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Abstract: In real life application all signals are not obtained from uniform shifts; so there is a natural
question regarding analysis and decompositions of these types of signals by a stable mathematical tool. This
gap was filled by Gabardo and Nashed [11] by establishing a constructive algorithm based on the theory of
spectral pairs for constructing non-uniform wavelet basis in L2(R). In this setting, the associated translation
set Λ = {0, r/N} + 2Z is no longer a discrete subgroup of R but a spectrum associated with a certain one-
dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral
pair. In this paper, we characterize the scaling function for non-uniform multiresolution analysis on local fields
of positive characteristic (LFPC). Some properties of wavelet scaling function associated with non-uniform
multiresolution analysis (NUMRA) on LFPC are also established.

Keywords: Scaling function, Fourier transform, Local field, NUMRA

1. Introduction

Multiresolution analysis (MRA) is an important mathematical tool since it provides a natural
framework for understanding and constructing discrete wavelet systems. The concept of MRA
provides a natural framework for understanding and constructing discrete wavelet systems. Mul-
tiresolution analysis is an increasing family of closed spaces {Vj : j ∈ Z} of L2(R) such that⋂

j∈Z Vj = {0} and
⋃

j∈Z Vj is dense in L2(R) which satisfies f ∈ Vj if and only if f(2·) ∈ Vj+1.
Moreover, there exists a function ϕ ∈ V0 such that the collection of integer translates of the
function ϕ, {ϕ(· − k) : k ∈ Z}, represents a complete orthonormal system for V0. The function
ϕ is called scaling function or father wavelet. The concept of multiresolution analysis has been
extended in various ways in recent years. These concepts are generalized to L2

(
Rd

)
, to lattices

different from Zd, allowing the subspaces of MRA to be generated by Riesz basis instead of or-
thonormal basis, admitting a finite number of scaling functions, replacing the dilation factor 2
by an integer M ≥ 2 or by an expansive matrix A ∈ GLd(R) as long as A ⊂ AZd. All these
concepts are developed on regular lattices, that is the translation set is always a group. Recently,
Gabardo and Nashed [11] considered a generalization of Mallat’s [21] celebrated theory of MRA
based on spectral pairs, in which the translation set acting on the scaling function associated with
the MRA to generate the subspace V0 is no longer a group, but is the union of Z and a translate
of Z. Based on one-dimensional spectral pairs, Gabardo and Yu [12] considered sets of nonuniform
wavelets in L2(R). In the heart of any MRA, there lies the concept of scaling functions. Cifuentes
et al. [10] characterized the scaling function of MRA in a general settings. The multiresolution
analysis whose scaling functions are characteristic functions some elementary properties of MRA
of L2(Rn) are established by Madych [20]. Zhang [26] studied scaling functions of standard MRA
and wavelets. Zhang [26] characterized support of the Fourier transform of scaling functions.

The theory of wavelets, wavelet frames, multiresolution analysis, Gabor frames on local fields of
positive characteristics (LFPC) are extensively studied by many researchers including Benedetto,

https://doi.org/10.15826/umj.2021.1.001
mailto:ishtiyaqahmadun@gmail.com
mailto:siawoahmad@gmail.com
mailto:neyaznit@yahoo.co.in
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Behera and Jahan, Ahmed and Neyaz, Ahmad and Shah, Jiang, Li and Ji in the references [1–4,
7–9, 13, 19, 22, 24] but still more concepts required to be studied for its enhancement on LFPC.
Albeverio, Kozyrev, Khrennikov, Shelkovich, Skopina and their collaborators also established the
theory of MRA and wavelets on the p-adic field Qp in a series of papers [5, 6, 14–18], where Qp

is a local field of characteristic 0. Recently, Shah and Abdullah [23] have generalized the concept
of multiresolution analysis on Euclidean spaces Rn to nonuniform multiresolution analysis on local
fields of positive characteristic, in which the translation set acting on the scaling function associated
with the multiresolution analysis to generate the subspace V0 is no longer a group, but is the union
of Z and a translate of Z, where Z = {u(n) : n ∈ N0} is a complete list of (distinct) coset
representation of the unit disc D in the locally compact Abelian group K+. More precisely, this set
is of the form Λ = {0, r/N} + Z, where N ≥ 1 is an integer and r is an odd integer such that r
and N are relatively prime. They call this a nonuniform multiresolution analysis on local fields of
positive characteristic. Inspired by the work of Shah and Abdullah [23], we in this paper establish
the characterization of scaling function for nonuniform multiresolution on local fields of positive
characteristic. Some properties of wavelet scaling functions associated with NUMRA on LFPC are
established.

The remainder of the paper is structured as follows. In Section 2, we discuss preliminary
results on local fields as well as some definitions and auxiliary results. Section 3 is devoted to the
characterization of scaling function associated with nonuniform multiresolution analysis on LFPC.

2. Preliminaries on local fields

2.1. Local fields

A local field K is a locally compact, non-discrete and totally disconnected field. If it is of
characteristic zero, then it is a field of p-adic numbers Qp or its finite extension. If K is of positive
characteristic, then K is a field of formal Laurent series over a finite field GF (pc). If c = 1, it is a
p-series field, while for c 6= 1, it is an algebraic extension of degree c of a p-series field. Let K be a
fixed local field with the ring of integers

D = {x ∈ K : |x| ≤ 1} .

Since K+ is a locally compact Abelian group, we choose a Haar measure dx for K+. The field K
is locally compact, non-trivial, totally disconnected and complete topological field endowed with
non–Archimedean norm | · | : K → R+ satisfying

(a) |x| = 0 if and only if x = 0;

(b) |x y| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.

Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1} be the prime ideal of
the ring of integers D in K. Then, the residue space D/B is isomorphic to a finite field GF (q),
where q = pc for some prime p and c ∈ N. Since K is totally disconnected and B is both prime
and principal ideal, so there exist a prime element p of K such that B = 〈p〉 = pD.

Let

D∗ = D \B = {x ∈ K : |x| = 1} .

Clearly, D∗ is a group of units in K∗ and if x 6= 0, then can write x = pny, y ∈ D∗. Moreover, if
U = {am : m = 0, 1, . . . , q − 1} denotes the fixed full set of coset representatives of B in D, then
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every element x ∈ K can be expressed uniquely as

x =

∞∑

ℓ=k

cℓ p
ℓ, with cℓ ∈ U .

Recall that B is compact and open, so each fractional ideal

Bk = pkD =
{
x ∈ K : |x| < q−k

}

is also compact and open and is a subgroup of K+. We use the notation in Taibleson’s book [25].
In the rest of this paper, we use the symbols N,N0 and Z to denote the sets of natural, non-negative
integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1. Therefore, χ is
constant on cosets of D so if y ∈ Bk, then χy(x) = χ(y, x), x ∈ K. Suppose that χu is any character
on K+, then the restriction χu|D is a character on D. Moreover, as characters on D, χu = χv if
and only if u − v ∈ D. Hence, if {u(n) : n ∈ N0} is a complete list of distinct coset representative
of D in K+, then, as it was proved in [25], the set

{
χu(n) : n ∈ N0

}
of distinct characters on D is

a complete orthonormal system on D.

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼= GF (q) where
GF (q) is a c-dimensional vector space over the field GF (p). We choose a set

{1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗

such that span {ζj}c−1
j=0

∼= GF (q). For n ∈ N0 satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, k = 0, 1, . . . , c− 1,

we define

u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p
−1.

Also, for

n = b0 + b1q + b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s,

we set

u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m + n) = u(m) + u(n). But, if
r, k ∈ N0 and 0 ≤ s < qk, then

u(rqk + s) = u(r)p−k + u(s).

Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and

{u(ℓ) + u(k) : k ∈ N0} = {u(k) : k ∈ N0}

for a fixed ℓ ∈ N0. Hereafter we use the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above. We define
a character χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j 6= 1.
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2.2. Fourier transforms on local fields

The Fourier transform of f ∈ L1(K) is denoted by f̂(ξ) and defined by

F
{
f(x)

}
= f̂(ξ) =

∫

K
f(x)χξ(x) dx.

It is noted that

f̂(ξ) =

∫

K
f(x)χξ(x)dx =

∫

K
f(x)χ(−ξx) dx.

The properties of Fourier transforms on local field K are much similar to those of on the classical
field R. In fact, the Fourier transform on local fields of positive characteristic have the following
properties:

• The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K), and
∥∥f̂

∥∥
∞

≤
∥∥f

∥∥
1
.

• If f ∈ L1(K), then f̂ is uniformly continuous.

• If f ∈ L1(K) ∩ L2(K), then
∥∥f̂

∥∥
2
=

∥∥f
∥∥
2
.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫

|x|≤qk
f(x)χξ(x) dx,

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore, if f ∈ L2(D), then we
define the Fourier coefficients of f as

f̂
(
u(n)

)
=

∫

D

f(x)χu(n)(x) dx.

The series ∑

n∈N0

f̂
(
u(n)

)
χu(n)(x)

is called the Fourier series of f . From the standard L2-theory for compact Abelian groups, we
conclude that the Fourier series of f converges to f in L2(D) and Parseval’s identity holds:

∥∥f
∥∥2
2
=

∫

D

∣∣f(x)
∣∣2dx =

∑

n∈N0

∣∣∣f̂
(
u(n)

)∣∣∣
2
.

3. Nonuniform MRA on local fields

Definition 1. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such that r
and N are relatively prime, we define

Λ =

{
0,
u(r)

N

}
+ Z

and
∆N = {u(m)N + pu(j) : m ∈ Z, 0 ≤ j ≤ N − 1} ,

where
Z = {u(n) : n ∈ N0} .

It is easy to verify that Λ is not a group on local field K, but is the union of Z and a translate of Z.
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Following is the definition of nonuniform multiresolution analysis (NUMRA) on local fields of
positive characteristic given by Shah and Abdullah [23].

Definition 2. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such that r
and N are relatively prime, an associated NUMRA on local field K of positive characteristic is a
sequence of closed subspaces {Vj : j ∈ Z} of L2(K) such that the following properties hold:

(a) Vj ⊂ Vj+1 for all j ∈ Z;

(b)
⋃

j∈Z Vj is dense in L2(K);

(c)
⋂

j∈Z Vj = {0};

(d) f(·) ∈ Vj if and only if f(p−1N ·) ∈ Vj+1 for all j ∈ Z;

(e) There exists a function ϕ in V0 such that {ϕ(· − λ) : λ ∈ Λ}, is a complete orthonormal basis
for V0.

It is worth noticing that, when N = 1, one recovers the definition of an MRA on local fields of
positive characteristic p > 0. When, N > 1, the dilation is induced by p−1N and |p−1| = q ensures
that qNΛ ⊂ Z ⊂ Λ. For every j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj+1.

Then we have
Vj+1 = Vj ⊕Wj and Wℓ ⊥Wℓ′ if ℓ 6= ℓ′.

It follows that for j > J ,

Vj = VJ ⊕
j−J−1⊕

ℓ=0

Wj−ℓ ,

where all these subspaces are orthogonal. By virtue of condition (b) in the Definition 2, this implies

L2(K) =
⊕

j∈Z

Wj ,

a decomposition of L2(K) into mutually orthogonal subspaces.
As in the standard scheme, one expects the existence of qN−1 number of functions so that their

translation by elements of Λ and dilations by the integral powers of p−1N form an orthonormal
basis for L2(K).

Let a and b be any two fixed elements in K. Then, for any prime p and m,n ∈ N0, let Dp, Tu(n)a
and Eu(m)b be the unitary operators acting on f ∈ L2(K) defined by:

Tu(n)af(x) = f
(
x− u(n)a

)
, (Translation),

Eu(m)bf(x) = χ
(
u(m)bx

)
f(x), (Modulation),

Dpf(x) =
√
qNf

(
p−1Nx

)
, (Dilation).

Then for any f ∈ L2(K), the following results can easily be verified:

F
{
Tu(n)af(x)

}
= E−u(n)aF

{
f(x)

}
,

F
{
Eu(m)bf(x)

}
= Tu(m)bF

{
f(x)

}
,

F
{
Dpjf(x)

}
= Dp−jF

{
f(x)

}
,

DpjTu(n)a = T(qN)−ju(n)aDpj .

We state the following lemmas which will be very useful in establishing the results and whose
proof can be found in [23].
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Lemma 1. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such that r and
N are relatively prime. Let ϕ ∈ L2(K) with ‖ϕ‖2 = 1, then

(i) the family {ϕ(ξ − λ) : λ ∈ Λ} is an orthonormal system for fixed r if and only if

∑

k∈N0

|ϕ̂ (ξ + pu(k))|2 = q a.e. ξ ∈ K

and
∑

k∈N0

χ

(
u(r)

N
u(k)

)
|ϕ̂ (ξ + pu(k))|2 = 0 a.e. ξ ∈ K;

(ii) the family {ϕ(ξ − λ) : λ ∈ ∆N} is an orthonormal system for every odd integer r if and only
if

|ϕ̂(ξ − γ)|2 = 1, a.e. ξ ∈ K.

Lemma 2. Let (Vj , ϕ) be non-uniform multiresolution analysis, where

V0 = span {ϕ(x− λ) : λ ∈ Λ}.

Then the necessary and sufficient condition for the existence of associated wavelets is

∑

γ∈∆N

|ϕ̂(ξ − γ)|2 = 1 a.e. ξ ∈ K.

Lemma 3. Let S ⊂ K be measurable and Λ0 = {0, u(a)} + Z. Then (S,Λ0) is a spectral pair
if and only if there exist an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1, such that N
and r are relatively prime , a = r/N and

N−1∑

j=0

δj/2 ⋆
∑

n∈N0

δnN ⋆ΦS = 1.

4. Characterization of scaling functions on LFPC

In this section, we establish the characterization of scaling functions associated with nonuniform
multiresolution analysis on LFPC. We also provide the sufficient condition for the frequency band
of the scaling function on LFPC.

Theorem 1. A nonzero function ϕ ∈ L2(K) is a scaling function for wavelet NUMRA if and
only if the following conditions are satisfied

(i)
∑

γ∈∆N

|ϕ̂(ξ − γ)|2 = 1 a.e. ξ ∈ K;

(ii) lim
j→∞

∣∣ϕ̂(p−1N)jξ
∣∣2 = 1 a.e. ξ ∈ q2D;

(iii) there exist functions m1(ξ),m2(ξ) locally integrable, q-periodic functions such that

ϕ̂(p−1Nξ) = m(ξ)ϕ̂(ξ) a.e. ξ ∈ K,

where

m(ξ) = m1(ξ) + χ

(
u(r)

N
ξ

)
m2(ξ).
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P r o o f. Suppose ψ ∈ L2(K) is a scaling function for wavelet NUMRA, say {Vj , ϕ}j∈Z. Then
by Lemma 2, we must have

∑

γ∈∆N

|ϕ̂(ξ − γ)|2 = 1 a.e. ξ ∈ K. (4.1)

This gives (i). Since ϕ ∈ V0, we have Dp−1ϕ ∈ V−1 ⊆ V0. Thus we can write

Dp−1ϕ =
∑

λ∈Λ

aλTλϕ.

Taking the Fourier transform of both sides, we get

Dpϕ̂ =
∑

λ∈Λ

aλE−λϕ̂.

So we can write,

ϕ̂(p−1Nγ) = m(γ)ϕ̂(γ),

where

m(γ) = m1(γ) + χ
(u(r)
N

γ
)
m2(γ)

and m1,m2 are q- periodic and locally integrable functions. This proves (iii).

Next we show that (ii) holds. Let f ∈ L2(K) be such that f̂(γ) = Φq2D(γ). Then

‖f‖2 = ‖f̂‖2 = q.

As (Vj , ϕ) is NUMRA so if Pj is orthogonal projection onto Vj , we must have

‖f − Pjf‖2 → 0 as j → ∞.

That is

‖Pjf‖ → ‖f‖ as j → ∞.

Since {Tλϕ}λ∈Λ is an orthonormal bases for V0 so {DpjTλϕ}λ∈Λ is an orthonormal basis for Vj.
Thus

‖Pjf‖2 =
∑

λ∈Λ

|〈f,DpjTλϕ〉|2 →
1

q
a.e. j → ∞ (4.2)

∑

λ∈Λ

|〈f,DpjTλϕ〉|2 =
∑

λ∈Z

|〈f,DpjTλϕ〉|2 +
∑

λ∈(u(r)/N+Z)

|〈f,DpjTλϕ〉|2

=
∑

λ∈Z

|f̂ , D̂pjTλϕ|2 +
∑

λ∈(u(r)/N+Z)

|f̂ , D̂pjTλϕ|2

=
∑

k∈N0

∣∣∣∣
∫

K

(qN)−j/2f̂(γ)χu(k)

( γ

(p−1N)j

)
ϕ̂
( γ

(p−1N)j

)
dγ

∣∣∣∣
2

+
∑

k∈N0

∣∣∣∣
∫

K

(qN)−j/2f̂(γ)χu(k)

( γ

(p−1N)j

(u(r)
N

+ pu(k)
))
ϕ̂
( γ

(p−1N)j

)
dγ

∣∣∣∣
2
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=
∑

k∈N0

∣∣∣∣
∫

q2D
(qN)−j/2χu(k)

(
γ

(p−1N)j

)
ϕ̂

(
γ

(p−1N)j

)
dγ

∣∣∣∣
2

=
∑

k∈N0

∣∣∣∣
∫

q2D
(qN)−j/2χu(k)

(
γ

(p−1N)j

(
u(r)

N
+ pu(k)

))
ϕ̂

(
γ

(p−1N)j

)
dγ

∣∣∣∣
2

Putting
γ

(qN)j
= η,

we obtain

∑

λ∈Λ

|〈f,DpjTλϕ〉|2 =
(qN)j

2

{ ∑

k∈N0

∣∣∣∣
∫

(p−1N)−jD

√
qχu(k)(p

−1η)ϕ̂(η)dη

∣∣∣∣
2

+
∑

k∈N0

∣∣∣∣
∫

(p−1N)−jD

√
qχu(k)(p

−1η)ϕ̂(η)dη

∣∣∣∣
2}

=
(qN)j

2

{ ∑

k∈N0

∣∣∣∣
∫

q2D
Φ(p−1N)−jD

√
qχu(k)(p

−1η)ϕ̂(η)dη

∣∣∣∣
2

+
∑

k∈N0

∣∣∣∣
∫

q2D
Φ(p−1N)−jDχ

(u(r)
N

η
)√
qχu(k)(p

−1η)ϕ̂(η)dη

∣∣∣∣
2}
,

because (p−1N)−jD ⊆ q2D, for any j ≥ 0. Therefore from (4.2) and from the fact that
{√qχu(k)(p

−1η)} is an orthonormal basis for L2(qD), we get

∑

λ∈Λ

|〈f,DpjTλϕ〉|2 = (qN)j
∫

(p−1N)−jD

|ϕ̂(η)|2dη → 1

q
j → ∞.

Putting µ = (qN)jη, we get
∫

q2D
|ϕ̂(p−1N)jµ|2dµ→ 1

q
as j → ∞. (4.3)

Let
h(ξ) = lim

j→∞
|ϕ̂(p−1N)jξ|2.

Then
0 ≤ h(ξ) ≤ 1 a.e. ξ ∈ q2D.

Indeed for any fixed j ∈ Z by using (4.1), we have

0 ≤ |ϕ̂(p−1N)jξ|2 ≤ 1 a.e. ξ ∈ q2D.

This gives
0 ≤ h(ξ) = lim

j→∞
|ϕ̂(p−1N)jξ|2 ≤ 1 a.e. ξ ∈ q2D.

Now invoking the Lesbesgue-dominated convergence theorem, we obtain

lim
j→∞

∫

q2D
|ϕ̂((p−1N)j)µ|2dµ =

∫

q2D
lim
j→∞

|ϕ̂((p−1N)j)µ|2dµ =
1

q
.

Thus ∫

q2D
h(ξ)dξ =

1

q
=

∫

q2D
1dξ.



On the Characterization of Scaling Functions on Non-Archemedean Fields 11

That is ∫

q2D
(1− h(ξ))dξ = 0,

so by using
0 ≤ h(ξ) ≤ 1 a.e. ξ ∈ q2D,

we get h(ξ) = 1 a.e. ξ ∈ q2D. Hence (ii) is proved.

Conversely, let ϕ ∈ L2(K) satisfying (i)–(iii). We define closed subspaces Vj of L2(K) in the
following way.

For j = 0 let Vj = span {ϕ(ξ−λ) : λ ∈ Λ} and for j 6= 0 let Vj =
{
f : f((p−1N)−jξ) ∈ V0

}
. We

will show (Vj , ϕ) forms wavelet NUMRA. Using Lemma 1, the sequence {Tλϕ}λ∈Λ is an orthonormal
basis for V0.

By definition of Vj, it can be easily shown that f(γ) ∈ Vj if and only if

f((p−1N)γ) ∈ Vj+1,

which clearly implies
⋂

j∈Z Vj = {0}. To prove Vj ⊆ Vj+1, it is sufficient to show that V0 ⊆ V1.
First we show that

Vj =

{
f ∈ L2(K) : f̂((p−1N)jγ) = (m1

j (γ) + χ

(
u(r)

N
γ

)
m2

j(γ))ϕ̂(γ)

}
, (4.4)

where m1
j ,m

2
j are locally integrable, q-periodic functions. Let f ∈ Vj , then

1

(qN)j/2
Dp−jf(γ) ∈ V0,

as {Tλϕ}λ∈Λ is an orthonormal basis for V0, so there exist {cjλ} ∈ ℓ2(N0) such that

1

(qN)j/2
Dp−jf(γ) =

∑

λ∈Λ

cjλTλϕ.

On taking Fourier transform of both sides, we obtain

f̂((p−1N)jγ) =
∑

λ∈Λ

cjλχλ(p−1γ)ϕ̂(γ) =

{
m1

j(γ) + χ

(
u(r)

N
γ

)
m2

j(γ)

}
ϕ̂(γ),

where m1
j and m2

j are locally integrable and q-periodic functions. If f ∈ L2(K) satisfies

f̂((p−1N)jγ) =

{
m1

j(γ) + χ

(
u(r)

N
γ

)
m2

j (γ)

}
ϕ̂(γ)

for some m1
j and m2

j are locally integrable and q-periodic functions, then we can write

f̂((p−1N)jξ) =

{∑

k∈Z

cjkχu(k)(p−1γ) + χ

(
u(r)

N
γ

) ∑

k∈N0

djkχu(k)(p−1γ)

}
ϕ̂(γ)

for some scalars {cjk} and {djk}k∈N0
∈ ℓ2(N0). Therefore

Dpj f̂(γ)

(qN)j/2
=

∑

λ∈Λ

ljλχu(k)(p−1γ)ϕ̂(γ)
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for some {ljλ}λ∈Λ ∈ ℓ2(N0). By taking inverse Fourier transform on both sides, we obtain

f̂((p−1N)jγ) =
∑

λ∈Λ

pjλTλϕ,

where ∑

λ∈Λ

|pjλ|2 <∞

which shows f(γ) ∈ Vj . Hence Vj(j ∈ Z) are given by (4.4).
Now we are ready to show that V0 ⊆ V1. Let f(γ) ∈ V0. Then by (4.4), we can write

f(γ) =

{
m1

0(γ) + χ

(
u(r)

N
γ

)
m2

0(γ)ϕ̂(γ)

}
,

where m1
0 and m2

0 are locally integrable, q-periodic functions. Therefore,

f̂(γ) = G(γ)m(γ)ϕ̂(γ), (4.5)

where
G(γ) = m1

0(p
−1Nγ) + χu(r)(p−1γ)m2

0(p
−1Nγ)

and

m(γ) = m1(γ) + χ

(
u(r)

N
γ

)
m2(γ).

