or

for i ≡ 3 (mod 4) and j = 1, 3,

5, for i ≡ 3 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1 (mod 4) and 1 ≤ j ≤ 3 or for i ≡ 0 (mod 2) and 1 ≤ j ≤ 3,

3, for i = 3 (mod 4) and 1 ≤ j ≤ 3.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 7. So χlis(Pm

⊙

Cpn) = 7 for
m ≡ 1, 3 (mod 4), m ≥ 5 and n = 3.
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Case 11: m ≡ 0 (mod 2) m ≥ 4 and n ≥ 4.
First step to prove this theorem is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1,
we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 8, let χlis(Pm

⊙

Cpn) = 7, if

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4), l(xij) = l(yij) = 1,

then w(xij+1) = w(xij+2), so there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4), l(xij) = 1,

l(yij) = 1, 1 ≤ i ≤ m, j = 1, n, j ≡ 0 (mod 2), l(yij) = 2,

1 ≤ i ≤ m, j ≡ 1, 3 (mod 4), j 6= 1, n,

then w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2), w(xij) 6= w(yij). Based on that we have the lower
bound χlis(Pm

⊙

Cpn) ≥ 8.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n or for i ≡ 2 (mod 4) and 1 ≤ j ≤ n,

2, for i ≡ 0 (mod 4) and 1 ≤ j ≤ n,

l(xij) = 1,

l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1, n or for 1 ≤ i ≤ m and j ≡ 0 (mod 2),

2, for 1 ≤ i ≤ m and j ≡ 1, 3 (mod 4), j 6= 1,m.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











































2n+ n/2, for i = 1,m and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 1,m and n ≡ 1, 3 (mod 4),

3n+ 1− n/2, for i ≡ 1, 3 (mod 4), i 6= 1 and n ≡ 0 (mod 2),

3n+ 1− ⌈n/2⌉ , for i ≡ 0 (mod 2), i 6= m and n ≡ 1, 3 (mod 4),

3n+ 2− n/2, for i ≡ 1, 3 (mod 4), i 6= 1 and n ≡ 0 (mod 2),

3n+ 1− ⌊n/2⌋ , for i ≡ 0 (mod 2), i 6= m and n ≡ 1, 3 (mod 4),

w(xij) =



















































3, for i ≡ 1, 3 (mod 4) and j = 1, n or for i ≡ 2 (mod 4) and j = 1, n,

4, for i ≡ 1, 3 (mod 4) and j ≡ 0 (mod 2), j 6= n or

for i ≡ 2 (mod 4) and j ≡ 0 (mod 2), j 6= n or for i ≡ 0 (mod 4) and j = 1, n,

5, for i ≡ 1, 3 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 2 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 0 (mod 4) and j ≡ 0 (mod 2), j 6= n,

6, for i ≡ 0 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) =

{

2, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n or for i ≡ 2 (mod 4) and 1 ≤ j ≤ n,

3, for i ≡ 0 (mod 4) and 1 ≤ j ≤ n.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 8. So χlis(Pm

⊙

Cpn) = 8 for m ≡ 0 (mod 4), m ≥ 4
and n ≥ 4.
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Case 12: m ≡ 1, 3 (mod 4), m ≥ 5 and n ≥ 4.
First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

CPn). Based
on Lemma 1, we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 8, let χlis(Pm

⊙

Cpn) = 7, if

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = l(yij) = 1,

then w(xij+1) = w(xij+2), so there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = 1, l(yij) = 1,

1 ≤ i ≤ m, j = 1, n, j ≡ 0 (mod 2), l(yij) = 2, 1 ≤ i ≤ m, j ≡ 1, 3 (mod 4),

j 6= 1, n → w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2), w(xij) 6= w(yij),

therefore we have the lower bound χlis(Pm

⊙

Cpn) ≥ 8.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1 (mod 4) or for i ≡ 0 (mod 2),

2, for i ≡ 3 (mod 4),

l(xij) = 1,

l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1, n or for 1 ≤ i ≤ m and j ≡ 0 (mod 2),

2, for 1 ≤ i ≤ m and j ≡ 1, 3 (mod 4), j 6= 1, n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











































2n+ n/2, for i = 1,m and n ≡ 0 (mod 2),

3n+ 2− n/2, for i = 0 (mod2) and n ≡ 0 (mod 2),

3n+ 1− n/2, for i ≡ 1, 3 (mod 4) and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 1,m and n ≡ 1, 3 (mod 4),

3n− ⌊n/2⌋ , for i ≡ 1, 3 (mod 4), i 6= 1 and n ≡ 1, 3 (mod 4),

3n+ 1− ⌊n/2⌋ , for i = 0 (mod4) and n ≡ 1, 3 (mod 4),

w(xij) =































































3, for i ≡ 1 (mod 4) and j = 1, n or for i ≡ 0 (mod 2) and j = 1, n,

4, for i ≡ 1 (mod 4) and j ≡ 0 (mod 2), j 6= n or

for i ≡ 0 (mod 2) and j ≡ 0 (mod 2), j 6= n or

for i ≡ 3 (mod 4) and j = 1, n,

5, for i ≡ 1 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 0 (mod 2) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 3 (mod 4) and j ≡ 0 (mod 2), j 6= n,

6, for i ≡ 3 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) =

{

2, for i ≡ 1 (mod 4) and 1 ≤ j ≤ n or for i ≡ 0 (mod 2) and 1 ≤ j ≤ n,

3, for i ≡ 3 (mod 4) and 1 ≤ j ≤ n.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 8. So χlis(Pm

⊙

Cpn) = 8 for m ≥ 5 and n ≥ 4. �
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Theorem 2. Let G = Pm

⊙

S2,n for n,m ≥ 2, then the chromatic number of local irregular G
is

χlis(Pm

⊙

S2,n) =











5, for m = 3 and n ≥ 2,

6, for m = 2 and n ≥ 2,

7, for m ≥ 4 and n ≥ 2,

with opt(l)(Pm

⊙

S2,n) = 1, 2, for m ≥ 2 and n ≥ 2.

P r o o f. Vertex set is

V (Pn

⊙

S2,n) = {xi; 1 ≤ i ≤ m} ∪ {ai; 1 ≤ i ≤ m} ∪ {bi; 1 ≤ i ≤ m}

∪{aij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {bij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and the edge set is

E(Pn

⊙

S2,n) = {xixi+1, 1 ≤ i ≤ m− 1} ∪ {aibi; 1 ≤ i ≤ m} ∪ {xiai; 1 ≤ i ≤ m}

∪{xibi; 1 ≤ i ≤ m} ∪ {xiaij; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {xibij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪{aiaij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {bibij; 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The order and the size respectively are 2mn+ 3m and 4mn+4m− 1. This proof is divided into 4
cases as follows.

Case 1: m = 3 and n ≥ 2.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

S2,n). Based on Lemma 1,
we have χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.
Assume χlis(Pm

⊙

S2,n) = 4, if l(ai) = l(bi) = 1, l(xi) = l(aij) = l(bij) = 1 then w(ai) = w(bi),
then there are 2 adjacent vertices that have same color, it contradicts the definition of vertex
coloring. If

l(xi) = l(ai) = l(bi) = l(aij) = l(bij) = 1, 1 ≤ j ≤ n− 1, l(bin) = 2,

then
w(ai) 6= w(bi), w(x1) = w(x3) 6= w(x2),

therefore we have the lower bound χlis(Pm

⊙

S2,n) ≥ 5.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n).
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =

{

1, for 1 ≤ i ≤ 3 and 1 ≤ j ≤ n− 1,

2, for 1 ≤ i ≤ 3 and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

2n+ 4, for i = 1, 3,

2n+ 5, for i = 2,

w(ai) = n+ 2, for 1 ≤ i ≤ 3,

w(bi) = n+ 3, for 1 ≤ i ≤ 3,

w(aij) = 2, w(bij) = 2.
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The upper bound χlis(Pm

⊙

S2,n) ≤ 5 is true. So χlis(Pm

⊙

S2,n) = 5 for m = 3 and n ≥ 2.

Case 2: m = 2 and n ≥ 2.
First step here is to find the lower bound of V (Pm

⊙

S2,n). Based on Lemma 1, we have
χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.
Assume χlis(Pm

⊙

S2,n) = 5, if

l(xi) = l(ai) = l(bi) = l(aij) = l(b2j) = 1, l(b1j) = 1, 1 ≤ j ≤ n− 1, l(b1n) = 2,

and then w(a2) = w(b2), and there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(aij) = 1,

l(b1,j) = 1, l(b1,n) = 2, l(b2,j) = 2, j = 1, n, l(b2j) = 1, 2 ≤ j ≤ n− 1,

then w(ai) 6= w(bi), w(x1) 6= w(x2). Based on that we have the lower bound χlis(Pm

⊙

S2,n) ≥ 6.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n).
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =

{

1, for i = 1 and 1 ≤ j ≤ n− 1 or for i = 2 and 2 ≤ j ≤ n− 1,

2, for i = 1 and j = n or for i = 2 and j = 1, n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

2n+ 4, for i = 1,

2n+ 5, for i = 2,

w(ai) = n+ 2, for i = 1, 2,

w(bi) =

{

n+ 3, for i = 1,

n+ 4, for i = 2,

w(aij) = 2, w(bij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 6. So χlis(Pm

⊙

S2,n) = 6 for m = 2 and n ≥ 2.

Case 3: m ≡ 0 (mod 4), m ≥ 4 and n ≥ 2.
First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

S2,n). Based
on Lemma 1, we have χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.
Assume χlis(Pm

⊙

S2,n) = 6, if

l(xi) = l(ai) = l(bi) = l(aij) = 1, l(bij) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4),

l(bij) = 1, i ≡ 0 (mod 4), j 6= 1, n, l(bij) = 2, i ≡ 0 (mod 4), j = 1, n,

then w(ai) = w(bi), so there are 2 adjacent vertices that have same color, it contradicts the definition
of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(aij) = 1, l(bij) = 1, i ≡ 1, 3 (mod 4), i = m, 1 ≤ j ≤ n− 1,

i ≡ 0 (mod 2), i 6= m, 2 ≤ j ≤ n− 1, l(bij) = 2, i ≡ 1, 3 (mod 4),

i = m, j = n, i ≡ 0 (mod 2), i 6= m, j = 1, n,
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then w(ai) 6= w(bi), w(xi) 6= w(xi+1). Based on that we have the lower bound χlis(Pm

⊙

S2,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n)
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =











































1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n− 1 or

for i ≡ 0 (mod 2), i 6= m and 2 ≤ j ≤ n− 1 or

for i = m, and 1 ≤ j ≤ n− 1,

2, for i ≡ 1, 3 (mod 4) and j = n or

for i ≡ 0 (mod 2), i 6= m and j = 1, n or

for i = m, and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











2n+ 4, for i = 1,m,

2n+ 5, for i ≡ 0 (mod 2), i 6= m,

2n+ 6, for i ≡ 1, 3 (mod 4), i 6= 1,

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) =

{

n+ 3, for i ≡ 1, 3 (mod 4), i = m,

n+ 4, for i ≡ 0 (mod 2), i 6= m,

w(aij) = 2, w(bij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 7. So χlis(Pm

⊙

S2,n) = 7 for m ≡ 0 (mod 2),
m ≥ 4 and n ≥ 2.

Case 4: m ≡ 1, 3 (mod 4), m ≥ 5 and n ≥ 2.
First step here is to find the lower bound of V (Pm

⊙

S2,n). Based on Lemma 1, we have

χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.

Assume χlis(Pm

⊙

S2,n) = 6, if

l(xi) = l(ai) = l(bi) = l(aij) = 1, l(bij) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2),

l(bij) = 1, i ≡ 3 (mod 4), j 6= n, l(bij) = 2, i ≡ 3 (mod 4), j = n,

then w(ai) = w(bi), and there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = 1, l(aij) = 1, l(bij) = 1, i ≡ 1, 3 (mod 4), 1 ≤ j ≤ n− 1,

i ≡ 0 (mod 2), 2≤j≤n− 1, l(bij) = 2, i ≡ 1, 3 (mod 4), j = n, i ≡ 0 (mod 2), j = 1, n,

then w(ai) 6= w(bi), w(xi) 6= w(xi+1). Based on that we have the lower bound χlis(Pm

⊙

S2,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n).
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =

{

1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n− 1 or for i ≡ 0 (mod 2), and 2 ≤ j ≤ n− 1,

2, for i ≡ 1, 3 (mod 4) and j = n or for i ≡ 0 (mod 2) and j = 1, n.
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Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











2n+ 4, for i = 1,m,

2n+ 5, for i ≡ 1, 3 (mod 4),

2n+ 6, for i ≡ 0 (mod 2),

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) =

{

n+ 3, for i ≡ 1, 3 (mod 4),

n+ 4, for i ≡ 0 (mod 2),

w(aij) = 2, w(bij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 7. So χlis(Pm

⊙

S2,n) = 7 for m ≡ 1, 3 (mod 4),
m ≥ 5 and n ≥ 2. �

Theorem 3. Let G = Pm

⊙

S3,n for n,m ≥ 2, then the chromatic number of local irregular G
is

χlis(Pm

⊙

S3,n) =











5, for m = 3 and n ≥ 2,

6, for m = 2 and n ≥ 2,

7, for m ≥ 4 and n ≥ 3,

with

opt(l)(Pm

⊙

S3,n) =











1, for m = 3 and n = 3,

1, 2, for m = 2 and n = 2 or for m = 3 and n = 2 or

for m ≥ 4 and n ≥ 2.

P r o o f. The vertex set is

V (Pm

⊙

S3,n) = {xi; 1 ≤ i ≤ m} ∪ {ai; 1 ≤ i ≤ m} ∪ {bi; 1 ≤ i ≤ m} ∪ {ci; 1 ≤ i ≤ m}

∪{aij; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {bij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {cij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and the edge set is

V (Pm

⊙

S3,n) = {xixi+1; 1 ≤ i ≤ m− 1} ∪ {xiyi; 1 ≤ i ≤ m} ∪ {xiai; 1 ≤ i ≤ m}

∪{xibi; 1 ≤ i ≤ m} ∪ {xici; 1 ≤ i ≤ m} ∪ {yiai; 1 ≤ i ≤ m} ∪ {yibi; 1 ≤ i ≤ m}

∪{yici; 1 ≤ i ≤ m} ∪ {xiaij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n} ∪ {xibij; 1 ≤ i ≤ m; 1 ≤ j ≤ n}

∪{xicij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n} ∪ {aiaij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n}

∪{bibij; 1 ≤ i ≤ m; 1 ≤ j ≤ n} ∪ {cicij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n}.

The order and size respectively are 3mn + 5m and 6mn + 8n − 1. This proof can be divided into
8 following cases.

Case 1: m = 3 and n = 2.
First step to prove this theorem is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1,
we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 4, if

l(ai) = l(bi) = l(ci) = l(yi) = l(aij) = l(bij) = l(cij) = 1,
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then w(ai) = w(bi) = w(ci) = w(yi), and there are 2 adjacent vertices that have same color, it
contradicts the definition of vertex coloring. If

l(ai) = l(bi) = l(ci) = 1, l(aij) = l(bij) = l(cij) = 1, l(yi) = 2,

then (w(ai) = w(bi) = w(ci)) 6= w(yi), w(x1) 6= w(x2). Therefore we have the lower bound
χlis(Pm

⊙

S3,n) ≥ 5.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1, l(cij) = 1.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

12, for i = 1, 3,

13, for i = 2,

w(yi) = 4, w(ai) = 5, w(bi) = 5, w(ci) = 5, w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 5. So χlis(Pm

⊙

S3,n) = 5 for m = 3 and n = 2.

Case 2: m = 3 and n = 3.
Based on Proposition 1, we have opt(l) = 1. So the lower bound (Pm

⊙

S3,n) is
χlis(Pm

⊙

S3,n) ≥ 5
Since opt(l) = 1, the labelling provides the vertex-weight as follows:

w(xi) =

{

3n+ 5, for i = 1, 3,

3n+ 6, for i = 2,

w(yi) = 4,

w(ai) = n+ 1 for 1 ≤ i ≤ 3,

w(bi) = n+ 1 for 1 ≤ i ≤ 3,

w(ci) = n+ 1 for 1 ≤ i ≤ 3,

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 5. So χlis(Pm

⊙

S3,n) = 5 for m = 3 and n ≥ 2.

Case 3: m = 2 and n = 2.
First step to prove this theorem is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1,
we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 5, if

l(ai) = l(bi) = l(ci) = l(aij) = l(bij) = l(cij) = 1, l(y1) = 1, l(y2) = 2,

then w(a2) = w(b2) = w(c2) = w(y2) and there are 2 adjacent vertices that have same color, it
contradicts the definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(ci) = l(bij) = 1, l(yi) = 2, l(c1j) = 1, l(c2,1) = 1, l(c2,2) = 2,

then w(x1) 6= w(x2), w(yi) 6= ((w(ai) = w(bi) = w(ci)). Based on that we have the lower bound
χlis(Pm

⊙

S3,n) ≥ 6.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
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Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =

{

1, for i = 1 and j = 1, 2 or for i = 2 and j = 1,

2, for i = 2 and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

12, for i = 1,

13, for i = 2,

w(yi) = 4, w(ai) = 5, w(bi) = 5,

w(ci) =

{

5, for i = 1,

6, for i = 2,

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 6. So χlis(Pm

⊙

S2,n) = 6 for m = 2 and n = 2.

Case 4: m = 2 and n ≥ 3.
First step here is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1, we have
χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 5, if

l(ai) = l(bi) = l(ci) = l(yi) = 1, l(aij) = l(bij) = 1, l(cij) = 1, i = 1, 2, 1 ≤ j ≤ n− 1

l(cij) = 2, i = 1, 2, j = n,

then w(x1) = w(x2), then there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = l(aij) = l(bij) = 1, l(cij) = 1, i = 1, 1 ≤ j ≤ n, i = 2, 1 ≤ j ≤ n− 1,

l(cij) = 2, i = 2, j = n,

then w(x1) 6= w(x2), w(yi) 6= ((w(ai) = w(bi) = w(ci)). Therefore we have the lower bound
χlis(Pm

⊙

S3,n) ≥ 6.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 1, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =

{

1, for i = 1 and 1 ≤ j ≤ n or for i = 2 and 1 ≤ j ≤ n− 1,

2, for i = 2 and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

3n+ 5, for i = 1,

3n+ 6, for i = 2,

w(yi) = 4,

w(ai) = n+ 1, for i = 1, 2,

w(bi) = n+ 1, for i = 1, 2,

w(ci) =

{

n+ 1, for i = 1,

n+ 2, for i = 2,

w(aij) = 2, w(bij) = 2, w(cij) = 2.
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The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 6. So χlis(Pm

⊙

S3,n) = 6 for m = 2 and n ≥ 3.

Case 5: m ≡ 0 (mod 2) m ≥ 4 and n = 2.
First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

S3,n). Based
on Lemma 1, we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 6, if

l(ai) = l(bi) = l(ci) = l(yi) = 1, l(aij) = l(bij) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4),

j = 1, 2, i ≡ 0 (mod 4), j = 1, 2, l(cij) = 1, i ≡ 2 (mod 4),

j = 1, l(cij) = 2, i ≡ 2 (mod 4), j = 2,

then w(yi) = w(ai). Then there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, l(ai) = l(bi) = l(ci) = 1, l(yi) = 2, l(aij) = l(bij) = 1, l(cij) = 1,

i ≡ 0 (mod 2), j = 1, i 6= m, i ≡ 1, 3 (mod 4), j = 1, 2, l(cij) = 2,

i ≡ 0 (mod 2), i 6= m, j = 2,

then w(xi+1) 6= w(xi+2;w(yi) 6= w(ai). Therefore we have the lower bound χlis(Pm

⊙

S3,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =











1, for i ≡ 1, 3 (mod 4) and j = 1, 2 or for i = m and j = 1, 2 or

for i ≡ 0 (mod 2), i 6= m and j = 1,

2, for i ≡ 0 (mod 2), i 6= m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











12, for i = 1,m,

13, for i ≡ 1, 3 (mod 4), i 6= 1,

14, for i ≡ 0 (mod 2), i 6= m,

w(yi) = 4, w(ai) = 5, w(bi) = 5,

w(ci) =

{

5, for i ≡ 1, 3 (mod 4),

6, for i ≡ 0 (mod 2), i 6= m,

w(aij) = 2, w(bij) = 2, w(cij) = 2,

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for m ≡ 0 (mod 2); m ≥ 4
and n = 2.

Case 6: m ≡ 1, 3 (mod 4), m ≥ 5 and n = 2.
First step here is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1, we have
χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 6, if

l(ai) = l(bi) = l(ci) = l(yi) = 1, l(aij) = l(bij) = 1, l(cij) = 1,

i ≡ 1 (mod 4), j = 1, 2, i ≡ 0 (mod 2), j = 1, 2, l(cij) = 1,

i ≡ 3 (mod 4), j = 1, l(cij) = 2, i ≡ 3 (mod 4), j = 2,
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then w(yi) = w(ai), then there are 2 adjacent vertices that have same color, it contradicts to
definition of vertex coloring. If

l(xi) = 1, l(aij) = l(bij) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4),

j = 1, 2, i ≡ 0 (mod 2), j = 1, l(cij) = 2, i ≡ 0 (mod 2), j = 2, l(yi) = 2,

then

w(xi+1) 6= w(xi+2, w(yi) 6= w(ai), w(yi) 6= w(bi), w(yi) 6= w(ci).

We have the lower bound χlis(Pm

⊙

S3,n) ≥ 7.

After that, we will find the upper bound of χlis(Pm

⊙

S3,n).

Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =











1, for i ≡ 1, 3 (mod 4) and j = 1, 2 or

for i ≡ 0 (mod 2), i 6= m and j = 1,

2, for i ≡ 0 (mod 2), i 6= m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











12, for i = 1,m

13, for i ≡ 1, 3 (mod 4), i 6= 1,m,

14, for i ≡ 0 (mod 2),

w(yi) = 4, w(ai) = 5, w(bi) = 5,

w(ci) =

{

5, for i ≡ 1, 3 (mod 4), i = 1,m,

6, for i ≡ 0 (mod 2),

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for
m ≡ 1, 3 (mod 4); m ≥ 5 and n = 2.

Case 7: m ≡ 0 (mod 2) m ≥ 4 and n ≥ 3.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1,
we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.

Assume χlis(Pm

⊙

S3,n) = 6, it is true if

l(ai) = l(bi) = l(ci) = l(yi) = l(aij) = l(bij) = 1, l(cij) = 1, 1 ≤ i ≤ m,

1 ≤ j ≤ n− 1, l(cij) = 2, 1 ≤ i ≤ m, j = n,

then w(xi+1) = w(xi+2), then there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, l(aij) = l(bij) = l(yi) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4), 1 ≤ j ≤ n,

i ≡ 0 (mod 2), i 6= m, 1 ≤ j ≤ n− 1, i = m, 1 ≤ j ≤ n, l(cij) = 2, i ≡ 0 (mod 2),

i 6= m, i 6= m, j = n, w(xi+1) 6= w(xi+2),

we have the lower bound of χlis(Pm

⊙

S3,n) ≥ 7. After that, we will find the upper bound
χlis(Pm

⊙

S3,n).
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Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 1, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =























1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n or

for i ≡ 0 (mod 2), i 6= m, and 1 ≤ j ≤ n− 1 or

for i = m, and 1 ≤ j ≤ n,

2, for i ≡ 0 (mod 2), i 6= m and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











3n+ 5, for i = 1,m,

3n+ 6, for i ≡ 1, 3 (mod 4), i 6= 1,

3n+ 7, for i ≡ 0 (mod 2), i 6= m,

w(yi) = 4,

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) = n+ 2, for 1 ≤ i ≤ m,

w(ci) =

{

n+ 2, for i = m, or for i ≡ 1, 3 (mod 4),

n+ 3, for i ≡ 0 (mod 2), i 6= m,

w(aij) = 2, w(bij) = 2, w(cij) = 2,

The upper bound χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for m ≡ 0 (mod 2); m ≥ 4 and
n ≥ 3.