This gives

G(γ)m(γ) = G(γ)

{
m1(γ) + χ

(
u(r)

N
γ

)
m2(γ)

}
= G(γ)m1(γ) + χ

(
u(r)

N
γ

)
G(γ)m2(γ). (4.6)

Using the conditions (i) and (iii), it can be easily shown that functions m1(γ) and m2(γ) are
bounded. Also since m1(γ), m2(γ) and G(γ) are q-periodic, therefore the functions G(γ)m1(γ) and
G(γ)m2(γ) are q-periodic and

∫

D

|G(γ)m1(γ)|2dγ,
∫

D

|G(γ)m2(γ)|2dγ <∞.

Thus by using (4.4)–(4.6), we infer that f(γ) ∈ V1. Hence V0 ⊆ V1.
To prove that

⋃
j∈Z V0 = L2(K), it sufficient to show that, for any f ∈ L2(K), we have

‖Pjf − f‖2 = ‖f‖2 − ‖P4.12jf‖2 → 0 as j → ∞,

where Pj is the orthonormal projection onto Vj . Let f ∈ L2(K) be such that f̂ ∈ Cc(K). Now we
have

‖Pjf‖2 =
∑

λ∈Λ

|〈f,DpjTλϕ〉|2 =
∑

λ∈Λ

|〈f, ̂DpjTλϕ〉|2

=
∑

k∈N0

∣∣∣∣
∫

K

(qN)−1/2f̂(γ)χu(k)

(
γ

(p−1N)j

(
u(r)

N
+ pu(k)

))
ϕ̂

(
γ

(p−1N)j

)
dγ

∣∣∣∣
2

+
∑

k∈N0

∣∣∣∣
∫

K

(qN)−1/2f̂(γ)χu(k)

(
γ

(p−1N)j

(
u(r)

N
+ pu(k)

))
ϕ̂

(
γ

(2N)j

)
dγ

∣∣∣∣
2

=
∑

k∈N0

∣∣∣∣
∫

K

(qN)j/2f̂((p−1N)jξ)χu(k)(p
−1ξ)ϕ̂(ξ)dξ

∣∣∣∣
2

+
∑

k∈N0

∣∣∣∣
∫

K

(qN)j/2f̂((p−1N)jξ)χu(k)(p
−1ξ)ϕ̂(ξ)dξ

∣∣∣∣
2

.

(4.7)
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Since f̂ has compact support, we can choose j so large that

supp f̂((p−1N)jξ) ⊆ q2D.

Then, using the fact that {√qχu(k)(ξ)} is an orthonormal basis for L2(q2D) and by (4.7), we get

‖Pjf‖2 =
(qN)j

2

{ ∑

k∈N0

∣∣∣∣
∫

q2D
f̂((p−1N)jξ)

√
qχu(k)(p

−1ξ)ϕ̂(ξ)dξ

∣∣∣∣
2

+
∑

k∈N0

∣∣∣∣
∫

q2D
f̂((p−1N)jξ)

√
qe2πi

r
N
ξχu(k)(p

−1η)ϕ̂(η)dξ

∣∣∣∣
2}

= (qN)j
∫

q2D
|f̂((p−1N)jξ)ϕ̂(ξ)|2dξ

(4.8)

Putting (p−1N)jξ = η in (4.8) and invoking the Lesbesgue-dominated convergence theorem, we
get

‖Pjf‖2 =
∫

(p−1N)−jD

∣∣∣f̂(η)ϕ̂(p−1N)−jη
∣∣∣
2
dη → ‖f‖2 as j → ∞.

Thus the proof is complete. �

In the context of Fourier domain, the following theorem gives necessary condition for scaling
function of wavelet NUMRA on LFPC.

Theorem 2. If ϕ be a scaling function of wavelet NUMRA and ϕ̂ is continuous then |ϕ̂(0)| = 1
and ϕ̂ (u(m)N − u(j)) = 0, where m ∈ N0, 0 ≤ j ≤ N−1. In particular ϕ̂(u(m)N) = 0 for m ∈ N0

and ϕ̂(−pu(j)) = 0, 0 ≤ j ≤ N − 1.

P r o o f. By (4.3), we have

lim
j→∞

∫

q2D
|ϕ̂(p−1N)−jµ|2dµ =

1

q

as |ϕ̂| is continuous. By virtue of Lebesgue dominated convergence theorem, we obtain |ϕ̂(0)| = 1.
Since ϕ is a scaling function for wavelet NUMRA, we have

∑

γ∈∆N

|ϕ̂(ξ − γ)|2 = 1 a.e. ξ ∈ K. (4.9)

Suppose

ϕ̂ (u(m)N − pu(j)) = a 6= 0

for some m, j not both zero together. Then

|ϕ̂(ξ)|+ |ϕ̂ (ξ + u(m)N − pu(j))|2 > 1 + a2, when ξ ∈ pǫD

for some ǫ > 0 which contradicts (4.9). �

The following theorem gives the sufficient conditions for the frequency band of the scaling
function of wavelet NUMRA on LFPC.

Theorem 3. Let ℧ be a compact subset of K such that
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(i) ℧ ⊆ (p−1N)℧;

(ii)
⋃

m∈N0
(p−1N)j℧ = K;

(iii)

N−1∑

j=0

δj/2 ⋆
∑

m∈N0

δmN ⋆Φ℧ = 1.

Then ℧ is the frequency band function for some wavelet NUMRA.

P r o o f. Let

Vj =
{
f ∈ L2(K) : supp f̂ ⊂ (p−1N)j℧, j ∈ Z

}

and ψ ∈ L2(K) be such that ϕ̂ = Φ℧. Using hypothesis (i) and the definition of Vj , we have
Vj ⊆ Vj+1 and f((p−1N)jγ) ∈ Vj if and only if f((p−1N)j+1γ) ∈ Vj+1. By hypothesis (ii) and
the definition of Vj , we get

⋃
j∈Z Vj = L2(K). By using Lemma 3 and hypothesis (iii), we get

that (℧,Λ) is a spectral pair. Now we have

T̂λϕ(ξ) = χλ(ξ)ϕ̂(ξ) = χλ(ξ)Φ℧(ξ)

and the Fourier transform is the unitary operator. Thus {Tλϕ}λ∈Λ is an orthonormal basis for V0.
By virtue of Lemma 3, we infer that

⋂
j∈Z Vj = {0}. Hence ℧ is frequency band for wavelet NUMRA

(Vj , ϕ). �

5. Conclusion

In the present paper, we have given a complete characterization of the scaling function for the
non-uniform multiresolution analysis on local fields of positive characteristic. Theorem 1 charac-
terizes the nonzero square integrable functions on L2(K) to be a scaling functions for the wavelet
NUMRA by means of three simple conditions. Furthermore Theorem 3 expresses a compact subset
of K to be the band scaling function of wavelet NUMRA on LFPC by means of three conditions.
The present study can be extended in fractional settings and in the context of Multiresolution
Analysis associated with Linear Canonical Transform.
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Abstract: The main purpose of this work is to define Rough Statistical Λ-Convergence of order α (0 < α ≤ 1)
in normed linear spaces. We have proved some basic properties and also provided some examples to show that
this method of convergence is more generalized than the rough statistical convergence. Further, we have
shown the results related to statistically Λ-bounded sets of order α and sets of rough statistically Λ-convergent
sequences of order α.
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1. Introduction

In 1951, Fast [5] presented a new idea of convergence named as statistical convergence that is
more generalized than the usual convergence for the sequences.

Definition 1 [5]. A sequence x = {xm} of numbers is said to be statistically convergent to ξ if

for every ǫ > 0 we have lim
n→∞

|M(x, ǫ)|/n = 0, where |M(x, ǫ)| represents the order of the enclosed

set M(x, ǫ) = {m ≤ n : |xm − ξ| ≥ ǫ}.

This idea has interesting applications in the field of Fourier Analysis [1], Measure Theory [16], Ap-
proximation Theory [7] etc. It has been studied by many researchers for various types of sequences
in different setups like locally convex spaces [10], probabilistic normed spaces [8], random normed
spaces [3], intuitionistic fuzzy normed spaces [9] etc.

An interesting generalization of usual convergence named as rough convergence was introduced
by Phu [19] for the sequences in finite dimensional normed linear spaces and later on introduced
on infinite dimensional normed linear spaces [20]. He mainly worked on rough limits, roughness
degree, rough continuity of linear operators and also introduced rough Cauchy sequences.

https://doi.org/10.15826/umj.2021.1.002
mailto:reena.antal@gmail.com
mailto:chawlameenakshi7@gmail.com
mailto:vjy_kaushik@yahoo.com
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Definition 2 [19]. A sequence x = {xm} in a normed linear space (X, ‖ · ‖) is said to be rough

convergent to ξ ∈ X if for every ǫ > 0 there exists a non-negative number r and m0 ∈ N such that

‖xm − ξ‖ < r + ǫ, for all m ≥ m0.

Aytar [2] extended the rough convergence to rough statistical convergence like usual convergence
is extended to statistical convergence with the help of natural density.

Definition 3 [2]. A sequence x = {xm} in a normed linear space (X, ‖ · ‖) is said to be rough

statistically convergent to ξ ∈ X if for every ǫ > 0 there exists a non-negative number r such that

lim
n→∞

1

n

∣

∣{m ≤ n : ‖xm − ξ‖ ≥ r + ǫ}
∣

∣ = 0,

where ξ is known as r-St-limit of sequence x = {xm}.

Aytar [2] also defined the rough statistical bounded sequence along with the set of rough
statistical limit points of a sequence. Further, some criterion associated with the convexity and
closeness of the set of rough statistical limit points of a sequence was investigated.

Inspired by the work of Aytar [2], Maity [12] presented the concept of rough statistical conver-
gence of order α (0 < α ≤ 1) in normed linear spaces and explained some important results for
the set of rough statistical limit points of order α. The idea of pointwise rough statistical conver-
gence and rough statistical Cauchy sequences for real valued functions was introduced in [11]. The
concept of rough convergence has been defined for double sequences by Malik and Maity in [13]
and after that the authors extended this idea in [14] and defined rough statistical convergence for
double sequences in normed linear spaces.

This idea has motivated many authors to use the concepts of ideals also. Pal et al. [18] in-
troduced rough I-convergence with the help of ideals of N. Later, Malik et al. in [15] extended
this concept of rough I-convergence to rough I-statistical convergence and described some topo-
logical properties of the set of all rough I-statistical limits of sequences in normed linear spaces. A
lot of work has been done on rough convergence and its generalizations. More investigations and
applications of rough convergence can be revealed as it is an active area of research.

In this paper, we are introducing the concept of rough statistical Λ-convergence of order
α (0 < α ≤ 1) in the normed linear spaces.

2. Main results

In order to study the basic concept of rough statistical Λ-convergence, we first consider a
sequence λ = {λj} of real numbers such that 0 < λ0 < λ1 < ...... < λj < ... and λj → ∞ as j → ∞.
The concept of Λ-convergence for real sequences have been defined by Mursaleen[17] as given below:
a sequence x = {xm} of real numbers is Λ-convergent to a number L if Λxm → L as m → ∞ where

Λxm =
1

λm

m
∑

j=0

(λj − λj−1)xj .

Here, without loss of generality we take all the terms with negative subscripts equal to zero.
Using this concept, we are defining the notion of the rough Λ-convergence and rough statistical

Λ-convergence as follows:

Definition 4. A sequence x = {xm} in a normed linear space (X, ‖ · ‖) is said to be rough

Λ-convergent to ξ ∈ X if for every ǫ > 0 there exist a non-negative number r and m0 ∈ N such that

‖Λxm − ξ‖ < r + ǫ, for all m ≥ m0.
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Definition 5. A sequence x = {xm} in a normed linear space (X, ‖ · ‖) is said to be rough

statistically Λ-convergent to ξ if for every ǫ > 0 there exists some non-negative number r such that

lim
n→∞

1

n

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣ = 0,

where ξ is known as r-StΛ-limit of sequence x = {xm}.

Remark 1. For the case r = 0, the notion of rough statistical Λ-convergence agrees with the
statistical Λ-convergence.

Çolak [4] has given an interesting idea related to the statistical convergence of order
α (0 < α ≤ 1) with the help of α-density. Motivated by his idea, now we are defining a rough
statistical Λ-convergence of order α (0 < α ≤ 1) as follows:

Definition 6. A sequence x = {xm} in a normed linear space (X, ‖ · ‖) is said to be rough

statistically Λ-convergent of order α (0 < α ≤ 1) to the number ξ ∈ X if for every ǫ > 0 there exists

some non-negative number r such that

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣ = 0,

where ξ is known as r-StαΛ-limit of sequence x = {xm}. It is denoted by

xm
r-Stα

Λ−−−→ ξ.

The set of all the rough statistically Λ-convergent sequences of order α(0 < α ≤ 1) is denoted
by rStαΛ for fixed r.

In general, the r-StαΛ-limit of a sequence may be not unique. So we consider r-StαΛ-limit set of
a sequence x = {xm} as

r-StαΛ-LTx = {ξ : xm
r-Stα

Λ−−−→ ξ}.
The sequence x = {xm} is said to be r-StαΛ-convergent such that r-StαΛ-LTx 6= φ. For unbounded
sequence the rough limit set is always empty.
But in case of rough statistical Λ-convergence of order α, we have r-StαΛ-LTx 6= φ even though
sequence may be unbounded. For this we have given the next example.

Example 1. Let X = R. Then, define a sequence

Λxm =

{

(−1)m, m 6= n2,
m, otherwise.

Take α = 1, then

r-StαΛ-LTx =

{

φ, r < 1,
[1− r, r − 1], otherwise

and r-Λ-LTx = φ for all r ≥ 0. Thus, this sequence is divergent in ordinary sense as it is unbounded.
Also, the sequence is not statistically Λ-convergent for any r.

With the help of statistically cluster points defined by Fridy [6], we are giving the following
definition as follows:

Definition 7. A point ξ is said to be rough statistically Λ-cluster point of order α (0 < α ≤ 1)
of a sequence x = {xm} in a normed linear space (X, ‖ · ‖) if for every ǫ > 0 there exists some

non-negative number r such that

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣ 6= 0.
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Definition 8. A sequence x = {xm} is said to be statistically Λ-bounded if there exists a real

number M0 > 0 such that

lim
n→∞

1

n

∣

∣{m ≤ n : ‖Λxm‖ ≥ M0}
∣

∣ = 0.

Definition 9. A sequence x = {xm} is said to be statistically Λ-bounded of order α (0 < α ≤ 1)
if there exists a real number M0 > 0 such that

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm‖ ≥ M0}
∣

∣ = 0.

In view of above definitions, we obtained the following interesting results on rough statistical Λ-
convergence.

Theorem 1. Every rough Λ-convergent sequence is also rough statistically Λ-convergent of

order α (0 < α ≤ 1), but converse may be not true.

P r o o f. Let the sequence x = {xm} be rough Λ-convergent in a normed linear space (X, ‖ ·‖).
Then, for every ǫ > 0 and some r > 0 there exists a real numberM0 > 0 such that ‖Λxm−ξ‖ ≥ r+ǫ
for all m ≥ M0.

The set {m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ} has finitely many terms. Thus,

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣ = 0.

Hence, the sequence x = {xm} is rough statistically Λ-convergent of order α (0 < α ≤ 1).

But the contrary part is not true which can be justified by the next example.

Example 2. Consider the normed space (R, ‖ · ‖) under the usual norm. Define a sequence

Λxm =

{

1, m is a square,
0, otherwise.

For ǫ > 0 and some r ≥ 0 we have

M(r, ǫ) = {m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}; ξ = 0

= {m ≤ n : ‖Λxm‖ ≥ r + ǫ > 0}
= {m ≤ n : ‖Λxm‖ = 1}
= {m ≤ n : m is a square}.

Thus,

lim
n→∞

1

nα
|M(r, ǫ)| ≤ lim

n→∞

√
n

nα
= 0.

Therefore, x = {xm} is rough statistically Λ-convergent of order α to 0 for α > 1/2.

�

In the next theorem we discuss the algebraic characterization of rough statistically Λ-convergent
sequences of order α (0 < α ≤ 1).

Theorem 2. Let x = {xm} and y = {ym} be two sequences in a normed linear space (X, ‖ · ‖)
and α (0 < α ≤ 1) be given. Then for some non-negative number r the following holds:
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(1) if xm
r-Stα

Λ−−−→ x0 and k ∈ N then kxm
r-Stα

Λ−−−→ kx0;

(2) if xm
r-Stα

Λ−−−→ x0 and ym
r-Stα

Λ−−−→ y0 then (xm + ym)
r-Stα

Λ−−−→ (x0 + y0).

P r o o f. (1) If k = 0 then there is nothing to prove.

If k 6= 0. Since xm
r-Stα

Λ−−−→ x0 then for given ǫ > 0 and some r ≥ 0, we have the set

M(r, ǫ) =
{

m ≤ n : ‖Λxm − x0‖ ≥ r + ǫ

|k|
}

with lim
n→∞

1

nα
|M(r, ǫ)| = 0.

Let m ∈ M c(r, ǫ). Then

‖Λkxm − kx0‖ = |k| ‖Λxm − x0‖ < |k|
(r + ǫ

|k|
)

< r + ǫ.

This implies that

lim
n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λkxm − kx0‖ <
r + ǫ

|k|
}
∣

∣

∣
= 1,

i. e.

lim
n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λkxm − kx0‖ ≥ r + ǫ

|k|
}
∣

∣

∣
= 0.

Therefore, kxm
r-Stα

Λ−−−→ kx0.

(2) Since xm
r-Stα

Λ−−−→ x0 and ym
r-Stα

Λ−−−→ y0 then for given ǫ > 0 and some r ≥ 0, we have sets

Mx(r, ǫ) =
{

m ≤ n : ‖Λxm − x0‖ ≥ r + ǫ

2

}

with lim
n→∞

1

nα
|Mx(r, ǫ)| = 0,

My(r, ǫ) =
{

m ≤ n : ‖Λym − y0‖ ≥ r + ǫ

2

}

with lim
n→∞

1

nα
|My(r, ǫ)| = 0.

Let m ∈ M c
x(r, ǫ) ∩M c

y(r, ǫ). Then

‖Λ(xm + ym)− (x0 + y0)‖ ≤ ‖Λxm − x0‖+ ‖Λym − y0‖ <
r + ǫ

2
+

r + ǫ

2
= r + ǫ.

This implies that

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λ(xm + ym)− (x0 + y0)‖ < r + ǫ}
∣

∣ = 1,

i. e.

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λ(xm + ym)− (x0 + y0)‖ ≥ r + ǫ}
∣

∣ = 0.

Therefore, (xm + ym)
r-Stα

Λ−−−→ (x0 + y0). �

Theorem 3. Let 0 < α ≤ β ≤ 1 then rStαΛ ⊆ rStβΛ where rStαΛ and rStβΛ represent the sets of

all rough statistically Λ-convergent of order α and β respectively.

P r o o f. Let x = {xm} be a sequence in a normed linear space (X, ‖ · ‖). If 0 < α ≤ β ≤ 1
then for every ǫ > 0 and some r > 0 with the limit point ξ, we have

1

nβ

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣ ≤ 1

nα

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣.

Therefore, we get rStαΛ ⊆ rStβΛ. �
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Theorem 4. A sequence x = {xm} in a normed linear space (X, ‖·‖) is statistically Λ-bounded
of order α(0 < α ≤ 1) if and only if r-StαΛ-LTx 6= φ, for some non-negative number r.

P r o o f. Let the sequence x = {xm} is statistically Λ-bounded of order α (0 < α ≤ 1), then
there exists a real number M0 > 0 such that

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm‖ ≥ M0}
∣

∣ = 0.

Let M =
{

m ∈ N : ‖Λxm‖ ≥ M0

}

. Define r0 = sup
{

‖Λxm‖ : m ∈ M c
}

. As

0 ∈ r0-St
α
Λ-LTx ⇒ r0-St

α
Λ-LTx 6= φ.

Conversely, suppose that r-StαΛ-LTx 6= φ for some r ≥ 0. Then, for each ǫ > 0 there exists
ξ ∈ X such that ξ ∈ r-StαΛ-LTx. Then

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}
∣

∣ = 0.

Hence, the sequence x = {xm} is statistically Λ-bounded of order α. �

Theorem 5. If x′ = {xmk
} is a non-thin subsequence of a sequence x = {xm} then

r-StαΛ-LTx ⊆ r-StαΛ-LTx′ .

P r o o f. The proof of above results is obvious, so we are omitting it. �

Theorem 6. Let x = {xm} be a sequence in a normed linear space (X, ‖ · ‖). Then, the rough

statistical limit set of order α (0 < α ≤ 1) is convex, i.e., r-StαΛ-LTx is convex.

P r o o f. Let ξ1, ξ2 ∈ r-StαΛ-LTx and ǫ > 0 be given. For the convexity of the set r-StαΛ-LTx,
we have to show that [(1− β)ξ1 + βξ2] ∈ r-StαΛ-LTx for some β ∈ (0, 1). Now, we define

M1(r, ǫ) =
{

m ∈ N : ‖Λxm − ξ1‖ ≥ r + ǫ

2(1− β)

}

,

M2(r, ǫ) =
{

m ∈ N : ‖Λxm − ξ2‖ ≥ r + ǫ

2β

}

.

As ξ1, ξ2 ∈ r-StαΛ-LTx, we have

lim
n→∞

1

nα
|M1(r, ǫ)| = lim

n→∞

1

nα
|M2(r, ǫ)| = 0.

Let m ∈ M c
1(r, ǫ) ∩M c

2(r, ǫ). Then
∥

∥Λxm − [(1− β)ξ1 + βξ2]
∥

∥ =
∥

∥(1− β)(Λxm − ξ1) + β(Λxm − ξ2)
∥

∥

≤ (1− β)
∥

∥Λxm − ξ1
∥

∥+ β
∥

∥Λxm − ξ2
∥

∥

< r + ǫ.

Since

lim
n→∞

1

nα
|M c

1(r, ǫ) ∩M c
2(r, ǫ)| = 1,

we get

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − [(1− β)ξ1 + βξ2]‖ ≥ r + ǫ}
∣

∣ = 0,

i. e.
[(1− β)ξ1 + βξ2] ∈ r-StαΛ-LTx.

Hence, r-StαΛ-LTx is a convex set. �
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Theorem 7. A sequence x = {xm} in a normed linear space (X, ‖ · ‖) is rough statistically

Λ-convergent of order α (0 < α ≤ 1) to ξ ∈ X for some non-negative number r if and only if

there exists a sequence y = {ym} in X which is rough statistically Λ-convergent of order α to ξ and

‖Λxm − Λym‖ ≤ r for all m ∈ N.

P r o o f. Necessity. Let xm
r-Stα

Λ−−−→ ξ. Then, for each ǫ > 0 and some r > 0 we have

lim
n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ
}

∣

∣

∣
= 0. (2.1)

Now, we define the sequence as

Λym =







ξ, ‖Λxm − ξ‖ ≤ r,

Λxm + r
ξ − Λxm

‖Λxm − ξ‖ , otherwise.

Then, we have

Λym − ξ =







0, ‖Λxm − ξ‖ ≤ r,
Λxm − ξ

‖Λxm − ξ‖
(

‖Λxm − ξ‖ − r
)

, otherwise

such that ‖Λxm − Λym‖ ≤ r for all m ∈ N. Further,

‖Λym − ξ‖ =

{

0, ‖Λxm − ξ‖ ≤ r,
‖Λxm − ξ‖ − r, otherwise.

Hence, by the definition of Λym and (2.1), we have

lim
n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λym − ξ‖ ≥ r + ǫ
}

∣

∣

∣
= 0,

which prove that the sequence y = {ym} is rough statistically Λ-convergent of order α to ξ.

Sufficiency. Since the sequence y = {ym} is rough statistically Λ-convergent of order
α (0 < α ≤ 1) to ξ then for ǫ > 0 we have

lim
n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λym − ξ‖ ≥ r + ǫ
}

∣

∣

∣
= 0.

Now for some r > 0 and sequence x = {xm} with ‖Λxm − Λym‖ ≤ r, the following inclusion holds

{

m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ
}

⊆
{

m ≤ n : ‖Λym − ξ‖ ≥ r + ǫ
}

.

Hence, we get

lim
n→∞

1

nα
|{m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ}| = 0.

�

Theorem 8. The set r-StαΛ-LTx of rough statistical Λ-limit set of order α (0 < α ≤ 1) is

closed.
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P r o o f. (i) If r-StαΛ-LTx = φ, then we have to prove nothing.

(ii) If r-StαΛ-LTx 6= φ. Then, take a sequence y = {ym} ⊆ r-StαΛ-LTx such that Λym → y∗ for
m → ∞. It is sufficient to show that y∗ ∈ r-StαΛ-LTx.

As Λym → y∗, then for given ǫ > 0 there exists mǫ ∈ N such that

‖Λym − y∗‖ <
r + ǫ

3

for m > mǫ.
Now choose m0 ∈ N such that m0 > mǫ. Then we have

‖Λym0
− y∗‖ <

r + ǫ

3
.

Again as y = {ym} ⊆ r-StαΛ-LTx, we have ym0
∈ r-StαΛ-LTx. Clearly,

lim
n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λxm − ym0
‖ ≥ r + ǫ

3

}
∣

∣

∣
= 0. (2.2)

Next we prove the inclusion

{

m ≤ n : ‖Λxm − ym0
‖ <

r + ǫ

3

}

⊆ {m ≤ n : ‖Λxm − y∗‖ < r + ǫ}. (2.3)

Let

k ∈
{

m ≤ n : ‖Λxm − ym0
‖ <

r + ǫ

3

}

⇒ ‖Λxk − ym0
‖ <

r + ǫ

3
.

Hence,

‖Λxk − y∗‖ = ‖Λxk − ym0
+ Λym − y∗ − Λym + ym0

‖ ≤ ‖Λxk − ym0
‖+ ‖Λym − y∗‖+ ‖Λyk − ym0

‖.

Using equation (2.2) and Theorem 7 we get

‖Λyk − ym0
‖ <

r + ǫ

3
.

Thus,

‖Λxk − y∗‖ <
r + ǫ

3
+

r + ǫ

3
+

r + ǫ

3
= r + ǫ.

This implies that
k ∈ {m ≤ n : ‖Λxm − y∗‖ < r + ǫ}.

Hence the inclusion (2.3) is proved.
Thus,

{m ≤ n : ‖Λxm − y∗‖ ≥ r + ǫ} ⊆
{

m ≤ n : ‖Λxm − ym0
‖ ≥ r + ǫ

3

}

.

Now,

lim
n→∞

1

nα
|{m ≤ n : ‖Λxm − y∗‖ ≥ r + ǫ}| ≤ lim

n→∞

1

nα

∣

∣

∣

{

m ≤ n : ‖Λxm − ym0
‖ ≥ r + ǫ

3

}
∣

∣

∣
. (2.4)

Using equation (2.2), we obtained that the set on left side of (2.4) has density 0. Hence, we get

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − y∗‖ ≥ r + ǫ}
∣

∣ = 0.

�
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Theorem 9. Let ΓΛx be the set of all rough statistical Λ-cluster points of order α (0 < α ≤ 1)
for a sequence x = {xm} in the normed linear space (X, ‖ · ‖). Then for an arbitrary c ∈ ΓΛx and

a positive real number r, we have ‖ξ − c‖ < r for all ξ ∈ r-StαΛ-LTx.

P r o o f. We prove the result by contradiction. For given α (0 < α ≤ 1), we take a point
c ∈ ΓΛx and ξ ∈ r-StαΛ-LTx such that ‖ξ − c‖ > r. By choosing ǫ = (‖ξ − c‖ − r)/3, we get the
following inclusion

{

m ≤ n : ‖Λxm − ξ‖ ≥ r + ǫ
}

⊇
{

m ≤ n : ‖Λxm − c‖ < ǫ
}

. (2.5)

Since c ∈ ΓΛx, then

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − c‖ < ǫ}
∣

∣ 6= 0.

By (2.5), we get

lim
n→∞

1

nα

∣

∣{m ≤ n : ‖Λxm − ξ‖ < r + ǫ}
∣

∣ 6= 0,

which is a contradiction to ξ ∈ r-StαΛ-LTx. �

Theorem 10. Let x = {xm} be a sequence in a strictly convex normed linear space (X, ‖ · ‖).
Let α and r be two positive real numbers. If any ξ0, ξ1 ∈ r-StαΛ-LTx with ‖ξ0 − ξ1‖ = 2r, then

x = {xm} is rough statistically Λ-convergent of order α (0 < α ≤ 1) to (ξ0 + ξ1)/2.

P r o o f. Let z ∈ ΓΛx and ξ0, ξ1 ∈ r-StαΛ-LTx such that ‖ξ0 − ξ1‖ = 2r. Then, we have

‖ξ0 − z‖ ≤ r and ‖ξ1 − z‖ ≤ r, (2.6)

and by triangle inequality, we get

‖ξ0 − ξ1‖ ≤ ‖ξ0 − z‖+ ‖ξ1 − z‖
⇒ 2r ≤ ‖ξ0 − z‖+ ‖ξ1 − z‖. (2.7)

We get from (2.6) and (2.7)
‖ξ0 − z‖ = ‖ξ1 − z‖ = r.

Also
1

2
(ξ1 − ξ0) =

1

2

[

(z − ξ0) + (ξ1 − z)
]

, (2.8)

and using ‖ξ0 − ξ1‖ = 2r, we get (ξ1 − ξ0)/2 = r.
Now from equation (2.8) and from strict convexity of the normed linear space (X, ‖ ·‖), we have

(z − ξ0) = (ξ1 − z) = (ξ1 − ξ0)/2 which implies that z = (ξ0 + ξ1)/2. Thus, z is a unique statistical
Λ-cluster point of sequence x = {xm}.

As ξ0, ξ1 ∈ r-StαΛ-LTx ⇒ r-StαΛ-LTx 6= φ. Hence, by Theorem 4, the sequence x = {xm} is
statistically Λ-bounded of order α.

Since z is the unique statistical Λ-cluster point to statistically Λ-bounded sequence x = {xm}
of order α.

This implies that xm
r-Stα

Λ−−−→ z, where z = (ξ0 + ξ1)/2. �
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Abstract: The inverse problem of the calculus of variations (IPCV) is solved for a second-order ordinary
differential equation with the use of a local bilinear form. We apply methods of analytical dynamics, nonlinear
functional analysis, and modern methods for solving the IPCV. In the paper, we obtain necessary and sufficient
conditions for a given operator to be potential relative to a local bilinear form, construct the corresponding
functional, i.e., found a solution to the IPCV, and define the structure of the considered equation with the po-
tential operator. As a consequence, similar results are obtained when using a nonlocal bilinear form. Theoretical
results are illustrated with some examples.

Keywords: Inverse problem of the calculus of variations, Local bilinear form, Potential operator, Conditions
of potentiality.

1. Introduction

In the modern calculus framework, the classical inverse problem of the calculus of variations
(IPCV) is a problem of constructing an integral functional such that its equations of extremals
coincide with given equations. The issues considered in the paper are closely related to the following
statement of the IPCV generalizing its classical statement. For a given equation, one needs to
construct a functional such that its set of stationary points coincides with the set of solutions to
this equation. These problems are also related to the mechanics of finite- and infinite-dimensional
systems [7, 8, 11–13]. There is a large number of works devoted to IPCVs for different types
of equations and their systems: in particular, for ordinary differential equations and differential
equations with partial derivatives [4, 6, 13, 18, 19, 21], operator equations [2, 3, 14, 15], differential-
difference equations [5, 9, 10], and stochastic differential equations [16, 17]. In these works, nonlocal
bilinear forms were mainly used to solve an IPCV. Methods of investigating operators for the
potentiality relative to local bilinear forms were developed in [6, 13, 20].

The main aim of the paper is to find a solution to an IPCV for a second-order ordinary differ-
ential equation. Local bilinear forms will play a significant role in the investigation.

Below, we use the notation and terminology of [2, 3, 13, 15].
Assume that U and V are linear normed spaces over R.
The following definition and theorem will be needed for the sequel.

Definition 1 [13]. An operator N : D(N) ⊂ U → V is called potential on the set D(N) relative
to a local bilinear form Φ(u; ·, ·) : V × V → R if there exists a Gâteaux differentiable functional
FN : D(FN ) = D(N) → R such that

δFN [u, h] = Φ(u;N(u), h) ∀u ∈ D(N), ∀h ∈ D(N ′
u). (1.1)

1This paper was partially supported by the RUDN University Strategic Academic Leadership Program
and by the Russian Foundation for Basic Research (project no. 19-08-00261a).
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Theorem 1 [13]. Consider a Gâteaux differentiable operator N : D(N) ⊂ U → V and a local
bilinear form Φ(u; ·, ·) : V × V → R such that, for any fixed elements u ∈ D(N) and g, h ∈ D(N ′

u),
the function ψ(ε) = Φ(u+ εh;N(u + εh), g) belongs to the class C1[0, 1]. For N to be potential on
the convex set D(N) relative to Φ, it is necessary and sufficient to have

Φ
(

u;N ′
uh, g

)

+Φ′
u (h;N(u), g) = Φ

(

u;N ′
ug, h

)

+Φ′
u (g;N(u), h)

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

.
(1.2)

Under this condition, the potential FN is given as

FN [u] =

1
∫

0

Φ(u0 + λ(u− u0);N(u0 + λ(u− u0)), u − u0) dλ+ FN [u0], (1.3)

where u0 is a fixed element of D(N).

Note that N ′
u and Φ′

u are the Gâteaux derivatives of N and Φ at the point u.

2. Conditions of potentiality

Consider an ordinary differential equation of the second order

N(u) ≡ a(t, u(t))u′′(t) + b(t, u(t))u′(t) + c(t, u(t))(u′(t))2 + d(t, u(t)) = 0, t ∈ [t0, t1]. (2.1)

Here, u = u(t) is an unknown function, a ∈ C2([t0, t1] × T ) and b, c, d ∈ C1([t0, t1] × T ) are given
functions, and T ⊆ R.

We define the domain of the operator N (2.1) as follows:

D(N) =
{

u ∈ C2[t0, t1] : u(t0) = u1, u(t1) = u2
}

. (2.2)

The domain D(N ′
u) consists of elements h ∈ C2[t0, t1] such that (u + εh) ∈ D(N) for all ε

sufficiently small, i.e.,

D(N ′
u) =

{

h ∈ C2[t0, t1] : h(t0) = 0, h(t1) = 0
}

.

Let us introduce a local bilinear form

Φ(u; v, g) =

t1
∫

t0

M(t, u(t))v(t)g(t) dt, (2.3)

where M ∈ C2([t0, t1]× T ), M(t, u(t)) 6= 0.

Theorem 2. For the operator N (2.1) to be potential on D(N) (2.2) relative to the local bilinear
form (2.3), it is necessary and sufficient that the following conditions hold for all u ∈ D(N) and
all t ∈ [t0, t1]:

a′u(t, u(t))M(t, u(t)) + a(t, u(t))M ′
u(t, u(t))− 2c(t, u(t))M(t, u(t)) = 0, (2.4)

a′t(t, u(t))M(t, u(t)) + a(t, u(t))M ′
t(t, u(t)) − b(t, u(t))M(t, u(t)) = 0. (2.5)
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P r o o f. We have

N ′
uh = a′u(t, u(t))u

′′(t)h(t) + a(t, u(t))h′′(t) + b′u(t, u(t))u
′(t)h(t) +

+ b(t, u(t))h′(t) + c′u(t, u(t))(u
′(t))2h(t) + 2c(t, u(t))u′(t)h′(t) + d′u(t, u(t))h(t).

In this case, criterion (1.2) becomes

t1
∫

t0

(

a′u(t, u(t))M(t, u(t))u′′(t)h(t)g(t) + a(t, u(t))M(t, u(t))h′′(t)g(t) +

+ b′u(t, u(t))M(t, u(t))u′(t)h(t)g(t) + b(t, u(t))M(t, u(t))h′(t)g(t) +

+ c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) + 2c(t, u(t))M(t, u(t))u′(t)h′(t)g(t) +

+M(t, u(t))d′u(t, u(t))h(t)g(t) + a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) +

+ b(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g(t) + c(t, u(t))M ′
u(t, u(t))(u

′(t))2h(t)g(t) +

+M ′
u(t, u(t))d(t, u(t))h(t)g(t)

)

dt =

t1
∫

t0

(

a′u(t, u(t))M(t, u(t))u′′(t)h(t)g(t) +

+ a(t, u(t))M(t, u(t))g′′(t)h(t) + b′u(t, u(t))M(t, u(t))u′(t)h(t)g(t) +

+ b(t, u(t))M(t, u(t))g′(t)h(t) + c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) +

+ 2c(t, u(t))M(t, u(t))u′(t)g′(t)h(t) +M(t, u(t))d′u(t, u(t))h(t)g(t) +

+ a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) + b(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g(t) +

+ c(t, u(t))M ′
u(t, u(t))(u

′(t))2h(t)g(t) +M ′
u(t, u(t))d(t, u(t))h(t)g(t)

)

dt

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

,

or
t1
∫

t0

(

a(t, u(t))M(t, u(t))h′′(t)g(t) + b(t, u(t))M(t, u(t))h′(t)g(t) +

+ 2c(t, u(t))M(t, u(t))u′(t)h′(t)g(t)
)

dt =

t1
∫

t0

(

a(t, u(t))M(t, u(t))g′′(t)h(t) +

+ b(t, u(t))M(t, u(t))g′(t)h(t) + 2c(t, u(t))M(t, u(t))u′(t)g′(t)h(t)
)

dt

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

.

(2.6)

Integrating by parts and taking into consideration that h, g ∈ D (N ′
u), we obtain

t1
∫

t0

(

a(t, u(t))M(t, u(t))h′′(t)g(t) + b(t, u(t))M(t, u(t))h′(t)g(t) +

+ 2c(t, u(t))M(t, u(t))u′(t)h′(t)g(t)
)

dt =

t1
∫

t0

(

a′′tt(t, u(t))M(t, u(t))h(t)g(t) +

+ 2a′′tu(t, u(t))u
′(t)M(t, u(t))h(t)g(t) + 2a′t(t, u(t))M

′
t(t, u(t))h(t)g(t) +

+ 2a′t(t, u(t))M
′
u(t, u(t))u

′(t)h(t)g(t) + 2a′t(t, u(t))M(t, u(t))h(t)g′(t) +

+ a′′uu(t, u(t))(u
′(t))2M(t, u(t))h(t)g(t) + a′u(t, u(t))u

′′(t)M(t, u(t))h(t)g(t) +

+ 2a′u(t, u(t))u
′(t)M ′

t(t, u(t))h(t)g(t) + 2a′u(t, u(t))M
′
u(t, u(t))(u

′(t))2h(t)g(t) +
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+ 2a′u(t, u(t))u
′(t)M(t, u(t))h(t)g′(t) + 2a(t, u(t))M ′

t(t, u(t))g
′(t)h(t) +

+ 2a(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g′(t) + a(t, u(t))M(t, u(t))h(t)g′′(t) +

+ a(t, u(t))M ′′
tt(t, u(t))h(t)g(t) + 2a(t, u(t))M ′′

tu(t, u(t))u
′(t)h(t)g(t) +

+ a(t, u(t))M ′′
uu(t, u(t))(u

′(t))2h(t)g(t) + a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) −

− b′t(t, u(t))M(t, u(t))h(t)g(t) − b′u(t, u(t))u
′(t)M(t, u(t))h(t)g(t) −

− b(t, u(t))M ′
t(t, u(t))h(t)g(t) − b(t, u(t))M ′

u(t, u(t))u
′(t)h(t)g(t) −

− b(t, u(t))M(t, u(t))h(t)g′(t)− 2c′t(t, u(t))M(t, u(t))u′(t)h(t)g(t) −

− 2c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) − 2c(t, u(t))(u′(t))2M ′
u(t, u(t))h(t)g(t) −

− 2c(t, u(t))M ′
t(t, u(t))u

′(t)h(t)g(t) − 2c(t, u(t))M(t, u(t))u′′(t)h(t)g(t) −

− 2c(t, u(t))M(t, u(t))u′(t)h(t)g′(t)
)

dt.

Thus, equality (2.6) can be written in the form

t1
∫

t0

(

a′′tt(t, u(t))M(t, u(t))h(t)g(t) + 2a′′tu(t, u(t))u
′(t)M(t, u(t))h(t)g(t) +

+ 2a′t(t, u(t))M
′
t(t, u(t))h(t)g(t) + 2a′t(t, u(t))M

′
u(t, u(t))u

′(t)h(t)g(t) +

+ 2a′t(t, u(t))M(t, u(t))h(t)g′(t) + a′′uu(t, u(t))(u
′(t))2M(t, u(t))h(t)g(t) +

+ a′u(t, u(t))u
′′(t)M(t, u(t))h(t)g(t) + 2a′u(t, u(t))u

′(t)M ′
t(t, u(t))h(t)g(t) +

+ 2a′u(t, u(t))M
′
u(t, u(t))(u

′(t))2h(t)g(t) + 2a′u(t, u(t))u
′(t)M(t, u(t))h(t)g′(t) +

+ 2a(t, u(t))M ′
t(t, u(t))g

′(t)h(t) + 2a(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g′(t) +

+ a(t, u(t))M ′′
tt(t, u(t))h(t)g(t) + 2a(t, u(t))M ′′

tu(t, u(t))u
′(t)h(t)g(t) +

+ a(t, u(t))M ′′
uu(t, u(t))(u

′(t))2h(t)g(t) + a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) −

− b′t(t, u(t))M(t, u(t))h(t)g(t) − b′u(t, u(t))u
′(t)M(t, u(t))h(t)g(t) −

− b(t, u(t))M ′
t(t, u(t))h(t)g(t) − b(t, u(t))M ′

u(t, u(t))u
′(t)h(t)g(t) −

− 2b(t, u(t))M(t, u(t))h(t)g′(t)− 2c′t(t, u(t))M(t, u(t))u′(t)h(t)g(t) −

− 2c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) − 2c(t, u(t))(u′(t))2M ′
u(t, u(t))h(t)g(t) −

− 2c(t, u(t))M ′
t(t, u(t))u

′(t)h(t)g(t) − 2c(t, u(t))M(t, u(t))u′′(t)h(t)g(t) −

− 4c(t, u(t))M(t, u(t))u′(t)h(t)g′(t)
)

dt = 0

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

.