Case 8: m ≡ 1, 3 (mod 4), m ≥ 5 and n ≥ 3.
First step to prove the theorem in this case is to find the lower bound of V (Pm

⊙

S3,n). Based
on Lemma 1, we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 6, if

l(xi) = l(yi) = l(aij) = l(bij) = l(cij) = 1, l(ai) = l(bi) = 1, l(ci) = 2,

then w(xi+1) = w(xi+2). Then there are 2 adjacent vertices that have same color, it contradicts
the definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(ci) = 1, l(aij) = l(bij) = l(yi) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4),

1 ≤ j ≤ n, i ≡ 0 (mod 2), 1 ≤ j ≤ n− 1, l(cij) = 2, i ≡ 0 (mod 2), j = n,

then w(xi+1) 6= w(xi+2). Based on that we have the lower bound χlis(Pm

⊙

S3,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 1, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =











1, for i ≡ 1, 3 (mod 4), and 1 ≤ j ≤ n or

for i ≡ 0 (mod 2), and 1 ≤ j ≤ n− 1,

2, for i ≡ 0 (mod 2), and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











3n+ 5, for i = 1,m,

3n+ 6, for i ≡ 1, 3 (mod 4), i 6= 1,m,

3n+ 7, for i ≡ 0 (mod 2),
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w(yi) = 4,

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) = n+ 2, for 1 ≤ i ≤ m,

w(ci) =

{

n+ 2, for i ≡ 1, 3 (mod 4),

n+ 3, for i ≡ 0 (mod 2),

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for m ≡ 1, 3 (mod 4),
m ≥ 5 and n ≥ 3. �

3. Conclusion

In this paper, we have studied the coloring of the vertices of the local irregular corona product by
the graph of the family tree. We determined the exact value of the local irregular chromatic number
of the corona product from the graph of the family tree, namely χlis(Pm

⊙

Cpn), χlis(Pm

⊙

S2,n)
and χlis(Pm

⊙

S3,n).
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Abstract: A class of time-optimal control problems in three-dimensional space with a spherical velocity
vector is considered. A smooth regular curve Γ is chosen as the target set. We distinguish pseudo-vertices that
are characteristic points on Γ and responsible for the appearance of a singularity in the function of the optimal
result. We reveal analytical relationships between pseudo-vertices and extreme points of a singular set belonging
to the family of bisectors. The found analytical representation for the extreme points of the bisector is taken as
the basis for numerical algorithms for constructing a singular set. The effectiveness of the developed approach
for solving non-smooth dynamic problems is illustrated by an example of numerical-analytical construction of
resolving structures for the time-optimal control problem.

Keywords: Time-optimal problem, Dispersing surface, Bisector, Pseudo-vertex, Extreme point, Curvature,
Singular set, Frenet–Serret frame (TNB frame).

1. Introduction

This study continues the series of works by the authors on the development of methods and
algorithms for constructing solutions to time-optimal control problems with a constant velocity
vector and various geometry of target sets [6, 19]. Previously accumulated experience in solving
plane problems [13] was transferred to three-dimensional space [3, 14], expanded, and supplemented
with new methods and constructions. In this paper, the authors consider a time-optimal control
problem in which a sufficiently smooth regular spatial curve is chosen as the target set. The optimal
result function is not differentiable over the entire domain of consideration [2]. A combined approach
is applied in its construction, which combines analytical methods for identifying the features of the
solution of the problem and numerical algorithms for constructing the solution as a whole. To find

1This research was supported by the Russian Science Foundation (grant no. 19-11-00105,
https://rscf.ru/en/project/19-11-00105/).
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singularities of the optimal result function, elements of differential geometry are used, in particular,
the moving Frenet frame and the main invariants of space curves [9, 10]. Also, a significant role in
the constructions is played by the angular characteristic of the point’s nonconvexity with respect
to the target set and its measure of nonconvexity [16]. The measure of the non-convexity of a
set determines the nature of the breaks in the wave fronts generated by this set [1]. The wave
fronts in the problem under consideration coincide with the level surfaces of the optimal result
function [4]. The key element in constructing a solution is the selection of a singular set — the
bisector of the target set [7]. In the problem under consideration, the bisector generally consists
of the union of two-dimensional, one-dimensional, and zero-dimensional manifolds [11, 12]. The
simulation of the non-smooth solution of the problem was carried out with the help of modernized
computational procedures, previously created for solving flat problems of time-optimal control [18].
The developed procedures can be used in constructing generalized solutions of first-order partial
differential equations [15], as well as in theoretical mechanics, geometric optics, seismology, and
economics [5].

2. Problem statement

The paper is devoted to the study of a time-optimal problem for a 3D system consisting of a
single point with the speed limited as follows:

ẋ ∈ U(0, 1) ⊂ R
3, (2.1)

where U(c, r) is a ball in R
3 centered at a point c of radius r > 0,

x = x(τ) , (x(τ), y(τ), z(τ)), ẋ =
dx

dτ
,

and τ is a scalar interpreted as time. For an arbitrary point x, the optimal trajectory is a line
segment connecting it to the nearest point in the Euclidean metric of the target closed set A ⊂ R

3.
The optimal result function [17] is

u(x) = ρ(x, A) , min
a∈A

‖x− a‖.

The time-optional problem under consideration is tightly connected with the Hamilton–Jacobi
differential equations

min
(v1,v2,v3)∈U(0,1)

(
v1

∂u

∂x
+ v2

∂u

∂y
+ v3

∂u

∂z

)
+ 1 = 0 (2.2)

and Eikonal equations (
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

= 1 (2.3)

with a boundary condition
u|∂A = 0, (2.4)

where ∂A is the boundary of A.
The restriction of the optimal result function u = u(x, y, z) to the closure cl(R3 \A) of the set

R
3 \ A coincides with the generalized (minimax) solution of the Dirichlet problem [15] for equa-

tion (2.2) with a boundary condition (2.4). A more detailed proof for an arbitrary finite-dimensional
Euclidean space is given in [6]. The fundamental (generalized) solution uk(x) of the Dirichlet prob-
lem for equation (2.3) with boundary condition (2.4) (introduced by S.N. Kruzhkov [5]) is equal to
the function u(x, y, z) on R

3 \ A in absolute value but has the opposite sign:

uk(x, y) = −ρ
(
(x, y, z), A

)
.
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It should be noted that equation (2.3) is used to describe light propagation in a homogeneous
medium, provided that the speed is normalized and reduced to 1. The wave front at the time point
τ > 0 coincides with the level surface

Φ(τ) , {x ∈ R
3 : u(x) = τ}

of the optimal result function u(x). In the whole space R
3, the function u(x) satisfies the Lipschitz

condition with the constant L = 1.

3. Basic notation and definitions

Let A ⊂ R
3 be a closed set in R

3. We denote by ΩA(x) the union of all points closest to x in
the set A.

Definition 1 [19]. A set

L(A) ,
{
x ∈ R

3 : cardΩA(x) > 1
}

is called a bisector of a closed non-empty set A.

Here, cardΩA(x) is the cardinality of the set ΩA(x).
The bisector is a specific case of a symmetric set on which the wave front loses its smoothness [1].

In English academic sources, similar sets are termed as “conflict set” [13], “symmetry set”, and
“medial axe” [3]. Their geometric properties in 3D space were studied, for example, in [14]. Some
topological properties of non-smooth wave front sets in Euclidean spaces of small dimensions (2 to 6)
were investigated by V.D. Sedykh in [11, 12].

According to control theory, L(A) is classified as a dispersing surface [4, ex. 6.10.1] in the time-
optimal problem for dynamic systems (2.1). More than one optimal trajectory directed differently
to the surface, e.g., line segments [x,yi], i = 1, k, where yi ∈ ΩA(x), k = cardΩA(x), originates
from each of its points. This determines that the optimal result function u(x) is non-differentiable
on the set L(A). It should be mentioned that, for u(x) as a function of the Euclidean distance,
the superdifferential D+u(x) is defined at points x ∈ L(A), for more details see [2, Ch. II, Sect. S
8]. The value D+u(x) is used in [6] to prove that the function restriction to the set R

3 \ A is a
generalized solution of the Hamilton–Jacobi equation (2.2).

Definition 2 [7]. Non-coinciding points y−

i ∈ A and y+
i ∈ A are called quasi-symmetric if

∃x ∈ L(A) :
{
y−

i ,y
+
i

}
⊆ ΩA(x).

In this case, the point x is called generated by the pair of points y−

i and y+
i .

Definition 3 [19]. The point y0 is called a pseudo-vertex of the set A if there exists a sequence
of pairs of quasi-symmetric points

{
y−

i ,y
+
i

}
∞

i=1
⊂ A and a sequence of points xi ⊂ L(A), for which

the following conditions hold :
∀i ∈ N

{
y−

i , y+
i

}
⊆ ΩA(xi)

and
lim
i→∞

{
y−

i ,y
+
i

}
= {y0,y0} .

If there is an additional limit
lim
i→∞

xi = x0,

then, x0 is an extreme point of the bisector corresponding to the pseudo-vertex y0.

Remark 1. The union of the bisector’s extreme points forms the edge of the surface coinciding
with the closure of L(A). In general, the dispersing surface is not a closed set, and the extreme
points do not belong to it, but they determine its geometry.
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4. Singular set characteristics

Hereinafter, we consider the case of a set A whose boundary Γ is a curve defined by the
parametric equation:

Γ =
{
r(t) ∈ R

3 : t ∈ T
}
, (4.1)

where T ⊆ R is a closed connected interval.
Condition 1. We assume that the vector-valued function r(t) is three times differentiable on T ,

and the following biregularity condition is satisfied:

∀t ∈ T
[
r′(t), r′′(t)

]
6= 0, (4.2)

where [·, ·] is the vector product, whereas the function r(t) satisfies a Lipschitz condition.

Condition (4.2) ensures that, for any t ∈ T , a TNB frame [9] consisting of three unit vectors is
defined:

e1(t) =
r′(t)

‖r′(t)‖ , (4.3)

e2(t) =
[[r′(t), r′′(t)] , r′(t)]

‖[[r′(t), r′′(t)] , r′(t)]‖ , (4.4)

e3(t) =
[r′(t), r′′(t)]

‖[r′(t), r′′(t)]‖ . (4.5)

According to the classification used in differential geometry, e1(t) is a tangent unit vector, e2(t)
is a normal unit vector, and e3(t) is a binormal unit vector. The curve Γ is characterized by two
parameters at a point. They are its curvature

k(t) =
‖[r′(t), r′′(t)]‖

‖r′(t)‖3 (4.6)

and torsion

κ(t) =
(r′(t), r′′(t), r′′′(t))

‖[r′(t), r′′(t)]‖2
. (4.7)

Here (·, ·, ·) is a triple scalar product.

Definition 4. The line

V (t) =
{
r(t) + k−1(t)e2(t) + ξe3(t) ∈ R

3 : ξ ∈ R
}

(4.8)

is called conjugate to the curve (4.1) at the point r(t).

The biregularity condition (4.2) ensures that, for any t, the curvature is defined and has a
non-zero solution. Hence, the conjugate line (4.8) is also defined. It should be noted that a normal
at the point r(t) is to be constructed as

P (t) =
{
z ∈ R

3 :
〈
z− r(t), r′(t)

〉
= 0

}
, (4.9)

whereas the wave front Φ(τ) generated by the point r(t) falls partly inside the circle:

Θ(t, τ) = ∂U(r(t), τ) ∩ P (t), (4.10)

where τ > 0.



Combined Algorithms for Constructing a Solution to the Time-Optimal Problem 119

Lemma 1. If a sequence of pairs of quasi-symmetric parameters {t−i , t+i }∞i=1 ⊂ T, a sequence
of points {xi}∞i=1 ⊂ L(Γ), a parameter t0 ∈ T, and a point x0 ∈ L(Γ) satisfy the conditions

∀i ∈ N {r(t−i ), r(t+i )} ⊆ ΩΓ(xi), (4.11)

lim
i→∞

{t−i , t+i } = {t0, t0}, (4.12)

lim
i→∞

xi = x0, (4.13)

then the following relation is true:

lim
i→∞

(〈
xi − r(t−i ), e2(t

−

i )
〉
− k−1(t−i )

)
= 0. (4.14)

P r o o f. Consider a Frenet–Serret frame (trihedron). We should note that if
r(s) = (x(s), y(s), z(s)) is a vector-valued function that is three times differentiable on the interval
S ⊂ R and defined by a natural parameter (arc length) s > 0, then the following Taylor expansion
is true for any s ∈ S and sufficiently small increments of ∆s:

r(s+∆s) = r(s) + r′(s)∆s+
1

2
r′′(s)∆s2 +

1

6
r′′′(s)∆s3 + o(∆s3). (4.15)

Here, o(δ) is a vector-valued function with ‖o(δ)‖ = o(δ); o(δ) being an infinitesimal with a higher
order of smallness with respect to δ ∈ R.

Consider a classical orthonormal Frenet–Serret frame {e1(s), e2(s), e3(s)} and specify the co-
ordinates of the vector r(s + ∆s) =

(
x(s + ∆s), y(s + ∆s), z(s + ∆s)

)
based on (4.15) (for more

details, see [10, Ch. 5]):

x(s+∆s) = x(s) + ∆s− 1

6
k
2
(s)∆s3 + o(∆s3),

y(s+∆s) = y(s) +
1

2
k(s)∆s2 +

1

6
k′(s)∆s3 + o(∆s3),

z(s+∆s) = z(s) +
1

6
k(s)κ(s)∆s3 + o(∆s3),

where k(s) and κ(s) are the curvature and torsion of the curve at the point r(s).

In what follows, to achieve the result stated, it is sufficient to use only the lower terms of the
above expansions:

x(s+∆s) = x(s) + ∆s+ o(∆s),

y(s+∆s) = y(s) +
1

2
k(s)∆s2 + o(∆s2),

z(s+∆s) = z(s) +
1

6
k(s)κ(s)∆s3 + o(∆s3).

Let us turn to the original curve described by means of the parameter t ∈ R. We have

r(t) = r
(
s(t)

)
,

where

s′(t) = ‖r′(t)‖.
The coordinates of the vector

r(t+∆t) =
(
x(t+∆t), y(t+∆t), z(t+∆t)

)
,



120 Pavel D. Lebedev and Alexander A. Uspenskii

where
r(t+∆t) , r

(
s(t+∆t)

)
=

(
x
(
s(t+∆t)

)
, y
(
s(t+∆t)

)
, z
(
s(t+∆t)

))
,

are calculated in the orthonormal basis

{
e1
(
s(t)

)
, e2

(
s(t)

)
, e3

(
s(t)

)}
= {e1(t), e2(t), e3(t)}

as follows:

x(t+∆t) = x(t) +
∥∥r′(t)

∥∥∆t+ o(∆t), (4.16)

y(t+∆t) = y(t) +
‖r′(t)‖2∆t2k(t)

2
+ o(∆t2), (4.17)

z(t+∆t) = z(t) +
k(t)κ(t) ‖r′(t)‖3 ∆t3

6
+ o(∆t3). (4.18)

Here, k(t) = k
(
s(t)

)
and κ(t) = κ

(
s(t)

)
. When deriving formulas (4.16)–(4.18), it is taken into

account that ∆s = s′(t)∆t+ o(∆t) with ∆t → 0 as ∆s → 0.
Let us relate the moving coordinate system to the point t = t−i . Provided that ∆t = t+i − t−i ,

we obtain the following equalities by (4.16)–(4.18):

x(t+i ) = x(t̂i) + ‖r′(t̂i)‖∆t+ o(∆t), (4.19)

y(t+i ) = y(t−i ) +
1

2
k(t−i )‖r′(t−i )‖2∆t2 + o(∆t2), (4.20)

z(t+i ) = z(t−i ) +
1

6
k(t−i )κ(t

−

i )‖r′(t−i )‖3∆t3 + o(∆t3). (4.21)

Let us calculate the derivatives of the coordinates at the point t = t+i up to infinitesimals:

x′(t+i ) = ‖r′(t−i )‖+ ε(∆t), (4.22)

y′(t+i ) = k(t−i )‖r′(t−i )‖2∆t+ o(∆t), (4.23)

z′(t+i ) = o(∆t). (4.24)

Here, ε(t) is an infinitesimal.
Denote the coordinates of the point xi in the proposed coordinate system by (x∗i , y

∗

i , z
∗

i ). By the
conditions, the sequences {t−i , t+i }∞i=1 and {xi}∞i=1 are bounded, and the function r(t) is Lipschitz,
hence, the sequence {(x∗i , y∗i , z∗i )}∞i=1 is bounded. Therefore,

∃µ > 0: ∀i ∈ N |x∗i |+ |y∗i |+ |z∗i | 6 µ. (4.25)

Since, by construction, xi ∈ P (t−i ), we have

x∗i = 0. (4.26)

On the other hand, if xi ∈ P (t+i ), then

〈xi − r(t+i ), r
′(t+i )〉 = 0. (4.27)

Based on the equality t+i = t−i +∆t and representations (4.19)–(4.21) as well as (4.22)–(4.24), we
can write equality (4.27) in the form

(
x∗i −

(∥∥r′(t−i )
∥∥∆t+ o(∆t)

) ) (∥∥r′(t−i )
∥∥+ ε(∆t)

)
+

+(y∗i − o(∆t))
(∥∥r′(t−i )

∥∥2 k(t−i )∆t+ o(∆t)
)
+ (z∗i − o(∆t))o(∆t) = 0.

(4.28)
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From (4.25), it follows that |z∗i | 6 µ; hence z∗i o(∆t) = o(∆t). Therefore, grouping all infinitesimals
of a higher order than ∆t and substituting the value x∗i from (4.26) into equality (4.28), we can
transform (4.28) to the following form:

−‖r′(t−i )‖2∆t+ y∗i
∥∥r′(t−i )

∥∥2 k(t−i )∆t+ o(∆t) = 0. (4.29)

Let us express y∗i k(t
−

i ) from (4.29). Thus, we get the limit relation

lim
i→∞

y∗i k(t
−

i ) = lim
i→∞

∥∥r′(t−i )
∥∥2∆t− o(∆t)

∥∥r′(t−i )
∥∥2 ∆t

= lim
∆t→0

∥∥r′(t−i )
∥∥2∆t− o(∆t)

∥∥r′(t−i )
∥∥2 ∆t

= 1. (4.30)

Since, in the adopted coordinate system, the positive direction of the ordinate axis coincides with
the unit vector e2(t

−

i ), we have

y∗i =
〈
e2(t

−

i ),xi − r(t−i )
〉
. (4.31)

From (4.30) and (4.31), it follows that

lim
i→∞

〈
e2(t

−

i ),xi − r(t−i )
〉
k(t−i ) = 1. (4.32)

We move the number 1 to the left side of (4.32) under the limit sign and divide the expression
obtained under the limit sign by k(t−i ) 6= 0. As a result, we get (4.14). �

Lemma 1 enables formulating a statement about the coordinates of the extreme points generated
by the pseudo-vertex of the spatial curve.

Theorem 1. Let there be a pseudo-vertex r(t0) on the curve (4.1). If the extreme point of the
bisector x0 corresponds to the pseudo-vertex r(t0), then the following inclusion holds:

x0 ∈ V (t0). (4.33)

P r o o f. If x0 is the extreme point of the bisector corresponding to the pseudo-vertex r(t0) of
the set Γ, then Definition 3 implies the existence of a sequence of pairs of non-coinciding numbers
{t−i , t+i }∞i=1 ⊂ T and a sequence of points {xi}∞i=1 ⊂ L(Γ) satisfying the conditions (4.11)–(4.13).
Since it follows from (4.11) that the point xi for any i lies in the normal plane (4.9) (constructed
at the point r(t−i )), we have

∀i ∈ N
〈
xi − r(t−i ), r

′(t−i )
〉
= 0. (4.34)

The vector product is a continuous function of two vector variables, and r(t) is a three times
differentiable function. Therefore, it is possible to calculate the value of the limit as follows:

lim
i→∞

〈
xi − r(t−i ), r

′(t−i )
〉
=

〈
lim
i→∞

xi − lim
i→∞

r(t−i ), lim
i→∞

r′(t−i )

〉
=

〈
x0 − r(t0), r

′(t0)
〉
. (4.35)

According to (4.34) and (4.35), the following equality is true:

〈
x0 − r(t0), r

′(t0)
〉
= 0. (4.36)

The biregularity condition ensures that the curvature (4.6) at any point of the curve is continuous
and strictly positive; hence, the inverse function k−1(t) is continuous in some neighborhood of t0.
Consider the function (4.4). Its numerator represents a composition of vector products of continuous
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vector-valued functions, and the denominator is equal to the norm of the numerator. In this case,
the numerator is different from 0 according to the condition (4.2). Therefore,

lim
i→∞

(〈
xi − r(t−i ), e2(t

−

i )
〉
− k−1(t−i )

)
=

= 〈 lim
i→∞

xi − lim
i→∞

r(t−i ), lim
i→∞

e2(t
−

i )〉 − lim
i→∞

k−1(t−i ) = 〈x0 − r(t0), e2(t0)〉 − k−1(t0).
(4.37)

From (4.14) and (4.37), it follows that

〈x0 − r(t0), e2(t0)〉 − k−1(t0) = 0. (4.38)

It should be noted that (4.8) for t = t0 can be represented as a set of points, for which the following
conditions hold:

z ∈ P (t0) (4.39)

and
〈z− r(t0), e2(t0)〉 = k−1(t0). (4.40)

Equality (4.36) is equivalent to the condition (4.39), and equality (4.38) is equivalent to the condi-
tion (4.40). Hence, (4.33) holds. �

Remark 2. Equations (4.8) and (4.33) for the extreme points of a singular set are generalizations
to three-dimensional equations for the extreme points of a singular set for solving the corresponding
planar time-optimal control problem (see (4.1) and (4.2) from [18]).

Remark 3. Strictly speaking, a Frenet–Serret frame is not unique. Depending on the param-
eters, the vectors (4.3) and (4.5) can be directed differently. However, the vector (4.4) is always
coincides with the direction, in which the curve (4.1) is locally convex in the neighborhood of the
point r(t). Therefore, the equation of the conjugate line (4.8) is an invariant and is determined
solely by certain characteristics of the curve Γ.

5. Example of solving the time-optimal problem (2.1)

To construct singular sets in 3D space, the authors have upgraded a software package [8],
previously used to solve flat tome-optimal problems. It is based on algorithms for calculating
the parameters t− and t+, which define pairs of quasi-symmetric points r(t−) and r(t+) and the
points x ∈ L(Γ) generated by them. A key element is searching for pseudo-vertices of the target
set. Finding a pseudo-vertex makes it possible, using the results of Section 4, to construct sets
of extreme points of the bisector. These sets help to numerically construct the singular set itself.
The level surface Φ(τ) of the optimal result function u(x) corresponding to the time point τ > 0
is constructed as a union of circles (4.10), from which the parts cut off by the bisector L(Γ) are
removed. For each circle Θ(t, τ), t ∈ T, it is required to find out, which arcs on it get into Φ(τ).

Example 1. Consider an example of a time-optimal problem with a target set represented by
the curve (4.1), where the function

r(t) =

(
cos t, sin t,

cos 3t

3

)
(5.1)

is defined on T = [0, 2π]. The function (5.1) satisfies Condition 1 and the Lipschitz condition with
constant L = 3. An analysis of its first-order derivatives

r′(t) = (− sin t, cos t,− sin 3t) (5.2)
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and its second-order derivatives

r′′(t) = (− cos t,− sin t,−3 cos 3t) (5.3)

allows us to prove that the biregularity condition (4.2) holds. We should note that the torsion (4.7)
is not identically zero; hence, the curve Γ is not flat. Although, κ(t) = 0 is possible at some points
t ∈ T .

Modeling the wave front propagation makes it possible to define that the set (4.1) has six
pseudo-vertices corresponding to the values of the parameter

t1 = 0, t2 = π/3, t3 = 2π/3, t4 = π, t5 = 4π/3, t6 = 5π/3.

According to Theorem 1, the extreme points of the bisector lie on the lines conjugate to Γ at
the pseudo-vertices. Fig. 1 shows the curve Γ as a purple line, its pseudo-vertices r(ti), i = 1, 6,
as bubbles, and the dispersing surface L(Γ) as the translucent blue surface. The sets of extreme
points Wi corresponding to the pseudo-vertices r(ti), i = 1, 6, are found by means of the derivatives
of the vector-valued function of the first-order (5.2) and second-order (5.3):

W1 =
{(

ξ, 0,
1− ξ

3

)
∈ R

3 : ξ ∈ [0,∞)
}
,

W2 =
{(√3

2
ξ,

ξ

2
,
ξ − 1

3

)
∈ R

3 : ξ ∈ [0,∞)
}
,

W3 =
{(

− ξ

2
,

√
3

2
ξ,

1− ξ

3

)
∈ R

3 : ξ ∈ [0,∞)
}
,

W4 =
{(

− ξ, 0,
ξ − 1

3

)
∈ R

3 : ξ ∈ [0,∞
}
,

W5 =
{(

−
√
3

2
ξ,−ξ

2
,
1− ξ

3

)
∈ R

3 : ξ ∈ [0,∞)
}
,

W6 =
{(ξ

2
,−

√
3

2
ξ,

ξ − 1

3

)
∈ R

3 : ξ ∈ [0,∞)
}
.

The sets Wi, i = 1, 6, are shown by red lines in Fig. 1. The embedding Wi ⊂ V (ti) is valid for all
i = 1, 6.

The wave front Φ(τ) corresponding to the time point τ = 0.5 (that is, the set of points for
which the optimal result function is equal to τ) is shown in Fig. 2 as a surface with colors changing
from blue to red as they grow along the Z axis. The wave front Φ(τ) corresponding to the time
point τ = 1 is shown in Fig. 3.