Hence, we get

a′′tt(t, u(t))M(t, u(t)) + 2a′t(t, u(t))M
′
t(t, u(t)) + a(t, u(t))M ′′

tt(t, u(t)) −

− b′t(t, u(t))M(t, u(t)) − b(t, u(t))M ′
t(t, u(t)) = 0,

(2.7)

2a′′tu(t, u(t))M(t, u(t)) + 2a′t(t, u(t))M
′
u(t, u(t)) + 2a′u(t, u(t))M

′
t(t, u(t)) +

+ 2a(t, u(t))M ′′
tu(t, u(t))− 2c′t(t, u(t))M(t, u(t)) − 2c(t, u(t))M ′

t(t, u(t))−

−b′u(t, u(t))M(t, u(t)) − b(t, u(t))M ′
u(t, u(t)) = 0,

(2.8)

a′t(t, u(t))M(t, u(t)) + a(t, u(t))M ′
t(t, u(t)) − b(t, u(t))M(t, u(t)) = 0, (2.9)

a(t, u(t))M ′′
uu(t, u(t)) + a′′uu(t, u(t))M(t, u(t)) + 2a′u(t, u(t))M

′
u(t, u(t)) −

− 2c′u(t, u(t))M(t, u(t)) − 2c(t, u(t))M ′
u(t, u(t)) = 0,

(2.10)

a′u(t, u(t))M(t, u(t)) + a(t, u(t))M ′
u(t, u(t))− 2c(t, u(t))M(t, u(t)) = 0. (2.11)
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Note that conditions (2.7)–(2.11) are reduced to (2.4) and (2.5). �

Remark 1. If M =M(t), then

Φ(v, g) =

t1
∫

t0

M(t)v(t)g(t) dt (2.12)

is a nonlocal bilinear form and conditions (2.4) and (2.5) are represented in the form

a′u(t, u(t)) − 2c(t, u(t)) = 0, (2.13)

a′t(t, u(t))M(t) + a(t, u(t))M ′(t)− b(t, u(t))M(t) = 0. (2.14)

Remark 2. If M = M(t) and a = a(t), b = b(t), c = c(t), then conditions (2.4) and (2.5) can
be written in the form

c(t) = 0, (2.15)

a′(t)M(t) + a(t)M ′(t)− b(t)M(t) = 0. (2.16)

Remark 3. If M(t, u(t)) ≡ 1, then

Φ(v, g) =

t1
∫

t0

v(t)g(t) dt (2.17)

and conditions (2.4) and (2.5) take the form

a′u(t, u(t)) − 2c(t, u(t)) = 0, (2.18)

a′t(t, u(t)) − b(t, u(t)) = 0. (2.19)

Remark 4. If M(t, u(t)) ≡ 1 and a = a(t), b = b(t), c = c(t), then conditions (2.4) and (2.5)
are reduced to

c(t) = 0, (2.20)

a′(t)− b(t) = 0. (2.21)

3. Finding a solution to the IPCV

Theorem 3. If conditions (2.4) and (2.5) hold, then the corresponding functional is given as

FN [u] =

t1
∫

t0

(

−
1

2
M(t, u(t))a(t, u(t))(u′(t))2 +BM (t, u(t))

)

dt, (3.1)

where

BM (t, u(t)) =

1
∫

0

M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t)) dλ+BM (t, u0(t)), (3.2)

ũ(t, λ) = u0(t) + λ(u(t)− u0(t)), u0 = u0(t) is a fixed element of D(N), and BM ∈ C2([t0, t1]× T ).
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P r o o f. According to formula (1.3) and conditions (2.4) and (2.5) we have

FN [u]− FN [u0] =

=

t1
∫

t0

1
∫

0

[

M(t, ũ(t, λ))a(t, ũ(t, λ))ũ′′tt(t, λ)(u(t) − u0(t)) +

+M(t, ũ(t, λ))b(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t)) +

+M(t, ũ(t, λ))c(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt =

=

t1
∫

t0

1
∫

0

[

−M ′
t(t, ũ(t, λ))a(t, ũ(t, λ))ũ

′
t(t, λ)(u(t) − u0(t))−

−M ′
ũ(t,λ)(t, ũ(t, λ))a(t, ũ(t, λ))(ũ

′
t(t, λ))

2(u(t)− u0(t))−

−M(t, ũ(t, λ))a′t(t, ũ(t, λ))ũ
′
t(t, λ)(u(t) − u0(t))−

−M(t, ũ(t, λ))a′ũ(t,λ)(t, ũ(t, λ))(ũ
′
t(t, λ))

2(u(t)− u0(t))−

−M(t, ũ(t, λ))a(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′ +

+M(t, ũ(t, λ))b(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t)) +

+M(t, ũ(t, λ))c(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt =

=

t1
∫

t0

1
∫

0

[

ũ′t(t, λ)(u(t) − u0(t))
(

−M ′
t(t, ũ(t, λ))a(t, ũ(t, λ))−

−M(t, ũ(t, λ))a′t(t, ũ(t, λ)) +M(t, ũ(t, λ))b(t, ũ(t, λ))
)

+

+ (ũ′t(t, λ))
2(u(t)− u0(t))

(

−M ′
ũ(t,λ)(t, ũ(t, λ))a(t, ũ(t, λ)) −

−M(t, ũ(t, λ))a′ũ(t,λ)(t, ũ(t, λ)) +M(t, ũ(t, λ))c(t, ũ(t, λ))
)

−

−M(t, ũ(t, λ))a(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′ +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt =

=

t1
∫

t0

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′ +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt.

(3.3)

Note that, using (2.4), we get

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =
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=

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)
∂ũ′t(t, λ)

∂λ

]

dλ =

=

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

−
∂

∂λ

(

a(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2
)

+

+ a′ũ(t,λ)(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M ′
ũ(t,λ)(t, ũ(t, λ))(ũ

′
t(t, λ))

2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

=

1
∫

0

[

c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t))−

−
∂

∂λ

(

a(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2
)

+

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

=

1
∫

0

[

c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ−

− a(t, u(t))M(t, u(t))(u′(t))2 + a(t, u0(t))M(t, u0(t))(u
′
0(t))

2.

Hence,

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

=

1
∫

0

[

c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ−

− a(t, u(t))M(t, u(t))(u′(t))2 + a(t, u0(t))M(t, u0(t))(u
′
0(t))

2

and

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

= −
1

2
a(t, u(t))M(t, u(t))(u′(t))2 +

1

2
a(t, u0(t))M(t, u0(t))(u

′
0(t))

2.
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Thus, (3.3) becomes

FN [u]− FN [u0] =

t1
∫

t0

(

−
1

2
a(t, u(t))M(t, u(t))(u′(t))2 +

1

2
a(t, u0(t))M(t, u0(t))(u

′
0(t))

2 +

+

1
∫

0

M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t)) dλ

)

dt.

The use of (3.2) yields functional (3.1). �

Remark 5. If M =M(t) and a = a(t), b = b(t), c = c(t), then

FN [u] =

t1
∫

t0

(

−
1

2
M(t)a(t)(u′(t))2 +BM (t, u(t))

)

dt, (3.4)

where

BM (t, u(t)) =

1
∫

0

M(t)d(t, ũ(t, λ))(u(t) − u0(t)) dλ +BM (t, u0(t)). (3.5)

Remark 6. If M(t, u(t)) ≡ 1 and a = a(t), b = b(t), c = c(t), then

FN [u] =

t1
∫

t0

(

−
a(t)

2
(u′(t))2 +B(t, u(t))

)

dt,

where

B(t, u(t)) =

1
∫

0

d(t, ũ(t, λ))(u(t) − u0(t)) dλ +B(t, u0(t)).

4. The structure of variational equation (2.1)

Theorem 4. Conditions (2.4) and (2.5) hold if and only if equation (2.1) takes the form

N(u) ≡ a(t, u(t))u′′(t) +
1

M(t, u(t))

[

M ′
t(t, u(t))a(t, u(t)) +M(t, u(t))a′t(t, u(t))

]

u′(t) +

+
1

2M(t, u(t))

[

M ′
u(t, u(t))a(t, u(t)) +M(t, u(t))a′u(t, u(t))

]

(u′(t))2 +
(BM )′u(t, u(t))

M(t, u(t))
= 0.

(4.1)

P r o o f. According to (1.1), for functional (3.1), we have

δFN [u, h] =

t1
∫

t0

(

−
1

2
M ′

u(t, u(t))a(t, u(t))(u
′(t))2h(t)−

−
1

2
M(t, u(t))a′u(t, u(t))(u

′(t))2h(t)−M(t, u(t))a(t, u(t))u′(t)h′(t) + (BM )′u(t, u(t))h(t)
)

dt =

=

t1
∫

t0

(

−
1

2
M ′

u(t, u(t))a(t, u(t))(u
′(t))2h(t)−

1

2
M(t, u(t))a′u(t, u(t))(u

′(t))2h(t) +



34 Svetlana A. Budochkina, Ekaterina S. Dekhanova

+M ′
t(t, u(t))a(t, u(t))u

′(t)h(t) +M ′
u(t, u(t))a(t, u(t))(u

′(t))2h(t) +M(t, u(t))a′t(t, u(t))u
′(t)h(t) +

+M(t, u(t))a′u(t, u(t))(u
′(t))2h(t) +M(t, u(t))a(t, u(t))u′′(t)h(t) + (BM )′u(t, u(t))h(t)

)

dt =

=

t1
∫

t0

(

M(t, u(t))a(t, u(t))u′′(t)+
(

M ′
t(t, u(t))a(t, u(t)) +M(t, u(t))a′t(t, u(t))

)

u′(t) +

+
1

2

(

M ′
u(t, u(t))a(t, u(t)) +M(t, u(t))a′u(t, u(t))

)

(u′(t))2 + (BM )′u(t, u(t))
)

h(t)dt = Φ(u;N(u), h)

∀u ∈ D(N), ∀h ∈ D(N ′
u).

Hence, equation (2.1) is represented in form (4.1).

On the other hand, equation (4.1) is derived from the stationarity condition of functional (3.1).
This means that conditions (2.4) and (2.5) must be satisfied. �

5. Examples

Example 1. Consider the Emden–Fowler equation [1]

N(u) ≡ u′′(t) +
k1

t
u′(t) + k2t

m−1un(t) = 0, t ∈ [t0, t1], t0 > 0, (5.1)

where k1, k2, m, and n are constants, n ∈ N.

In this case,

a = 1, b(t) =
k1

t
, c = 0, d(t, u(t)) = k2t

m−1un(t).

The operator N (5.1) is not potential on D(N) (2.2) relative to bilinear form (2.17) because
condition (2.21) is not satisfied.

We find M = M(t) such that the operator N (5.1) is potential on D(N) (2.2) relative to a
bilinear form of type (2.12).

From condition (2.16), we obtain

M(t) = tk1 .

Thus, the operator N (5.1) is potential on D(N) (2.2) relative to the following bilinear form:

Φ(v, g) =

t1
∫

t0

tk1v(t)g(t) dt.

By formula (3.5), we get

BM (t, u(t)) =
k2

n+ 1
tm−1+k1un+1(t),

and functional (3.4) takes the form

FN [u] =

t1
∫

t0

(

−
tk1

2
(u′(t))2 +

k2

n+ 1
tm−1+k1un+1(t)

)

dt. (5.2)



On the Potentiality of a Class of Operators 35

Remark 7. The operator N of the Emden equation [8]

N(u) ≡ u′′(t) +
2

t
u′(t) + u5(t) = 0, t ∈ [t0, t1], t0 > 0,

is potential on D(N) (2.2) relative to the following bilinear form:

Φ(v, g) =

t1
∫

t0

t2v(t)g(t) dt

(see Example 1; k1 = 2, k2 = 1, m = 1, and n = 5).
In this case, functional (5.2) becomes

FN [u] =

t1
∫

t0

(

−
t2

2
(u′(t))2 +

t2

6
u6(t)

)

dt. (5.3)

Note that functional (5.3) was obtained in another way in [8].

Example 2. Consider the following equation:

N(u) ≡ 2tu′′(t) + 2u′(t) + t(u′(t))2 − u(t)− 1 = 0, t ∈ [t0, t1]. (5.4)

In this case,
a(t) = 2t, b = 2, c(t) = t, d(u(t)) = −u(t)− 1.

The operator N (5.4) is not potential on D(N) (2.2) relative to bilinear forms (2.12) and (2.17)
because c(t) 6= 0.

We find M = M(u(t)) such that the operator N (5.4) is potential on D(N) (2.2) relative to a
bilinear form of type (2.3).

From conditions (2.4) and (2.5), we obtain

M(u(t)) = eu(t).

Thus, the operator N (5.4) is potential on D(N) (2.2) relative to the following bilinear form:

Φ(u; v, g) =

t1
∫

t0

eu(t)v(t)g(t) dt.

By formula (3.2), we get
BM (u(t)) = −eu(t)u(t),

and functional (3.1) takes the form

FN [u] =

t1
∫

t0

(

−teu(t)(u′(t))2 − eu(t)u(t)
)

dt.

Example 3. Consider the following equation [8]:

N(u) ≡ u′′(t)−
(u′(t))2

u(t)
+

1

u2(t)
= 0, t ∈ [t0, t1]. (5.5)
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Here,

a = 1, b = 0, c(u(t)) = −
1

u(t)
, d(u(t)) =

1

u2(t)
.

The operator N (5.5) is not potential on D(N) (2.2) relative to bilinear forms (2.12) and (2.17)
because conditions (2.13) and (2.18) do not hold.

We find M = M(u(t)) such that the operator N (5.5) is potential on D(N) (2.2) relative to a
bilinear form of type (2.3).

From conditions (2.4) and (2.5), we obtain

M(u(t)) =
1

u2(t)
.

Thus, the operator N (5.5) is potential on D(N) (2.2) relative to the following bilinear form:

Φ(u; v, g) =

t1
∫

t0

1

u2(t)
v(t)g(t) dt.

By formula (3.2), we get

BM (u(t)) = −
1

3u3(t)
,

and functional (3.1) takes the form

FN [u] =

t1
∫

t0

(

−
(u′(t))2

2u2(t)
−

1

3u3(t)

)

dt.

6. Conclusion

In the paper, we obtained the following results: the potentiality of the operator of a second-
order ordinary differential equation relative to a local bilinear form was investigated, a formula
for constructing the functional was given, and the structure of the corresponding Euler–Lagrange
equation was defined. In particular, applications and extensions of the work consist in the possibility
to establish connections between the invariance of the functional, the given equation, and its first
integrals and to spread the proposed scheme of investigation to higher-order equations.
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Abstract: Let P (G,x) be a chromatic polynomial of a graph G. Two graphs G and H are called chromat-
ically equivalent iff P (G,x) = H(G, x). A graph G is called chromatically unique if G ≃ H for every H chro-
matically equivalent to G. In this paper, the chromatic uniqueness of complete tripartite graphs K(n1, n2, n3)
is proved for n1 > n2 > n3 > 2 and n1 − n3 6 5.
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nomial.

1. Introduction

All graphs in this paper are finite and simple, i.e., they do not contain loops and multiple edges.
Basic terminology is used according to [1].

Let G = (V,E) be a graph with a vertex set V and an edge set E. A coloring of the graph
G with x colors is a map ϕ : V → {1, 2, . . . , x} such that ϕ(u) 6= ϕ(v) for any two adjacent
vertices u and v of the graph G. We will call the numbers 1, 2, . . . , x the colors. A graph is called
x-colorable if there exists its coloring with x colors. The smallest integer x for which G is x-colorable
is called the chromatic number of G and is denoted by χ(G). The number of colorings of a graph
G with x colors is denoted by P (G,x). It is well known (see, for example, [1]) that the function
P (G,x) is a polynomial in variable x. Two graphs G and H are called chromatically equivalent if
P (G,x) = P (H,x). A graph G is called chromatically unique if, for any graph H, the graphs G and
H are chromatically equivalent iff they are isomorphic. Much attention of researches was drawn to
the problem of chromatic uniqueness of complete multipartite graphs K(n1, n2, . . . , nt). Here are
some results, a more complete list can be found in the survey [16] and the monograph [6].

(1) A graph K(n1, n2), where n1 > n2 > 2, is chromatically unique (see [11]).

(2) A graphK(n1, n2, . . . , nt−1, 1) is chromatically unique iff ni 6 2 for all i = 1, 2, . . . t−1 (see [14]).

(3) A graph K(n1, n2, . . . , nt), where n1 > n2 > . . . > nt > 2, is chromatically unique if n1−nt 6 4
(see [2, 4, 12, 13, 15]).

The main result of this paper is the following theorem.

Theorem 1. A complete tripartite graph K(n1, n2, n3) is chromatically unique if n1 > n2 >

n3 > 2 and n1 − n3 6 5.

The chromatic uniqueness of a graph K(n1, n2, n3) with n1 > n2 > n3 > 2 and n1−n3 6 4 was
proved in [2, 12, 13]. The chromatic uniqueness of a graph K(n1, n2, n3) with n1 > n2 > n3 > 2,

https://doi.org/10.15826/umj.2021.1.004
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n1 − n3 = 5, and n1 + n2 + n3 6≡ 2 (mod 3) was proved in [9]. The main aim of this paper is to
prove the theorem in the case n1 − n3 = 5 and n1 + n2 + n3 ≡ 2 (mod 3).

One of the most important tools for studying chromatic equivalence and chromatic uniqueness
is chromatic invariants. Assume that a number is assigned to every graph. This number is called
a chromatic invariant if it is the same for all chromatically equivalent graphs. For a chromatic
invariant α(G) and two arbitrary graphs G1 and G2, let ∆α(G2, G1) = α(G2) − α(G1). It is well
known (see, for example, [1] or [7]) that the number of vertices, the number of edges, the number
of connected components, and the number of triangles are chromatic invariants.

According to Zykov’s theorem (see, for example, [1]), the chromatic polynomial can be written
as

P (G,x) =

n
∑

i=χ

pt(G, i)x(i),

where pt(G, i) is the number of partitions of the vertex set of the graph G into t independent sets,
and x(i) is the falling factorial of x, i.e., x(i) = x(x − 1) . . . (x − i + 1). It follows from Zykov’s
theorem that the numbers pt(G, i), i = χ, . . . , n, are chromatic invariants. We are most interested
in pt(G,χ+ 1), which we will write simply as pt(G).

The rest of the paper is structured as follows. Section 2 describes a connection between integer
partitions and chromatic uniqueness of complete multipartite graphs and presents a schema of the
proof. Also, some properties of chromatic invariants are discussed in this section. In Sections 3, 4,
and 5, upper bounds of the invariant pt are proved. Section 6 contains the proof of the main
theorem.

2. Integer partition lattice and chromatic invariants

Let n be a positive integer. A partition of n is a sequence of nonnegative integers
u = (u1, u2, . . . , ) such that u1 > u2 > . . . and n =

∑∞
i=1 ui. The length of a partition u is a

number l such that ul > 0 and ul+1 = ul+2 = . . . = 0. Writing a partition, we will often omit its
zero elements.

Let u = (u1, u2, . . .) and v = (v1, v2, . . .) be two partitions of a number n. Define v E u if

v1 ≤ u1,

v1 + v2 ≤ u1 + u2,

. . .

v1 + v2 + . . .+ vt−1 ≤ u1 + u2 + . . .+ ut−1,

where t is the largest of the lengths of u and v. The relation E is called the dominance order. It
was shown in [5] that all partitions of a number n form a lattice with respect to E.

As was proved in [3], all partitions of a number n with fixed length form a lattice with respect
to E. Also, Baranskii and Sen’chonok introduced [3] a notion of elementary transformation. A par-
tition v = (v1, v2, . . . vt) is a result of an elementary transformation of a partition u = (u1, u2, . . . , ut)
if there exist indices i and j such that
(1) 1 ≤ i < j ≤ t;
(2) ui − 1 ≥ ui+1 and uj−1 ≥ uj + 1;
(3) ui − uj = δ ≥ 2;
(4) vi = ui − 1, vj = uj + 1, uk = vk for all k = 1, 2, . . . , t, k 6= i, j.

It was proved in [3] that v E u holds if and only if the partition v can be obtained from the
partition u by a with finite number of elementary transformations.
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Every complete t-partite graph with n vertices can be identified with a partition of length t of
the number n. Let u = (u1, u2, . . . , ut) be a partition of length t of the number n. We will write
K(u) instead of K(u1, u2, . . . , ut) and denote parts of the graph K(u) by Vi, where |Vi| = ui for all
i = 1, 2, . . . , t.

Let u be a partition of length t of a number n. We present the following schema for proving the
chromatic uniqueness of the graph K(u). By contradiction, we assume that the graph K(u) is not
chromatically unique. This means that there exists a graph H nonisomorphic to the graph K(u),
and the graphs H and K(u) are chromatically equivalent. It is clear that the chromatic number
of the graph H is t; thus, the graph H can be obtained from a complete t-partite graph K(v) by
removing a set of edges E. It was shown in [17] that different complete multipartite graphs are not
chromatically equivalent; hence, E must be non-empty. Denote by Eij the set of all edges e ∈ E
such that one end of e is in Vi and the other is in Vj and define eij = |Eij |. For an arbitrary set of
edges E from K(v), denote by 〈E〉 the subgraph edge-induced by E.

The following lemma was proved in [8].

Lemma 1 [8, Lemma 1]. Let u = (u1, . . . , ui, . . . , uj , . . . ut) → v = (. . . , ui − 1, . . . uj + 1, . . .)
be an elementary transformation of a partition u, where ut ≥ 2. Then the graphs K(u) and H are

not chromatically equivalent.

It is clear that every complete t-partite graph is t-colorable, but is not (t−1)-colorable; in other
words, the chromatic number of a complete t-partite graph is equal to t. Let us compute pt(K(u))
for a complete multipartite graph K(u1, u2, . . . , ut). It is easy to show that any partition of the
vertex set of the graph K(u) into t+1 parts can be obtained by splitting exactly one part into two
nonempty subsets; so pt(K(u)) =

∑n
i=1 2

ui−1 − t.
It was investigated in [4] how the invariant pt changes from the graph K(v) to the graph H.

Let us introduce all necessary definitions and auxiliary statements.
A complete multipartite subgraph G1 of a graph K(v) is called an E-subgraph if each part of

the graph G1 is contained in some part of the graph K(v), and the edge set of the graph G1 is
contained in the set E. An arbitrary disjoint set of E-subgraphs is called a garland. We will say
that a garland G′ destroys a part Vi if every vertex of Vi is contained in some E-subgraph of the
garland G′. A garland of cardinality p which destroys exactly p− 1 parts is called interesting. The
set of all edges of all E-subgraphs of a garland is called the edge aggregate and is denoted by E(G).
The set of all vertices of all E-subgraphs of a garland is called the vertex aggregate and is denoted
by V (G). A garland is called k-edge if its edge aggregate contains exactly k edges. The following
properties were proved in [4].

(1) If the chromatic number of a graph H is equal to t and pt(H) = 1, then every garland of
cardinality p destroys at most p− 1 parts.

(2) Every garland is uniquely defined by its edge aggregate.

(3) ∆pt(H,K(v)) is equal to the number of all interesting garlands.

The next lemma follows from these properties.

Lemma 2 [4, Corollary 2]. If a graph H is obtained from a graph K(v) by remov-

ing some set of edges E and the graphs K(u) and H are chromatically equivalent, then

|E| ≤ ∆pt(H,K(v)) ≤ 2|E|−1.

An improvement of this estimate was obtained in [10]. A subgraph H ′ of a graph 〈E〉 is called
a coordinated subgraph of type K(s, 1) if H ′ ≃ K(s, 1) and all s vertices of degree 1 are in the same
part of K(v). A part Vj of a graph K(v) is called active if there exist a vertex x ∈ Vj and an edge
e ∈ E such that x and e are incident.
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Lemma 3 [10, Theorem]. Let every active part of a graph K(v) contain at least three vertices.

If E induces a coordinated subgraph of type K(|E|, 1), then ∆pt(G,K(v)) = 2|E| − 1; otherwise,
∆pt(G,K(v)) 6 2|E|−1 + 1.

Let G′ = {G′
1, G

′
2, . . . , G

′
p} be a garland. We will say that the garland G′ is of type

H1∪̇H2∪̇ . . . ∪̇Hp, where {H1,H2, . . . Hp} is a set of graphs, if G′
i ≃ Hi for all i = 1, 2, . . . , p.