The dispersing surface is characterized by 6 sheets:

L1 =
{
(x, y, z) ∈ R

3 : x = ξ, y = 0, z <
1− ξ

3
, ξ ∈ [0,∞)

}
,

L2 =
{
(x, y, z) ∈ R

3 : x =

√
3

2
ξ, y =

ξ

2
, z >

ξ − 1

3
, ξ ∈ [0,∞)

}
,

L3 =
{
(x, y, z) ∈ R

3 : x = −ξ

2
, y =

√
3

2
ξ, z <

1− ξ

3
, ξ ∈ [0,∞)

}
,

L4 =
{
(x, y, z) ∈ R

3 : x = 0, y = ξ, z >
ξ − 1

3
, ξ ∈ [0,∞)

}
,

L5 =
{
(x, y, z) ∈ R

3 : x =
ξ

2
, y = −

√
3

2
ξ, z <

1− ξ

3
, ξ ∈ [0,∞)

}
,

L6 =
{
(x, y, z) ∈ R

3 : x =

√
3

2
ξ, y = −ξ

2
, z >

ξ − 1

3
, ξ ∈ [0,∞)

}
,
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Figure 1. The curve Γ, the pseudo-vertices, and the dispersing surface L(Γ).

All sheets have a non-empty intersection

L∗ =
⋂

i=1,6

Li =
{
(x, y, z) ∈ R

3 : x = 0, y = 0, z ∈
(
− 1

3
,
1

3

)}
.

We have card(ΩΓ(x)) = 6 for all points x ∈ L∗, and card(ΩΓ(x)) = 3 for all other points

{
(x, y, z) ∈ R

3 : x = 0, y = 0, |z| > 1/3
}

on the applicate axis.

Remark 4. The resolving constructions in Example 1 can be considered as a problem solution
for an Eikonal equation with the boundary condition given on the graph of the vector-valued
function (5.1). In this case, wave fronts represent light propagation surfaces in a homogeneous
medium with the source distributed uniformly along the curve Γ. The bisector L(Γ) is the union of
non-smoothness points of the wave fronts due to the fact that the radiation comes from different
points on the curve Γ.

6. Conclusion

One class of time-optimal problems in 3D space with a spherical velocity vectogram is investi-
gated in the case of the target set coinciding with a curve Γ defined by the parametric equation.
Characteristic points, such as pseudo-vertices responsible for the origin of the singular set L(Γ), are
identified. The optimal result function u(x) loses its smoothness on the surface L(Γ). Analytical
expressions are obtained for the coordinates of the extreme points of the bisector corresponding
to a pseudo-vertex. The equations are written in terms of the curvature, principal normal, and
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Figure 2. The level surface Φ(0.5) of the optimal result function and the dispersing surface L(Γ).
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Figure 3. The level surface Φ(1) of the optimal result function and the dispersing surface L(Γ).

binormal of the curve Γ. An example of modeling the construction of a solution to a time-optimal
problem with a closed curve taken as the target set is given. Four pseudo-vertices and the sets Wi,
i = 1, 6, of extreme points corresponding to them, which are rays on lines conjugate to L(Γ), are
found. Based on the sets Wi, i = 1, 6, a bisector is constructed, which is the union of two plane
sets lying in orthogonal planes and having a common line segment. The level surfaces Φ(τ) are
constructed at various time points τ . We should note that, in the previously studied problems on
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the plane, only one bisector point can correspond to each pseudo-vertex (or two in a very special
case, e.g., in [7]). In 3D space, an infinite set of extreme points corresponding to one pseudo-vertex
can exist. In the future, it is planned to extend the developed algorithms to solve problems with
more complex geometry.
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Abstract: For a distance-regular graph Γ of diameter 3, the graph Γi can be strongly regular for i = 2
or 3. J. Kulen and co-authors found the parameters of a strongly regular graph Γ2 given the intersection
array of the graph Γ (independently, the parameters were found by A.A. Makhnev and D.V. Paduchikh). In
this case, Γ has an eigenvalue a2 − c3. In this paper, we study graphs Γ with strongly regular graph Γ2 and
eigenvalue θ = 1. In particular, we prove that, for a Q-polynomial graph from a series of graphs with intersection
arrays {2c3 + a1 + 1, 2c3, c3 + a1 − c2; 1, c2, c3}, the equality c3 = 4(t2 + t)/(4t + 4 − c2

2
) holds. Moreover, for

t ≤ 100000, there is a unique feasible intersection array {9, 6, 3; 1, 2, 3} corresponding to the Hamming (or
Doob) graph H(3, 4). In addition, we found parametrizations of intersection arrays of graphs with θ2 = 1 and
θ3 = a2 − c3.

Keywords: Strongly regular graph, Distance-regular graph, Intersection array.

1. Introduction

We consider undirected graphs without loops and multiple edges.
Let Γ be a connected graph. The distance d(a, b) between two vertices a, b of Γ is the length of

a shortest path between a and b in Γ. For a vertex a of Γ, denote by Γi(a) the induced subgraph on
the set of all vertices at distance i from a in Γ. Let Γ be a graph with diameter d and let a and b be
vertices of Γ at distance i (0 ≤ i ≤ d). Then the number of vertices that are at distance j from a
and h from b is denoted by pijh(a, b) (0 ≤ i, j, h ≤ d) and is called an intersection number of Γ. Note

that pijh(a, b) = |Γj(a)∩Γh(b)|. Consider the numbers ci(a, b) = pii′1,1(a, b), ai(a, b) = pii1(a, b), and

bi(a, b) = pii+1,1(a, b). If the intersection numbers do not depend on the choice of a and b but only

on i, then these numbers are denoted simply by pijh (0 ≤ i, j, h ≤ d). In this case, Γ of diameter d
is called a distance-regular graph with intersection array (b0, b1, . . . , bd−1; c1, . . . , cd).

If a and b are vertices of the graph Γ, then we denote by d(a, b) the distance between a and b.
Given a vertex a in a graph Γ, we denote by Γi(a) the subgraph induced by Γ on the set of all
vertices at the distance i from a. The subgraph Γ1(a) is called the neighbourhood of the vertex a
and is denoted by [a], if the graph Γ is fixed.

Let Γ be a graph of diameter d and i ∈ {1, 2, 3, . . . , d}. The graph Γi have the same set of
vertices, and vertices u and w are adjacent in Γi if dΓ(u,w) = i. For a subset of vertices Y from Γ,
we denote by Γi(Y ) the subgraph with the set of vertices Y in which PI vertices u and w are
adjacent if dΓ(u,w) = i.

An incidence system with a set of points P and a set of lines L is called an α-partial geometry

of order (s, t) if each line contains exactly s+1 points, each point lies exactly on t+1 lines, any two
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points lie on at most one line, and, for any antiflag (a, l) ∈ (P,L), there is exactly α lines passing
through a and intersecting l (the notation is pGα(s, t)).

A point graph of a geometry of points and lines is a graph whose vertices are points of the
geometry, and two different vertices are adjacent if they lie on a common line. It is easy to see that a
point graph of a partial geometry pGα(s, t) is strongly regular with parameters v = (s+1)(1+st/α),
k = s(t+ 1), λ = (s − 1) + (α− 1)t, and µ = α(t+ 1). A strongly regular graph having the above
parameters for some positive integers α, s, and t is called a pseudogeometric graph for pGα(s, t).

The direct problem in the theory of distance-regular graphs is, given an intersection array,
to find the parameters of a symmetric structure corresponding to a graph with this intersection
array. The inverse problem is finding the intersection array of a distance-regular graph given the
parameters of the corresponding symmetric structure.

If, for a distance-regular graph Γ of diameter 3, the graph Γ3 is strongly regular, then, by
[1, Lemma 3], the graph Γ̄3 is pseudogeometric for pGc3(k, b1/c2). Conversely, for the graph Γ̄3,
which is pseudogeometric for pGα(l, t), the graph Γ has an intersection array {l, tc2, l−α+1; 1, c2, α},
where l > tc2 ≥ l − α+ 1 and c2 ≤ α.

Let Γ be a non-bipartite distance-regular graph of diameter 3. By [2, Lemma 3.1], the graph
Γ2 is strongly regular if and only if Γ has the eigenvalue θ = a2 − c3.

The inverse problem was solved by A.A. Makhnev and D.V. Paduchickh. Let Γ be a distance-
regular graph of diameter 3, for which Γ2 is a strongly regular graph with parameters (v, κ, λ, µ)
and eigenvalues κ, r, and −s. Then for x = b2+c2 ≤ rs and µx 6= rs(r+1)(s−1) the parameters of
the intersection array of the graph Γ are expressed in terms of κ, µ, r,−s, and x ([3, Theorem 2]).

We continue the study of distance-regular graphs Γ of diameter 3 with strongly regular graph Γ2

and eigenvalue θ2 = 1.

The following result is obtained in [2, Lemma 4.5].

Proposition 1. Let Γ be a non-bipartite distance-regular graph of diameter 3 with eigenvalue

θ2 = a2 − c3 = 1. The following statements hold :

(1) the eigenvalues θ1 and θ3 are integer, θ1 + θ3 = a1;

(2) c3(c2 + 2) = −(θ1 + 1)(θ3 + 1);

(3) Γ has the intersection array {2c3 + a1 + 1, 2c3, c3 + a1 − c2; 1, c2, c3}.

By Proposition 1, the graph Γ with θ2 = a2 − c3 = 1 and n = a21 + 4(c2 + 2)c3 + 4a1 + 4 has
non-principal eigenvalues 1 and a1/2±

√
n, where the multiplicity of 1 is equal to

(2a1 − c2 + 4c3 + 2)(a1 + 2c3 + 1)c3/(c2c3 + 2a1 + 2c3).

This implies that n is a square and the multiplicity of a1/2±
√
n is equal to

4(2a1 − c2 + 4c3 + 2)(a1 − c2 + c3)(a1 + 2c3 + 1)(a1 + 2c3)/
(

(2a31 − a21c2 + 2a21c3

+8a1c2c3 − 4c22c3 + 8c2c
2
3 +

√
n(2a21 − a1c2 + 2a1c3 + 2c2c3 + 2c2)

+8a21 − 4a1c2 + 24a1c3 − 8c2c3 + 16c23 + 8a1 − 4c2 + 8c3)c2
)

.

Theorem 1. Let Γ be a Q-polynomial distance-regular graph of diameter 3 with strongly regular

graph Γ2. If Γ has an eigenvalue θ = a2 − c3 = 1, then c3 = 4(t2 + t)/(4t + 4 − c22) and Γ has the

intersection array
{

(c22+4c2+4t+4)(t+1)/(4t+4− c22 ), 8(t+1)t/(4t+4− c22), (c2+ t+2)c22/(4t+
4− c22); 1, c2, 4(t

2 + t)/(4t + 4− c22)
}

.
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For t ≤ 100000, there is only one feasible intersection array {9, 6, 3; 1, 2, 3} (t = c2 = 2)
corresponding to the Hamming graph H(3, 4) or the Doob graph with the same parameters.

We found parametrizations of distance-regular graphs of diameter 3 with eigenvalues θ2 = 1 6=
θ3 = a2 − c3.

Theorem 2. Let Γ be a distance-regular graph of diameter 3 with strongly regular graph Γ2.

If Γ has the eigenvalue θ2 = 1 6= a2− c3, then Γ has the intersection array
{

(2n+ r)t+1, 2(n− 1)t,
r(t−1); 1, n+ r+1, 2nt

}

or
{

(2n+ r)t+n+ r+1, (n−1)(2t+1), r(2t−1); 1, n+2r+1, n(2t+1)
}

.

The following examples of graphs with eigenvalues θ2 = 1 6= θ3 = a2 − c3 are known:

(1) {21, 10, 3; 1, 6, 15}, half 7-cube with spectrum 211, 97, 121,−335, v = 1+21+35+7 = 64, and
Γ2 is a graph with parameters (64, 35, 18, 20);

(2) {111, 88, 9; 1, 12, 99} with spectrum 1111, 21148, 1444,−9407, v = 1 + 111 + 814 + 74 = 1000,
and Γ2 is a strongly regular graph with parameters (1000, 814, 663, 660).

For graphs from Theorem 2 for n < 350, t < 1000, we have only feasible intersection arrays
{21, 10, 3; 1, 6, 15}, {111, 88, 9; 1, 12, 99}, {561, 448, 54; 1, 12, 504}, and {561, 448, 75; 1, 21, 480}.

2. Proof of Theorem 1

Let Γ be a Q-polynomial distance-regular graph of diameter 3 with eigenvalue θ2 = a2− c3 = 1.
By Proposition 1, the graph Γ has integer eigenvalues.

Lemma 1. a1 = (c2 + 2)c3/t− t− 2 for some positive integer t.

P r o o f. We have

(a21 + 4(c2 + 2)c3 + 4a1 + 4) = u2,

where u is a positive integer. Solving the Diophantine equation

u2 − (a1 + 2)2 = 4(c2 + 2)c3,

we get

u = (c2 + 2)c3/t+ t, a1 = (c2 + 2)c3/t− t− 2

for some positive integer t. �

Lemma 2. The inequality c3 > t holds.

P r o o f. We have

k = (c2c3 + 2c3t− t2 + 2c3 − t)/t,

hence

(c2c3 + 2c3t− t2 + 2c3 − t) > 0.

Further,

k3 = 2(c2c3 + 2c3t− t2 + 2c3 − t)(c2 + t+ 2)(c3 − t)/(c2t
2),

hence c3 > t. �

Lemma 3. The graph Γ is not Q-polynomial with respect to E2.
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P r o o f. Suppose that Γ is a Q-polynomial graph with respect to E2. Then, by [4], the equality

−2(c2c3 + 2c3t− t2 + 2c3 − 2t)(c2 + 2t+ 2)(2c3 − t)(c3 + 1)/((c2c3 + 2c3 − 2t)(t + 2)t)

= −(c2c3 + 2c3t− t2 + 2c3 − 2t)(c2 + 2t+ 2)(2c3 − t)(c3 + 1)/((c2c3 + 2c3 − 2t)(t+ 2)t)

holds and either c3 = (t2 + 2t)/(c2 + 2t+ 2), or c3 = t/2, or c3 = −1.

In any case, we have a contradiction. �

Lemma 4. If Γ is not Q-polynomial with respect to E1, then c3 = 4(t2 + t)/(4t+ 4− c22).

P r o o f. Let Γ be a Q-polynomial graph with respect to E1. Then, by [4], the following
equality holds:

−(c22c
2
3 − c22c3t− c2c3t

2 + 4c2c
2
3 − 4c2c3t+ 2c3t

2 − 2t3 + 4c23 − 4c3t)(c2c3 + 2c3t

−t2 + 2c3 − 2t)(c2 + 2t+ 2)(2c3 − t)/((c2c3 + t2 + 2c3)(c2c3 + 2c3 − 2t)c2t
2)

= −(c42c
3
3 + 4c32c

3
3t− 5c32c

2
3t

2 + 4c22c
3
3t

2 + c32c3t
3 − 10c22c

2
3t

3 + 4c22c3t
4 − 4c2c

2
3t

4

+4c2c3t
5 + 8c32c

3
3 − 6c32c

2
3t+ 24c22c

3
3t− 42c22c

2
3t

2 + 16c2c
3
3t

2 + 16c22c3t
3 − 40c2c

2
3t

3

+24c2c3t
4 + 24c22c

3
3 − 36c22c

2
3t+ 48c2c

3
3t+ 12c22c3t

2 − 108c2c
2
3t

2 + 16c33t
2

+68c2c3t
3 − 40c23t

3 − 8c2t
4 + 32c3t

4 − 8t5 + 32c2c
3
3 − 72c2c

2
3t+ 32c33t+ 48c2c3t

2

−88c23t
2 − 8c2t

3 + 80c3t
3 − 24t4 + 16c33 − 48c23t+ 48c3t

2 − 16t3)(c2c3 + 2c3t− t2 + 2c3

−2t)(2c3 − t)/
(

(c2c3 + 2c3t− 2t2 + 2c3 − 2t)(c2c3 + t2 + 2c3)(c2c3 + 2c3 − 2t)c2t
2
)

.

Hence,

c3 ∈
{

4(t2 + t)/(4t+ 4− c22), (2t
3 + (t2 + 2t)c2 + 4t2 + 4t)/(c22 + 2c2(t+ 2) + 2t2 + 4t+ 4),

(t2 + 2t)/(c2 + 2t+ 2), 1/2t
}

.

The latter three cases contradict Lemma 2. �

Theorem 1 is proved. �

3. Proof of Theorem 2

Let Γ be a non-bipartite distance-regular graph of diameter 3 with eigenvalues

θ1 = a1 − 1, θ2 = 1, θ3 = a2 − c3.

By [2, Lemma 3.1(v)], we have b1 = (a2− c3+1)c3/(a2− c3). This implies the following statement.

Lemma 5. One of the following equalities holds:

(1) c3 = (c3 − a2)m, where m is a positive integer not exceeding 1;

(2) k = b2 + c2 + c3 + 1;

(3) k = b2 + c2 + c3 − 1.
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In the second case, we have a2−c3 = 1. In the third case, we have a2−c3 = −1, a contradiction
with [2, Lemma 3.1(b)].

Hence,

c3 = (c3 − a2)m, a2m = c3(m− 1), a2 = (m− 1)n,

b1 = mn−m for some positive integer n greater than 1.

The non-principal eigenvalues a1 − 1 and 1 are roots of the quadratic equation

x2 − (b2 + c2 +m− n− 1)x+ c2m− (m− 1)n − b2 − c2 = 0.

Hence,

a1 = k − a2 +m− n− 1

and

a1 − 1 = c2m− (m− 1)n − k + a2.

Hence

k = a1 + 1 +mn−m, k + a1 − 1 = c2m, 2a1 = m(c2 − n+ 1).

If m = 2t, then c2 = n+ r + 1, a1 = t(r + 2), b1 = 2t(n− 1), and Γ has the intersection array

{t(2n + r) + 1, 2t(n − 1), rt− r; 1, n + r + 1, 2nt}

and the non-principal eigenvalues rt+ 2t− 1, 1, and −n of multiplicities

(2nt+ rt+ n+ 1)(2nt + rt+ 1)(2n + r)(t− 1)(n− 1)/((rt + n+ 2t− 1)(rt+ 2t− 2)(n + r + 1)n),

(2nt+ rt+ n+ 1)(2nt+ rt+ 1)(nt− t+ 1)(n − 1)r/((rt+ 2t− 2)(n + r + 1)(n + 1)n),

2(2nt+ rt+ 1)(nt− t+ 1)(2n + r)t/((rt+ n+ 2t− 1)(n + 1)n),

respectively.

If m = 2t+ 1, then

c2 = n+ 2r + 1, a1 = (2t+ 1)r, b1 = (2t+ 1)(n − 1),

and Γ has the intersection array

{

(2t+ 1)(n + r − 1) + 1, (2t + 1)(n − 1), 2rt− r; 1, n+ 2r + 1, 2nt+ n
}

and the non-principal eigenvalues r(2t+ 1) + 2t, 1, and −n of multiplicities

(2nt+ 2rt+ 2n+ r + 1)(2nt+ 2rt+ n+ r + 1)(n + r)(n− 1)(2t− 1)/((2rt + n+ r + 2t)

×(2rt+ r + 2t− 1)(n + 2r + 1)n),

(2nt+ 2rt+ 2n+ r + 1)(2nt + 2rt+ n+ r + 1)(2nt+ n− 2t+ 1)(n − 1)r/((2rt+ r + 2t− 1)

×(n+ 2r + 1)(n + 1)n),

(2nt+ 2rt+ n+ r + 1)(2nt + n− 2t+ 1)(n+ r)(2t+ 1)/((2rt + n+ r + 2t)(n + 1)n),

respectively.

Theorem 2 is proved. �
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Abstract: The mosquito life cycle is developed mathematically with the concept of difference equation. The
qualitative properties of the life-cycle are analyzed. The Lyapunov function is defined for difference equation
to stabilize the system of mosquito life cycle. A novel technique is applied for deriving stability criterion,
especially the back-stepping control technique is applied for discrete time system. The bifurcation analysis is
also furnished for the model of mosquito life cycle. The new technique is applied in the mosquito life cycle
model and its results are examined through MATLAB.

Keywords: Difference Equation, Mosquito, Bifurcation, Equilibrium, Strict Feedback.

1. Introduction

Research on mosquito epidemiology is imperative for the society. All over the world, all gov-
ernments can pay more attention to mosquito epidemiological research. [1, 2, 4].

Many researchers developed a mathematical model of Plasmodium Life Cycle in Hepatocyte,
mosquito midgut malaria transmission, HIV transmission, nitrogen cycle etc., in which the authors
explore the complexity, bifurcation and analyze the stability of their model by the presence of an
equilibrium point of the system [5, 6]. By constructing suitable conditions through the Lyapunov
function, local and global stability analysis are discussed [7–9]. The difference equations have a long
journey on the discrete time models of population dynamics [3]. These equations describe typically
autonomous, discrete time dynamics and assume that there is only a temporary change in vital
rates due to dependence on population density. An individual’s important behaviour and activities
can similarly change and fluctuate. Such kind of explicit dependencies on time can be modelled
by using the difference equation. In the recent years, the difference equations have received more
attention in the mathematical areas.

This paper is devotes a mathematical study of mosquito life cycle. The difference equation
concept is utilized to construct the model. A novelty is involved in the derivation of stability
conditions. Earlier researcher have not considered such type of Lyapunov function for difference
equation. Section 2 describes the mathematical model for the mosquito life cycle under difference
equation. Section 3 contains the discussion on equilibrium point position. Sections 4 includes the
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bifurcation analysis of the system of difference equation for the mosquito life cycle. In section 5
we investigate the stability analysis for the system with the conditions of Lypanouv stability, also
related results are presented and finally, Section 6 describes the conclusion.

2. The mathematical model

The mathematical model for the Anopheles mosquito life cycle is described by the system of
equations with the following assumptions.

• The total population of Anopheles mosquito life cycle consists of four forms, namely, adult,
egg, larva and pupa.

• In every stage, the natural death rate µ is considered to be uniform.

• Let N denote the existing population, where φ is natural birth rate at adult stage.

• x1 is the number of population existing at initial stage.

• x2 is the number of eggs.

• x3 is the population of larva.

• x4 is the number of pupa.

The following Figure 1 shows the flow diagram of Anopheles mosquito life cycle.

Figure 1. The flow diagram of Anopheles mosquito life cycle

The Anopheles mosquito life cycle is given by the following system of difference equation:

x1(n+ 1) = (N − µ− α) x1(n) + δ x4(n),
x2(n+ 1) = α x1(n)− (µ+ β) x2(n),
x3(n+ 1) = β x2(n)− (µ + φ+ γ) x3(n),
x4(n+ 1) = γ x3(n)− (µ + δ) x4(n),

(2.1)

where

• x1(n + 1), x2(n + 1), x3(n + 1), x4(n + 1) respectively are the difference equation at each
stage,

• α, β, γ, δ are the respective rates of growth from one stage to another stage.
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3. Analysis of equilibrium position

The equilibrium points are essential for analysing epidemiological dynamics which revolves
around the equilibrium points. In epidemiology, the equilibrium point is a condition in which some
identified or non-identified epidemiological form is balanced.

The epidemiological equilibrium points are unchanged from the epidemiological structure [10,
11]. They arise as a combination of corresponding epidemiological variables.

In mosquito epidemiology, adult, egg, lava and pupa are identified as key variables. The equi-
librium points are obtained by means of relations

x∗1(n) = −

( γ

N − µ− α

)

(x4(n)),

x∗2(n) = −

( αγ

(N − µ− α)(µ + β)

)

(x4(n)),

x∗3(n) = −

( γαδ

(µ+ β)(N − µ− α)(µ − φ+ γ)

)

(x4(n)).

(3.1)

If the pupa x4(n) state growth is equal to same arbitrary constant then the equilibrium points
differ for following cases:

Case 1: If the arbitrary constant χ = 0, then the four states of anopheles mosquito life cycle
such as adult x1(n), eggs x2(n), larva x3(n) and pupa x4(n) are zero, which implies that a
zero-equilibrium point.

Case 2: If the pupa growth rate is non-zero, also if

χ > 0, N − µ− α > 0, µ− φ+ γ > 0, µ+ β > 0,

then x3 = −c1, x2 = −c2, x1 = −c3, and so E = (−c3,−c2,−c1, c4) is an equilibrium solution.

Case 3: If

χ < 0, N − µ− α > 0, µ− φ+ γ > 0,

then x3 = c1, x2 = c2, x1 = c3, and so E = (c3, c2, c1,−c4) is an equilibrium solution.

4. Bifurcation analysis

The purpose of bifurcation analysis is to study a dynamical system with respect to the trajectory
represented by system, the occurrence of an equilibrium point and the stability properties of the
equilibrium point, when changes occur in a certain parameter of the system of equations. The
bifurcation analysis is carried out by linearizing the system of equations.

The Jacobian matrix is obtained as









(N − µ− α) 0 0 δ

α −(µ+ β) 0 0
0 β −(µ− φ+ γ) 0
0 0 γ −(µ+ δ)









. (4.1)

The characteristic equation of the above Jacobian matrix given by the equation (4.1) is obtained
as

∆1λ
4 +∆2λ

3 +∆3λ
2 +∆4λ+∆5 = 0,
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where

∆1 = 1,

∆2 = α−N + b+ γ + δ + 4µ− φ,

∆3 = Nφ−Nγ −Nd− 3Nµ −Nβ + αβ + αγ + αd+ βγ + 3αµ + βd− αφ+ 3βµ

+ γδ − βφ+ 3γµ+ 3δµ − δφ− 3µφ+ 6µ2,

∆4 = 3αµ2
− 3Nµ2 + 3βµ2 + 3γµ2 + 3δµ2

− 3µ2φ+ 4µ3
−Nβγ −Nβd− 2Nβµ

−Nγδ +Nβφ− 2Nγµ− 2Nδµ +Nδφ + 2Nµφ+ αβγ + αβd+ 2αβµ

+ αγδ − αβφ+ 2αγµ + βγδ + 2αδµ + 2βγµ − αδφ+ 2βδµ − 2αµφ

− βδφ + 2γδµ − 2βµφ− 2δµφ,

∆5 = αµ3
−Nµ3 + βµ3 + γµ3 + δµ3

− µ3φ+ µ4
−Nβµ2

−Nγµ2
−Nδµ2 +Nµ2φ

+ αβµ2 + αγµ2 + αδµ2 + βγµ2 + βδµ2
− αµ2φ+ γδµ2

− βµ2φ− δµ2φ−Nβγδ

−Nβγµ −Nβδµ +Nβδφ −Nγδµ +Nβµφ+Nδµφ+ αβγµ+ αβδµ − αβδφ

+ αγδµ − αβµφ+ βγδµ − αδµφ− βδµφ,

from the analysis with the different cases.
If any one of the parameter values is equal to zero orN−µ−γ < 0 or µ+β < 0 orN−µ−φ−γ < 0

or µ+ δ < 0 then all the eigen values of the Jacobian matrix given in equation (4.1) are real. Hence
for the linearised form of the system of equations there exists the hyperbolic equilibrium. Therefore
the proposed mathematical model for the mosquito life cycle is satisfies the Lyapunov’s conditions
with respect to the robustness.

By introducing Holling type II parameter [15, 16] in larva stage (x3(n)), the new dimension of
the equation becomes,

x3(n+ 1) = r x3(n)−

[

0.2x23(n) +
0.375x3(n)

1 + x23(n)

]

,

where r = −(µ+ φ+ γ) and the transmission rate from the state is

βx2(n) =

[

0.2x23(n) +
0.375x3(n)

1 + x23(n)

]

.

The bifurcation exists at the larva state x3 when the value of the parameter r varies between 2.5
and 4. Figure 2 shows the existence of bifurcation on the Anopheles mosquito life cycle at the larva
state x3.

5. Stability analysis of anopheles mosquito life cycle

In epidemiology the stability analysis of the system is possible to create a new example and
explore new options. The stability analysis of anopheles mosquito life cycle is developing a balance
of its cycle [12–14]. The following theorem gives the stability of the described model and the
following relation establishes the condition for the anopheles mosquito life cycle.

Theorem 1. The system of equation (2.1) for the anopheles mosquito life cycle is stabilized,
if the following conditions exist for the system namely

(N − µ− α)x1(n) = x1(n)− δx4(n)− x21(n+ 1),

(µ + β)x2(n) = αx1(n)− x2(n) + x22(n+ 1),

(µ− φ+ γ)x3(n) = βx2(n)− x3(n) + x23(n+ 1),

(µ + γ)x4(n) = γx3(n)− x4(n) + x24(n+ 1).

(5.1)



Analysis of the Anopheles Mosquito Growth Rate 137

Figure 2. Existence of bifurcation in the Anopheles mosquito life cycle at the state x3

P r o o f. Consider the Lyapunov function

V (xn) =

4
∑

i=1

(xi(n)).

Take the difference equation (2.1), we obtain

∆V (xn) =

4
∑

i=1

∆
(

xi(n)
)

4
∑

i=1

(

xi(n+ 1)− xi(n)
)

.

Substitutions of (5.1) in (2.1) leads to the relation

∆V = −x2i (n+ 1) for i = 1, 2, 3, 4.

Hence

∆V < 0,

which shows that V is a negative definite function. By Laselle’s invariance principle, the model (2.1)
is asymptotically stable. �

5.1. Stability analysis for Anopheles life cycle by using backward strict-

feedback

The stability analysis helps to know how long the life can be accumulated and accelerated
about the condition without any degradation. This study helps to determine the mean life of the
mosquito. The strict-feedback control gives more accuracy to the system.

Theorem 2. The system of equations (2.1) for the anopheles mosquito life cycle with the back-
ward strict feedback mechanism under the concept of difference equation is globally asymptotically
stable if

u1 = (µ+ δ + 1)x4(n)− x24(n),
u2 = −w2

2(n),
u3 = −w2

3(n),
u4 = −δx4(n)− w2

4.

(5.2)
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P r o o f. The backward strict feedback is applied to the system equation (2.1) to get the
accuracy and so, consider the following difference equations

x4(n+ 1) = γx3(n)− (µ+ δ)x4(n) + u1,

x3(n+ 1) = βx2(n)− (µ− φ+ γ)x3(n) + u2,

x2(n+ 1) = αx1(n)− (µ + β)x2(n) + u3,

x1(n+ 1) = (N − µ− α)x1(n) + δx4(n) + u4.

Consider the stability of the pupa state

x4(n+ 1) = γx3(n)− (µ+ δ)x4(n),

where x3(n) is regraded as a virtual controller.
Define the Lyapunov function

V1(n) = x4(n) (5.3)

and the difference of the above equation (5.3) as follows

∆V1(n) = ∆x4(n) = x4(n+ 1)− x4(n) = γx3(n)− (µ+ δ)x4(n)− x4(n) + u1. (5.4)

Assume the virtual controller x3(n) = κ1 then we have

∆V1(n) = γκ1 − (µ + δ)x4(n)− x4(n) + u1.

By applying the controller,
u1 = (µ + δ + 1)x4(n)− x24(n)

and the virtual control κ1 = 0 then the difference equation (5.4) becomes

∆V1(n) = −x24(n) < 0,

which is the negative definite function. Hence the pupa state x4 is globally asymptotically stable.
Thus, the controller κ1(x4(n)) is an estimative when x4(n) is regarded as virtual controller.
The relation between x3 and k1(x4(n)) is

w2(n) = x3(n)− κ1.

Consider the (x4(n), w2(n)) subsystem (pupa and larva states)

x4(n) = −x4(n)− x24(n),
w2(n + 1) = βκ2 + w2(n) + u2.

(5.5)

Let x2(n) be a virtual controller for the subsystem (5.5) and assume that the subsystem (5.5)
is globally asymptotically stable when the state x2(n) = κ2.

Define the Lyapunov function

V2(n) = x4(n) + w2(n).

The difference equation of V2(n) is

∆V2(n) = ∆x4(n) + ∆w2(n) = x4(n + 1)− x4(n) + w2(n+ 1)− w2(n). (5.6)

Substituting the equation (5.5) in the difference equation (5.6), also taking κ2 = 0 and u2 = −w2
2(n),

then the equation (5.6) leads to

∆V2(n) = −x24(n)− w2
2(n).
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Consequently V2 is the negative definite function. Hence the system of equation (5.5) is globally
asymptotically stable.

Thus, the function w2(n) is estimative, when the state x2(n) is consider as a virtual controller.
Then the relation between w3(n) and w2(x4(n), w2(n)) is

w3(n) = x2(n)− κ2.

Consider the (w3(n), w2(n), w4(n)) subsystem

w3(n+ 1) = αx1(n) + w3(n) + u3,

w2(n+ 1) = w2(n)− w2
2(n),

x4(n+ 1) = x4(n)− x24(n).
(5.7)

Let x1(n) be a virtual controller in (5.7) and assume that the subsystem (5.7) is globally
asymptotically stable, when x1(n) = κ3.

Let us define the Lyapunov function

V3(n) = V2(n) + w3(n). (5.8)

The differences from of the above equation (5.8) gives

∆V3(n) = ∆x4(n) + ∆w2(n) + ∆w3(n). (5.9)

Assume the controller x1(n) = κ3.
If κ3 = 0, and u3 = −w2

3(n), then the difference equation (5.9) leads to

∆V3(n) = −x24(n)w
2
2(n)−w2

3(n) < 0,

which is the negative definite function. Hence the subsystem of equation (5.7) is globally asymp-
totically stable.

Thus, the function w4(n) is estimative when x1(n) is taking as virtual controller, then the
relation between x1(n) and κ3 is

w4(n) = x1(n)− κ3.

Consider the (w4(n), w2(n), w3(n), w4(n)) subsystem

w4(n+ 1) = γx4(n) + w4(n) + u4,

w3(n+ 1) = w3(n)− w2
3(n),

w2(n+ 1) = w2(n)− w2
2(n),

x1(n+ 1) = x1(n)− x21(n).

Let us assume the Lyapunov function is as follows

V4(n) = V3(n) + w4(n). (5.10)

The difference equation of V4(n) is

∆V4(n) = ∆x4(n) + ∆w2(n) + ∆w3(n) + ∆w4(n). (5.11)

Choose the controller as follows
u4 = −δx4(n)− w2

4

substituting the controller u4 in the equation (5.10), then the difference equation (5.11) becomes

∆V4(n) = −x24(n)− w2
2(n)− w2

3(n)− w2
4(n) < 0,

which is negative definite function on R
4. Thus by the concept of Lyapunov stability theory, the

Anopheles mosquito life cycle (2.1) is globally asymptotically stable.
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5.2. Numerical simulation

A numerical result is required in this section to validate the model’s analytical result. MATLAB
tool is utilised to confirm the theoretical results obtained in our model via backsteeping control
technique analysis. Here the stability of the model is composed respect to two different initial
conditions with the backstepping controllers is as follows in the system of equations (5.2).

The sensitive depend on initial condition is used to identify the stability and internal equilibrium
that have a large influence on the each life cycle states.

To perform the sensitivity depend on initial conditions, the parameter values are considered as

α = 0.341, β = 0.567, γ = 0.197, δ = 0.907.

The natural death rate µ = 0.4 is considered to be uniform in all states and the total population N

is considered as 10000000.

First, the initial conditions of the model is taken as

x1(0) = 1.28, x2(0) = 8.76, x3(0) = 9.87, x4(0) = 8.23.

Figure 3 shows the stability on the internal equilibrium points. From Figure 3, the adult state x1
is stable at 1.3869, the egg state x2 is stable at 0.4063, the larva state x3 is stable at 0.2019 and
the pupa state x4 is stable at 0.0305.
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Figure 3. Stability at the internal equilibrium points

Second, the initial conditions of the model are taken as

x1(0) = 86198, x2(0) = 27564, x3(0) = 8584367, x4(0) = 48975.

Figure 4 shows the stability on the internal equilibrium points. From the Figure 4, the adult state
x1 is stable at 1.3869, the egg state x2 is stable at 0.4063, the larva state x3 is stable at 0.2019 and
the pupa state x4 is stable at 0.0305.
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Figure 4. Stability on the internal equilibrium points
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Figure 5. Sensitive dependance on initial conditions and internal equilibrium points

From the Figure 5, the Anopheles mosquito life cycle is stable at the internal equilibrium
points, for this two different initial conditions were considered and the model is stable at the
internal equilibrium points x∗1(n) = 1.3869, x∗2(n) = 0.4063, x∗3(n) = 0.2019, x∗4(n) = 0.030.

6. Conclusion

The Anopheles mosquito life cycle is modeled under the concept of difference equation. The sta-
bility of the model is estimated based on the Lyapunov conditions. The designing of the Lyapunov
function is a new development in the difference equation concept. The strict feedback technique is
also applied for a proposed mathematical model. Numerical results are furnished to supports the
theory.
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Abstract: Let ℜn be the set of all rational functions of the type r(z) = p(z)/w(z), where p(z) is a polynomial
of degree at most n and w(z) =

∏n
j=1

(z − aj), |aj | > 1 for 1 ≤ j ≤ n. In this paper, we set up some results
for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations
and refinements of some known inequalities for rational functions and in turn produce generalizations and
refinements of some polynomial inequalities as well.

Keywords: Rational functions, Polynomials, Inequalities.

1. Introduction

Let Pn denote the class of all complex polynomials of degree at most n. For aj ∈ C,
j = 1, 2, . . . , n, we write

w(z) :=

n
∏

j=1

(z − aj), B(z) :=

n
∏

j=1

(

1− ajz

z − aj

)

and

ℜn := ℜn(a1, a2, . . . , an) =

{

p(z)

w(z)
; p ∈ Pn

}

.

Then ℜn is the set of all rational functions with poles aj, j = 1, 2, . . . , n at most and with finite
limit at infinity. It is clear that B(z) ∈ ℜn and |B(z)| = 1 for |z| = 1. Throughout this paper, we
shall assume that all the poles aj, j = 1, 2, . . . , n lie in |z| > 1.

If p ∈ Pn, then concerning the estimate of |p′(z)| on the unit disk |z| ≤ 1, we have the following
famous result known as Bernstein’s inequality [3].
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Theorem 1 [3]. If p ∈ Pn, then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|

with equality only for p(z) = λzn, λ 6= 0 being a complex number.

For polynomials having all their zeros in |z| ≤ 1, Turàn [14] proved

Theorem 2 [14]. If p ∈ Pn and p(z) has all its zeros in |z| ≤ 1, then

max
|z|=1

|p′(z)| ≥
n

2
max
|z|=1

|p(z)| (1.1)

with equality for those polynomials, which have all their zeros on |z| = 1.

In literature, there exists several generalizations and refinements of inequality (1.1) (see [10–12]).
V.K. Jain [6] in 1997 introduced a parameter β and proved the following result which is an
interesting generalization of inequality (1.1).

Theorem 3 [6]. If p ∈ Pn and p(z) has all its zeros in |z| ≤ 1, then for |β| ≤ 1

max
|z|=1

∣

∣

∣

∣

zp′(z) +
nβ

2
p(z)

∣

∣

∣

∣

≥
n

2
{1 + Re (β)}max

|z|=1
|p(z)|. (1.2)

By involving the coefficients of polynomial p(z), Dubinin [4] refined inequality (1.1) and proved the
following result.

Theorem 4 [4]. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n having all its zeros in |z| ≤ 1,

then

max
|z|=1

|p′(z)| ≥
n

2

{

1 +
1

n

(

|αn| − |α0|

|αn|+ |α0|

)}

max
|z|=1

|p(z)|.

As a generalization of Theorem 4, Rather et al. [9] proved the following result.

Theorem 5 [9]. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n having all its zeros in |z| ≤ k,

k ≤ 1, then for |z| = 1

max
|z|=1

|p′(z)| ≥
n

1 + k

{

1 +
k

n

(

kn|αn| − |α0|

kn|αn|+ |α0|

)}

max
|z|=1

|p(z)|. (1.3)

Li, Mohapatra and Rodriguez [7] extended the inequality (1.1) to the rational functions r ∈ ℜn

with prescribed poles and replace zn by Blaschke product B(z). Among other things they proved
the following result.

Theorem 6 [7] . Suppose r ∈ ℜn, where r has exactly n poles at a1, a2, . . . , an and all the zeros
of r lie in |z| ≤ 1, then for |z| = 1

|r′(z)| ≥
1

2

{

|B′(z)| − (n−m)
}

|r(z)|, (1.4)

where m is the number of zeros of r.

As a generalization of inequality (1.4), Aziz and Shah [2] proved the following result.
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Theorem 7 [2]. Suppose r ∈ ℜn, where r has exactly n poles at a1, a2, . . . , an and all the zeros
of r lie in |z| ≤ k, k ≤ 1, then for |z| = 1

|r′(z)| ≥
1

2

{

|B′(z)| +
2m− n(1 + k)

1 + k

}

|r(z)|, (1.5)

where m is the number of zeros of r.

Concerning the estimation of the lower bound of Re
(

zp′(z)/p(z)
)

on |z| = 1, Dubinin [4] proved
the following result.

Theorem 8 [4] . If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n which has all its zeros in

|z| ≤ 1, then for all z on |z| = 1 for which p(z) 6= 0

Re

(

zp′(z)

p(z)

)

≥
n

2

{

1 +
1

n

(

|αn| − |α0|

|αn|+ |α0|

)}

.

Rather et al. [9] generalized Theorem 8 by proving the following result.

Theorem 9 [9]. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n and p(z) has all its zeros in

|z| ≤ k, k ≤ 1, then for all z on |z| = 1 for which p(z) 6= 0,

Re

(

zp′(z)

p(z)

)

≥
n

1 + k

{

1 +
k

n

(

kn|αn| − |α0|

kn|αn|+ |α0|

)}

.

Concerning the estimation of the lower bound of Re
(

zr′(z)/r(z)
)

on |z| = 1, Dubinin [5] extended
Theorem 8 to the rational functions and proved the following result.

Theorem 10 [5]. Let r be a rational function of the form r(z) = p(z)/w(z), where

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0, m ≥ n

and the poles cν , ν = 1, 2, ..., n of r are arbitrary with |cν | 6= 1 and let all the zeros of the function r
lie in the disk |z| ≤ 1. Then, at points of the circle |z| = 1, other than the zeros of r, the following
inequality holds

Re

{

zr′(z)

r(z)

}

≥
1

2

{

m− n+
zB′(z)

B(z)
+

|αm| − |α0|

|αm|+ |α0|

}

. (1.6)

For m = n inequality (1.6) reduces to

Re

{

zr′(z)

r(z)

}

≥
1

2

{

zB′(z)

B(z)
+

|αm| − |α0|

|αm|+ |α0|

}

. (1.7)

2. Main results

In this section, we first present the following result, which in particular furnishes a compact
generalization of Theorem 10 for the case when all the poles of r lie outside the unit disk and as a
consequence of this result, we get various generalizations and refinements of the above mentioned
results. More precisely we prove.
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Theorem 11. Suppose r ∈ ℜn, where r has exactly n poles and all the zeros of

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0,

lie in |z| ≤ k, k ≤ 1. Then for all z on the circle |z| = 1, other than the zeros of r and |β| ≤ 1

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

≥
1

2

[{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

(1 + k)
+

2k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}]

.

(2.1)

The result is best possible in the case β = 0, and equality holds for

r(z) =
(z + k)m

(z − a)n
and B(z) =

(

1− az

z − a

)n

, at z = 1, a > 1 and β = 0.

Remark 1. Taking β = 0, and using the fact that

|B′(z)| =
zB′(z)

B(z)

on |z| = 1, inequality (2.1) reduces to the following inequality

Re

{

zr′(z)

r(z)

}

≥
1

2

[

zB′(z)

B(z)
+

2m− n(1 + k)

(1 + k)
+

2k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}]

. (2.2)

One can easily note that for β = 0, Theorem 11 is an extension of Theorem 9 to the rational
functions. On the other hand if we take k = 1 and m = n in inequality (2.2), we shall obtain
inequality (1.7).

Remark 2. Now for the points on the circle |z| = 1, other than the zeros of r and |β| ≤ 1, one
can easily prove that

∣

∣

∣

∣

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

∣

∣

∣

∣

≥ Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

.

In view of this, Theorem 11 reduces to the following result, which contributes a generalization and
refinement of inequality (1.5).

Corollary 1. Suppose r ∈ ℜn, where r has exactly n poles and all the zeros of r lie in |z| ≤ k,
k ≤ 1, that is r(z) = p(z)/w(z) with

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0.

Then for all z on |z| = 1 other than the zeros of r and |β| ≤ 1

∣

∣

∣

∣

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

∣

∣

∣

∣

≥
1

2

[{

1 +
2Re (β)

1 + k

}

|B′(z)| +
2m− n(1 + k)

(1 + k)
+

2k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}]

.

The result is best possible in the case β = 0, and equality holds for

r(z) =
(z + k)m

(z − a)n
and B(z) =

(

1− az

z − a

)n

, at z = 1, a > 1 and β = 0.
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Remark 3. For k = 1, Corollary 1 reduces to the following result, which yields a generalization
as well as refinement of inequality (1.4).

Corollary 2. Suppose r ∈ ℜn, where r has exactly n poles and all the zeros of r lie in |z| ≤ 1,
that is r(z) = p(z)/w(z) with

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0.

Then for all z on |z| = 1 other than the zeros of r and |β| ≤ 1
∣

∣

∣

∣

zr′(z)

r(z)
+

β

2
|B′(z)|

∣

∣

∣

∣

≥
1

2

[

{1 + Re (β)} |B′(z)| − (n−m) +

{

|αm| − |α0|

|αm|+ |α0|

}]

. (2.3)

Inequality (2.3) is sharp in the case β = 0 and equality holds for

r(z) =
(z + 1)m

(z − a)n
and B(z) =

(

1− az

z − a

)n

, at z = 1, a > 1 and β = 0.

Remark 4. Taking w(z) = (z − α)n, |α| > 1, so that

B(z) =

(

1− αz

z − α

)n

with m = n in Corollary 1, we get
∣

∣

∣

∣

z

(

p′(z)

p(z)
+

n

z − α

)

+
β

1 + k
|B′(z)|

∣

∣

∣

∣

≥
1

2

[{

1 +
2Re (β)

1 + k

}

|B′(z)| +
n(1− k)

1 + k
+

2k

1 + k

(

kn|αn| − |α0|

kn|αn|+ |α0|

)]

.

(2.4)

Letting |α| → ∞ in inequality (2.4) and noting that |B′(z)| → n|z|n−1 = n for |z| = 1, we get the
following result.

Corollary 3. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≤ 1, then for |β| ≤ 1 and |z| = 1
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

1 + k

{

1 + Re(β) +
k

n

(

kn|αn| − |α0|

kn|αn|+ |α0|

)}

|p(z)|. (2.5)

Since kn|αn| ≥ |α0|, therefore Corollary 3 refines as well as generalizes the well known polynomial
inequality (1.2) due to Jain [6].

Remark 5. For β = 0, inequality (2.5) reduces to inequality (1.3).

Next, we prove the following refinement of Corollary 3.

Theorem 12. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≤ 1, then for |β| ≤ 1 and |z| = 1

∣

∣

∣
zp′(z) +

nβ

1 + k
p(z)

∣

∣

∣
≥

n

1 + k

{

1 + Re (β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)}

|p(z)|

+
nm∗

1 + k

{
∣

∣

∣

∣

1 + Re (β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)

− |β|

∣

∣

∣

∣

}

,

where m∗ = min|z|=k |p(z)|.



148 Nisar Ahmad Rather, Mohmmad Shafi Wani and Ishfaq Dar

Taking β = 0 in Theorem 12, we get the following result.

Corollary 4. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≤ 1, then for |z| = 1

|p′(z)| ≥
n

1 + k

{

1 +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)}

|p(z)|+
nm∗

1 + k

{
∣

∣

∣

∣

1 +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)
∣

∣

∣

∣

}

,

where m∗ = min|z|=k |p(z)|.

Remark 6. Since m∗ ≥ 0, hence Corollary 4 is a refinement Theorem 5.

3. Lemmas

For the proof of our results, we need the following lemmas. The first lemma is due to A. Aziz
and B.A. Zargar [1].

Lemma 1 [1]. If |z| = 1, then

Re

(

zw′(z)

w(z)

)

=
n− |B′(z)|

2
,

where w(z) =
∏n

j=1(z − aj).

The following lemma is due to Rather et al. [9].

Lemma 2 [9]. If 〈ζj〉
m
j=1 be a finite collection of real numbers such that 0 ≤ ζj ≤ 1,

j = 1, 2, . . . ,m, then
m
∑

j=1

1− ζj
1 + ζj

≥
1−

∏m
j=1 ζj

1 +
∏m

j=1 ζj
.

The next lemma is due to Mezerji et al. [13].

Lemma 3 [13]. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, k ≤ 1, then
for any β with |β| ≤ 1,

min
|z|=1

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
nm∗

kn

∣

∣

∣

∣

1 +
β

1 + k

∣

∣

∣

∣

,

where m∗ = min|z|=k |p(z)|.

4. Proof of Theorem 11

P r o o f. Since r ∈ ℜn and all the zeros of r(z) lie in |z| ≤ k, k ≤ 1, that is r(z) = p(z)/w(z)
with

p(z) = αm

m
∏

j=1

(z − bj) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0,

αm 6= 0, |bj | ≤ k ≤ 1, j = 1, 2, 3, ...,m.
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Then for |β| ≤ 1 and for all z on |z| = 1, where r(z) 6= 0, we have

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

= Re

{

zr′(z)

r(z)

}

+
|B′(z)|

1 + k
Re {β}

= Re

{

zp′(z)

p(z)
−

zw′(z)

w(z)

}

+
|B′(z)|

1 + k
Re {β}

= Re

{

zp′(z)

p(z)

}

− Re

{

zw′(z)

w(z)

}

+
|B′(z)|

1 + k
Re {β} .

Using Lemma 1, we have for |β| ≤ 1 and for all z on |z| = 1, where r(z) 6= 0,

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

= Re

m
∑

j=1

{

z

z − bj

}

−

{

n− |B′(z)

2

}

+
|B′(z)|

1 + k
Re {β}

=
m
∑

j=1

Re

{

z

z − bj

}

−
n

2
+

1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|.