We will say that an edge set F ⊆ E induces a garland (an interesting garland) if there exists a
garland (an interesting garland, respectively) G such that F = E(G). A set F ⊆ E is called con-

tinuable if there exists a garland G such that F ⊆ E(G). A set F ⊆ E′ ⊆ E is called continuable

outside E′ if there exists a garland G such that E(G) ∩ E′ = F . We will say that an edge e is in
the garland G if e ∈ E(G).

Let e be an arbitrary edge from E. Denote by ξ1(e) the number of triangles of the graph K(v)
containing the edge e. Let ξ1 =

∑

e∈E ξ1(e).

Consider a triangle in a graph G that contains exactly two edges from E. Denote them by e1
and e2. We will call a subgraph induced by {e1, e2} a Ξ2-subgraph. Denote by ξ2 the number of
such subgraphs and by ξ3 the number of triangles in 〈E〉.

Denote by I3(G) the number of triangles in the graph G. In [2], the following equality was
established:

∆I3(K(v),H) = ξ1 − ξ2 − 2ξ3.

Note that, the removal of an edge cannot produce a new triangle; so ∆I3(K(v),H) is equal to the
number of triangles in K(v) destroyed by removing an edge set E from K(v).

3. Upper bound for the invariant pt in the case where 〈E〉 contains a triangle

The main goal of this section is, in the case where 〈E〉 contains a triangle, to obtain an upper
bound for the number of interesting garlands better than the bound in Lemma 3. Denote by ∆ the
edge set of this triangle. One the way to achieve this is to count number of garlands whose edge
aggregates contain an edge from ∆ and an edge that is not in the triangle. The following lemma
was proved in [10].

Lemma 4 [10, Lemma 3]. If a set of edges {e1, e2, e3} = E1 ⊂ E induces a triangle, then there

is no nonempty set Ê ⊆ E \ E1 such that the sets {ei}∪̇E1 induce interesting garlands for all

i = 1, 2, 3.

We can deduce the following statement from this lemma.

Corollary 1. If ∆ induces a triangle, ∆ ⊆ E, and F is an arbitrary nonempty subset of E \∆,
then there exist at most three nonempty subsets F ′ ⊆ ∆ such that F ∪ F ′ induces an interesting

garland.

P r o o f. Let us fix some F ⊆ E \ ∆ and consider all possible nonempty subsets F ′ ⊆ ∆.
Define ∆ = {e1, e2, e3}. Assume that F ∪ F ′ induces an interesting garland G′.

Assume that |F ′| = 2 and, without loss of generality, let F ′ = {e1, e2}. Define e1 = xy and
e2 = yz. Note that the vertices x and z are in different parts of K(v). Since F ∪ F ′ induces a
garland and the edges e1 and e2 are adjacent, they are in the same E-subgraph of G′. Denote
this E-subgraph by H1. Since H1 is a complete multipartite graph and the vertices x and z are in
different parts, the edge xz is in the edge aggregate of G′. However, xz 6∈ F ′ and xz ∈ ∆; therefore,
xz 6∈ F . Consequently, xz is not in the edge aggregate of G′, a contradiction. Hence, |F ′| 6= 2.
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Thus, there are four choices for F ′: three one-element subsets and ∆. Using Lemma 4, one
can deduce that at most two of the sets F ′ ∪ {e1}, F

′ ∪ {e2}, and F ′ ∪ {e3} induce an interesting
garland. Thus, there are at most three choices for F ′ and the corollary is proved. �

The following lemma describes all sets F ⊆ E \∆ such that there exist exactly three subsets
F ′ ⊆ {e1, e2, e3} such that F ∪ F ′ induces an interesting garland.

Lemma 5. Assume that each part of K(v) contains at least three vertices and edges

e1, e2, e3 ∈ E induce a triangle. Let F⊆ E \ {e1, e2, e3}. If there are exactly three nonempty subsets

F ′ ⊆ {e1, e2, e3} such that F ∪ F ′ induces an interesting garland, then F induces an interesting

garland, |F | > 1, and there is no edge f ∈ F such that f is adjacent to any of e1, e2, and e3.

P r o o f. Define ∆ = {e1, e2, e3}. Fix some F ⊆ E \ ∆ and assume that there exist three
different subsets F ′ ⊆ ∆ such that F ∪ F ′ induces an interesting garland. Denote this subsets by
E1, E2, and E3. Using Corollary 1, one can deduce that two of E1, E2, and E3 are one-element sets
and the third one is equal to ∆. Without loss of generality, let E1 = {e1}, E2 = {e2}, and E3 = ∆.

Let the set E1 ∪ F induce an interesting garland G1, the set E2 ∪ F induce an interesting
garland G2, and the set E3 ∪ F induce an interesting garland G∆. Denote the vertices of the
triangle by x, y, and z.

Let us prove that an arbitrary edge f ∈ F is not adjacent to any of the edges e1, e2, and e3. By
contradiction, assume that f is incident to some vertex from the triangle, without loss of generality,
assume that f is incident to x. Denote the second end of f by w. Note that w and y or w and
z are in different parts of K(v). Without loss of generality, assume that w and y are in different
parts of K(v). Since the edges xy and f = xw are adjacent and are in the same E-subgraph of the
garland G∆, and w and y are in different parts of K(v), the edge wy is in F . Therefore, since wx
and wy are adjacent edges, they are in the same E-subgraph of the garland G1. So, the edge xy
is in the same E-subgraph. Thus, xy is in the edge aggregate of the garland G1. By analogy, the
edge xy is in the aggregate of the garland G2. But this is impossible since xy ∈ ∆ and the edge
aggregates of the garlands G1 and G2 cannot contain a common edge from ∆.

Since any edge from F is not adjacent to any edge from ∆, the set {e1} induces a E-subgraph of
the garland G1. Therefore, the graph 〈F 〉 consists of E-subgraphs, so F induces a garland. Denote
this garland by GF .

Note that all the garlands G1, G2 and G∆ have the same cardinality. Denote this cardinality
by p. Since all this garlands are interesting, each of them destroys exactly p − 1 parts of K(v).
Note also that |GF | = p− 1.

Let x ∈ Vi, y ∈ Vj , z ∈ Vk, e1 = xy, and e2 = yz. Note that V (G∆) = V (G1) ∪ V (G2).
This means that if G1 or G2 destroy some part, then G∆ also destroys this part. Note also that
if one of the garlands G1, G2, and G∆ destroys some part V other than Vi, Vj , and Vk, then GF

also destroys V . Since no edge from E(G1) is incident to z, the garland G1 cannot destroy Vk.
If G2 destroys Vk, then G∆ also destroys Vk and thus G∆ destroys more parts than G1 does, a
contradiction. Therefore, G2 does not destroy Vk. If G2 does not destroy Vj , then GF destroys
p− 1 parts and |GF | = p− 1, a contradiction. So G2 destroys Vj. Since no edge from F is incident
to y, the garland GF cannot destroy Vj , thus GF destroys one part less than G2 does. Therefore,
GF destroys p− 1 parts, and GF is an interesting garland.

It remains to prove that |F | > 1. If |F | = 1, then G∆ is a garland of type K(1, 1, 1)∪̇K(1, 1).
Note that such a garland cannot destroy any part, since each active part contains at least three
vertices. �

Now we are ready to prove a better upper bound in the case where 〈E〉 contains a triangle.
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Lemma 6. Assume that each part of K(v) contains at least three vertices. If 〈E〉 contains a

triangle, then the number of interesting garland does not exceed 2|E|−2 + 2|E|−3 − 3|E|+ 13.

P r o o f. Denote edges of the triangle by e1, e2, and e3, and let ∆ = {e1, e2, e3}. Define
E′ = E \∆.

Case 1. Assume that E′ induces a coordinated subgraph of type K(|E| − 3, 1). Then all edges
of E are located in one of the ways shown in Fig. 1.

Figure 1. Triangle and a coordinated subgraph of type K(|E| − 3, 1).

In the first case, there are 2 + 1 + 2|E|−2 − 1 = 2|E|−2 + 2 interesting garlands.
In the second case, there are 4 + 2|E|−3 − 1 = 2|E|−3 + 3 interesting garlands.
In the third case, there are at most 4 + 2|E|−3 − 1 + 3 = 2|E|−3 + 6 interesting garlands.
In the fourth case, there are 4 + 2|E|−3 − 1 = 2|E|−3 + 3 interesting garlands.
In the fifth case, there are at most 4 + 2|E|−3 − 1 + 1 = 2|E|−3 + 4 interesting garlands.
In the sixth case, there are at most 2|E|−3 + 6 < 2|E|−2 + 2|E|−3 − 3|E|+ 13 interesting garlands.
In all the cases, the number of interesting garlands does not exceed 2|E|−3 + 6 < 2|E|−2 + 2|E|−3 −
3|E| + 13.

Case 2. Now consider the case where E′ does not induce a coordinated subgraph of type
K(|E| − 3, 1).

There are four interesting garlands G such that E(G) ⊆ ∆. By Lemma 3, there exist at most
2|E|−4 + 1 interesting garlands G such that E(G) ⊆ E′.

Estimate the number of interesting garlands whose edge aggregates contain some edge from E′

and some edge from ∆. Define F = E(G), F∆ = F ∩∆, and F ′ = F ∩ E′. By Lemma 5, if for F
there exist three F ′ such that F ∪ F ′ induces an interesting garland, then F ′ induce an interesting
garland, |F ′| > 1, and any edge from F ′ is not adjacent to any edge from ∆. Denote the number
of such F by X.

Case 2.1. Assume that any edge from E′ is not adjacent to any edge from ∆. Using Lemma 3
and the fact that |F | > 1, one can deduce that

X 6 2|E|−4 + 1− (|E| − 3) = 2|E|−4 − |E|+ 4.

For any other F ′ ⊆ E′, |F ′| > 1, there are at most two subsets F∆ ⊆ ∆ such that F ′ ∪ F∆ induces
an interesting garland. If F ′ ⊆ E′ and |F ′| = 1, there exist no F∆ ⊆ ∆ such that F ′ ∪ F∆ induces
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an interesting garland. Therefore, the number of interesting garlands does not exceed

3X + 2(2|E|−3 − 1−X − (|E| − 3)) + 2|E|−4 + 1 + 4 =

= 3X + 2|E|−2 − 2− 2X − 2|E| + 6 + 2|E|−4 + 1 + 4 =

= 2|E|−2 +X − 2|E| + 2|E|−4 + 9 6

6 2|E|−2 + 2|E|−4 − |E|+ 4− 2|E| + 2|E|−4 + 9 = 2|E|−2 + 2|E|−3 − 3|E| + 13.

Case 2.2. Now consider the case when there are exactly k > 1 edges from E′ such that each
of them is adjacent to some edge from ∆. Denote the set of this edges by H.

If for a set F ′ ⊆ E′ there exists exactly three sets F∆ ⊆ ∆ such that F ′ ∪ F∆ induces an
interesting garland, then F ′ ⊆ E′ \H and |F ′| > 1, so

X 6 2|E|−3−k − (|E| − 3− k)− 1.

For any other F ′ ⊆ E′, |F ′| > 1, there are at most two such sets F∆. If |F ′| = 1, then if F ′ ⊆ H,
then there is at most one such F∆ and if F ′ 6⊆ H, then such F∆ does not exist. Therefore, the
number of interesting garland does not exceed

3X + 2(2|E|−3 − 1−X − (|E| − 3)) + k + 2|E|−4 + 1 + 4 =

3X + 2|E|−2 − 2− 2X − 2|E| + 6 + 2|E|−4 + 1 + 4 + k =

= 2|E|−2 +X − 2|E|+ 2|E|−4 + 9 + k 6

6 2|E|−2 − 2|E|+ 2|E|−4 + 9 + 2|E|−3−k − (|E| − 3− k)− 1 + k =

= 2|E|−2 + 2|E|−4 − 3|E|+ 11 + 2|E|−3−k + 2k.

It remains to prove that

2|E|−2 + 2|E|−4 − 3|E| + 11 + 2|E|−3−k + 2k 6 2|E|−2 + 2|E|−3 − 3|E|+ 13.

It is sufficient to prove that
2|E|−3−k + 2k 6 2|E|−3 + 2.

Let m = |E| − 3. Consider the function f(x) = 2m−x + 2x defined on the closed interval from
1 to m. Calculate the first and second derivatives:

f ′(x) = −2m−x ln 2 + 2;

f ′′(x) = 2m−x ln2 2 > 0.

Therefore, f is a convex function, so it takes its maximum value at the end point of the interval.
So it suffices to verify the inequality for k = 1 and k = m = |E| − 3. For k = 1, the inequality
takes the form

2|E|−3 + 2 6 2|E|−3 + 2

and is valid. Consider the case k = m = |E| − 3. In this case, we need to prove that 2m 6 2m + 2.
Dividing both sides by 2, one can obtain m− 1 6 2m−1. By Bernulli’s inequality,

2m−1 = (1 + 1)m−1 > 1 +m− 1 = m > m− 1,

and the lemma is proved. �

In some cases, we can use a better upper bound than Lemma 3 gives. In such cases, the following
lemma is useful.
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Lemma 7. Assume that each part of K(v) contains at least three vertices and edges

e1, e2, e3 ∈ E induce a triangle. Let E′ = E \ {e1, e2, e3}. If there are X interesting garlands

G such that E(G) ⊆ E′, Y nonempty subsets of E′ continuable outside E′, k edges h ∈ E′ for

each of which there exists an edge h′ ∈ ∆ such that h and h′ induce a coordinated subgraph of type

K(2, 1), then the number of interesting garlands doest not exceed 2X + 2Y − 5|E| + 19 + k.

P r o o f. Consider an arbitrary subset F ⊆ E′ and estimate the number of interesting garlands
G such that F ⊆ E(G) and E(F )∩ {e1, e2, e3} 6= ∅. Let H = E(F )∩ {e1, e2, e3}. Note that F is a
nonempty subset of E′ continuable outside E′.

Case 1. |F | = 1. Let F = {f}. If f does not induce a coordinated subgraph of type K(2, 1)
with any of edges from {e1, e2, e3}, then H must be an E-subgraph. This means that either H
is a one-element set or H = {e1, e2, e3}. In both cases, F ∪ H does not induce an interesting
garland. Therefore, f must induce a coordinated subgraph of type K(2, 1) with some edge from
{e1, e2, e3}. By the lemma hypothesis, there are k such edges. Note that, in this case, H must be
a one-element set and it is uniquely defined by the edge f . So, in this case, there are at most k
interesting garlands.

Case 2. |F | > 1 and F does not induce interesting garlands. By Lemma 5, there are at most
two subsets H. Note that F can be chosen in

Y −X − (|E| − 3) = Y −X − |E|+ 3

ways; so, in this case, the number of interesting garlands does not exceed

2(Y −X − |E|+ 3) = 2Y − 2X − 2|E| + 6.

Case 3. |F | > 1 and F induces interesting garlands. In this case, by Lemma 7, there are at
most three sets H, so the number of interesting garlands does not exceed

3(X − (|E| − 3)) = 3X − 3|E|+ 9.

There are X interesting garlands whose edge aggregates are in the set E′ and four interesting
garlands whose edge aggregates are in the set {e1, e2, e3}. Therefore, the number of interesting
garlands does not exceed

2Y − 2X − 2|E|+ 6 + 3X − 3|E|+ 9 + k +X + 4 = 2Y + 2X − 5|E|+ 19,

and the lemma is proved. �

Lemma 8. Assume that each active part of K(v) contains at least three vertices. If 〈E〉 con-

tains two triangles that do not have a common edge, then the number of interesting garlands does

not exceed 2|E|−2 − 12|E| + 58.

P r o o f. Denote by ∆ the edge set of one triangle, and let E′ = E \∆. Let X be the number
of interesting garlands G such that E(G) ⊆ E′, and let Y be the number of nonempty subsets of
E′ continuable outside E′.

By Lemma 6,

X 6 2|E|−5 + 2|E|−6 − 3(|E| − 3) + 13 = 3 · 2|E|−6 − 3|E| + 22.

Denote by ∆′ the edge set of the other triangle. To estimate the number of nonempty subsets
of E′ continuable outside E′, consider an arbitrary F ⊆ E′ \∆′ and estimate the number of sets
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F ′ ⊆ ∆′ such that F ∪ F ′ is a continuable set. Note that if F ∪ F ′ is a continuable set, then F ′ is
either empty, or a one-element set, or ∆′. Since F can be chosen in 2|E|−6 ways, there are at most
5 · 2|E|−6 continuable sets; thus, there are at most 5 · 2|E|−6 nonempty continuable sets.

Using Lemma 7 and assuming k 6 |E| − 3, one can conclude that the number of interesting
garlands does not exceed

2 · (3 · 2|E|−6 − 3|E| + 22) + 2 · (5 · 2|E|−6 − 1)− 5|E|+ 19 + |E| − 3 =

= 16 · 2|E|−6 − 12|E| + 55 = 2|E|−2 − 12|E| + 58.

�

4. Upper bound for the invariant pt

in the case where 〈E〉 contains a Ξ2-subgraph

The main goal of this section is, in the case where 〈E〉 contains a Ξ2-subgraph, to obtain a
better upper bound for the number of interesting garlands. Recall that a pair of edges e, f ∈ E
induces a Ξ2-subgraph if it induces a triangle in K(v) whose third edge is not in E.

Lemma 9. If edges f and g induce a Ξ2-subgraph, then there is no a garland G such that

f, g ∈ E(G).

P r o o f. Define f = xy and g = yz and note that the vertices x and z are in different parts
of K(v).

By contradiction, assume that there is a garland G such that f, g ∈ E(G). The edges f and g
are adjacent, so they are in the same E-subgraph H ′ of the garland G. Since the vertices y and z
are in different parts ofK(v), the edge yz must be in the subgraphH ′, so yz ∈ E, a contradiction. �

Now we are ready to prove a better upper bound.

Lemma 10. Let |E| > 4 and each active part of K(v) contains at least three vertices. If 〈E〉
contains a Ξ2-subgraph, then the number of interesting garlands does not exceed 2|E|−1.

P r o o f. Let edges f and g induce a Ξ2-subgraph. Consider the cases.

Case 1. Assume that 〈E〉 contains a coordinated subgraph of type K(|E|−1, 1). Without loss
of generality, assume that f is not in the coordinated subgraph of type K(|E| − 1, 1). Then there
are two possible configurations for E, they are shown in Fig. 2.

f f

Figure 2. Ξ2-subgraph and coordinated subgraph of type K(|E| − 1, 1).

In both cases, the edge f is in exactly one interesting garland. There are exactly 2|E|−1 − 1
interesting garlands that do not contain the edge f . Thus, there are exactly

2|E|−1 − 1 + 1 = 2|E|−1
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interesting garlands.

Case 2. Now consider the case where 〈E〉 does not contain a coordinated subgraph of type
K(|E| − 1, 1). By Lemma 9, the edge aggregate of any garland is in the set E \ {f} or in the set
E \ {e}. By Lemma 3, there are at most 2|E|−2 + 1 interesting garlands whose edge aggregates are
in the set E \ {f} and at most 2|E|−2 + 1 interesting garlands whose edge aggregates are in the
set E \ {e}. Note that |E| − 2 interesting one-edge garlands were counted twice, so the number of
interesting garlands does not exceed

2 · (2|E|−2+1)− (|E| − 2) = 2|E|−1 − |E|+ 4 6 2|E|−1,

and the lemma is proved. �

In the case where 〈E〉 does not contain a coordinated subgraph of type K(|E| − 1, 1), we can
obtain a better upper bound.

Lemma 11. Let |E| ≥ 5, and let each part of K(v) contain at least three vertices. If 〈E〉
does not contain a coordinated subgraph of type K(|E| − 1, 1) and contains a Ξ2-subgraph, then the

number of interesting garlands does not exceed 2|E|−1 − |E|+ 1.

P r o o f. By Lemma 6, it is sufficient to consider the case where 〈E〉 does not contain a
triangle.

Let edges e and g induce a Ξ2-subgraph. Note that, by Lemma 9, the edge aggregate of any
garland cannot contain both the edges e and g.

Case 1. Assume that the edge g is in two different Ξ2-subgraphs. Define Ee = E \{g} and note
that if e ∈ E(G), then E(G) ⊆ Ee. By the lemma hypothesis, Ee does not induce a coordinated
subgraph of type K(|E| − 1, 1), so, by Lemma 3, there are at most 2|E|−2 + 1 interesting garlands
whose edge aggregates are subsets of Ee. In this case, it remains to estimate the number of
interesting garlands whose edge aggregates contain the edge g.

Let f 6= e be an edge such that the edges f and g induce a Ξ2-subgraph. Define Eg = E \{f, e}
and note that if the edge g is in G, then E(G) ⊆ Eg.

Case 1.1. Assume that Eg induces a coordinated subgraph of type K(|Eg|, 1). Then there are
exactly 2|E|−2 − 1 interesting garlands whose edge aggregates are subsets of Eg. Recall that there
are at most 2|E|−2+1 interesting garlands whose edge aggregates are subsets of Ee. Note also that
there are 2|E|−3 interesting garlands whose edge aggregates are subsets of E \ {e, g} (which are
2|E|−3 − 1 interesting garlands of type K(s, 1) whose edge aggregates are subsets of E \ {e, g, f}
and a one-edge garland induced by f). All these garlands were counted twice, so the number of
interesting garlands does not exceed

2|E|−2 − 1 + 2|E|−2 + 1− 2|E|−3 = 2|E|−1 − 2|E|−3.

It remains to prove that
2|E|−1 − 2|E|−3 6 2|E|−1 − |E|+ 1.

To do this, it suffices to prove that the inequality n− 1 6 2n−3 holds for all integer n > 5. Let us
prove this by induction on n.

The base case. If n = 5, then 5− 1 = 4 = 22 and the inequality is verified.

The induction step. Assume that the inequality is proved for n and prove it for n + 1. We
need to prove 2n−2 > n. By the induction hypothesis,

2n−2 = 2 · 2n−3 > 2 · (n− 1) = n+ n− 2 > n+ 3 > n,
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and the inequality is proved.

Case 1.2. Now consider the case where Eg does not induce a coordinated subgraph of type
K(|Eg|, 1). In this case, by Lemma 3, there are at most 2|E|−3 +1 interesting garlands whose edge
aggregates are subsets of Eg. Note also that there are |E|−3 interesting one-edge garlands induced
by edges from E \ {e, g}. So, the number of interesting garlands does not exceed

2|E|−3 + 1 + 2|E|−2 + 1− (|E| − 3) = 3 · 2|E|−3 + 5.

It remains to prove that
3 · 2|E|−3 − |E|+ 5 6 2|E|−1 − |E|+ 1.

It suffices to check that
3 · 2|E|−3 + 4 6 2|E|−1 = 4 · 2|E|−3,

which is equivalent to 4 6 2|E|−3, which is true because |E| > 5.