(4.1)

Now it can be easily verified that for |z| = 1 and |bj | ≤ k ≤ 1, we have

Re

{

z

z − bj

}

≥

{

1

1 + |bj |

}

.

Using this in inequality (4.1), we get for |β| ≤ 1 and for all z on |z| = 1, where r(z) 6= 0,

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

≥

m
∑

j=1

{

1

1 + |bj |

}

−
n

2
+

1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
m
∑

j=1

{

1

1 + |bj|
−

1

1 + k

}

+
m

1 + k
−

n

2

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)| +
2m− n(1 + k)

2(1 + k)
+

k

1 + k

m
∑

j=1

{

k − |bj |

k + k|bj |

}

≥
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

m
∑

j=1

{

k − |bj |

k + |bj |

}

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

m
∑

j=1

{

1− |bj |/k

1 + |bj |/k

}

. (4.2)

Since |bj|/k ≤ 1, therefore by invoking Lemma 2, we conclude from inequality (4.2) that for |β| ≤ 1
and for all z on |z| = 1, where r(z) 6= 0,

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

≥
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

{

1−
∏m

j=1 c|bj |/k

1 +
∏m

j=1 |bj|/k

}

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}

.

�
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5. Proof of Theorem 12

P r o o f. If p(z) has a zero on |z| = k, then the result follows from Corollary 3. We assume
that all the zeros of p(z) lie in |z| < k, k ≤ 1, so that m∗ > 0 and we have m∗ ≤ |p(z)| for |z| = k.
By Rouche’s theorem for every λ with |λ| < 1, the polynomial h(z) = p(z) − λm∗ has all its zeros
in |z| < k, k ≤ 1. Applying Corollary 3 to the polynomial h(z), we get for λ, β ∈ C with |λ| < 1,
|β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
{p(z)− λm∗}

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λm∗ − α0|

kn|αn|+ |λm∗ − α0|

)}

|p(z)− λm∗|.

or
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)−

nβ

1 + k
λm∗

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)− λm∗|.

(5.1)

Now for every β ∈ C with |β| ≤ 1 and k > 0,

k|β| ≤ |1 + k + β|.

or,
∣

∣

∣

∣

1 +
β

1 + k

∣

∣

∣

∣

≥
k

1 + k
|β|, for |β| ≤ 1 and k > 0.

Using this in Lemma 3, we have for |z| = 1, |β| ≤ 1 and k ≤ 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
nm∗

kn

∣

∣

∣

∣

1 +
β

1 + k

∣

∣

∣

∣

≥
nm∗

kn−1

|β|

1 + k
≥

∣

∣

∣

∣

nβ

1 + k
λm∗

∣

∣

∣

∣

for |λ| < 1.

In view of this, choosing argument of λ in left hand side of (5.1) such that

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)−

nβ

1 + k
λm∗

∣

∣

∣

∣

=

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

−
n|β|

1 + k
|λ|m∗,

we obtain from inequality (5.1), for |β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

−
n|β|

1 + k
|λ|m∗

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

{|p(z)| − |λ|m∗} .

or
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)|

+
nm∗

2
|λ|

[

2|β|

1 + k
−

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}]

.

(5.2)
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Again by inequality (5.1), we have for |λ| < 1, |β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

nβ

1 + k
λm∗

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

{|p(z)|+ |λ|m∗} .

or
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)|

+
nm∗

2
|λ|

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)

−
2|β|

1 + k

}

.

(5.3)

Now from inequality (5.2) and inequality (5.3), we get for |β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)|

+
nm∗

2
|λ|

{∣

∣

∣

∣

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)

−
2|β|

1 + k

∣

∣

∣

∣

}

.

Letting |λ| → 1, we obtain for |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

1 + k

{

1 + Re(β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)}

|p(z)|

+
nm∗

1 + k

{∣

∣

∣

∣

1 + Re(β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)

− |β|

∣

∣

∣

∣

}

,

which proves Theorem 12. �

6. A remark on a recent result concerning rational functions

Recently Idrees Qasim [8] claimed to have proved various results regarding Bernstein-type
inequalities for rational functions with prescribed poles and restricted zeros. Among other things
he claimed to have proved the following result.

Theorem 13 [8]. If r(z) = p(z)/w(z) ∈ ℜn, where p(z) =
∑n

j=0 αjz
j, |b|.|αn| ≤ |α0|, r has

exactly n poles at a1, a2, . . . , an, and r(z) 6= 0 in |z| > 1, then for |z| = 1,

|r′(z)| ≥
1

2

[

|B′(z)| +

√

|αn| −
√

|α0|
√

|αn|

]

(|r(z)|+m∗∗) ,

where m∗∗ = min|z|=1 |r(z)| and b = a1a2 . . . an.

Since it is assumed throughout the paper that all the poles (a1, a2, ..., an) of rational function r lie
outside unit disk, therefore,

|b| = |a1 × a2 × ...× an| > 1. (6.1)
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On the other hand, it is also assumed that all the zeros (z1, z2, ..., zn) of r lie in the disc |z| ≤ 1,
implies

|α0|

|αn|
= |z1 × z2 × ...× zn| ≤ 1. (6.2)

From (6.1) and (6.2), it follows that |b|.|αn| > |α0|, which is contrary to the hypothesis |b|.|αn| ≤ |α0|
given in the statement of the Theorem 13. Hence the statement of the Theorem 13 is self-
contradicting, as such Theorem 13 and its consequences are never applicable.
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Abstract: With a possible connection to integrals used in General Relativity, we used our contour integral
method to write a closed form solution for a quadruple integral involving exponential functions and logarithm
of quotient radicals. Almost all Hurwitz–Lerch Zeta functions have an asymmetrical zero-distribution. All the
results in this work are new.
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1. Significance statement

Quadruple integrals are broadly utilized in a wide number of disciplines crossing math, science
and engineering. Some interesting areas where these integrals are used are in the three-body
problem and the equations of dynamics [12], integral solutions to the wave equation [9], path
integrals in polymer physics [5], analytical evaluations of double integral expressions related to
total variation [6], electrodynamics of moving media [8], and measurements in heat transfer [2].

The authors discovered various uses of quadruple integrals after reviewing the present literature.
In some cases these integrals were separable and in some cases asymptotic expansions were used
to attain a solution.The authors were unable to uncover quadruple integrals involving exponential
functions and the logarithm of quotient radicals generated in terms of a closed form solution.
This integral features a kernel with the product of the exponential logarithm of quotient radical
functions. The log term mixes the variables so that the integral is not separable except for special
values of k.

The book by Prudnikov et al. [13], is structured towards mathematicians, physicists, experts
in calculus methods, instructors, graduate students, for all those concerned with integrals, higher
transcendental functions and integral transforms and those keen to master the corresponding theo-
ries. This book is also of help when dealing with the modern theory of higher functions and integral
transformations accessible to undergraduate and graduate students [3].

This famous book contains a vast quantity of mathematical formulae. These formulae are
indefinite integrals, definite integrals, multidimensional integrals, finite and infinite sums and and
multidimensional finite and infinite sums. In the book of Prudnikov et al. [13] there is a combination
of integral examples expressed in terms of fundamental constants and Special functions. Since these
types of integral formulae are of such high importance in science, it has encouraged us to contribute
to such tables by adding definite quadruple integrals in terms of the Hurwitz–Lerch Zeta function.

1This work was supported by The Natural Sciences and Engineering Research Council of Canada
(NSERC), Grant No. 504070

https://doi.org/10.15826/umj.2022.2.013
mailto:milver@my.yorku.ca
mailto:stauffer@yorku.ca
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This work represents an illustration of a general approach using contour integration applied to a
particular integral in the book of Prudnikov et al. [13].

2. Preliminaries

We proceed by using the contour integral method [14] and the reflection formula for the gamma
function given by equation (5.5.3) in [10], applied to equation (3.1.3.9) in [13] to yield the Prudnikov
quadruple contour integral representation given by:

∫

R4
+

aww−k−1(rs)(−m−w)/2−1(r+s)(m+w+1)/2(xy)(m+w)/2(x+y)(−m−w−1)/2e−p(r+x)−q(s+y)dxdydrds

= − 1

2πi

∫

C

π2aww−k−1 csc (π(m+ w)/2)

pq
dw

where a, k, w,m, p, q ∈ C, Re(m+ w) > 0, −1 < Re(m) < 0.

3. Introduction

In this paper the main theorem derived is the quadruple definite integral given by

∫

R4
+

(rs)−m/2−1(r+s)(m+1)/2(xy)m/2(x+y)(−m−1)/2e−p(r+x)−q(s+y) logk
(

a
√
r + s

√
xy√

rs
√
x+ y

)

dxdydrds

=
2iπk+2eiπ(k+m)/2Φ

(

eimπ,−k, 1/2 − i log(a)/π
)

pq
,

where the parameters k, a, p, q and m are general complex numbers. This integral is derived in
terms of the Hurwitz–Lerch Zeta function which is a useful special function. This is a function
of three complex variables which is extended by analytic continuation to the complex plane with
the exception of a singularity at 1 and a branch cut between one to infinity. The Lerch function
is a generalization of several important special functions namely, the geometric series, the natural
logarithm, powers and exponentials, polylogarithms, the Riemann zeta function, the alternating
Riemann zeta function, and the Hurwitz zeta function. One advantage of the approach in this
current work is that it reveals the connection between quadruple integral formulae and classical
mathematical functions.

This definite integral will be used to derive special cases in terms of special functions and
fundamental constants and we summarize most of the evaluations in Table 7 for easy reading.
The derivations follow the method used by us in [14]. This method involves using a form of the
generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1

2πi

∫

C

ewy

wk+1
dw, (3.1)

where C is in general an open contour in the complex plane where the bilinear concomitant has the
same value at the end points of the contour. We then multiply both sides by a function of x, y, z
and t, then take a definite quadruple integral of both sides. This yields a definite integral in terms
of a contour integral. Then we multiply both sides of equation (3.1) by another function of x, y, r
and s and take the infinite sums of both sides such that the contour integral of both equations are
the same.
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4. Definite integral of the contour integral

We use the method in [14]. The variable of integration in the contour integral is α = w +m.
The cut and contour are in the first quadrant of the complex α-plane. The cut approaches the
origin from the interior of the first quadrant and the contour goes round the origin with zero radius
and is on opposite sides of the cut. Using a generalization of Cauchy’s integral formula we form
the quadruple integral by replacing y by

log

(

a
√
r + s

√
xy√

rs
√
x+ y

)

and multiplying by

(rs)−m/2−1(r + s)(m+1)/2(xy)m/2(x+ y)(−m−1)/2e−p(r+x)−q(s+y)

then taking the definite integral with respect to x ∈ [0,∞), y ∈ [0,∞), r ∈ [0,∞) and s ∈ [0,∞)
to obtain

1

Γ(k + 1)

∫

R4
+

(rs)−m/2−1(r + s)(m+1)/2(xy)m/2(x+ y)(−m−1)/2e−p(r+x)−q(s+y)

× logk
(

a
√
r + s

√
xy√

rs
√
x+ y

)

dxdydrds

=
1

2πi

∫

R4
+

∫

C
aww−k−1(rs)(−m−w)/2−1(r + s)(m+w+1)/2(xy)(m+w)/2(x+ y)(−m−w−1)/2

×e−p(r+x)−q(s+y)dwdxdydrds

=
1

2πi

∫

C

∫

R4
+

aww−k−1(rs)(−m−w)/2−1(r + s)(m+w+1)/2(xy)(m+w)/2(x+ y)(−m−w−1)/2

×e−p(r+x)−q(s+y)dxdydrdsdw

= − 1

2πi

∫

C

π2aww−k−1 csc (π(m+ w)/2)

pq
dw

(4.2)

from equation (3.1.3.9) in [13] where

Re(w +m) > 0, Re(p) > 0, Re(q) > 0, −1 < Re(m) < 0

and using the reflection formula (8.334.3) in [4] for the Gamma function. We are able to switch the
order of integration over α, x, y, r and s using Fubini’s theorem since the integrand is of bounded
measure over the space C× [0,∞) × [0,∞)× [0,∞) × [0,∞).

5. The Hurwitz–Lerch zeta function and infinite sum of the contour integral

5.1. The Hurwitz–Lerch zeta function

The Hurwitz–Lerch Zeta function (see Section 1.11 in [1]) has a series representation given by

Φ(z, s, v) =

∞
∑

n=0

(v + n)−szn,

where |z| < 1, v 6= 0,−1, ... and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt

where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.
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5.2. Derivation of the contour integral

Using equation (3.1) and replacing y by

log(a) +
1

2
iπ(2y + 1)

then multiplying both sides by
2iπ2eiπm(2y+1)/2

pq

taking the infinite sum over y ∈ [0,∞) and simplifying in terms of the Hurwitz–Lerch Zeta function
we obtain

2iπk+2eiπ(k+m)/2Φ
(

eimπ,−k, 1/2−i log(a)/π
)

pqΓ(k + 1)
=

1

2πi

∞
∑

y=0

∫

C

2iπ2aww−k−1eiπ(2y+1)(m+w)/2

pq
dw

=
1

2πi

∫

C

∞
∑

y=0

2iπ2aww−k−1eiπ(2y+1)(m+w)/2

pq
dw = − 1

2πi

∫

C

π2aww−k−1 csc (π(m+w)/2)

pq
dw

(5.1)

from equation (1.232.2) in [4] where Im(w +m) > 0 in order for the sum to converge.

Theorem 1. For k, a, p, q,m ∈ C,
∫

R4
+

(rs)−m/2−1(r + s)(m+1)/2(xy)m/2(x+ y)(−m−1)/2e−p(r+x)−q(s+y)

× logk
(

a
√
r + s

√
xy√

rs
√
x+ y

)

dxdydrds

=
2iπk+2eiπ(k+m)/2Φ

(

eimπ,−k, 1/2 − i log(a)/π
)

pq
.

(5.2)

P r o o f. Observe the right-hand sides of (4.2) and (5.1) are the same so we can simplify the
gamma function and equate the left-hand sides to yield the stated result. �

6. Main results

In the proceeding section we will evaluate equation (5.2) in terms of special functions and
fundamental constants, Hurwitz zeta function ζ(s, a), given in Section 25.11 in [10], Catalan’s
constant C, given by equation (25.11.40) in [10], Riemann zeta function ζ(s), given in Section 25.2
in [10], Glaisher’s constant A, given by equation (5.17.6) in [10] and equation (2.2.1.2.7) in [7], and
Euler’s constant γ, given by equation (5.2.3) in [10].

Example 1.

∫

R4
+

4
√
r + se−3r−2s−3x−2y

(

π2 − 4 log2
(√

r+s
√
xy√

rs
√
x+y

))

(rs)3/4 4
√
xy 4

√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2 dxdydrds =

48C + π2

576
√
2

and

∫

R4
+

4
√
rs 4

√
r + s(xy)3/4e−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy 4
√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2 dxdydrds =

1

16π

(

C

3
√
2
− π2

144
√
2

)

.



A Quadruple Integral 157

P r o o f. Use equation (5.2) and set k = −2, a = i, m = −1/2, p = 3, q = 2, rationalize the
denominator and compare real and imaginary parts and simplify in using entry (2) in table (64:12:7)
in [11]. �

Example 2.
∫

R4
+

√
rs
√
xye−3r−2s−3x−2y

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)dxdydrds =

4− π

6

and
∫

R4
+

√
rs
√
xye−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
) dxdydrds = 0.

P r o o f. Use equation (5.2) and set k = −1, a = −1, m = −1, p = 3, q = 2, rationalize the
denominator and compare real and imaginary parts and simplify in using entry (1) in table (64:12:7)
in [11]. �

Example 3.

∫

R4
+

e−2r−3s−2x−3y
(

(r + s)3/8 4
√
xy − 4

√
rs 8

√
r + s 4

√
x+ y

)

(rs)7/8(xy)3/8(x+ y)3/8 log
(√

r+s
√
xy√

rs
√
x+y

) dxdydrds

=
2

3
π tanh−1

(

cos
(π

8

)

− sin
(π

8

))

.

P r o o f. Use equation (5.2) and form a second equation by replacing m → n and take their
difference. Next we set k = −1, a = 1, m = −3/4, n = −1/4, p = 2, q = 3 and simplify using
equation (9.559) in [4] and entry (3) in table (64:12:7) in [11]. �

Example 4.
∫

R4
+

e−r−s−x−y
(

6
√
r + s 24

√
xy − 24

√
rs 8

√
r + s 24

√
x+ y

)

(rs)2/3(xy)3/8 6
√
x+ y log

(√
r+s

√
xy√

rs
√
x+y

) dxdydrds

= 2π log

(√
3 tan

(

3π

16

))

.

P r o o f. Use equation (5.2) and form a second equation by replacing m → n and take their
difference. Next we set k = −1, a = 1, m = −3/4, n = −2/3, p = 1, q = 1 and simplify using
equation (9.559) in [4] and entry (3) in table (64:12:7) in [11]. �

Example 5.
∫

R4
+

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)2 dxdydrds = 4(C − 1).
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P r o o f. Use equation (5.2) and set a = eai, m = −1, p = 1, q = 2 and simplify in terms of
the Hurwitz zeta function using entry (3) in table (64:12:7) in [11]. Next apply l’Hopitals’ rule as
k → −1 and simplify in terms of the digamma function ψ(0)(a) given by equation (5.15.1) in [10].
Next take the first partial derivative with respect to a and set a = π and simplify in terms of
Catalan’s constant C. �

Example 6.

∫

R4
+

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)3dxdydrds = − i

(

π3 − 32
)

4π
.

P r o o f. Use equation (5.2) and set a = eai,m = −1, p = 1, q = 2 and simplify in terms of
the Hurwitz zeta function using entry (3) in table (64:12:7) in [11]. Next apply l’Hopitals’ rule
as k → −1 and simplify in terms of the digamma function ψ(0)(a). Next take the second partial
derivative with respect to a and set a = π and simplify in terms of π. �

Proposition 1. For all a, k, p, q ∈ C the equality is true

∫

R4
+

e−p(r+x)−q(s+y) logk
(

a
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

dxdydrds

=
2ieiπ(k−1)/2πk+2

(

2kζ (−k, 1/2 · (1/2− i log(a)/π))− 2kζ (−k, 1/2 · (3/2− i log(a)/π))
)

pq
.

(6.1)

P r o o f. Use equation (5.2) and set m = −1 and simplify using entry (4) in table (64:12:7)
in [11]. �

Proposition 2. For all k ∈ C then,

∫

R4
+

e−r−s−x−y logk
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

dxdydrds = −2
(

2k+1 − 1
)

eiπk/2πk+2ζ(−k). (6.2)

P r o o f. Use equation (6.2) and set a = i, p = q = 1 and simplify using entry (2) in
table (64:12:7) in [11]. �

Example 7.

∫

R4
+

e−r−s−x−y

√

log
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

dxdydrds = −2
(

2
√
2− 1

)

eiπ/4π5/2ζ

(

−1

2

)

.

P r o o f. Use equation (6.2) and set k = 1/2 and simplify. �
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Example 8.
∫

R4
+

e−3(r+x)−4(s+y)

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

)dxdydrds = −1

6
iπ log(2).

P r o o f. Use equation (6.1) set a = i and apply l’Hopital’s rule as k → −1 and set q = 3,
q = 4 and simplify. �

Example 9.

∫

R4
+

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy

dxdydrds =
1

2
π2(log(4) + iπ).

P r o o f. Use equation (6.1) set a = i and take the first partial derivative with respect to k
and set k = 0, p = q = 1 and simplify. �

Example 10.

∫

R4
+

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

) dxdydrds = π log(2)(2iγ + π − i(log(2) + 2 log(π))).

P r o o f. Use equation (6.1) set a = i and take the first partial derivative with respect to k
then apply l’Hopital’s rule as k → −1 and set p = q = 1 and simplify. �

Example 11.

∫

R4
+

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy log2

(

i
√
r+s

√
xy√

rs
√
x+y

) dxdydrds =
1

12
π2(−24 log(A) + 2γ − iπ + log(16)).

P r o o f. Use equation (6.1) set a = i and take the first partial derivative with respect to k
and set k = −2, p = q = 1 and simplify. �

Proposition 3. For all a, p, q ∈ C, Re(a) > 0 then,

∫

R4
+

log
(

log
(

a
√
r+s

√
xy√

rs
√
x+y

))

e−p(r+x)−q(s+y)

√
rs
√
xy

dxdydrds =
π2

(

4 log
(√

2πΓ(3/4−i log(a)/2π)
Γ((π−2i log(a))/4π)

)

+ iπ
)

2pq
.

P r o o f. Use equation (6.1) and take the first partial derivative with respect to k and set
k = 0 and simplify using equation (25.11.18) in [10] �
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7. Summary table of quadruple integrals involving

f(x, y, r, s)
∫

R4
+

f(x, y, r, s)dudx

4
√
r + se−3r−2s−3x−2y

(

π2 − 4 log2
(√

r+s
√
xy√

rs
√
x+y

))

(rs)3/4 4
√
xy 4

√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2

48C + π2

576
√
2

4
√
rs 4

√
r + s(xy)3/4e−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy 4
√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2

1

16π

(

C

3
√
2
− π2

144
√
2

)

√
rs
√
xye−3r−2s−3x−2y

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)

4− π

6

√
rs
√
xye−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
) 0

e−2r−3s−2x−3y
(

(r + s)3/8 4
√
xy − 4

√
rs 8

√
r + s 4

√
x+ y

)

(rs)7/8(xy)3/8(x+ y)3/8 log
(√

r+s
√
xy√

rs
√
x+y

)

2

3
π tanh−1

(

cos
(π

8

)

− sin
(π

8

))

e−r−s−x−y
(

6
√
r + s 24

√
xy − 24

√
rs 8

√
r + s 24

√
x+ y

)

(rs)2/3(xy)3/8 6
√
x+ y log

(√
r+s

√
xy√

rs
√
x+y

) 2π log

(√
3 tan

(

3π

16

))

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)2 4(C − 1)

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)3 − i

(

π3 − 32
)

4π

e−r−s−x−y logk
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

−2
(

2k+1 − 1
)

eiπk/2πk+2ζ(−k)

e−r−s−x−y

√

log
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

−2
(

2
√
2− 1

)

eiπ/4π5/2ζ

(

−1

2

)

e−3(r+x)−4(s+y)

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

) −1

6
iπ log(2)

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy

1

2
π2(log(4) + iπ)

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy log

(
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8. Discussion

In this work we used our contour integral method to derive a quadruple integral involving the
logarithm of quotient radicals in terms of the Hurwitz–Lerch Zeta transcendent. The integrals
derived are not easy to numerically evaluate as we suspect the presence of singularities and the
integrand maybe highly oscillatory. The importance of this work is that we are able to write down
a closed form solution for this integral. This is advantageous as we now have the Hurwitz–Lerch
Zeta function with analytic continuation to use in order to evaluate this quadruple integral. We
also employed Wolfram Mathematica to assist with numerical computation where needed. We will
use our contour method to derive other multiple integrals for future work.
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Abstract: In the present paper, we classify abelian antipodal distance-regular graphs Γ of diameter 3 with
the following property: (∗) Γ has a transitive group of automorphisms G̃ that induces a primitive almost simple

permutation group G̃Σ on the set Σ of its antipodal classes. There are several infinite families of (arc-transitive)

examples in the case when the permutation rank rk(G̃Σ) of G̃Σ equals 2; moreover, all such graphs are now

known. Here we focus on the case rk(G̃Σ) = 3. Under this condition the socle of G̃Σ turns out to be either
a sporadic simple group, or an alternating group, or a simple group of exceptional Lie type, or a classical
simple group. Earlier, it was shown that the family of non-bipartite graphs Γ with the property (∗) such that

rk(G̃Σ) = 3 and the socle of G̃Σ is a sporadic or an alternating group is finite and limited to a small number of

potential examples. The present paper is aimed to study the case of classical simple socle for G̃Σ. We follow
a classification scheme that is based on a reduction to minimal quotients of Γ that inherit the property (∗).

For each given group G̃Σ with simple classical socle of degree |Σ| ≤ 2500, we determine potential minimal
quotients of Γ, applying some previously developed techniques for bounding their spectrum and parameters in
combination with the classification of primitive rank 3 groups of the corresponding type and associated rank 3
graphs. This allows us to essentially restrict the sets of feasible parameters of Γ in the case of classical socle for
G̃Σ under condition |Σ| ≤ 2500.

Keywords: Distance-regular graph, Antipodal cover, Abelian cover, Vertex-transitive graph, Rank 3 group.

1. Introduction

Let Γ be an antipodal distance-regular graph of diameter three. Then Γ is an antipodal r-cover
of a complete graph on k + 1 vertices, and its intersection array has form {k, (r − 1)µ, 1; 1, µ, k},
where k, r and µ denote the valency of Γ, the size of its antipodal classes and the number of common
neighbours for each two vertices at distance two of Γ, respectively (e.g. see [2]); for brevity, we will
refer to such a graph as an (k+1, r, µ)-cover. We denote by CG(Γ) the group of all automorphisms
of Γ fixing setwise each of its antipodal classes. If the group CG(Γ) is abelian and acts regularly
on (every) antipodal class of Γ, then Γ is called an abelian (k + 1, r, µ)-cover (see [5]). There are
some important links between abelian covers and other combinatorial or geometric objects (we refer
to [9] and [5] for more background). The problem of finding new their constructions involves many
natural questions on possible structure of such a graph, and one of them is to study vertex-transitive
representatives.

In the present paper, we classify abelian (k + 1, r, µ)-covers Γ with the following property:

(∗) Γ has a transitive group of automorphisms G̃ that induces a primitive almost simple permu-
tation group G̃Σ on the set Σ of its antipodal classes.

Without loss of generality, we may assume that G̃ coincides with the full pre-image of G̃Σ in
Aut(Γ). When the permutation rank rk(G̃Σ) of G̃Σ equals 2, there are several infinite families of

1This work is supported by the Russian Science Foundation under grant no. 20-71-00122.
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(arc-transitive) examples; moreover, all such graphs are now known. Here we focus on the case
rk(G̃Σ) = 3. Under this condition the socle of G̃Σ turns out to be either a sporadic simple group,
or an alternating group, or a simple group of exceptional Lie type, or a classical simple group (see
[3, Ch. 11] for an overview on classification of primitive rank 3 permutation groups).

In [16] and [17], it was shown that the family of non-bipartite graphs Γ with the property (∗)
such that rk(G̃Σ) = 3 and the socle of G̃Σ is a sporadic or alternating group is finite and limited
to a small number of potential examples. The present paper is aimed to study the case of classical
simple socle for G̃Σ. We follow a classification scheme that was proposed in [16] and that is based
on a reduction to minimal quotients of Γ that inherit the property (∗). For each given group G̃Σ,
we determine potential minimal quotients of Γ, applying the constraints for their spectrum and
parameters obtained in [16] in combination with the classification of primitive rank 3 groups of the
corresponding type (see [8], [11], and also [13]) and associated rank 3 graphs (see [3, Ch. 11]). This
allows us to essentially restrict the sets of feasible parameters of Γ in the case of classical socle for
G̃Σ with |Σ| ≤ 2500. In particular, we show that for most of these sets Γ must be a covering of a
certain distance-transitive Taylor graph.

2. Preliminaries

We keep the notation and terminology from [16] and we refer the reader to [1] and [2] for basic
definitions. Next we recall some of them. For a finite group G, we denote by Soc(G), Z(G) and
G′ its socle, center and derived subgroup, respectively. If G = G′, then M(G) denotes its Schur
multiplier. If G 6= 1, then we write “dmin(G)“ to denote the number |G : H|, where H is a proper
subgroup of G of the smallest possible index. Further, if G is a transitive permutation group on
a finite set Ω and Orb2(G) is the set of G-orbitals on Ω, then the number |Orb2(G)|, denoted by
rk(G), is called the (permutation) rank of G. For each Q ∈ Orb2(G), Q∗ denotes the orbital paired
with Q. If Q∗ = Q and a ∈ Ω, then Q(a) denotes the set of all points b ∈ Ω such that (a, b) ∈ Q.

In what follows, we consider only undirected graphs without loops or multiple edges. For a
graph Γ by V(Γ) and A(Γ) we denote its vertex set and the arc set, respectively. An (n, r, µ)-cover
is equivalently defined as a connected graph, whose vertex set admits a partition into n cells (called
antipodal classes or fibres) of the same size r ≥ 2 such that each cell induces an r-coclique, the
union of any two distinct cells induces a perfect matching, and every two non-adjacent vertices
that lie in distinct cells have exactly µ ≥ 1 common neighbours. Since an (n, r, µ)-cover is bipartite
if and only if r = 2 and µ = n − 2, and for each n ≥ 3 there is a unique (abelian) (n, 2, n − 2)-
cover (see [2, Corollary 1.5.4]), we omit these from further consideration. We will say that the
set of parameters (n, r, µ) of a non-bipartite abelian (n, r, µ)-cover Γ is feasible if it satisfies the
known necessary conditions for the existence of Γ that are collected in [16, Proposition 1] (see [16]
for detailed references) and [5, Lemma 3.5, Theorem 5.4]. In view of [5], for every (n, r, µ)-cover
Γ and every subgroup N of CG(Γ) of order less than r, the quotient ΓN that is defined as the
graph on the set of N -orbits in which two vertices are adjacent if and only if there is an edge of Γ
between the corresponding orbits, is a (n, r/|N |, µ|N |)-cover. Hence if Γ is a non-bipartite abelian
(n, r, µ)-cover, then, using decomposition CG(Γ) = Op(CG(Γ)) × N , where p is a prime divisor of
r, we obtain that Γ possesses a quotient ΓN that is a non-bipartite abelian (n, pl, µ|N |)-cover with
pl = |Op(CG(Γ))|. Clearly, the factor group Aut(Γ)/N acts as a group of automorphisms of ΓN ,
and in case CG(Γ) > M > N other quotients ΓM inherit a similar property when M E Aut(Γ).
Thus parameters of Γ may depend on the structure of CG(Γ). This is also demonstrated by the
fact that for each non-bipartite abelian (n, r, µ)-cover, every prime divisor of r is also a divisor of
n (see [5, Theorem 9.2] and also [6, Theorem 2.5]). These basic observations are crucial for our
following arguments; they will be used further without any additional reference.

The next result from [16] distinguishes several types of quotients that an abelian non-bipartite
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(k + 1, r, µ)-cover with the property (∗) may possess.

Proposition 1 [16, Proposition 2]. Let Γ be a non-bipartite (k + 1, r, µ)-cover and Σ be the
set of its antipodal classes. Suppose Γ has a transitive automorphism group G1 which induces a
primitive almost simple permutation group G1

Σ on Σ and put T = Soc(G1
Σ). Let G be the full

pre-image of the group T in G1 and K be the kernel of the action of the group G on Σ. Then K
contains a subgroup N that is normal in G1 and satisfies one of the following conditions (below the
symbol ¯ denotes factorization with respect to N):

(T1) K ≃ Epl is an elementary abelian group of exponent p and either

(i) G = K ×G
′
and G

′ ≃ T , or

(ii) G is a quasi-simple group with center K;

(T2) K ≃ Epl is an elementary abelian group of exponent p, T acts faithfully on K, i.e.

T ≤ GLl(p), and dmin(T ) ≤ (pl − 1)/(p− 1);

(T3) K ≃ Sl, where S is a simple non-abelian group, and either

(i) G = K × CG(K) and CG(K) ≃ T , or

(ii) G ≤ Aut(K) and T contains a proper subgroup of index dividing l.

Each graph Γ that satisfies the hypothesis of Proposition 1 will be referred to as a minimal
(k + 1, r, µ)-cover of type (Tx) with x = 1, 2, 3 and denoted by Γ(G1, G,K) if |K| = r, the triple
(G1, G,K) satisfies the condition (Tx) from the conclusion of Proposition 1 and K is a minimal
normal subgroup of G1 (in particular, N = 1). Thus, for a minimal (k + 1, r, µ)-cover Γ(G1, G,K)
the number r is a prime when G1 = G and K ≤ Z(G).

From now on Γ is a non-bipartite abelian (k+1, r, µ)-cover with property (∗), Σ is the set of its
antipodal classes, G̃ is a transitive group of automorphisms of Γ which induces a primitive almost
simple permutation group G̃Σ on Σ, rk(G̃Σ) = 3, k1 and k2 are the non-trivial subdegrees of G̃Σ,
K = CG(Γ) ≤ G̃ and G is the full pre-image of the group Soc(G̃Σ) in G̃.

Now we proceed with final technical definitions. For a vertex x of Γ, by F (x) and Γ1(x) (or [x])
we denote, respectively, the antipodal class of Γ containing x, and its neighborhood in Γ. Put
Ω = V(Γ), and fix a ∈ Ω and F = F (a). Let M = G̃{F} and H = G̃a (note |K| = r implies
M = K : H). Then A(Γ) = Q1 ∪ Q2 for some Q1, Q2 ∈ Orb2(G) with Qi = Q∗

i (see [16]),

|Qi| = rki(k + 1), and |H : G̃a,bi | = ki for each arc (a, bi) ∈ Qi, so H has exactly two orbits on
Γ1(a) (with representatives b1 and b2). For i = 1, 2, let Φi denote the (rank 3) graph on Σ in which
two vertices F (x) and F (y) are adjacent if and only if (x, y) ∈ Qi. If rk(GΣ) = 3 then the group
GΣ is also primitive as µ(Φi) 6= 0, ki (see, for example, [1, 16.4]). Moreover, the parameters k1, k2
and λ satisfy the following equation (see [16])

(λ− λ1)k1 = (λ− λ2)k2,

where λi = |Γ1(bi) ∩H(bi)|, i = 1, 2. We will say that Γ admits an H-uniform edge partition (with
parameters (µ1, µ2)) (see [16]), if for each j = 1, 2 and for every two distinct vertices z1, z2 ∈ F ,
the number of edges between Qj(z1) and Qj(z2) is constant and equal to kjµj, where µj is a fixed
integer.

Lemma 1 [16, Lemma 1]. Suppose that G{F} = Ga×K and rk(GΣ) = 3. If H acts transitively
on F \ {a} or r ≤ 3, then Γ admits an H-uniform edge partition.
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Theorem 1 [16, Theorem 1]. Suppose that G{F} = Ga × K and rk(GΣ) = 3. Then for each
x ∈ F \ {a} we have

(µ− µ1)k1 = (µ− µ2)k2,

where µi = |Γ1(bi) ∩ Qi(x)|, i = 1, 2. If, moreover, Γ admits an H-uniform edge partition with
parameters (µ′

1, µ
′
2), then µ′

i = µi (in particular, ki − 1 = λi + (r − 1)µi) for every i = 1, 2 and
γ = −(λ− λ1 − λ2) + (µ− µ1 − µ2) = r(µ− µ1 − µ2)− 1 is an eigenvalue of Γ.

3. Main results

Theorem 2. Suppose that Γ = Γ(G̃,G,K) is a minimal abelian (k+1, r, µ)-cover, k+1 ≤ 2500,

rk(G̃Σ) = 3 and T = Soc(G̃Σ) is a classical simple group, isomorphic to the group M̃/Z(M̃), where

M̃ = Sp2n−2(q), Ω±
2n(q), Ω2n−1(q) or SUn(q) for n ≥ 3. Assume G̃ = G whenever rk(T ) = 3.

Then one of the following statements is true:

(1) T ≃ PSU4(4), rk(T ) = 3, k + 1 = 1105, r = 5 and µ = 210;

(2) T ≃ G′ ≃ PΩ±
2n(2), rk(T ) = 3, k + 1 = (22n−1 − ε2n−1), where ε = ±1 and n ≤ 6,

2(λ(Φ1) + λ(Φ2) + 1) = k − 1, r = 2 and either G = G′ ≃ Z2.PΩ+
8 (2), ε = +1, k + 1 = 120,

and µ ∈ {64, 54}, or the group G′ is intransitive on V(Γ);

(3) T ≃ G′ ≃ PΩ5(8) ≃ PSp4(8), rk(T ) = 5, 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1, k + 1 = 2016 and
rµ ∈ {2048, 1980}, or k + 1 = 2080 and rµ ∈ {2048, 2108}, wherein either r = 4 and G′ is
intransitive on V(Γ), or r = 2 and G′ is transitive on V(Γ);

(4) T ≃ PΩm(q), rk(T ) = 3, 2(λ(Φ1) + λ(Φ2) + 1) = k − 1, r = 2 and either

(i) m = 5, q = 3, k + 1 = 36 and µ ∈ {16, 18}, or
(ii) m = 5, q = 4, with k + 1 = 120 and µ ∈ {54, 64} or k + 1 = 136 and µ ∈ {64, 70}, or
(iii) m = 7, q = 4, with k + 1 = 2016 and µ ∈ {990, 1024} or k + 1 = 2080 and

µ ∈ {1024, 1054},

and in all cases (i)–(iii) the group G′ is intransitive on V(Γ);

(5) T ≃ G′ ≃ SU3(3), rk(T ) = 4, k + 1 = 36, 2(λ(Φ1) + λ(Φ2) + 1) = k − 1, r = 2, µ ∈ {16, 18}
and G′ is intransitive on V(Γ);

(6) T ≃ G′ ≃ PSp6(2) ≃ PΩ7(2), rk(T ) = 3, k + 1 = 120, 2(λ(Φ1) + λ(Φ2) + 1) = k − 1, r = 2,
µ ∈ {54, 64} and G′ is intransitive on V(Γ).

Moreover, if r = 2 and G′ ≃ T , then for any given pair of parameters k and µ, Γ is a unique
(up to isomorphism) distance-transitive (k + 1, 2, µ)-cover.

P r o o f. Let k+1 ≤ 2500. Under this condition rk(T ) = 3 for all k except the following cases
(a)–(d) (note that in [16, Example] the case (d) is missing, and the subdegrees k1, k2 for the case
(c) are mistyped):

(a) k + 1 = 36, k1 = 14, k2 = 21, T ≃ PSL2(8), rk(T ) = 5, G̃Σ ≃ PΓL2(8) = T.3;

(b) k + 1 = 36, k1 = 14, k2 = 21, T ≃ PSU3(3), rk(T ) = 4, G̃Σ ≃ PΓU3(3) = T.2;

(c) k + 1 = 2016, k1 = 455, k2 = 1560, GΣ ≃ Sp4(8), rk(G
Σ) = 5 and G̃Σ ≃ Sp4(8).Z3
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(d) k + 1 = 2080, k1 = 567, k2 = 1512, GΣ ≃ Sp4(8), rk(G
Σ) = 5 and G̃Σ ≃ Sp4(8).Z3.

Then, by [16, Propositions 2, 3], if rk(T ) = 3, T 6≤ Aut(K) and 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1,
then either G′ ≃ T acts transitively on V(Γ), or G is a quasisimple group. Therefore, in order
to find some necessary conditions for Γ to exist (as well as for its covers with property (∗)), in
case rk(T ) = 3 it suffices to consider the case G̃ = G, and if, moreover, K ≤ Z(G), then one may
assume that r is prime. Taking this into account, we further specify the possible structure of G for
each potential pair (G̃Σ,Φ1).

Throughout the rest of the proof, we put N = G′ and denote by θ and −τ , respectively, the
positive and negative eigenvalues of Γ, other than k and −1. We will consider the following possible
combinations for T and complementary rank 3 graphs Φ1 and Φ2 associated with G̃Σ, applying
their description from [8] and [3, Theorem 11.3.2].

(A) Let k1 = q(qn−1 − 1)(tqn−1 + 1)/(q − 1) and suppose the graph Φ1 has parameters

(qn − 1

q − 1
(tqn−1 + 1), q

qn−1 − 1

q − 1
(tqn−2 + 1), q2

qn−2 − 1

q − 1
(tqn−3 + 1) + q − 1,

qn−1 − 1

q − 1
(tqn−2 + 1)

)
,

where t = q, 1, q, q2, q1/2, q3/2 for M̃ = Sp2n(q), Ω+
2n(q), Ω2n+1(q), Ω−

2n+2(q), SU2n(
√
q) or

SU2n+1(
√
q), respectively (see [3, Theorem 11.3.2(i)]).

By condition k+1 ≤ 2500, hence the equality 2(λ(Φ1)+ λ(Φ2)+ 1) = k− 1 holds if and only if
t = 1, q = 3, n = 2 and (v, k1, λ(Φ1), µ(Φ1)) = (16, 6, 2, 2), which contradicts the constraint n ≥ 3
for t = 1. If r is a power of a prime p, say r = pl, then feasible sets of parameters k, r, and µ are
described by Table 1, and Γ has no H-uniform edge partitions in the cases t = 1, q, q2 (this can be
easily checked by complete enumeration in GAP [14], based on Theorem 1, [16, Proposition 1] and
[5, Lemma 3.5, Theorem 5.4]).

(A1) Let T ≃ PSp2n(q) and k + 1 = (q2n − 1)/(q − 1). Then rk(T ) = 3, while dmin(T ) = k + 1,
except for the cases when q = 2, 2n ≥ 6 and dmin(T ) = 2n−1(2n − 1) or 2n = 4, q = 3 and
dmin(T ) = 27 (see [12, Theorem 2]). Moreover, M(T ) = Zgcd(2,q−1) for (q;n) 6= (2; 2), (2; 3) and
M(T ) = Z2 for (q;n) = (2; 2), (2; 3), Out(T ) = Zgcd(2,q−1) · Ze, where q = pe, p is a prime.

According to Table 1 (q;n) 6∈ {(2; 3), (3; 2)}. Hence dmin(T ) = k+1. It follows that K ≤ Z(G)
and, as noted above, it suffices to consider the case of prime r.

Since Γ has no H-uniform edge partitions, we have r ≥ 5. Also, 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1.
Hence, due to [16, Proposition 3] N = G′ ≃ T acts transitively on V(Γ). But then Ga ≃ N{F}

contains a subgroup of index r and G{F} = GaN{F}.

If n = 3 = q, then (|N |)5 = 5 and hence |N{F}| is not divisible by 5, a contradiction.

Let n = 2. Then N{F} is an extension of a group of order q3 by a group of the form
((q − 1)/2× L2(q)).2 or ((q − 1) · L2(q)) (see, for example, [4] or [13]). In any case, N{F} does not
contain subgroups of index 5, a contradiction.

(A2) Let T ≃ O2n+1(q), t = q and k + 1 = (q2n − 1)/(q − 1). Recall that PSp4(q) ≃ O5(q)
for n = 2, and also that O2n+1(q) ≃ PSp2n(q) for even q (see, for example, [18]). Since the
corresponding cases are considered in case (A1), we will further assume that n ≥ 3 and q is odd.
Then rk(T ) = 3 and by [18, Theorem] dmin(T ) = k + 1, except for the case q = 3, in which
dmin(T ) = 3n(3n − 1)/2. Moreover, M(T ) = Z(2,q−1) for (q;n) 6= (3; 3) and M(T ) = Z2 × Z2 × Z3

for q = 3 = n (e.g. see [7]).

As in case (A1) we have q = n = 3 and since dmin(T ) > r we conclude K ≤ Z(G). Hence we
may assume that r is prime. But then Table 1 gives r = 2 and hence by Lemma 1 and Theorem 1
Γ admits an H-uniform edge partition, a contradiction.
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Table 1. Feasible parameters of Γ with r = pl in case (A)

q, n k + 1 k1, k2 θ −τ rµ r

Type t = q:
7, 2 400 56, 343 19 −21 400 2, 4, 5, 8, 25

21 −19 396 2
9, 2 820 90, 729 21 −39 836 2

39 −21 800 2, 4, 5, 8, 16, 25
3, 3 364 120, 243 11 −33 384 2, 4, 8, 16

33 −11 340 2
Type t = 1: ∅

Type t = q2:
4, 2 325 68, 256 9 −36 350 5

12 −27 338 13

3, 3 1066 336, 729
√
1065 −

√
1065 1064 2, 4

2, 4 495 238, 256 19 −26 500 5, 25
26 −19 486 3, 9, 27, 81, 243

Type t =
√
q:

4, 2 45 12, 32 4 −11 50 5
11 −4 36 3, 9

9, 2 280 36, 243 9 −31 300 2, 5
31 −9 256 2, 4, 8, 16, 32, 64, 128

16, 2 1105 80, 1024 16 −69 1156 17
69 −16 1050 5, 25

Type t =
√
q3: ∅

(A3) Let T ≃ O+
2n(q), where n ≥ 3, t = 1 and k+1 = (qn − 1)(qn−1 +1)/(q − 1). Then condition

k + 1 ≤ 2500 implies either n = 3 and q ≤ 5, or n = 4 and q ≤ 3, or n = 5, 6 and q = 2. According
to Table 1 none of these cases is possible.

(A4) Let T ≃ O−
2n(q), where n ≥ 2, t = q2 and k+1 = (qn − 1)(qn+1+1)/(q − 1). Then rk(T ) = 3

and in view of Table 1 n = 2, 3, 4. Recall that O−
4 (q) ≃ L2(q

2) and O−
6 (q) ≃ U4(q) (e.g. see [18]).

If n = 4 and q = 2, then by [4] dmin(T ) = 119. By [12, Theorem 1, Theorem 3]
dmin(T ) = q2 + 1 = 17 for n = 2 and dmin(T ) = (q3 + 1)(q + 1) = 112 for n = 3 = q. In each
case dmin(T ) > r and hence K ≤ Z(G). Arguing as in case (A3), we obtain that r = 5 and N = G′

acts transitively on V(Γ). But then N ≃ L2(16) or O−
8 (2), and |N | is not divisible by 25. This

contradicts the fact that N{F} must contain a subgroup of index r.

(A5) Let T ≃ PSU2n(
√
q). In view of Table 1 either T ≃ PSU4(2) ≃ PSp4(3) and dmin(T ) = 27

or T ≃ PSU4(3) ≃ O−
6 (3) 6≤ GL7(2) and dmin(T ) = 112, or T ≃ PSU4(4) and dmin(T ) = 325

(see [4] and [12, Theorem 3]). Hence K ≤ Z(G) and we may assume that r is a prime. If G is a
quasi-simple group, then r divides |M(T )| and so by [7] r = 2 and q = 9. If N ≃ T acts transitively
on V(Γ), then r2 divides |N | and so r = 5 for q = 16 and r ≤ 3 for q ≤ 9.

Suppose q = 9. Then r = 2, Γ admits an H-uniform edge partition with parameters (µ1, µ2) and
{(λ1, λ2), (µ1, µ2)} = {(15, 130), (20, 112)}. Enumeration of orbital graphs in GAP [14] shows that
Γ does not exist when N ≃ T . But for G = N the groups (Ga)

[a] and (G{F})
Σ−{F} are permutation

isomorphic. Moreover, for the vertex b1 ∈ Q1(a) the group Ga,b1 has exactly two orbits of length 4
and one orbit of length 27 on [a], which contradicts the fact λ1 ∈ {15, 20}.
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Suppose q = 4. Then r = 3, N ≃ T acts transitively on V(Γ), (λ1, λ2) = (3, 13) and Γ admits
an H-uniform edge partition with parameters (µ1, µ2) = (4, 9). A complete enumeration of orbital
graphs in GAP [14] shows that this case cannot occur.

(A6) In the case of T ≃ PSU2n+1(
√
q) and t =

√
q3 we have n = 2 and q = 4, 9, but according to

Table 1 none of the cases gives a feasible parameter set.

(B) Let us consider the cases T ≃ M̃/Z(M̃ ), where M̃ = Sp4(q), SU4(q), SU5(q), Ω
−
6 (q), Ω

+
8 (q)

or Ω+
10(q) from [3, Theorem 11.3.2(ii)] (see also [8]).

(B1) Let k1 = t(q + 1) and the graph Φ1 have parameters

(
(t+ 1)(tq + 1), t(q + 1), t − 1, q + 1

)
,

where t = q, q2, q1/2, q3/2 for M̃ = Sp4(q), Ω
−
6 (q), SU4(

√
q) or SU5(

√
q), respectively. If r = pl is

a power of a prime p, then feasible sets of parameters k, r, and µ are described by Table 2, and Γ
does not admit H-uniform edge partitions when t = q,

√
q (this can be easily checked in GAP [14],

applying Theorem 1, [16, Proposition 1] and [5, Lemma 3.5, Theorem 5.4]). Moreover, cases t = q,
q2,

√
q correspond to the above cases (A1), (A5) and (A4), respectively.

Table 2. Feasible parameters of Γ with r = pl in case (B)

q k + 1 k1, k2 θ −τ rµ r

(B1), type t = q:
7 400 56, 343 19 −21 400 2, 4, 5, 8, 25

21 −19 396 2
9 820 90, 729 21 −39 836 2

39 −21 800 2, 4, 5, 8, 16, 25
(B1), type t = q2:

2 45 12, 32 4 −11 50 5
11 −4 36 3, 9

3 280 36, 243 9 −31 300 2, 5
31 −9 256 2, 4, 8, 16, 32, 64, 128

4 1105 80, 1024 16 −69 1156 17
69 −16 1050 5, 25

(B1), type t =
√
q:

16 325 68, 256 9 −36 350 5
12 −27 338 13

(B1), type t =
√
q3: ∅

(B2),(B3): ∅

(B2)&(B3) Let T = Ω+
8 (q), k1 = q(q2 + 1)(q3 − 1)/(q − 1) and the graph Φ1 have parameters

(
1 + q(q2 + 1)

q3 − 1

q − 1
+ q6, q(q2 + 1)

q3 − 1

q − 1
, q(q2 + 1)

q3 − 1

q − 1
− q5 − 1, (q2 + 1)

q3 − 1

q − 1

)
,

(see [3, Theorem 2.2.17, Proposition 3.2.3]) or let T = Ω+
10(q), k1 = q(q2 + 1)(q5 − 1)/(q − 1) and

the graph Φ1 have parameters

(
(q4 + 1)(q3 +1)(q2 +1)(q + 1), q(q2 + 1)

q5 − 1

q − 1
, q − 1 + q2(q + 1)(q2 + q + 1), (q2 + 1)(q2 + q + 1)

)
.
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As k+1 ≤ 2500, it follows that q ≤ 3 and hence either k+1 = 135, 1120 and T = O+
8 (q) for q = 2, 3

respectively, or q = 2, k+1 = 2295 and T = O+
10(2). According to Table 2 in any case, none of the

parameter sets k, r and µ is feasible (this was checked in GAP [14] using [16, Proposition 1]) and
[5, Lemma 3.5, Theorem 5.4]).