Case 2. Now consider the case where the edges f and g are in only one Ξ2-subgraph. Define
Eg = E \ {e} and Ee = E \ {e}. Note that, by Lemma 3, there are at most 2|E|−1 + 1 interesting
garlands whose edge aggregates are subsets of Eg and at most 2|E|−1+1 interesting garlands whose
edge aggregates are subsets of Ee.

Assume that there exist at least |E|+1 interesting garlands whose edge aggregates are subsets
of E \ {e, g}. In this case, there are at most

2(2|E|−1 + 1)− (|E|+ 1) = 2|E| + 2− |E| − 1 = 2|E| − |E|+ 1

interesting garlands. Therefore, it suffices to prove the lemma in the case when there are at most
|E| garlands whose edge aggregates are subsets of E \ {e, g}.

Note that, in any case, there are |E| − 2 interesting one-edge garlands induced by edges from
E \ {e, g}. Consequently, there are at most two interesting garlands whose edge aggregates are
subsets of E \ {e, g} and contain at least two edges.

Note that it suffices to prove that the edge f is in at most 2|E|−2 − |E| interesting garlands.
Indeed, in this case, since there are at most 2|E|−1 + 1 interesting garland whose edge aggregates
are subsets of Eg, the total number of interesting garlands does not exceed

2|E|−2 − |E|+ 2|E|−2 + 1 = 2|E|−1 − |E|+ 1.

By analogy, it suffices to prove that the edge g is in at most 2|E|−2 − |E| interesting garlands.
To prove this, we build either |E| subsets F ⊆ E \ {e, f} such that F ∪ {f} does not induce an

interesting garland or |E| subsets F ⊆ E \ {e, f} such that F ∪ {g} does not induce an interesting
garland.

Case 2.1. Assume that the edge e is in three different coordinated subgraphs of type K(2, 1).
In this case, either E \ {e, g} contains a coordinated subgraph of type K(3, 1) and so contains at
least three interesting garlands with more than one edge or g is in two different Ξ2-subgraphs. Both
cases are impossible.

Case 2.2. Assume that the edge e is in two different coordinated subgraphs of type K(2, 1).
Let edges h1 and h2 be such that the pairs of edges {e, h1} and {e, h2} induce Ξ2-subgraphs. Note
that, in this case, the edge e is in the coordinated subgraph of type K(3, 1) because, otherwise, the
edge g is in two Ξ2-subgraphs.

Consider an arbitrary edge ĥ ∈ E \ {e, g, h1, h2}. Note that the set {e, ĥ} does not induce a
coordinated subgraph of type K(2, 1); the set {e, h1, ĥ} does not induce an interesting garland,
since an interesting three-edge garland must be of type K(3, 1), a triangle, or K(2, 1)∪̇K(1, 1), and
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all cases are impossible. By analogy, the set {e, h2, ĥ} does not induce an interesting garland. So,
we have built

3 · (|E| − 4) = 3|E| − 12 = |E|+ 2(|E| − 6)

necessary subsets. If |E| > 6, then the lemma is proved.
Consider the case |E| = 5. Denote by g′ a single edge from E \{e, g, h1 , h2}. Note, that the sets

{g, h1}, {g, h2}, {g, h1 , h2}, {g, g
′, h1}, and {g, g′, h2} do not induce interesting garlands (see Fig. 3)

and, in this case, the lemma is proved.

f

h1

h2

g

Figure 3. Cordinated subgraph of type K(3, 1) and Ξ2-subgraph.

Case 2.3. Assume that the edge e is in exactly one coordinated subgraph of type K(2, 1).
Denote the second edge of this subgraph by h.

Case 2.3.1. Assume that the edge g is not in any coordinated subgraph of type K(2, 1).
Consider an arbitrary edge f ∈ E \ {e, g}. Note that the pair of edges {g, f} does not induce a
coordinated subgraph of type K(2, 1). Note also that, for an arbitrary edge f ∈ E \ {e, g, h}, the
triple of edges {g, h, f} does not induce an interesting garland. Therefore, we have built

|E| − 2 + |E| − 3 = 2|E| − 5 > |E|

necessary subsets for the edge g.

Case 2.3.2. Assume that the edge g is in the coordinated subgraph of type K(2, 1). By the
previous cases, it suffices to consider the case where g is in exactly one coordinated subgraph of
type K(2, 1). Denote the second edge of this subgraph by h′. Note that the edges e, g, h, and h′

form one of the two configurations shown in Fig. 4.

e

h

g

h′

e

h
g

h′

x

y

z

Vi Vj Vk

Figure 4. Ξ2-subgraph and two coordinated subgraphs of type K(2, 1).

Consider an arbitrary edge f ∈ E \{e, g, h′}. Note that the pair of edges {g, f} does not induce
a coordinated subgraph of type K(2, 1). Note also that, for an arbitrary edge f ∈ E \ {e, g, h, h′},
the triple of edges {g, h, f} does not induce an interesting garland. Thus, we have built

|E| − 3 + |E| − 4 = 2|E| − 7

necessary subsets for the edge g. By analogy, we can build 2|E|−7 necessary subsets for the edge f .
Let ĥ be an arbitrary edge from E\{e, g, h, h′}. Consider the set {h, h′, ĥ}. If the set {e, h, h′, ĥ}

induces an interesting garland, this garland must be of type K(2, 1)∪̇K(2, 1); the same is true for
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the set {g, h, h′, ĥ}. Since both the sets {ĥ, h} and {ĥ, h′} cannot induce a coordinated subgraph
of type K(2, 1), at least one of the sets {e, h, h′, ĥ} and {g, h, h′, ĥ} does not induce an interesting
garland. Therefore, we have built 2|E| − 6 necessary subsets for the edge e or for the edge g, and
the lemma is proved if |E| > 6.

In the case where the edges e, g, h, and h′ form the first configuration shown in Fig. 4, the sets
{e, h, h′} and {g, h, h′} do not induce interesting garlands; consequently, we have built 2|E| − 5
necessary subsets for the edge e or for the edge g.

It remains to prove the lemma in the case where |E| = 5 and the edges e, g, h, and h′ form the
second configuration shown in Fig. 4. Note that there are at most eight interesting garlands whose
edge aggregates are subsets of {g, f, h′, h}: four one-edge garlands, two garlands of type K(2, 1),
and possibly two garlands of type K(2, 1)∪̇K(1, 1). So it suffies to prove that there are at most
five interesting garlands that contain the edge ĥ.

Case 2.3.2.1. Assume that the edge ĥ is incident neither to the vertex x nor the vertex y. In
this case, the edge ĥ is not in any coordinated subgraph of type K(2, 1) because, otherwise, either
the edge e is in two coordinated subgraphs of type K(2, 1) or the edge e is in two coordinated
subgraphs of type K(2, 1), both the cases lead to a contradiction. Therefore, the edge ĥ is not in
any two-edge garland. Moreover, since 〈E〉 does not contain a triangle, the edge ĥ is not in any
one-element garland except for the one-edge garland.

Assume that the edge ĥ is in some garland G of cardinality more than one. In this case,
the garland G must destroy some part. The vertex aggregate V (G) has at most two common
vertices with any part V 6= Vj. Thus, Vj is the only part that can be destroyed by G. Note

also that the edge ĥ is not incident to the vertex z because, otherwise, the edge e or g is in two
Ξ2-subgraphs. Therefore, either e ∈ E(G) or g ∈ E(G). Note also that this two edges cannot be in
E(G) simultaneously; thus, the edge ĥ is in at most two garlands with cardinality more than one.
Therefore, in this case, the edge ĥ is in at most three garlands, and the lemma is proved in this
case.

Case 2.3.2.2. Now assume that the edge ĥ is incident either to the vertex x or the vertex y.
Without loss of generality, assume that ĥ is incident to x. Note that, in this case, the edge aggregate
that contains the edge ĥ can be one of the following four sets: {ĥ}, {ĥ, h}, {ĥ, g, h′}, and {ĥ, h, g, h′},
and the lemma is proved in this case.

Case 2.4. It remains to consider the case where neither the edge e nor the edge g are in any
coordinated subgraph of type K(2, 1). In this case, neither the set {e, f} nor the set {g, f} induce
an interesting garland for any edge f ∈ E \ {e, g}, so we have built |E| − 2 necessary subsets for
the edges e and g.

Since |E \ {e, g}| > 3, consider three arbitrary edges from this set and denote them by h1, h2
and h3. Define H = {h1, h2, h3}. Note that there exist exactly three two-element subsets H ′ ⊆ H.
If, for any two-element subset H ′ ⊂ H, the set H ′ ∪ {e} does not induce an interesting garland,
then we have built |E|+1 necessary subsets for the edge e. So it suffices to consider the case where,
for some two-element subset H ′ ⊂ H, the set H ′ ∪ {e} induces an interesting garland. Without
loss of generality, H ′ = {h1, h2}. Since 〈E〉 does not contain a triangle and the edge e is not
in any coordinated subgraph of type K(2, 1)S, an interesting three-edge garland must be of type
K(2, 1)∪̇K(1, 1) or K(1, 1, 1).

Case 2.4.1. The set H ′ ∪ {e} induces an interesting garland of type K(1, 1, 1). Note that, in
this case, the set {g, h1, h2} does not induce an interesting garland. Note also that at least one of
the sets {g, h3, h1} and {g, h3, h2} does not induce an interesting garland. Therefore, we have built
|E| necessary subsets for the edge g, and, in this case, the lemma is proved.

Case 2.4.2. The set H ′ ∪ {e} induces an interesting garland of type K(2, 1)∪̇K(1, 1). Note
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that, in this case, sets {g, h3, h1} and {g, h3, h2} does not induce interesting garlands. Therefore,
we have built |E| necessary subsets for the edge g and the lemma is proved. �

Lemma 12. Assume that each active part of K(v) contains at least three vertices. If an edge

e ∈ E is in k 6 |E| − 2 different Ξ2-subgraphs, then

(1) the edge e is in at most 2|E|−k−1 interesting garlands;

(2) if 〈E〉 does not contain a coordinated subgraph of type K(|E| − k, 1), then the edge e is in at

most 2|E|−k−1 − |E|+ k + 2 interesting garlands.

P r o o f. Let edges h1, h2, . . . , hk be such that the pair of edges {hi, e} induces a Ξ2-subgraph
for all i = 1, 2, . . . , k. Define E′ = E \ {h1, h2, . . . , hk}.

Let F be an edge aggregate of some interesting garland, and let e ∈ F . Note that hi 6∈ F for
all i = 1, 2, . . . , k. Therefore, F ⊆ E′.

If E′ does not induce a coordinated subgraph of type K(|E| − k, 1), then, by Lemma 3, there
exist at most 2|E|−k−1 interesting garlands whose edge aggregates are subsets of E′. Note that
among them there are |E| − k− 1 one-edge garlands that do not contain the edge e. Consequently,
the edge e is in at most

2|E|−k−1 + 1− (|E| − k − 1) = 2|E|−k−1 − |E|+ k + 2

interesting garland, and the lemma is proved. �

Lemma 13. Assume that |E| > 6 and the subgraph 〈E〉 contains at least two Ξ2-subgraphs and

does not contain a coordinated subgraph of type K(|E| − 2).

(1) If there exists an edge, which is in two Ξ2-subgraphs, then the number of interesting garlands

does not exceed 2|E|−2 + 2|E|−3 − |E|+ 5.

(2) If there exist two Ξ2-subgraphs without common edges, then the number of interesting garlands

does not exceed 2|E|−1 − 3|E| + 6.

P r o o f. Prove the first statement of the lemma. Assume that an edge e is in two Ξ2-subgraphs.
Since 〈E〉 does not contain a coordinated subgraph of type K(|E| − 2), by Lemma 12, the edge
e is in at most 2|E|−3 − |E| + 4 interesting garlands. By Lemma 3, there are at most 2|E|−2 + 1
interesting garlands whose edge aggregates are subsets of E \ {e}. Consequently, there are at most

2|E|−3 − |E|+ 4 + 2|E|−2 + 1 = 2|E|−2 + 2|E|−3 − |E|+ 5

interesting garlands.
Now prove the second statement of the lemma. Assume that there are two Ξ2-subgraphs without

common edges. Let edges e1 and e2 induce a Ξ2-subgraph. By Lemma 9, the edge aggregate of
any garland is a subset of E \ {e1} or E \ {e2}. By Lemma 11, there are at most

2|E|−2 − (|E| − 1) + 1 = 2|E|−2 − |E|+ 2

interesting garlands whose edge aggregates are subsets of E \ {e1} and there are at most 2|E|−2 −
|E| + 2 interesting garlands whose edge aggregates are subsets of E \ {e2}. Note that |E| − 2
one-edge garlands were counted twice, so the number of interesting garlands does not exceed

2(2|E|−2 − |E|+ 2)− (|E| − 2) = 2|E|−1 − 3|E| + 6,

and the lemma is proved. �
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Lemma 14. Assume that each active part of K(v) contains at least three vertices and 〈E〉
contains a triangle. If an edge e is in the triangle from 〈E〉 and is in k different Ξ2-subgraphs, then

e is in at most 2|E|−k−2 − |E|+ k + 3 interesting garlands.

P r o o f. Let ∆ be the edge set of a triangle from 〈E〉 that contains the edge e, and let edges
h1, h2, . . . , hk be such that the pairs of edges {e, hi} induce Ξ2-subgraphs for all i = 1, 2, . . . k.
Define E′ = E \ (∆ ∪ {h1, h2, . . . , hk}).

Let G be an arbitrary garland such that e ∈ E(G), and let F = E(G). Note that hi 6∈ F for all
i = 1, 2, . . . , k. Define F ′ = F ∩ E′. Note also that either F ∩∆ = {e} or F ∩∆ = ∆.

If F ∩ ∆ = {e}, then F ′ can be chosen in 2|E|−k−3 ways. If F ∩ ∆ = ∆, then |F ′| > 1 and,
consequently, F ′ can be chosen in

2|E|−k−3 − (|E| − k − 3)

ways.

Thus, the edge e is in at most

2|E|−k−3 + 2|E|−k−3 − (|E| − k − 3) = 2|E|−k−2 − |E|+ k + 3

interesting garlands. �

Lemma 15. Assume that each part of K(v) contains at least three vertices and 〈E〉 contains

two triangles with a common edge e. If the edge e is in k different Ξ2-subgraphs, then the edge e is

in at most 2|E|−k−3 − 3|E| + 3k + 15 interesting garlands.

P r o o f. Let ∆1 and ∆2 be the edge sets of triangles from 〈E〉 that contain the edge e. Let
edges h1, h2, . . . , hk be such that the pair of edges {e, hi} induces a Ξ2-subgraph for all i = 1, 2, . . . , k.
Define E′ = E \ (∆1 ∪∆2 ∪ {h1, h2, . . . , hk}) and E∆ = ∆1 = ∆2.

Let G be an arbitrary garland such that e ∈ E(G). Define F = E(G) and note that hi 6∈ F
for all i = 1, 2, . . . , k. Define F ′ = F ∩ E′ and F∆ = F ∩ E∆. Note also that either F∆ = {e}, or
F∆ = ∆1, or F∆ = ∆2, or F∆ = ∆.

Consider an arbitrary F ′ ⊆ E′ and count the number of interesting garlands G such that
e ∈ E(G) and F ′ ⊆ E(G). To do this, we estimate the number of ways to choose a subset F∆ ⊆ ∆
such that F ′ ∪ F∆ induces an interesting garland. If |F ′| 6= 1, then F∆ can be chosen if four
ways; if |F ′| = 1, then F∆ 6= ∆1 and F∆ 6= ∆2. Let f ∈ F ′. Note that if the set {f, e} induces
an interesting garland G′, then G′ is of type K(2, 1) and {f} ∪∆ does not induce an interesting
garland. Therefore, if |F ′| = 1, then F∆ can be chosen in at most one way.

Thus, the edge e is in at most

4 · (2|E|−k−5 − (|E| − k − 5)) + (|E| − k − 5) = 2|E|−k−3 − 3|E|+ 3k + 15

interesting garlands. �

5. Upper bound for the invariant pt when |E| is small

The main goal of this section is to prove some upper bounds for the number of interesting
garlands in the case where E contains relatively small number of elements.
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Lemma 16. Assume that each active part of K(v) contains at least three vertices, 〈E〉 contains
a triangle, does not contain a coordinated subgraph of type K(4, 1), and |E| = 8. Denote the edge set

of the triangle by ∆. If 〈E \∆〉 contains at least two Ξ2-subgraphs, then the number of interesting

garlands does not exceed 46.

P r o o f. Let X be the number of interesting garlands whose edge aggregates are subsets of E′,
and let Y be the number of nonempty subsets of E′ continuable outside E′. Let k be the number of
edges h ∈ E \∆ for which there exists an edge h′ such that h and h′ induce a coordinated subgraph
of type K(2, 1).

Case 1. Assume that there exist three edges e, f1, f2 ∈ E \ ∆ such that the pairs of edges
{e, f1} and {e, f2} induce Ξ2-subgraphs.

In this case, any continuable set can contain neither the set {e, f1} nor {e, f2}. Consequently,

Y 6 25 − 1− 2 · 23 + 22 = 32− 1− 16 + 4 = 1.

By Lemma 3, there are at most 23 + 1 = 9 interesting garlands whose edge aggregates are
subsets of E′ \ {e}.

Case 1.1. Assume that E′ \ {f1, f2} induces a coordinated subgraph of type K(3, 1). Denote
this subgraph by H. In this case, the edge e is in exactly four interesting garlands whose edge
aggregates are subsets of E′. Consequently, X 6 9 + 4 = 13.

If there exists an edge from the triangle adjacent to all edges from H, then either 〈E〉 contains
a coordinated subgraph of type K(4, 1), which contradicts the lemma hypothesis, or any edge from
H does not induce a coordinated subgraph of type K(2, 1) with any edge from the triangle. Thus,
k 6 2. By Lemma 7, the number of interesting garlands does not exceed

2 · 13 + 2 · 19− 5 · 8 + 19 + 2 6 26 + 38− 40 + 19 + 2 = 45.

Case 1.2. Define E′′ = E′ \ {f1, f2} and assume that E′′ does not induce a coordinated
subgraph of type K(3, 1). In this case, there exist at most 5 interesting garlands whose edge
aggregates are subsets of E′′, and the edge e is not in two (one-edge) of them. Consequently, the
edge e is in at most three interesting garlands whose edge aggregates are subsets of E′. Therefore,
X 6 9 + 3 = 12, k 6 5, and, using Lemma 7, one can deduce that the number of interesting
garlands does not exceed

2 · 12 + 2 · 19− 5 · 8 + 19 + 5 = 24 + 38− 40 + 24 = 46.

Case 2. Now consider the case where 〈E〉 contains two Ξ2-subgraph without common edges.
Let the pairs of edges {e1, e2} and {g1, g2} induce Ξ2-subgraphs.

Estimate the number of nonempty continuable sets. Let F ⊆ E′ be a nonempty continuable set,
Fe = F ∩{e1, e2}, Fg = F ∩{g1, g2}, and let F ′ = F \{e1, e2, g1, g2}. Note that F = Fe∪Fg∪F ′. To
obtain an upper bound, it suffices to count the number of ways to choose the sets Fe, Fg, and F ′.
Note that F ′ ⊆ E′ \ {e1, e2, g1, g2} and then it can be chosen in

2|E
′\{e1,e2,g1,g2}| = 25−4 = 2

ways. The set Fe can be either empty or one-element because, by Lemma 9, the edges e1 and e2
cannot be in the edge aggregate of any garland; so Fe can be chosen in three ways. By analogy,
the set Fg can also be chosen in three ways. Excluding the empty set, one can conclude that
Y 6 2 · 3 · 3− 1 = 17.
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Note that the set E′ \ {e1} contains a Ξ2-subgraph and by Lemma 10, there are at most

2|E
′\{e1}|−1 = 24−1 = 8

interesting garlands whose edge aggregates are subsets of E′ \ {e1}. Note that three one-edge of
them do not contain the edge e2; consequently, e2 is in at most 5 interesting garlands whose edge
aggregates are subsets of E′. By analogy, there are at most 8 interesting garlands whose edge
aggregates are subsets of E′ \ {e2}. Therefore, X 6 8 + 5 = 13.

Thus, by Lemma 7, the number of interesting garlands does not exceed

2 · 13 + 2 · 17− 5 · 8 + 19 + 5 = 26 + 34− 40 + 19 + 5 = 44,

and the lemma is proved. �

Lemma 17. Assume that each part of K(v) contains at least three vertices and 〈E〉 does

not contain a coordinated subgraph of type K(5, 1). If |E| = 7 and 〈E〉 contains at least three

Ξ2-subgraphs, then the number of interesting garlands does not exceed 41.

P r o o f. Assume that there exists an edge e ∈ E that is in three Ξ2-subgraphs. By Lemma 3,
there exist at most 25 + 1 = 33 interesting garlands whose edge aggregates are subsets of E \ {e}.
By Lemma 12, one can deduce that e is in at most 27−4 = 8 interesting garlands. Therefore, there
exist at most 33 + 8 = 41 interesting garlands.

Now assume that there exists an edge e ∈ E that is in exactly two Ξ2-subgraphs. Since 〈E〉
does not contain a coordinated subgraph of type K(5, 1), by Lemma 12, one can deduce that e is
in at most 27−3 − 7 + 2+ 2 = 13 interesting garlands. The graph 〈E \ {e}〉 contains a Ξ2-subgraph
and does not contain a coordinated subgraph of type K(5, 1). Thus, by Lemma 13, there exist at
most 25 − 6+ 1 = 28 interesting garlands whose edge aggregates are subsets of E \ {e}. Therefore,
there exist at most 13 + 28 = 41 interesting garlands.

It remains to consider the case when every edge is in at most one Ξ2-subgraph. Let pairs of
edges {e1, e2}, {f1, f2}, and {g1, g2} induce three different Ξ2-subgraphs. Denote the single left
edge by h. By Lemma 13, there exist at most 25 − 3 · 6 + 6 = 20 interesting garlands whose edge
aggregates are subsets of E \ {e1}.

Estimate the number of interesting garlands that contain the edge e1. Let H be the edge
aggregate of such a garland. Define H ′ = H ∩ {h},Hf = H ∩ {f1, f2}, and Hg = H ∩ {g1, g2} and
note that H = {e} ∪H ′ ∪Hf ∪HG. Note also that H ′ is empty or equal to {h}. The set Hf can
be chosen in three ways (because the edges f1 and f2 cannot be in the same garland). By analogy,
the set Hg can be chosen in three ways. Therefore, the set H can be chosen in at most 2 · 3 · 3 = 18
ways. Therefore, e is in at most 18 interesting garlands, the total number of interesting garlands
does not exceed 20 + 16 = 36, and the lemma is proved. �

Lemma 18. Assume that each part of K(v) contains at least three vertices, |E| = 7, and

〈E〉 does not contain a coordinated subgraph of type K(4, 1). If every edge is in at most three

Ξ2-subgraphs and 〈E〉 contains at least four Ξ2-subgraphs, then the number of interesting garlands

does not exceed 34.