(C) Now let us consider the cases T ≃ M̃/Z(M̃), where M̃ = SUm(2), Ω±
2m(2), Ω±

2m(3), Ω2m−1(3),
Ω2m−1(4) or Ω2m−1(8) for m ≥ 3, from [3, Theorem 11.3.2 (iii,iv)] (see also [8]).

(C1) Let T = Un(2) (see [3, § 3.1.6]) and the graph Φ1 = NUn(2) have parameters

(
2n−1(2n − ε)/3, (2n−1 + ε)(2n−2 − ε), 22n−53− ε2n−2 − 2, 2n−33(2n−2 − ε)

)
,

where ε = (−1)n.

In view of Table 3 we have n = 5 and k + 1 = 176, i.e. T ≃ U5(2). Since

2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1

and r divides 4, then either N ≃ T acts transitively on V(Γ), or G is a quasisimple group and
by [7] K ≤ M(T ) = Z2. But in the first case, by [4], L = N{F} ≃ Z3 × U4(2) has no subgroups
of index r, a contradiction. In the second case r = 2 and Γ admits an H-uniform edge partition
with parameters (µ1, µ2), and {(µ1, µ2), (λ1, λ2)} = {(78, 21), (56, 18)}. But then subdegrees of
the group Ga on Q1(a) (recall that |Q1(a)| = k1) are as follows: 11, 61, 324, 361 (the upper indices
denote the multiplicities of the corresponding subdegrees). This contradicts the fact λ1 ∈ {78, 56}.
(C2) Let T = PΩ±

2n(2) (see [3, § 3.1.2]) and the graph Φ1 = NOε
2n(2) have parameters

(
22n−1 − ε2n−1, 22n−2 − 1, 22n−3 − 2, 22n−3 + ε2n−2

)
,

where ε = ±1. Since k + 1 ≤ 2500, n ≤ 6. Then

2(λ(Φ1) + λ(Φ2) + 1) = k − 1

for all n and ε (see also [17, Example 1]).

Suppose n = 3.

If T ≃ PΩ+
6 (2) ≃ L4(2) ≃ Alt8, then r = 2 and N is intransitive on V(Γ) (note that Γ is a

graph from [17, Theorem 2(ii)]).

Let T ≃ PΩ−
6 (2) ≃ U4(2) ≃ PSp4(3). Then k + 1 = 36, M(T ) = Z2 and rk(T ) = 3. Since

dmin(U4(2)) = 27 (see [4]), we get K ≤ Z(G).

Assume that N is transitive on V(Γ). Then r = 2, N = G ≃ Sp4(3) or PSp4(3). Consequently,
Ga ≃ SL2(9) or Ga ≃ Alt6. In the first case K = Z(G) ≤ Ga, and in the second case the rank of
the transitive representation N on V(Γ) is equal to 5. Both cases are impossible.

Let n > 3. Since dmin(T ) = 2n−1(2n − 1) (see [18]) for ε = +1, dmin(T ) = 119 (see [4]) for
ε = −1 and n = 4, dmin(T ) = 495 (see [4]) for ε = −1 and n = 5, and dmin(T ) = 2015 (see [13]) for
ε = −1 and n = 6, we get K ≤ Z(G). Then, by [16, Proposition 3], either N ≃ T is intransitive
on V(Γ), or N is transitive on V(Γ). Let us consider the second case. Recall that M(T ) = Z2 ×Z2

for n = 4, ε = +1 and M(T ) = 1 otherwise (e.g. see [7]). Further, the group T{F} is isomorphic
to the group PSp2n(2) (see [13]) and it has no subgroup of index r from the corresponding case
in Table 3. Hence N = G, n = 4, ε = +1 and r = 2. By Lemma 1 and Theorem 1 Γ admits an
H-uniform edge partition with parameters (µ1, µ2) and {(λ1, λ2), (µ1, µ2)} = {(32, 28), (30, 27)},
and µ ∈ {64, 54}.
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Table 3. Feasible parameters of Γ with r = pl in cases (C1)–(C3)

n k + 1 k1, k2 θ −τ rµ r

(C1) 5 176 135, 40 5 −35 204 2
35 −5 144 2, 4

(C2), ε = −1: 3 36 15, 20 5 −7 36 2, 3, 9
7 −5 32 2, 4, 8, 16

4 136 63, 72 9 −15 140 2
15 −9 128 2, 4, 8, 16, 32, 64

5 528 255, 272 17 −31 540 2, 3, 9, 27
31 −17 512 2, 4, 8, 16, 32, 64, 128, 256

6 2080 1023, 1056 9 −231 2300 2
21 −99 2156 2
27 −77 2128 2, 4, 8
33 −63 2108 2
63 −33 2048 r = 2l, l ≤ 10
77 −27 2028 2, 13, 169
99 −21 2000 2, 4, 5, 8, 25, 125
231 −9 1856 2, 4, 8, 32

(C2), ε = +1: 3 28 15, 12 3 −9 32 2, 4
9 −3 20 2

4 120 63, 56 7 −17 128 2, 4, 8
17 −7 108 2, 3, 9, 27

5 496 255, 240 15 −33 512 2, 4, 8, 16
33 −15 476 2

6 2016 1023, 992 13 −155 2156 2, 7
31 −65 2048 2, 4, 8, 16, 32
65 −31 1980 2, 3, 9
155 −13 1872 2, 3, 4

(C3), ε = −1: 3 126 45, 80 5 −25 144 2, 3
25 −5 104 2, 4√
125 −

√
125 124 2

(C3), ε = 1: ∅
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Table 4. Feasible parameters of Γ with r = pl in case (C4)

ε, q, n k + 1 k1, k2 θ −τ rµ r

(C4) −1, 3, 2 36 20, 15 5 −7 36 2, 3, 9
7 −5 32 2, 4, 8, 16

−1, 3, 3 351 224, 126 14 −25 360 3, 9
25 −14 338 13, 169
35 −10 324 3, 9, 27, 81

1, 3, 2 45 32, 12 4 −11 50 5
11 −4 36 3, 9

1, 3, 3 378 260, 117 13 −29 392 2, 7
29 −13 360 2, 3, 4, 9√
377 −

√
377 376 2, 4

−1, 4, 2 120 51, 68 7 −17 128 2, 4, 8
17 −7 108 2, 3, 9, 27

−1, 4, 3 2016 975, 1040 13 −155 2156 2, 7
31 −65 2048 2, 4, 8, 16, 32
65 −31 1980 2, 3, 9
155 −13 1872 2, 3, 4

1, 4, 2 136 75, 60 9 −15 140 2
15 −9 128 2, 4, 8, 16, 32, 64

1, 4, 3 2080 1071, 1008 9 −231 2300 2
21 −99 2156 2
27 −77 2128 2, 4, 8
33 −63 2108 2
63 −33 2048 r = 2l, l ≤ 10
77 −27 2028 2, 13, 169
99 −21 2000 2, 4, 5, 8, 25, 125
231 −9 1856 2, 4, 8, 32

−1, 8, 2 2016 455, 1560 13 −155 2156 2, 7
31 −65 2048 2, 4, 8, 16, 32
65 −31 1980 2, 3, 9
155 −13 1872 2, 3, 4

1, 8, 2 2080 567, 1512 9 −231 2300 2
21 −99 2156 2
27 −77 2128 2, 4, 8
33 −63 2108 2
63 −33 2048 r = 2l, l ≤ 10
77 −27 2028 2, 13, 169
99 −21 2000 2, 4, 5, 8, 25, 125
231 −9 1856 2, 4, 8, 32
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A computer check in GAP [14] shows that in the case when r = 2, N ≃ T and N is intran-
sitive on V(Γ), Γ exists and it is unique distance-transitive (k + 1, 2, µ)-cover (note it can be also
constructed using [17, Theorem 1] or appears in [17, Example 1]).

(C3) Let T = PΩ±
2n(3) (see [3, § 3.1.3]) and the graph Φ1 = NOε

2n(3) have parameters

(1
2
3n−1(3n − ε),

1

2
3n−1(3n−1 − ε),

1

2
3n−2(3n−1 + ε),

1

2
3n−1(3n−2 − ε))

)
,

where ε = ±1.
In view of Table 3 we have k+1 = 126, ε = −1 and r ≤ 4. Then T ≃ U4(3) and dmin(T ) = 112

(see [4]). Hence K ≤ Z(G). Enumeration of feasible parameters in GAP [14] shows that Γ does
not admit H-uniform edge partitions when λ = µ, a contradiction with Lemma 1 and Theorem 1.

If N ≃ T acts transitively on V(Γ), then N{F} ≃ U4(2) contains a subgroup of index r ≤
4, a contradiction. Therefore G = N is a quasi-simple group and, by [7], r = 2. Hence, by
Lemma 1 and Theorem 1, Γ admits an H-uniform edge partition with parameters (µ1, µ2) and
{(λ1, λ2), (µ1, µ2)} = {(24, 45), (20, 34)}. Since G = N , the groups (Ga)

[a] and (G{F})
Σ−{F} are

permutation isomorphic. Moreover, for the vertex b1 ∈ Q1(a) the group Ga,b1 has exactly two non-
single-point orbits on Q1(a): one orbit of length 12 and one orbit of length 32. This is impossible,
since λ1 ∈ {20, 24}.
(C4) Let T = PΩ2n+1(q) (see [3, § 3.1.4]) and the graph Φ1 = NO2n+1(q) have parameters

(1
2
qn(qn + ε), (qn−1 + ε)(qn − ε), 2(q2n−2 − 1) + εqn−1(q − 1), 2qn−1(qn−1 + ε)

)
,

where ε = ±1, q = 3, 4, 8 and n ≥ 2. According to Table 4, the equality 2(λ(Φ1)+λ(Φ2)+1) = k−1
holds only when either k + 1 = 36 and q = 3 or q = 4.

For q = 3 we have either n = 2 and dmin(T ) = 27, or n = 3 and dmin(T ) = 351 (see [4]). For
even q we have PΩ2n+1(q) ≃ PSp2n(q) and, by [12, Theorem 2], dmin(T ) = (q2n − 1)/(q − 1), i.e.
dmin(T ) = 85 for 2n = q = 4, dmin(T ) = 585 for 4n = q = 8 and dmin(T ) = 1365 for n = 3 and
q = 4. Moreover, r = pl ≥ dmin(T ) is possible only for 4n = q = 8. Together with the fact that
PSp4(8) 6≤ GL10(2), this implies K ≤ Z(G).

First we consider the cases when 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1.
If ε = +1, q = 3 and n = 2 then T ≃ PΩ5(3) ≃ PSp4(3) and rk(T ) = 3. This possibility was

treated in case (A5).
Let q = n = 3. Then T ≃ PΩ7(3), rk(T ) = 3 and k+ 1 is equal to 351 (for ε = −1) or 378 (for

ε = +1). In any case by [4] L has no subgroup of index 3, 7 or 13.
Hence if N ≃ T is transitive on V(Γ) then r = 2, ε = +1 and Na = NF ≃ L4(3) has two orbits

on [a]. Moreover, for the vertex b2 ∈ Q2(a) the group Na,b2 has exactly two non-single-point orbits
on Q2(a) (recall that k2 = |Q2(a)| = 117), and the lengths of these orbits are 80 and 36. This
contradicts the fact that by Lemma 1 and Theorem 1 Γ admits an H-uniform edge partition with
parameters (µ1, µ2) and {(λ1, λ2), (µ1, µ2)} = {(133, 56), (126, 60)}.

Hence G = N and, by [7], M(T ) = Z2 × Z3, which together with Table 4 implies r ≤ 3 for
k+1 = 378 and r = 3 for k+1 = 351. Then, by Lemma 1 and Theorem 1, Γ admits an H-uniform
edge partition with parameters (µ1, µ2). More precisely, if k + 1 = 378, then {(λ1, λ2), (µ1, µ2)} =
{(133, 56), (126, 60)} for r = 2 and {(λ1, λ2), (µ1, µ2)} = {(84, 40), (91, 36)} for r = 3, and if

k + 1 = 351, then {(λ1, λ2), (µ1, µ2)} = {(75, 40), (73, 45)} and r = 3. Since the groups (Ga)
[a]

and (G{F})
Σ−{F} are permutation isomorphic, in the case r = 2 a contradiction is achieved in a

similar way as above. Let r = 3. For k + 1 = 351 the group Ga,b1 , where b1 ∈ Q1(a), has five
orbits on Q1(a) (recall that k1 = |Q1(a)| = 224): two orbits of length 81, one orbit of length 60
and two single-point orbits. This is impossible, since λ1 = 73 or 75. Let k + 1 = 378. Since for
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the vertex b2 ∈ Q2(a) the group Ga,b2 has exactly two non-single-point orbits on Q2(a) (recall that
k2 = |Q2(a)| = 117), and the lengths of these orbits are 80 and 36, then λ2 = 36. But then µ2 = 40,
which is impossible, since Ga = GF and the group Ga,b2 moves 36 or 80 vertices from Q2(a

∗)∩ [b2]
for some vertex a∗ ∈ F (a).

Let q = 8. According to Table 4 T ≃ PΩ5(8) ≃ PSp4(8) and as noted above rk(T ) = 5.

Further, the group (G̃{F})
Σ−{F}

has the form L2(64).Z3.Z2 for k+1 = 2016 and (L2(8)×L2(8)).Z6

for k + 1 = 2080. Hence, by [16, Proposition 3] and taking into account that M(T ) = 1, we obtain
either r = 4, one of −65 or 63 is an eigenvalue of Γ and N is intransitive on V(Γ), or N ≃ T
acts transitively on V(Γ). Let us consider the second case. If k + 1 = 2080 then for a subgroup of
index r in N{F} we have either p = 3 and r divides 35, or r = p = 2. If k + 1 = 2016 then for a
subgroup of index r in N{F} we have r = p ≤ 3. Enumeration of the orbital graphs of N in GAP
[14] shows that the case r = 3 is impossible, while for r = 2 the graph Γ exists: for k + 1 = 2016
the parameter µ equals to 1024 or 990, and for k + 1 = 2080 the parameter µ equals to 1024 or
1054. More precisely, for each feasible set of parameters k, µ, it turns out to be the unique (up to
isomorphism) distance-transitive (k + 1, 2, µ)-cover.

Now let 2(λ(Φ1) + λ(Φ2) + 1) = k − 1.

Let us consider the case when N is transitive on V(Γ).
For transitive N , the case ε = −1, q = 3 and n = 2 was excluded earlier in (C2).

Let q = 4. Then rk(T ) = 3 and by [7] M(T ) = 1. If n = 2 then by [4] N{F} ≃ L2(16) (for
k + 1 = 120) or (Alt5 × Alt5) : Z2 (for k + 1 = 136) has no subgroup of index 3, so r = 2. If
n = 3, then N{F} ≃ PΩε

6(4) : Z2 (see [13]) has no subgroup of index 3, 5, 7 or 13, so r = 2 again.
Enumeration of the orbital graphs of PSp2n(q) on r(k + 1) points in GAP [14] shows that none of
these cases is realized.

A computer check in GAP [14] shows that in the case when r = 2, N ≃ T andN is intransitive on
V(Γ), Γ exists and it is unique distance-transitive (k+1, 2, µ)-cover (note it can be also constructed
using [17, Theorem 1]).

(D) Finally, let the pair (M̃, Y ), where Y is the pre-image in M̃ of a point stabilizer in T , be one

of the following (up to conjugacy in Aut(M̃ ) (see [3, § 11.3.2, Theorem 11.3.2(v)–(x)])):

(SU3(3), PSL3(2)), (SU3(5), 3.Alt7), (SU4(3), 4.PSL3(4)), (Sp6(2), G2(2)), (Ω7(3), G2(3)),
(SU6(2), 3.PSU4(3).2);

let further the graph Φ1 have parameters

(36, 14, 4, 6), (50, 7, 0, 1), (162, 56, 10, 24), (120, 56, 28, 24), (1080, 351, 126, 108)

or (1408, 567, 246, 216),

respectively (for their detailed description, see [3, §-§ 10.14, 10.19, 10.48, 10.39, 10.78, 10.81]). Then
feasible parameters of Γ are described by Table 5, which, in particular, shows the cases k+1 = 56,
1080 are impossible.

Let T ≃ SU3(3). Then rk(T ) = 4, M(T ) = 1, and by [4] dmin(T ) = 28 > r. Hence K ≤ Z(G)
and N ≃ T . Suppose N is intransitive on V(Γ). Then by [16, Proposition 3] we have either r = 4
and 7 is an eigenvalue of Γ, or r = 2 and γ = −2(λ(Φi) + kjµ(Φi)/ki + 1) + k is an eigenvalue of
Γ. In the second case γ ∈ {±7}, which in view of Table 5 implies µ ∈ {16, 18}. Computer check
in GAP [14] shows that for r = 2 and each µ, Γ exists and it is the only (up to isomorphism)
distance-transitive (36, 2, µ)-cover.

Suppose N ≃ T is transitive on V(Γ). Then N{F} ≃ L3(2) must contain a subgroup of index r.
But in view of [4] the index of a proper subgroup in L3(2) must be divisible by 7 or 8, which
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implies r = 8. Enumeration of the orbital graphs of the group SU3(3) on 36r points in GAP [14]
shows that this is impossible.

For r = 4 enumeration of the orbital graphs of the group K×SU3(3) on 144 points in GAP [14]
shows this case is also impossible.

In all other cases rk(T ) = 3 and dmin(T ) > r. Hence K ≤ Z(G) and, by the remark after
Proposition 1, we will assume that r is prime.

For T ≃ PSU3(5) we have 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1 and by [7] M(T ) = Z3. In view of
Table 5 r = 2 and hence N = G′ ≃ T . Enumeration of the orbital graphs of the group Z2×SU3(5)
on 100 points in GAP [14] shows this case is impossible.

For T ≃ Sp6(2), we have 2(λ(Φ1) + λ(Φ2) + 1) = k − 1 and, by [7] M(T ) = 1, so N = G′ ≃ T .
Since the rank of the representation of the group Sp6(2) on cosets by its subgroup isomorphic
to the group G2(2)

′, equals 5, we obtain that N is intransitive on V(Γ). Further, in view of
Lemma 1 and Theorem 1 Γ admits an H-uniform edge partition with parameters (µ1, µ2) and either
{(λ1, λ2), (µ1, µ2)} = {(28, 32), (27, 30)} and r = 2, or {(λ1, λ2), (µ1, µ2)} = {(18, 20), (19, 22)} and

r = 3. Since the groups (Ga)
[a] and (G{F})

Σ−{F} are permutation isomorphic, for b1 ∈ Q1(a)
Ga,b1-orbits on Q1(a) have lengths 1, 1, 27 and 27. For r = 3 this is impossible, since λ1 = 18 or
19. Hence r = 2. Enumeration of the orbital graphs of the group Zr × Sp6(2) on 240 points in
GAP [14] shows that Γ exists and it is distance-transitive with µ = 54 or 64.

For T ≃ PSU6(2) we have 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1 and, by [7], M(T ) = Z3 × Z2 × Z2.
Since the rank of transitive representation of PSU6(2) on its right X-cosets with X ≃ U4(3) equals
5, then G is a quasi-simple group and r = 2. In view of Lemma 1 and Theorem 1 Γ admits an H-
uniform edge partition with parameters (µ1, µ2) and {(λ1, λ2), (µ1, µ2)} = {(286, 429), (280, 410)}.
Since the groups (Ga)

[a] and (G{F})
Σ−{F} are permutation isomorphic, for b1 ∈ Q1(a) Ga,b1-orbits

on Q1(a) have lengths 1, 320, 30, 96 and 120. This is a contradiction, since λ1 = 286 or 280.

Table 5. Feasible parameters of Γ with r = pl in case (D)

(M̃, Y ) k + 1 k1, k2 θ −τ rµ r

(SU3(3), PSL3(2)) 36 14, 21 5 −7 36 2, 3, 9
7 −5 32 2, 4, 8, 16

(SU3(5), 3.Alt7) 50 7, 42 7 −7 48 2, 4, 8
(Sp6(2), G2(2)) 120 56, 63 7 −17 128 2, 4, 8

17 −7 108 2, 3, 9, 27
(SU6(2), 3.PSU4(3).2) 1408 567, 840 21 −67 1452 2, 11

67 −21 1360 2, 4, 8

�

Theorem 3. Suppose that Γ = Γ(G̃,G,K) is a minimal abelian (k+1, r, µ)-cover, k+1 ≤ 2500,
rk(G̃Σ) = 3 and T = Soc(G̃Σ) ≃ PSLd(q). Assume G̃ = G whenever rk(T ) = 3. Suppose further
that (T, k + 1) 6= (Alts,

(s
2

)
). Then G̃Σ ≃ PΓL2(8), k + 1 = 36, r = 2, µ ∈ {16, 18}, G′ ≃ T , G′ is

transitive on V(Γ), and Γ is a unique (up to isomorphism) distance-transitive (36, 2, µ)-cover.

P r o o f. Let T ≃ PSLd(q). Next we consider potential combinations for T and the com-
plementary rank 3 graphs Φ1 and Φ2 associated with G̃Σ, applying their description from [8] and
[3, Theorem 11.3.3]. Since k + 1 ≤ 2500, we are left with the following two cases (E) and (H).
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(E) Let either T = PSL2(4) ≃ PSL2(5) ≃ Alt5, k+1 =
(5
2

)
, or T = PSL2(9) ≃ Alt6, k+1 =

(6
2

)
,

or T = PSL4(2) ≃ Alt8, k + 1 =
(8
2

)
, or G = PΓL2(8), k + 1 =

(9
2

)
(see [8] and also [3, Theorem

11.3.3(ii)]). Then Φ1 ≃ T (m) and m = 5, 6, 8, 9, respectively. The cases m ≤ 8 were considered in
[17, Theorem 2]. Below we treat the remaining case m = 9.

Let k + 1 = 36 and G̃Σ ≃ PΓL2(8). Then T ≃ L2(8), rk(T ) = 4, M(T ) = 1, the graph Φ1 has
parameters (36, 14, 7, 4) and 2(λ(Φ1) + λ(Φ2) + 1) 6= k − 1. If r = pl, p is prime, then p ≤ 3. Note
that L2(8) 6≤ GLl(3) for l < 4 and L2(8) 6≤ GLl(2) for l < 5. Hence K ≤ Z(G). By [16, Proposition
3] r 6= 3 and if r ≤ 16, then by [16, Proposition 3] G′ ≃ T is transitive on V(Γ), which, in view
of [4], implies r = 2. Enumeration of the orbital graphs of the group Z2 × L2(8) on 72 points in
GAP [14] shows that µ = 16 or 18, and Γ is a unique distance-transitive (36, 2, µ)-cover (see also
[16, Example]).

(H) If T = PSL3(4), T{F} ≃ Alt6 and Φ1 is the Gewirtz graph (with parameters (56, 10, 0, 2)) or

T = PSL4(3), T{F} ≃ PSp4(3) and Φ1 ≃ NO+
6 (3) (with parameters (117, 36, 15, 9)), then there is

no feasible set of parameters. �

Remark 1. In proofs of Theorems 2 and 3, in a computer search for distance-regular orbital
graphs we used GAP packages GRAPE [15] and coco2p [10].

Remark 2. An explicit construction of covers with r = 2 and intransitive group G′ from the
conclusions of Theorem 2 can be found in [17, Theorem 1, Example 1].

Corollary 1. Suppose that Ψ is a non-bipartite abelian (n, r′, µ′)-cover with a transitive group
of automorphisms X that induces a primitive almost simple permutation group XΞ on the set Ξ of
its antipodal classes such that rk(XΞ) = 3 and the pair (XΞ, n) satisfies conditions of Theorem 2
or 3. Then Ψ has a minimal quotient Γ(G̃,G,K) that is an (n, r, µ)-cover from the conclusion of
the respective theorem with Soc(XΞ) ≃ G/K and r′µ′ = rµ.

4. Concluding remarks

In this paper, we continued studying abelian antipodal distance-regular graphs Γ of diameter 3
with the property (∗): Γ has a transitive group of automorphisms G̃ that induces a primitive almost
simple permutation group G̃Σ on the set Σ of its antipodal classes. As in [16], we focused on the
case rk(G̃Σ) = 3. In [16] and [17], it was shown that in the alternating and sporadic cases for G̃Σ

the family of non-bipartite graphs Γ with the property (∗) and rk(G̃Σ) = 3 is finite and limited to
a small number of potential examples with |Σ| ∈ {10, 28, 120, 176, 3510}. Here we assumed that
the socle of G̃Σ is a classical simple group. The case of classical simple socle seems to be both
most interesting and complicated, since, on one hand, there is an infinite family of non-bipartite
representatives Γ (see [17, Example 1]), and on the other hand, its study requires a profound
inspection of G̃Σ. So we started classification of graphs Γ with ”small” |Σ|. In order to describe
minimal quotients of Γ, we used the technique for bounding their spectrum that is based on analysis
of their local properties and the structure of G̃Σ, which was developed in [16] and applied in [16]
and [17] for the cases of sporadic, alternating and exceptional socle (the latter was investigated
under condition |Σ| ≤ 2500). As a result, we significantly refined the sets of feasible parameters
of Γ with |Σ| ≤ 2500 in the case of classical socle, showing, in particular, that for most of these
sets Γ must be a covering of a certain distance-transitive Taylor graph.