P r o o f. Assume that any edge is not in two Ξ2-subgraphs. Then

ξ2 6
|E|

2
=

7

2
< 4,

a contradiction. Consequently, there exists an edge that is in at least two Ξ2-subgraphs.
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Case 1. Assume that there exist an edge e that is in three Ξ2-subgraphs. By Lemma 12, there
exist at most 26−3−1 + 1− 3 = 6 interesting garlands such that e is in them. Also, by Lemma 11,
there are at most 28 interesting garlands whose edge aggregates are subsets of E \ {e}. Therefore,
there exist at most 28 + 6 = 34 interesting garlands.

Case 2. Assume that every edge is in at most two Ξ2-subgraphs. Consider an edge e that is in
exactly two Ξ2-subgraphs. Let edges f1 and f2 be such that the pairs of edges {e, f1} and {e, f2}
induce Ξ2-subgraphs.

Case 2.1. Assume that E\{f1, f2} contains a Ξ2-subgraph. By Lemma 11, there exists at most
24 − 5 + 1 = 12 interesting garlands whose edge aggregates are subsets of E \ {f1, f2}. Note that
four one-edge garlands from them do not contain the edge e. Therefore, e is at most in 12− 4 = 8
interesting garlands. The set E \ {e} contains at least two Ξ2-subgraphs and, by Lemma 13, there
exist at most

max(26−2 + 26−3 − 6 + 5, 26−1 − 3 · 6 + 6) = max(24 + 23 − 1, 25 − 18 + 6) = max(23, 20) = 23

interesting garlands whose edge aggregates are subsets of E \ {e}.

Case 2.2. Assume that E \ {f1, f2} does not contain a Ξ2-subgraph. By Lemma 12, the edge
e is in at most 13 interesting garlands.

Case 2.2.1. Assume that E \ {e} contains two Ξ2-subgraphs without common edges. In this
case, by Lemma 13, there exist at most 26−1 − 3 · 6 + 6 = 20 interesting garlands whose edge
aggregates are subsets of E \{e}. Therefore, there exists at most 20+13 = 33 interesting garlands.

Case 2.2.2. It remains to consider the case when there exists an edge h ∈ E \ {e} that is in
two Ξ2-subgraphs. Since every Ξ2-subgraph contains f1 or f2 (otherwise, E \ {f1, f2} contains a
Ξ2-subgraph), the pairs of edges {e, f1}, {e, f2}, {h, f1}, and {h, f2} induce Ξ2-subgraphs. This
means that the edge aggregate of any garland is a subset of E \ {f1, f2} or E \ {e, h}. Applying
Lemma 3 to each of them, one can conclude that there exist at most 17 interesting garlands whose
edge aggregates are subsets of each of them. Since three one-edge garlands were counted twice,
the total number of interesting garlands does not exceed 17+17−3 = 31, and the lemma is proved. �

6. Proof of Theorem 1

The main goal of this section is to prove that a graph K(n1, n2, n3) is chromatically unique if

n1 > n2 > n3 > 2, n1 − n3 = 5 and n1 + n2 + n3 ≡ 2 (mod 3).

The bottom levels of the lattice NPL(n, 3) in the case n ≡ 2 (mod 3) are shown in Fig. 5. The
label above the covering relation shows how the number of edges changes, and the label under the
covering relation shows how the invariant pt changes. To prove the theorem, it suffices to verify that
the graph K(q+3, q+1, q−2) is chromatically unique for q > 4 and the graph K(q+4, q−1, q−1)
is chromatically unique for q > 3.

Proposition 1. The graph K(q + 3, q + 1, q − 2) is chromatically unique for q > 4.

P r o o f. By contradiction, assume that the graph K(u) = K(q + 3, q + 1, q − 2) is not
chromatically unique. This means that there exists a graph H such that the graphs K(u) and H
are chromatically equivalent. Let H be a graph obtained from the graph K(v) by removing some
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b1 = (q + 1, q + 1, q)

b2 = (q + 2, q, q)

b3 = (q + 2, q + 1, q − 1)

b4 = (q + 2, q + 2, q − 2) b5 = (q + 3, q, q − 1)

b6 = (q + 3, q + 1, q − 2) b7 = (q + 4, q − 1, q − 1)

1

1
·

2
q
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·

2 q
−

3
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·
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−
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·
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−
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2
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1

11
·
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−

2

1

1
·

2
q
−

1

Figure 5. The bottom levels of the lattice NPL(n, 3) in the case n ≡ 2 (mod 3)

set of edges E. Consider the graph K(v). Note that the cases K(v) = K(q + 2, q + 2, q − 2),
K(v) = K(q + 3, q, q − 1), and K(v) = K(q + 2, q + 1, q − 1) are impossible by Lemma 1.

Case 1. Assume that K(v) = K(q +2, q, q) and note that, in this case, |E| = 5. Calculate the
difference of the invariant pt:

∆pt(H,K(v)) = ∆(K(u),K(v)) = 2q + 7 · 2q−3 + 2q−2 = 17 · 2q−3.

By Lemma 2, one can deduce that

17 · 2q−3 6 25 − 1 = 31,

which implies q 6 3, a contradiction.

Case 2. Assume that K(v) = K(q+1, q+1, q). Note that, in this case, |E| = 6. Calculate the
difference of the invariant pt:

∆pt(H,K(v)) = ∆(K(u),K(v)) = 2q + 7 · 2q−3 + 2q−2 + 2q−1 = 21 · 2q−3.

By Lemma 2, one can deduce that

21 · 2q−3 6 26 − 1 = 63,

which implies q 6 4; so it suffices to check the case q = 4. In this case, K(v) = K(5, 5, 4) and
∆pt(H,K(v)) = 42. Note that, in this case, E does not induce a coordinated subgraph of type
K(5, 1) because such a subgraph is a one-element garland that destroys one part, a contradiction.
Thus, by Lemma 3, one can obtain that there are at most 25 + 1 = 33 interesting garlands, which
contradicts ∆pt(H,K(v)) = 42, and the proposition is proved. �

To prove the chromatic uniqueness of the graph K(q + 4, q − 1, q − 1), we need the following
two statements.
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Lemma 19. Let E be a subset of edges of some complete tripartite graph K(v). If any two

triangles from 〈E〉 have a common edge, then there exists an edge that is in all triangles from 〈E〉.

Before proving this lemma, note that the condition on the graph K(v) to be tripartite is
necessary. Four triangles, any two of which have a common edge but no edge is common for all of
them, are shown in Fig. 6.

Figure 6. Four triangles, any two of which have a common edge but no edge is common for all of them.

P r o o f. Let ∆1 and ∆2 be two triangles from 〈E〉 that have a common edge. Let x, y1, and z
be vertices of the triangle ∆1 and let x, y2, and z be vertices of the triangle ∆2. Let us prove that
if a triangle ∆ from 〈E〉 have a common edge with the triangles ∆1 and ∆2, then xz ∈ ∆.

By contradiction, assume that xz 6∈ ∆. The triangles ∆1 and ∆ have a common edge, without
loss of generality, let it be the edge y1z. Denote by x′ the third vertex of ∆1 and note that the
vertices x and x′ are in the same part of K(v) because K(v) is a tripartite graph. Note that, in
this case, the edge set of ∆1 is {x′y1, x

′z1, y1z2} and it has an empty intersection with the edge set
of ∆2 (see Fig. 7). �

x

y1

y2

z

x′

Figure 7. Three triangles in the tripartite graph that do not have a common edge

Proposition 2. If a graph H is obtained by removing the edge set E from the graph K(4, 4, 3),
then the graphs H and K(7, 2, 2) are not chromatically equivalent.

P r o o f. The graph K(7, 2, 2) has 7 · 2 + 7 · 2 + 2 · 2 = 32 edges and the graph K(4, 4, 3) has
4 · 4 + 4 · 3 + 4 · 3 = 40 edges; consequently, |E| = 40− 32 = 8.

Calculate the difference of the invariant I3:

I3(K(7, 2, 2)) = 7 · 2 · 2 = 28,

I3(K(4, 4, 3)) = 4 · 4 · 3 = 48,

20 = ∆I3(K(4, 4, 3),K(7, 2, 2)) = ∆I3(K(4, 4, 3),H) = ξ1 − ξ2 − 2ξ3,

ξ1 = 3e12 + 4e13 + 4e23 = 4|E| − e12,

20 = 32− e12 − ξ2 − 2ξ3,

ξ2 + 2ξ3 + e12 = 12.

Note that every edge is in at most four Ξ2-subgraphs.
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The inequality e12 6 8 implies ξ2 + 2ξ3 > 4. Note that E 6⊆ Eij for all nonequal i and j from
1 to 3 because, otherwise, ξ2 = ξ3 = 0, a contradiction. Assume that eij = |E| − 1 for some i
and j. In this case, ξ3 = 0 and ξ2 > 5. Denote the single edge from E \ Eij by f . Note that all
Ξ2-subgraphs must contain f ; therefore, ξ2 6 4, a contradiction.

Calculate the difference of the invariant pt:

pt(K(7, 2, 2)) = 26 + 21 + 21 − 3 = 65,

pt(K(4, 4, 3)) = 23 + 23 + 22 − 3 = 17,

∆pt(H,K(4, 4, 3)) = ∆pt(K(7, 2, 2),K(4, 4, 3)) = 65− 17 = 48.

Note that 〈E〉 does not contain a coordinated subgraph of type K(4, 1) because, otherwise,
such a subgraph forms a one-element garland that destroys one part, a contradiction.

Case 1. Assume that ξ3 = 0.

Case 1.1. Assume that e12 = 6. In this case, ξ2 = 6.
Let edges f and g be not in E12. Without loss of generality, assume that f ∈ E23.
Note that any edge from E except for f and g is not adjacent to any vertex from the part V3.

Since |V3| = 3, there exists a vertex in V3 not incident to any edge from E. Consequently, any
garland cannot destroy the part V3.

By Lemma 3, there exist at most 25 + 1 = 33 interesting garlands whose edge aggregates are
subsets of E12; so it suffices to prove that the number of interesting garlands G such that f ∈ E(G)
or g ∈ E(G) does not exceed 12 because, in this case, the total number of interesting garlands does
not exceed 33 + 12 = 45 < 48.

Case 1.1.1. Assume that edges f and g induce a Ξ2-subgraph. Then there exist no garland G
such that f ∈ E(G) and g ∈ E(G). Note also that, since every edge is in at most four Ξ2-subgraphs
and every Ξ2-subgraph contains f or g, each of the edges f and g is in at least three Ξ2-subgraphs.

Note that if f is in a garland G such that |E(G)| > 1, then |G| > 1; hence, G must destroy
some part. It cannot destroy the part V3, so it must destroy V1 or V2; in both cases, |E(G)| > 4.
Note that there exist at least two edges from E12 such that f induces a Ξ2-subgraph with each of
them. This means that there exist at most four edges h ∈ E12 such that f and h can be in the
edge aggregate of G. Note also that E(G) must contain at least three edges from E12, and these
three edges can be chosen in

(4
3

)

= 4 ways. Therefore, f is in at most five interesting garlands. By
analogy, g is in at most five interesting garlands, and the proof is complete in this case.

Case 1.1.2. Assume that edges f and g induce a coordinated subgraph of type K(2, 1). Note
that, in this case, each of the edges f and g is in exactly three different Ξ2-subgraphs. Note that
if f is in a garland G that contains more than one element, then G must destroy some part. Since
it cannot destroy V3, it must destroy V1 or V2; in both cases |E(G)| > 4.

Let F ⊆ E12. Note that the following three statements are equivalent for the set F .

(1) The set F ∪ {f} induces an interesting garland.

(2) The set F ∪ {g} induces an interesting garland.

(3) The set F ∪ {f, g} induces an interesting garland.

The equivalence of these three statements follows from the following two observations. First, if
f is in some garland G, then {f} forms an E-subgraph from G; and the same statement holds for
{g} and {g, f}. Therefore, the sets F ∪{f}, F ∪{g}, and F ∪{f, g} induce a garland simultaneously.
Second, denote by Vf the vertex set of 〈F ∪ {f}〉, by Vg the vertex set of 〈F ∪ {g}〉, and by Vgf

the vertex set of 〈F ∪ {g, f}〉. Note that Vf ∩ (V1 ∪ V2) = Vg ∩ (V1 ∪ V2) = Vgf ∩ (V1 ∪ V2). This
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means that the sets F ∪ {f}, F ∪ {g}, and F ∪ {f, g} destroy the parts V1 or V2 simultaneously.
Consequently, all of them induce interesting garlands or none of them does.

Note also that F is chosen from a three-element set formed by edges h ∈ E12 such that the
edges h and f do not induce a Ξ2-subgraph. Consequently, the set F can be chosen in at most
one way. Therefore, there exist at most 3 · 1 = 3 interesting garlands G such that f ∈ E(G) or
g ∈ E(G), and the prove is complete in this case.

Case 1.1.3. Assume that edges f and g do not induce a coordinated subgraph of type K(2, 1)
and do not induce a Ξ2-subgraph.

Note that, in this case, each of the edges f and g is in exactly three Ξ2-subgraphs. Note that if
f is in a one-element garland G, then G is a one-edge garland. Note also that if f is in a garland
G that has more than one element, then G must destroy V1 or V2, and then |E(G)| > 4. Since f is
in three Ξ2-subgraphs, the set E(G) \{f} is chosen from a five-element set of edges. Consequently,
f is in at most

(

4

3

)

+

(

4

4

)

= 4 + 1 = 5

interesting garlands that contain more than one element. Therefore, f is in at most six interesting
garlands. By analogy, the edge g is in at most six interesting garlands. Therefore, the number of
interesting garlands whose edge aggregates contain f or g does not exceed 12, and the lemma is
proved in Case 1.1.

Case 1.2. Assume that e12 6 5. In this case, ξ2 6 5.

Case 1.2.1. Assume that there exists an edge f ∈ E that is in four Ξ2-subgraphs. Thus, by
Lemma 12, it is in at most 28−4−1 − 8 + 6 = 6 interesting garlands. Note that the set E \ {f}
contains at least three Ξ2-subgraphs and then, by Lemma 17, there exist at most 41 interesting
garlands whose edge aggregates are subsets of E \{f}. Consequently, there are at most 6+41 = 47
interesting garlands, a contradiction with ∆pt(H,K(v)) = 48.

Case 1.2.2. Assume that there exists an edge f ∈ E which is in exactly three Ξ2-subgraphs.
Thus, by Lemma 12, it is in at most 28−3−1 − 8 + 5 = 13 interesting garlands. Note that E \ {f}
contains at least four Ξ2-subgraphs; so, by Lemma 18, there exist at most 34 interesting garlands
whose edge aggregates are subsets of E\{f}. Therefore, there exist at most 13+34 = 47 interesting
garlands, a contradiction with ∆pt(H,K(v)) = 48.

Case 1.2.3. It remains to consider the case when every edge from E is in at most two
Ξ2-subgraphs. Note that, since every Ξ2-subgraph contains two edges, ξ2 6 8. If e12 = 5, then
every Ξ2-subgraph must contain at least one of three edges from E′ = E \E12. Consequently, some
edge from E′ must be in three Ξ2-subgraphs, a contradiction. Therefore, e12 6 5 and then ξ2 > 8.
Thus, ξ2 = 8 and e12. Note that, in this case, every edge is in exactly two Ξ2-subgraphs. Since
e12 = 4 and Ξ2-subgraph cannot contain both edges from E12, every Ξ2-subgraph contain an edge
from E12.

Let F be the edge aggregate of some garland. Note that F does not contain edges of any
Ξ2-subgraph. Consequently, every Ξ2-subgraph contains at least one edge from E \ F . Since every
edge is in at most two Ξ2-subgraphs, 8 = ξ2 6 2|E \F |, which implies |E \F | > 4, and then |F | 6 4.

Assume that there exists a four-edge garland. Denote its edge aggregate by F and define
F ′ = E \ F . Since |F ′| = 4, there exists at most one four-edge garland whose edge aggregate is
a subset of F ′. Note that every Ξ2-subgraph contains one edge from F and one edge from F ′.
Estimate the number of four-edge garlands whose edge aggregates contain an edge from F and
an edge from F ′. Assume that such a garland exists. Denote its edge aggregate by F̃ . Define
F = {f1, f2, f3, f4} and F ′ = {f ′

1, f
′
2, f

′
3, f

′
4}. Let f1 ∈ F̃ and f ′

1 ∈ F̃ . Without loss of generality,
assume that the pairs of edges {f1, f

′
2}, {f1, f

′
3}, {f

′
1, f2}, and {f ′

1, f3} induce Ξ2-subgraphs. Then
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f4 ∈ F̃ . This means that every edge from F is in at most one such four-edge garland and each such
garland must contain exactly two edges from F ; so the number of such garlands does not exceed
|F |/2 = 2. Therefore, the number of four-edge garlands does not exceed 4.

Since 〈E〉 does not contain a triangle, an interesting three-edge garland must be of type K(3, 1)
or K(2, 1)∪̇K(1, 1). Since e12 = 4, the inequality eij 6 4 holds for all i and j. Note that all three
edges of a garland of type K(3, 1) must be in Eij for some i and j. Since 〈E〉 does not contain a
coordinated subgraph of type K(4, 1), any two garlands of type K(3, 1) cannot contain more than
one common edge. Therefore, there exist at most two such garlands.

An interesting garland of type K(2, 1)∪̇K(1, 1) must destroy some part of K(v). Since it can
destroy only a part that contains three vertices, it must destroy V3. Consequently, each vertex
of V3 must be incident to some edge from this garland. Therefore, its edge aggregate must be a
three-element subset of E \E12. Since |E \E12| = 4, such a subset can be chosen in

(

4
3

)

= 4 ways;
so the number of such garlands does not exceed 4.

Thus, there exist 8 one-edge garlands, at most

(

8

2

)

= 28

interesting two-edge garlands, at most 4 + 2 = 6 interesting garlands, and at most 4 four-edge
interesting garlands. Therefore, there exist at most

8 + 28 + 6 + 4 = 46 < 48

interesting garlands. The proof is complete in Case 1.

Case 2. Assume that ξ3 = 1.

Case 2.1. Assume that e12 = 6. Then ξ2 = 4 and |E23| = |E13| = 1. Denote the single edge
from E23 by e and the single edge from E13 by f . Note that every Ξ2-subgraph contains the edge
e or f . If e is in three Ξ2-subgraphs, then 〈E〉 contains a coordinated subgraph of type K(4, 1), a
contradiction. By analogy, f is in at most two Ξ2-subgraphs. This means that 7 edges from |E|
form a configuration shown in Fig. 8.

h2

h1

h3

h4

g

e

f

Figure 8. The case e12 = 6 and ξ3 = 1

Note that any garland cannot destroy the part V3.
Assume that e and f are in some garland G that contains more than one element. Note

that g ∈ E(G) and h1, h2, h3, h4 6∈ E(G) because, otherwise, 〈E〉 contains at least two triangles.
Consequently, |E(G)| 6 4 and |V (G) ∩ Vi| 6 2 for all i = 1, 2, 3. Therefore, G cannot destroy any
part, a contradiction. Thus, if e and f are in a garland G, then |G| = 1. Note that there exists
only one such garland, which is a triangle.

Note that e is not in any coordinated subgraph of type K(2, 1). This means that there are
only two one-element garlands whose edge aggregates contain e: a triangle and a one-edge garland.
Assume that e is in some garland G that contains more than one element and f 6∈ E(G). Since
G must destroy some part and cannot destroy V3, it destroys V1 or V2; hence, |E(G)| > 4. Note
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that f, g, h1, h2 6∈ E(G), which implies E(G) = E \ {f, g, h1, h2}. Therefore, e is in at most one
interesting garland that contains more than one element and does not contain f . By analogy, f
is in at most one interesting garland that contains more than one element and does not contain e.
Therefore, there exist at most 5 interesting garlands that contain e or f .

By Lemma 3, there exist at most 33 interesting garlands whose edge aggregates are sub-
sets of E12. Therefore, there exist at most 33 + 5 = 38 interesting garlands, which contradicts
∆pt(H,K(v)) = 48.

Case 2.2. Assume that e12 6 5. In this case, ξ2 > 5. Note that any edge from the triangle
cannot be in more than three Ξ2-subgraphs.

Assume that some edge e from the triangle is in three Ξ2-subgraphs. By Lemma 14, one can
deduce that e is in at most 28−2−3 − 8 + 3 + 3 = 6 interesting garlands. Since 〈E \ {e}〉 contains
at least three Ξ2-subgraphs, by Lemma 17, there exist at most 41 interesting garlands whose edge
aggregates are subsets of E \ {e}. Therefore, there exist at most 41 + 6 = 47 interesting garlands,
a contradiction.

Assume that some edge e from the triangle is in two Ξ2-subgraphs. By Lemma 14, one can
deduce that e is in at most 28−2−2 − 8 + 2 + 3 = 13 interesting garlands. Since 〈E \ {e}〉 contains
at least three Ξ2-subgraphs, by Lemma 18, there exist at most 34 interesting garlands whose edge
aggregates are subsets of E \ {e}. Therefore, there exist at most 13 + 34 = 47 interesting garlands,
a contradiction.

By Lemma 16, there exists at most one Ξ2-subgraph such that both its edges are not in the
triangle. Taking into account that each edge of the triangle is in at most one Ξ2-subgraph, one can
deduce that ξ2 6 3 + 1 = 4 < 5, a contradiction.

Case 3. Consider the case ξ3 > 2.

If 〈E〉 contains two triangles without common edges, then, by Lemma 8, the number of inter-
esting garlands does not exceed 26 − 12 · 8 + 58 = 26 < 48, a contradiction. Consequently, any two
triangles from 〈E〉 have a common edge and, by Lemma 19, there exists an edge e that is in all
triangles. This implies ξ3 6 3. Define E′ = E \ {e}.

Note that there exist at most two Ξ2-subgraph that do not contain the edge e. Indeed, any
such Ξ2-subgraph does not contain any edge from any triangle. Therefore, if there are at least three
such subgraphs, then some two of them do not contain edges from the same triangle and, in this
case, by Lemma 16, the number of interesting garlands does not exceed 46.