We also wish to mention two more challenging examples of graphs with the property (∗), namely,
abelian (n, 3, 12)-covers with n = 36 or 45 and rk(G̃Σ) = 4 or 5, respectively (for their constructions,
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see [9]). A computer assisted inspection shows that they are the only minimal abelian (n, r, µ)-
covers Γ(G̃,G,K) such that 3 ≤ rk(G̃Σ) ≤ 5, r > 2, n ≤ 2500 and G = G′ is a quasi-simple
group.
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Abstract: In this article, we have discussed Biharmonic Green function on an infinite network and bimedian
functions. We have proved some standard results in terms of supermedian and bimedian. Also, we have proved
the Discrete Riquier problem in the setting of bimedian functions.
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1. Introduction

An electrical network X is a finite graph consisting of a finite number of nodes and branches,
each branch connecting some two nodes. There is a certain resistance r(a, b) on each branch [a, b]
connecting the nodes a and b in X; the reciprocal of the resistance is called the conductance c(a, b).
Thus, an electrical network X can be considered as a graph {X, c(a, b)} with finite number of
vertices (nodes) and a finite number of edges (branches); the non-negative conductance c(a, b) is
positive if and only if a and b are neighbors, that is [a, b] is an edge in X. A vertex e in X is called
a terminal vertex if e has only one neighbor in X. If a and b are neighbors, we write b ∼ a. We
assume also that if a ∼ b, then there is only one branch [a, b] connecting a and b and there is no
self-loops in X; there is no edge of the form [a, a] so that c(a, b) = 0 for all a in X. We also assume
that there is always a path {a = a0, a1, a2, . . . , an = b} connecting two vertices a and b in X where
ai ∼ ai+1 for 0 ≤ i ≤ n− 1.

An electrical current regime voltage is considered on the finite network {X, c(a, b)} assuming
the Ohm–Kirchhoff laws: if ψ is the potential function on X, when extremal currents are applied
on X, then the voltage on the branch [a, b] is [ψ(b) − ψ(a)] and the current is c(a, b)[ψ(b) − ψ(a)]
so that the total current at the node a is

∑

b∼a

c(a, b)[ψ(a)−ψ(b)]. Based on these basic notions, the

condenser principle, the equilibrium principle, the minimum principle, etc. are proved on X in [4].

In an abstract sense, can we consider these principles on an infinite network in a meaningful
manner? Is it possible to think of an infinite electrical network with Ohm–Kirchhoff laws suitably
modified by Nash-Williams [10] in his remarkable paper on random walks and electrical currents

https://doi.org/10.15826/umj.2022.2.015
mailto:varadharaj.m219@gmail.com
mailto:madhu.riasm@gmail.com
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in networks, where it is shown that the random walk in probability theory has features analogous
to electrical networks. A random walk considered as an irreducible, reversible Markov chain will
serve as a model to develop a function theory on infinite graphs analogous to that of electrical
networks (Abodayeh and Anandam [1, 2], Woess [12] and Zemanian [13]). Let {X, p(a, b)} stand
for a countably infinite state X with the transition probabilities p(a, b). Assume that {X, p(a, b)}
is irreducible, i.e., is it possible to move along a path from any state a to any other state b in X; it
is also reversible, i.e., there is a function ϕ(a) > 0 on X such that ϕ(a)p(a, b) = ϕ(b)p(b, a) for any
two states a and b in X. Then, as an example of the analogy between random walks and electrical
currents, consider two disjoint subsets A and B. Denote by ψ(a) the probability that the walker
starting at the state a reaches A before meeting any state in B. Then ψ(a) = 1 for a ∈ A and
ψ(a) = 0 for a ∈ B; if a 6∈ A ∪ B, then ϕ(x) =

∑

b∼a

p(a, b)ψ(a) and, since
∑

b∼a

p(a, b) = 1, we have
∑

b∼a

p(a, b)[ψ(b)−ψ(a)] = 0, which is equality analogous to the situation where the total current at

the node a is 0.

In a random walk, the Green function G(a, b) represents the expected number of visits that
the walker starting at a makes to reach b. The function G(a, b) takes the value ∞ if {X, p(a, b)} is
recurrent, i.e., the walker starting at any state a comes back to a infinitely often; G(a, b) < ∞ for
all pairs a, b if {X, p(a, b)} is transient, i.e., the walker starting at a vertex a definitely wanders off
from a. A situation similar to this occurs in the study of Riemann surfaces. If a Riemann surface
R is parabolic, there is no Green potential on R. If R is hyperbolic, then there is a Green kernel
on R.

When this analogy between random walks and functions on Riemann surfaces is properly devel-
oped, a successful application of function-theoretic methods on Riemann surfaces to solve problems
in random walks on an irreducible, reversible {X, p(a, b)} is possible. For this case, we can de-
fine the Dirichlet norm on a, and then the functional analysis methods enable us to establish
a correspondence between some function-theoretic problems on a Riemann surface and problems
connected with a random walk on X. For example, Lyons [9], modifying a Royden criterion on
Riemann surfaces, gives a necessary and sufficient condition for a reversible Markov chain to be
transient. However, these arguments establishing relations between random walks and Riemann
surfaces are valid only when it is assumed that the random walk is reversible. Intending to develop
a function theory on infinite networks that will be applicable even in the case of non-reversible
Markov chains, we adopt here potential theoretic methods on locally compact spaces. The basic
result is the solution to a generalized Dirichlet problem in infinite networks; using which we in-
troduce the analogous of balayage, maximum principle, equilibrium principle, condenser principle,
the classifications based on the notions of transient and recurrent random walks, etc. in infinite
networks.

2. Preliminaries

Let N be an infinite graph that is connected and locally finite but without self-loops [4, 7]. Let
ϕ(a, b) ≥ 0 be a nonnegative number associated with each pair of vertices a and b in N such that
ϕ(a, b) > 0 iff b ∼ a. Then {N,ϕ(a, b)} is called an infinite network. We do not assume that ϕ(a, b)
is symmetric. Given a set B in N , say that a vertex a is an interior vertex of B if a and all its

neighbors are in B; denote by
◦
B the set of all interior vertices of B, and let ∂B = B \

◦
B. If f(a)

is a real-valued function on B, write

∆f(a) =
∑

b∼a

ϕ(a, b) [f(b)− f(a)]
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for any a ∈
◦
B. Say that f(a) is superharmonic on B if ∆f(a) ≤ 0 for any a ∈

◦
B; and f(a) is said

to be harmonic on B if ∆f(a) = 0 for any x ∈
◦
B. A function f(a) on B is subharmonic if −f(a) is

superharmonic on B. The following statements are valid.

(1) If {fn(a)} is a sequence of superharmonic functions on B and f(a) = limn fn(a) is real-
valued on B, then f(a) is superharmonic on B; consequently, if {gn(a)} is a sequence of
superharmonic functions on B such that g(a) =

∑

n gn(a) is finite for each a in B, then g(a)
is superharmonic on B.

(2) Minimum Principle: If s(a) ≥ 0 is superharmonic on N and s(a0) = 0 for some vertex a0,
then s ≡ 0.

(3) Greatest harmonic minorant: Let f be superharmonic on B and g be subharmonic on
B such that f ≥ g on B. Let u(a) be the sequence F of all subharmonic functions on B such
that u ≤ f. Let

λ(a) = sup
u∈F

u(a)

for x ∈ B. Then λ(a) is a harmonic function on B such that if λ′(a) is another harmonic
function and λ′ ≤ f on B, then λ′ ≤ λ. We call λ(a) the greatest harmonic minorant of f
on B. Similarly, we define the least harmonic majorant of g on B.

(4) Generalised Dirichlet Solution: Let F be an arbitrary set in N and B ⊂
◦
F . Suppose

that u(a) is a real-valued function on F \B such that there exist a superharonic function f
and a subharmonic function g on F such that f ≥ g on F and f ≥ u ≥ g on F \ B. Then
there exists a function λ on F such that λ = u on F \ B and ∆λ(a) = 0 for a ∈ B. This
generalised Dirichlet solution λ on F is uniquely determined if F is a finite set.

3. Biharmonic Green Function

Definition 1 (Potential). A nonnegative superharmonic function p defined on a subset B is
said to be potential if and only if the greatest harmonic minorant of p on B is 0.

Definition 2 (Bipotential). A potential u in (N, p) is said to be a bipotential if and only if
(−∆)u = p, where p is a potential in N . We say that N is a bipotential network if there exists a
positive bipotential on N .

Definition 3 (Biharmonic Green function). For a fixed vertex z in N , a potential uz(a) in
(N, p) is said to be the biharmonic Green function with biharmonic support {z} if and only if
(−∆)uz(a) = Gz(a), where Gz(a) is the harmonic Green function with harmonic support z.

Proposition 1. The biharmonic Green function exists on (N, p) if and only if there is a positive
bipotential on (N, p).

P r o o f. Clearly, the binarmonic Green function is a bipotential. Conversely, let u be a positive
bipotential, (−∆)u = p. Then,

u(a) =
∑

b

G(a, b)p(b).

Let z be a fixed vertex. Then, for some λ > 0, Gz(b) ≤ λp(b) for any b ∈ N (Domination Principle).
Hence,

Qz(a) =
∑

b

G(a, b)Gz(b)
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is a well-defined potential such that (−∆)uz(a) = Gz(a). �

Theorem 1. Let (N, p) be a bipotential infinite network, and let uy(a) be the biharmonic Green
potential on (N, p). If

∑

b f(b)ub(a) is finite at some vertex a0 for some f > 0, then

u(a) =
∑

b

f(b)ub(a)

is a bipotential on (N, p). Conversely, every bipotential u(a) can be represented as

u(a) =
∑

b

f(b)ub(a),

where f(a) = (−∆)2u(a).

P r o o f. Let (−∆)u = p on (N, p). For a finite set E in (N, p), write

s(a) = u(a)−
∑

b∈E

(−∆)p(b)ub(a).

Then,

(−∆)s(a) = p(a)−
∑

b∈E

(−∆q)p(b)Gb(a) =
∑

b/∈E

(−∆)p(b)Gb(a) ≥ 0.

Hence, s is superharmonic on (N, p), and since

−s(a) ≤
∑

b∈E

(−∆)p(b)ub(a),

we conclude that −s ≤ 0. Hence,

u(a) ≥
∑

b∈E

(−∆)p(b)ub(a).

Allow E to grow into (N, p), to conclude that

u(a) ≥
∑

b∈E

(−∆)p(b)ub(a).

Write
ϕ(a) = q(a)−

∑

b∈(N,p)

(−∆)p(b)ub(a).

Then,

(−∆)ϕ(a) = p(a)−
∑

b∈(N,p)

(−∆)p(b)Gb(a) = 0.

Hence, ϕ(a) is a nonnegative harmonic function majorized by the potential u(a). Hence, ϕ = 0 so
that

u(a) =
∑

b∈(N,p)

(−∆)p(b)ub(a)

for any a ∈ (N, p). If f(a) = (−∆)p(a), then f ≥ 0 and f(a) = (−∆)2u(a). Conversely, suppose
that

u(a) =
∑

b

f(b)ub(a),
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which is a convergent sum of potentials if u(a0) is finite at some vertex a0. Then, u(a) is a potential
in (N, p) and

(−∆)u(a) =
∑

b

f(b)(−∆)ub(a) =
∑

b

f(b)Gb(a),

being finite at each a, defines a potential p(a). Thus, (−∆)u(a) = p(a). �

Proposition 2. Let (N, p) be a bipotential infinite network. For z ∈ (N, p), if uz(a) and Gz(a)
are the biharmonic and harmonic Green potentials, then uz(a) > Gz(a) for any a ∈ (N, p).

P r o o f. Since (−∆)uz(a) = Gz(a), (−∆)Gz(a) = δz(a), and Gz(z) ≥ Gz(a) for all a (Domi-
nation principle), we have

(−∆)

[

uz(a)

Gz(z)

]

=
Gz(a)

Gz(z)
≥ δz(a) = (−∆)Gz(a).

Hence,

u(a) =
uz(a)

Gz(z)
−Gz(a)

is a superharmonic function such that −u(a) ≤ Gz(a); hence, −u ≤ 0 on (N, p). Consequently,

uz(a) ≥ Gz(z)Gz(a) > Gz(a)

since Gz(z) > 1. �

Proposition 3. Let u be a potential in (N, p), (−∆)u = p. Suppose that 0 ≤ f ≤ p. Then,
there exists a potential v, v ≤ u, such that (−∆)v = f on (N, p).

P r o o f. Let

u(a) =
∑

b

G(a, b)p(b) ≥
∑

b

G(a, b)f(b) = v(a),

then v(a) is a potential, v ≤ u and (−∆)v(a) = f(a) for all a ∈ (N, p). �

Corollary 1. Let (N, p) be a bipotential infinite network. If u is a potentials with finite har-
monic support in (N, p), then there exist is a bipotential v on (N, p) such that (−∆)v = u on (N, p).

P r o o f. By hypothesis, there are postive potentials p and q such that (−∆)u = p on (N, p).
Since u has finite harmonic support, u ≤ λp on (N, p) for some λ > 0 (Domination Principle).
Hence use the above Proposition , there is a potential v ≤ λq such that (−∆)v = u on (N, p). �

Lemma 1. Let F be a finite subset in any infinite network (N, p). Let E ⊂
◦
F and f ≥ 0 be a

real-valued function on E. Then there exist a potential u on F such that (−∆)u(a) = f(a) for any
a ∈ E.

P r o o f. Assume that f is defined on F by giving it values 0 in F \ E. Let GF
b (a) be the

Green function in F with point harmonic support b ∈
◦
F such that GF

b (a) = 0 if a ∈ ∂F . Let

u(a) =
∑

b∈F

f(b)GF
b (a).

Then, u is a potential in F such that (−∆)u(a) = f(a) if a ∈ E. �
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4. Transient and hyperbolic networks

Let {N, p(a, b)} be a countable set of state space N with transition probabilities {p(a, b)}. Let
E be a fixed vertex in N. If a walker starting at e comes back to the state e infinitely often, i.e.,
with probability 1, then {N, p(a, b)} is said to be recurrent; otherwise, it is transient (see [5, 6]).

In classical potential theory (Brelot [8] and Al-Gwaiz M.A., Anandam V. [3]), a superharmonic
function s(a) ≥ 0 is called a potential if its greatest harmonic minorant is 0. In the discrete case,
we can show that the superharmoinc function s(a) ≥ 0 on an infinite network {N,ϕ(a, b)} is a
potential if its greatest harmonic minorant is 0. If there exists a potential p(a) > 0 on N, then we
say that {N,ϕ(a, b)} is a hyperbolic network; otherwise, it is called a parabolic network.

Let {N,ϕ(a, b)} be an infinite network. Write

ϕ(a) =
∑

b∼a

ϕ(a, b).

Then 0 < ϕ(a) <∞. Write

p(a, b) =
ϕ(a, b)

ϕ(a)
.

Then {N, p(a, b)} becomes a probability space, which need not be reversible. Therefore, we can say
that {N,ϕ(a, b)} is transient when the associated probability space {N, p(a, b)} is transient.

Theorem 2. The infinite network {N,ϕ(a, b)} is transient if and only if it is hyperbolic.

P r o o f. Let e be a fixed vertex in N. Consider a sequence of finite subsets {Fn} such that

e ∈
◦
F 1, Fn ⊂

◦
Fn+1, and N =

⋃

n
Fn. For a vertex a in N , let ψn(a) denote the probability that

the walker starting at a reaches the vertex e before contacting any vertex in FC
n . Then ψn(e) = 1,

ψn(a) = 0 for a 6∈ Fn, and

ψn(a) =
∑

b

p(a, b)ψn(b)

for a 6∈ {e} ∪ {FC
n }. Since

∑

b

p(a, b) = 1

for all a, we have
∑

b

p(a, b)[ψn(b)− ψn(a)] = 0;

that is ∆ψn(a) = 0 if a 6∈ {e} ∪ {FC
n }. Since {ψn(a)} is an increasing sequence, ψ(a) = lim

n
ψn(a)

exists and 0 ≤ ψ(a) ≤ 1 for all a in N. Clearly, ψ(a) denotes the probability that the walker starting
at {e} returns to {e}. Consequently, ψ ≡ 1 if and only if N is recurrent. Hence, {N,ψ(a, b)} is
transient if and only if ψ is not the constant 1.

Now, another interpretation of ψn(a) is that it is the Dirichlet solution with boundary values

ψn(e) = 1 and ψn(a) = 0 if a 6∈
◦
Fn. Hence, if we extend ψn to the whole space N assuming it

equal to 0 on Fn, then ψn(a) becomes subharmonic at each vertex other than e, harmonic at each

vertex in
◦
Fn \ {e}, and superharmonic at e. Hence, in the limit, we find that ψ(a) is a nonnegative

superharmonic function on N that is harmonic outside the vertex e. Consequently, if ψ is not the
constant 1, then ψ is a positive superharmonic function that is not harmonic on N. Let h(a) be the
greatest harmonic minorant of ψ(a) on N. Then, p(a) = ψ(a) − h(a) is a positive superharmonic
function that is a potential on N. That is, {N,ψ(a, b)} is hyperbolic. Then, the following statements
are equivalent:
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(1) the function ϕ is not the constant 1;

(2) the probability space {N, p(a, b)} is transient;

(3) the infinite network {N,ϕ(a, b)} is hyperbolic.

�

5. Bimedian functions on infinite networks

In this section, we assume that {N,ϕ(a, b)} is an infinite network that is a tree without terminal
vertices. Write

Au(a) = u(a)−
∑

b∼a

ϕ(a, b)u(b)

for a real-valued function u(a) on N. Note that A is the Lapalcian operator −∆ if

ϕ(a) =
∑

b∼a

ϕ(a, b) = 1

for all a in N.

Definition 4. A real-valued function u(a) on N is said to be supermedian if

u(a) ≥
∑

b∼a

ϕ(a, b)u(b)

for all a in N ; u(a) is said to be median if

u(a) =
∑

b∼a

ϕ(a, b)u(b)

for all a in N .

Remark 1.

(1) A supermedian function is the same as superharmonic if and only if ϕ(a) =
∑

b∼a

ϕ(a, b) = 1

for all a in N .

(2) A solution to the Schrödinger equation corresponds to a median function if and only if
ϕ(a) ≤ 1 for all a in N and ϕ(a0) < 1 for at least one vertex a0 in N .
We can develop a theory of supermedian functions exactly in the same way as the theory of
discrete superharmonic functions. For example, we have the following.

(a) If u(a) is supermedian and v(a) is submedian such that u(a) ≥ v(a) on N , then there
exists a median function h(a) on N such that u(a) ≥ h(a) ≥ v(a); and if h

′

(a) is another
median function such that u(a) ≥ h

′

≥ v(a), then h
′

(a) ≥ h(a).

(b) If u(a) ≥ 0 is supermedian, then there exists a unique decomposition u(a) = p(a)+h(a),
where p(a) is a superpotential (i.e., a nonnegative supermedian function whose greatest
median minorant is 0) and h(a) ≥ 0 is a median function. Recall that a finite or infinite
graph is known as a tree if there is no closed path of the form {a0, a1, . . . , an = a0} with
more than 2 distinct vertices.
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Corollary 2. Let {N,ϕ(a, b)} be an infinite tree without terminal vertex. Then, for any vertex
e in N , there exists a supermedian function ϕe(a) on N such that ϕe(a) is a median function at
each vertex in N \ {e}, i.e., ϕe(a) is not median at e.

P r o o f. Let F be the set consisting of {e} and all its neighbors. Define a function u(a) on
F such that u(a) = 1 and u(a) = 0 at each neighbor of e. Then extend v(a) to N as in the above
theorem to get the function v(a) which equal to u(a) on F and is a median function at each vertex
a 6= e. Note that u(a), and hence v(a), is superharmonic at e but not median. Denote the function
v(x) by ϕe(a) to prove the statement in the corollary. �

Remark 2. This function ϕe(a) is an analog of the Newtonian potential function 1/|x| in R
3 if

there is a positive superpotential on N ; otherwise, ϕe(a) is an analog of the logarithmic function
log(1/|x|) in R

2.

Theorem 3. Let {N,ϕ(a, b)} be an infinite tree without terminal vertices. Let F be a connected
subset of N, and let u(a) be a real-valued function on F. Then, there exists a real-valued function

v(a) on N such that v(a) = u(a) if a ∈ F and v(a) is a median function at each vertex not in
◦
F.

P r o o f. Let a0 ∈ ∂F. Let {a1, a2, . . . , ak, b1, b2, . . . , bm} be the neighbors of a0, where
{a1, . . . , ak} are in F and {b1, . . . , bm} are outside F. Note that the latter subset {b1, b2, . . . , bm} is
non-empty since a0 ∈ ∂F. Choose a constant λ and define a function v(a) on F ∪ {all neighbors of
a0} such that

v(a) =

{

u(a) for a ∈ F,
λ for a 6∈ F.

Now, if the constant λ is chosen so that

v(a0) =

k
∑

i=1

ϕ(a0, ai)u(ai) + λ

m
∑

j=1

t(a0, bj),

then v(a) is a median function at the vertex a0.

This procedure can be adopted with respect to each vertex on ∂F. Denoting this extended
function also by v(a), we get a function v(a) defined on Nbr(F ), which consists of F and all
neighbors of each vertex in F such that v(x) = u(x) if a ∈ F and v(a) is a median function at each
vertex in ∂F.

Repeat this procedure with respect to v(x) as Nbr(f). Since N is a connected network,

N = . . . Nbr[Nbr[Nbr(f)]]

so that v(a) is a function defined on N such that v(a) = u(a) if a ∈ F and v(a) is a median function

at each vertex not in
◦
F.

Theorem 4. Let f(a) be a real-valued function on N . Then there exists a function u(a) on N
such that Au(a) = f(a) for every a in N.

P r o o f. From Theorem 3, we have a function ϕe(a) such that Aϕe(a) = λδe(a), where λ > 0
is a constant and δe(a) is the Dirac function. Write qe(a) = 1/λ · ϕe(a). Thus, we conclude that
given any vertex e in N , there exists a real-valued function qe(a) on N such that Aqe(a) = δe(a).
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Take a finite exhaustion {En} of N, i.e., En is a non-empty finite set, En ⊂
◦
En+1, and N = ∪En.

For n > 1, let

un(a) =
∑

e∈En+1\En

qe(a)f(e).

Then, Aun(a) = 0 for x 6∈ En+1 \ En and Aun(a) = f(a) for x ∈ En+1 \ En. Define

u(a) =
∞
∑

n=1

un(a),

where
u1(a) =

∑

e∈E1

qe(a)f(e)

is such that Au1(a) = 0 for x 6∈ E1 and Au1(a) = f(a) for a ∈ E1. Note that the infinite sum

is well-defined. For, if a0 is any vertex in N, then a0 ∈
◦
Em for some m and

∑∞
n=m un(a) is a

convergent series consisting of functions that are median at the vertex a0. Consequently, u(a) is a
well-defined function on N such that Au(a) = f(a) for all a ∈ N.

Definition 5 (Bimedian) [11]. A real-valued function v(a) on N is said to be bimedian if there
exists a median function u(a) on N such that Av(a) = u(a) for all a ∈ N. If A is the Laplacian
operator, then v(a) is called a biharmonic function on N .

Theorem 5 (Discrete Riquier problem). Let E be a finite subset of N . Let f and g be two
real-valued functions on ∂E. Then, there exists a unique bimedian function v on E such that
Av(a) = f(a) and v(a) = g(a) for a ∈ ∂E.

P r o o f. Let h1(a) be the unique Dirichlet solution on E such that Ah1(a) = 0 for a ∈
◦
E

and h1(a) = f(a) for a ∈ ∂E. By Theorem 4, we can choose a function s(a) on E such that
As(a) = h1(a) on E.

Let h2(a) be the unique Dirichlete solution on E such that Ah2(a) = 0 for a ∈
◦
E and h2(a) =

g(a)− s(a) on ∂E. Take v(a) = s(a)+h2(a). Then, v(a) = g(a) on ∂E and Av(a) = As(a) = h1(a)

for a ∈
◦
E, so that A[Av(a)] = Ah1(a) = 0 for a ∈

◦
E; further, Av(a) = f(a) for a ∈ ∂E. Thus, v(a)

is the unique bimedian function on E such that Av(a) = f(a) and v(a) = g(a) for a ∈ ∂E. �
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