Let e be in k different Ξ2-subgraphs. Note that k 6 2. Since e is in ξ3 triangles, there exist ξ3
pairs of edges {h, f} such that h and f induce a Ξ2-subgraph in 〈E′〉 (such pairs can be generated
by removing the edge e from a triangle from 〈E〉). Therefore, 〈E′〉 contains at least

ξ2 + ξ3 − k = 12− e12 − 2ξ3 + ξ3 − 2 = 12− k − e12 − ξ3 = ξ′2

different Ξ2-subgraphs. Note that if e12 = 5, then ξ3 6 2; if e12 6 4, then ξ3 6 3. In both cases,
e12 + ξ3 6 7 and this implies ξ′2 > 12− k − 7 = 5− k.

Case 3.1. Assume that k = 2. By Lemma 15, the edge e is in at most 28−5 − 3 · 8+ 6+15 = 5
interesting garlands. The graph 〈E′〉 contains at least 3 different Ξ2-subgraphs, therefore, by
Lemma 17, there exist at most 41 interesting garlands whose edge aggregates are subsets of E′.
Thus, there exist at most 41 + 5 = 46 < 48 interesting garlands, a contradiction.

Case 3.2. Assume that k = 1. By Lemma 15, the edge e is in at most 28−4 − 3 · 8 + 3 + 15 = 10
interesting garlands. The subgraph 〈E′〉 contains at least four Ξ2-subgraphs, therefore, by
Lemma 18, there exist at most 34 interesting garlands whose edge aggregates are subsets of E′.
Thus, the number of interesting garlands does not exceed 10 + 34 = 44 < 48, a contradiction.
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Case 3.3. It remains to consider the case when the edge e is not in any Ξ2-subgraph. Note
that, in this case, ξ2 6 2.

If e12 = 5, then ξ3 = 2 and ξ2 = 12− 2 · 2− 5 = 3 > 2, a contradiction.
If e12 6 3, then ξ3 6 3 and ξ2 = 12− (e12 + 2ξ3) > 12− 9 = 3 > 2, a contradiction.
Thus, it suffices to consider the case when e12 = 4. In this case, ξ3 = 3 and ξ2 = 2. Consider

the single edge that is not in any triangle. Note that this edge must be in two Ξ2-subgraphs, which
is impossible. �

Now we are ready to prove the chromatic uniqueness of the graph K(q + 4, q − 1, q − 1).

Proposition 3. The graph K(q + 4, q − 1, q − 1) is chromatically unique for q > 3.

P r o o f. By contradiction, assume that the graph K(u) = K(q + 4, q − 1, q − 1) is not
chromatically unique. This means that there exists a graph H such that the graphs K(u) and H
are chromatically equivalent. Let H be a graph obtained from the graph K(v) by removing some
edge set E. Consider the graph K(v). Note that the case K(v) = K(q + 3, q, q − 1) is impossible
by Lemma 1.

Case 1. Assume that K(v) = K(q + 3, q + 1, q − 2) and note that, in this case, |E| = 2.
Calculate the difference of the invariant pt:

∆pt(H,K(v)) = ∆pt(K(u),K(v)) = 15 · 2q−2 − 3 · 2q−3 = 27 · 2q−3.

By Lemma 2, one can deduce that 27 · 2q−3 6 22 − 1 = 3, which implies q < 2, a contradiction.

Case 2. Assume that K(v) = K(q + 2, q + 2, q − 2) and note that, in this case, |E| = 3.
Calculate the difference of the invariant pt:

∆pt(H,K(v)) = ∆pt(K(u),K(v)) = 15 · 2q−2 − 3 · 2q−3 + 2q = 35 · 2q−3.

By Lemma 2, one can deduce that 33 · 2q−3 6 23 − 1 = 7, which implies q < 2, a contradiction.

Case 3. Assume that K(v) = K(q + 2, q + 1, q − 1) and note that, in this case, |E| = 6.
Calculate the difference of the invariant pt:

∆pt(H,K(v)) = ∆pt(K(u),K(v)) = 15 · 2q−2 + 3 · 2q−1 = 21 · 2q−2.

By Lemma 2, one can deduce that 21 · 2q−2 6 26 − 1 = 63, which implies q 6 3, so it suffices
to consider the case q = 3. In this case, K(v) = K(5, 4, 2) and ∆(H,K(v)) = 42. Calculate the
difference of the invariant I3:

∆I3(K(v),K(u)) = 6(q − 1),

∆I3(K(v),H) = ξ1 − ξ2 − 2ξ3,

ξ1 = (q − 1)e12 + (q + 1)e13 + (q + 2)e23 = (q − 1)|E| + 2e13 + 3e23,

ξ2 + 2ξ3 = 2e13 + 3e23.

If e13 = e23 = 0, then E = E12 and each active part of K(v) contains at least four vertices.
Therefore, by Lemma 3, there exist at most 33 interesting garlands, a contradiction. Thus, it
suffices to consider the cases when e13 > 0 or e23 > 0. In both cases, ξ2 + 2ξ3 > 2.

Case 3.1. Assume that ξ3 > 0 and edges e1, e2, e3 ∈ E induce a triangle. Consider an arbitrary
garland G and define F ′ = E(G)∩{e1, e2, e3}. Since F

′ can be one of five sets (empty, one-element
or equal to {e1, e2, e3}), there exist at most 5 · 26−3 − 1 = 39 < 42, a contradiction.
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Case 3.2. Now assume that ξ3 = 0. This implies ξ2 > 2.

Case 3.2.1. Assume that there exists an edge e that is in two Ξ2-subgraphs. Let f and
g be edges such that {e, g} and {e, f} induce Ξ2-subgraphs. Let G be a garland. Define E′ =
E(G) ∩ {e, g, f}. Since E′ can be one of five sets (empty, three one-element sets, and {g, f}), the
number of garlands does not exceed 5 · 26−3 = 40 < 42, a contradiction.

Case 3.2.2. Now assume that there exist two Ξ2-subgraphs without common edges. Let
e1, e2, f1, and f2 be edges from E such that {e1, e2} and {f1, f2} induce Ξ2-subgraphs. Let G be a
garland. Define Ee = E(G)∩{e1, e2}, Ef = E(G)∩{f1, f2}, and E′ = E(G) \ {e1, e2, f1, f2}. Note
that E(G) = Ee ∪Ef ∪E′. Since Ee can be chosen in three ways, Ef can be chosen in three ways,
and E′ can be chosen in 22 = 4 ways, the number of garlands does not exceed 3 · 3 · 4 = 36 < 42, a
contradiction.

Case 4. Assume that K(v) = K(q +2, q, q) and note that, in this case, |E| = 7. Calculate the
difference of the invariant pt:

∆pt(H,K(v)) = ∆pt(K(u),K(v)) = 15 · 2q−2 + 3 · 2q−1 + 2q−2 = 22 · 2q−2.

By Lemma 2, one can deduce that 22 ·2q−2 6 27−1 = 127, which implies q 6 4. So it suffices to
consider the cases when q = 4 or q = 3. If q = 4, then K(v) = K(6, 4, 4) and ∆pt(H,K(v)) = 88.
By Lemma 3, the number of interesting garlands does not exceed 26+1 = 65 < 88, a contradiction.
Thus, it suffices to consider the case q = 3. In this case, K(v) = K(5, 3, 3) and ∆pt(H,K(v)) = 44.
Note that 〈E〉 does not contain a coordinated subgraph of type K(5, 1).

Calculate the difference of the invariant I3:

∆I3(K(v),K(u)) = 7q − 4,

∆I3(K(v),H) = ξ1 − ξ2 − 2ξ3,

ξ1 = qe12 + qe13 + (q + 2)e23 = q|E|+ 2e23,

ξ2 + 2ξ3 = 2e23 + 4.

If ξ3 > 0, then, by Lemma 6, the number of interesting garlands does not exceed

25 + 24 − 3 · 7 + 13 = 32 + 16− 21 + 13 = 40 < 44,

a contradiction. Therefore, ξ3 = 0, which implies ξ2 = 2e23 + 4 > 4. By Lemma 17, the number of
interesting garlands does not exceed 41, a contradiction.

Case 5. Assume that K(v) = K(q + 1, q + 1, q) and note that, in this case, |E| = 8. Calculate
the difference of the invariant pt:

∆pt(H,K(v)) = ∆pt(K(u),K(v)) = 15 · 2q−2 + 3 · 2q−1 + 2q−2 + 2q−1 = 24 · 2q−2.

Using Lemma 2, one can deduce that 24 ·2q−1 6 28−1 = 255, which implies q 6 6; so it suffices
to consider the cases when q = 5, q = 4, or q = 3. The case q = 3 is impossible by Proposition 2.

If q = 5, then K(v) = K(6, 6, 5) and ∆pt(H,K(v)) = 192. Since 〈E〉 dos not contain a
coordinated subgraph of type K(8, 1), by Lemma 3, the number of interesting garlands does not
exceed 27 + 1 = 129 < 192, a contradiction.

It remains to prove the proposition in the case q = 4. In this case, K(v) = K(5, 5, 4) and
∆pt(H,K(v)) = 96.
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Calculate the difference of the invariant I3:

∆I3(K(v),K(u)) = 8q − 4,

∆I3(K(v),H) = ξ1 − ξ2 − 2ξ3,

ξ1 = qe12 + (q + 1)e13 + (q + 1)e23 = (q + 1)|E| − e12,

8q − 4 = 8(q + 1)− e12 − ξ2 − 2ξ3,

12 = ξ2 + 2ξ3 + e12.

If ξ3 > 0, then, by Lemma 6, the number of interesting garlands does not exceed

26 + 25 − 3 · 8 + 13 = 85 < 96,

a contradiction. Thus, ξ3 = 0, which implies ξ2 + e12 = 12. Note that e12 6 8. If e12 = 8, then
E = E12, which implies ξ2 = 0, a contradiction. Thus, e12 6 7 and ξ2 > 5.

If there exist an edge e that is in at least two Ξ2-subgraphs, then, since 〈E〉 does not contain
a coordinated subgraph of K(6, 1), by Lemma 12, the edge e is in at most 25 − 8 + 2 + 2 = 28
interesting garlands. By Lemma 3, the number of interesting garlands whose edge are subsets of
E \ {e} does not exceed 26 + 1 = 65, so the total number of interesting garlands does not exceed
65 + 28 = 93 < 96, a contradiction. Therefore, every edge is in at most one Ξ2-subgraphs, which
implies ξ2 6 4, a contradiction. �

The proof of the theorem follows from Propositions 1 and 3.

7. Conclusion

In this paper, the chromatic uniqueness of a complete tripartite graph K(n1, n2, n3) is proved
for n1 > n2 > 3 > 2 and n1 − n3 6 5. Also, some properties of the number of partitions of the
vertex set of a graph G into t independent sets are established. Both problems, the chromatic
uniqueness, and properties of the invariant pt, are still challenging open problems.
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2017. Vol. 14. P. 1492–1504. DOI: 10.17377/semi.2017.14.129 (in Russian)

10. Gein P.A. On garlands in χ-uniquely colorable graphs. Sib. Èlektron. Mat. Izv., 2019. Vol. 16. P. 1703–
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Abstract: Unlike standard models of monopolistic screening (second-degree price discrimination), we con-
sider a situation where consumers are heterogeneous not only vertically, in their willingness to pay, but also
horizontally, in their tastes or “addresses” a la Hotelling’s Linear City. For such a screening game, a novel model
is composed. We formulate the game as an optimization program, prove the existence of equilibria, develop a
method to calculate equilibria, and characterize their properties. Namely, the solution structure of the resulting
menu of contracts can be either a “chain of envy” like in usual screening or a number of disconnected chains.
Unlike usual screening, “almost all” consumers get positive informational rent. Importantly, the model can be
extended to oligopoly screening.

Keywords: Screening, Price discrimination, Spatial competition, Linear city, Principal-Agent model, Non-
convex optimization.

1. Introduction

Motivation. In economic practice, screening or “second-degree price discrimination” is quite
usual in many industries. It typically generates a “product line”, which is a menu of quantity-price
or quality-price “packages”. E.g., “packages” can mean various bottles of a soft drink offered to a
heterogeneous consumers’ population: (300ml for $0.5), (450ml for $0.8), (1000ml for $0.95), and so
on. Profit-maximizing product lines in telephony, clothes, cars, everywhere typically demonstrate
some price discounts for higher quantity or quality. Why? To explain discounts and to construct
product lines, economists exploit knowledge about multiple consumer types, each type being de-
scribed by its “willingness-to-pay” (monetary valuation function) for higher quantity or quality.
Existing types are known, but who belongs to which type is hidden from the seller; consumers
self-select based on this asymmetric information — this kind of game is called “screening”.

In economic theory, the standard model explaining screening or product lines dates back to
Michael Spence [7]. The model is reproduced in many textbooks, monographs [5], and reviews [8].
Typically, this theory focuses on a monopolistic seller and exploits the Spence–Mirrlees “vertical-
ordering” assumption: types of consumers are numbered in such a way that a higher number has
a higher derivative of its valuation function everywhere. Then, the basic finding is the “Chain-rule
theorem” about the list of active constraints in the profit-maximizing menu of packages. This list
constitutes a “chain of envy” among consumers: the highest type is almost eager to switch to
his/her lower neighbor’s package, who in turn is almost eager to switch to his/her lower neighbor’s
package, and so on, other constraints being redundant. As a result, the solution method is clear

1The authors are grateful to Pavel Ilinov, Igor Bykadorov, Mikhail Martyanov, Pavel Molchanov for
discussions and help in checking the proofs. The study was financed by the HSE University Basic Research
Program.
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and the properties of equilibria are definite. Only the highest consumer type gets his/her Pareto-
efficient quantity, others are under-served. However, everybody except the lowest type gets some
informational rent, i.e., a consumer surplus born by asymmetric information.

Among extensions of this theory, [4] shows that the named properties and the “chain of envy”
itself are not guaranteed in situations where the standard Spence-Mirrlees assumption does not
hold. Other extensions are also devoted to revealing various solution structures and properties
(see [8]).

The present paper considers one more class of non-standard, poorly studied situations. Here
the vertical heterogeneity of consumers (i.e., ordered valuations of types) is combined with their
horizontal differentiation in some space of tastes or locations. Thus we bridge the theory of screening
with another theoretical tradition, horizontal “Linear City”. The latter was pioneered by [2] and
includes plenty of models (for review, see [9]).

The rationale for combining both “vertical” and “horizontal” theories lies in the realism of the
combination. For instance, a typical city includes consumers who are heterogeneous not only in
their willingness to pay for quantity/quality but also in their geographical location. When designing
his/her product lines, each seller should have in mind not only possible switches of consumers among
the packages of his/her product line, but also a possibility to attract more consumers by lower prices
of the whole product line. The interaction between these possibly contradicting selling strategies
is the main idea here, a novel theoretical question worth studying.

Setting. Our consumers are differentiated in two ways: vertically (e.g., rich and poor) and
horizontally. In a certain industry, the horizontal dimension may mean not only geography but also
“tastes locations”, which include some other characteristic, e.g., size of clothes. Say, T-shirts may
be differentiated in qualities (vertical dimension) and sizes (horizontal dimension), suiting various
consumer tastes. Still, we stick to expressive geographical interpretation, bearing in mind that
tastes interpretation is isomorphic.

In the vertical dimension, we assume a finite number of consumer types. E.g., these types can
be “rich”, willing to pay more for quality, “middle-class”, and “poor”. In the horizontal dimension
there is a continuum of locations among each type of consumer, uniformly distributed on the real
line, the monopolistic seller being located at 0. The consumers bear some transportation costs,
paying with their time and effort to go shopping. Therefore, “the farthest customer” is one whose
net-of-price willingness-to-pay for the commodity almost equals his/her disutility of walking to the
shop. This trade-off generates a negative dependence of the seller’s range of service upon its price,
interrelated with “envy” among rich and poor.

Results. We propose a novel model for such “Principal-Agents” games and formulate it as the
Principal’s optimization program under the Participation constraints and Incentive–Compatibility
constraints (IC constraints). Such optimization (traditionally) replaces a game among agents.
Further, we reduce the Principal’s program to a convenient form, show why a solution should exist.
Discussing a solution method, we note that our optimization problem need not be a convex one,
which brings complications. In principle, one should search among all possible envy structures,
which are all possible combinations of constraints. We propose a heuristic directed-search method
to determine the set of active constraints in a smaller number of steps than a complete search. It
exploits the first-order conditions in such a way as not to miss the global maximum.

The computational issues are the necessary preliminaries, but the economic properties of solu-
tions are the main goal of theoretical studies in screening. For our model, the important finding
is that prices tend to be lower than under screening without space. Unlike the standard setting,
almost all consumers (except “the farthest customer” of each type) get some informational rent,
which is the consumer surplus. Moreover, we characterize the condition on parameters that gen-
erate equilibria with Pareto-efficient sizes of packages not only for the highest type but also for
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some other types. In this case, the usual chain structure of envy among consumer types is broken
and the graph of the solution takes the form of a broken chain, some segments being disconnected.
Examples illustrate such disconnected equilibria. The highest type in each segment gets the Pareto-
efficient size of his/her package, whereas all other agents get distorted sizes. Why should we care
about these properties? Because knowledge about Pareto-inefficiency is needed for market regu-
lation, while knowledge about the structure of solutions can help sellers to choose their pricing
policies.

Extensions and other approaches. Last but not least motivation: the present setting is one
of the possible ways to develop screening in oligopoly, which remains a difficult goal for theorists
to reach. In this field, the well-known paper by Rothschild and Stiglitz [6] is probably a good
description of a competitive market of insurance, but it does not fit well the commodity markets
because it predicts zero profit for sellers, which is not realistic. Our spatial approach appears as a
good alternative because space softens competition and allows for realistic positive profits. Another
approach to screening in oligopoly was recently developed in an important paper by Chade and
Swinkels [1]. Their firms are heterogeneous; as a result, higher types of firms serve higher consumer
types (sorting). Payoffs in such a game are not quasi-concave, but equilibria do exist. Certain
firm types distort their allocations downwards; the welfare effects of private information differ from
those under monopoly. The approach by Chade and Swinkels is an alternative (non-spatial) way
to describe oligopoly screening with positive profit, which complements our approach.

The next section introduces the model. Subsequent sections provide examples, show that equi-
libria exist, provide a method to find them, and discuss equilibria properties.

2. Screening in a “Linear City”: model and equilibria existence

“Linear City” in theory is typically a continuously inhabited interval, or, like here, the real
line (−∞,∞), where location 0 is the “city center”. For simplicity, we restrict our attention to
uniform distribution of each consumer type. Our single seller is located in the center, at 0. So,
by symmetry, it is sufficient to formally represent only one side of this city [0,∞), the other side
(−∞, 0] just mirrors the first one.2

Operating at 0, our monopolistic seller (a shop) serves the interval [0,∞) uniformly populated
by each of n consumer types. Each individual is characterized by his/her type i ∈ {1, 2, ..., n}
and by location ξi ∈ [0,∞), which is his/her distance from the seller. The seller offers at 0 some
commodity or service to all consumers, constructing a menu {(q1, T1) , ..., (qn, Tn)}, where each
package includes quality/quantity/size qi of the commodity and tariff or price Ti. (For instance,
one may think of a shop selling a soft drink. Then, the size q1 is destined to the “least thirsty”
consumers, q2 > q1 should serve “moderate thirsty” ones, while q3 > q2 should serve “very thirsty”
consumers, or very rich ones, eager to pay more.) The “transportation cost” τξi is proportional to
distance (with τ > 0). It is interpreted as the customers’ time/money, spent traveling for shopping
at point 0.3

Each point is inhabited by some mass m1 > 0 of consumers type #1, by some mass m2 > 0
of consumers type #2, mass m3 > 0 of consumers type #3, and so on. (If one interpret mi

2Choosing an infinite city instead of [−1, 1] means that we want to model sufficiently high transportation

costs, to make the city edges not served by the seller. We are going to investigate also the case of a city
completely covered by service, and the most interesting topic — two oligopolists, competing for the whole
Linear City.

3As we had said, another typical interpretation of Linear City [0,∞) is some space of characteristics, e.g.,
sizes of clothes. In this case, the “transportation cost” means disutility from inappropriate size, expressed
in money.
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as a probability of this type, then normalization m1 + m2 + ... + mn = 1 should be added, but
normalization plays no role in our solution.) The consumers are characterized by their monetary

valuation functions, i.e., willingness to pay for quantity/quality, denoted by ṽ1[q], ṽ2[q], ṽ3[q].
On the other side of the counter, the “Principal” in this game, the monopolistic seller, faces a

marginal cost c ≥ 0, which is his/her production cost per unit of quantity/quality. However, we
shall subtract costs from valuations/tariffs and further deal only with net-of-cost valuations v and

net-of-cost tariffs t4:

v1[q] ≡ ṽ1[q]− cq, . . . , vn[q] ≡ ṽn[q]− cq[q],

t1 ≡ T1 − cq1, . . . , tn ≡ Tn − cqn.

Respectively, the subsequent analysis looks as if costs were zero (c = 0), but the non-zero case is
also included in consideration because the summand cqi enters both sides of important constraints
and cancels out.

Assumption 1 (Boundedness+). Each net valuation vi : R+ → R+ (i = 1, 2, . . . , n) has a

finite argmaximum:
∃ qoi ≡ argmax

z
vi[z] > 0.

Each net valuation function vi is strictly concave, twice continuously differentiable, and it is strictly

increasing on [0, qoi ), i.e., below the argmaximum.

Assumption 2 (Ordering+). The family of valuations v1[·], v2[·], . . . , vn[·] satisfies the Spence–
Mirrlees ordering condition:

v′1[q] < v′2[q] < v′3[q] ∀q, vi[0] = 0 ∀i = 1, 2, . . . , n.

As a result, graphs of all net valuations vi[q] do cross at the origin and never cross again, that is
why such assumption is often called the “single-crossing condition”.

Example 1. An example of valuations’ family, used below for demonstrations, is a family of
affine transforms of some common function ν[·]:

v1[q] = a1q + ν[q], v2[q] = a2q + ν[q], v3[q] = a3q + ν[q],

with some parameters 0 < a1 < a2 < a3. E.g., it can be a family of parabolas like

v1[q] = 2q − 0.5q2, v2[q] = 3q − 0.5q2, v3[q] = 4q − 0.5q2,

see similar examples below.

Traditionally for the screening theory, in such games, consumers play the role of informed
“Agents”, or “followers”. The seller, uninformed about their types, is a “Principal”, or “leader”:
he/she plays first, they second. He/she needs to construct a menu of “packages”, being unable to
discriminate among their types. Each package (qi, ti) ≥ 0 includes quality qi and tariff ti, called
also “price”. One can show that there is no need to construct more packages than n agent types in
the market. Non-participation is perceived as one more package (0, 0). So, the menu will consist
of (0, 0) and n non-trivial elements

(q, t) = ((q1, t1), (q2, t2), . . . , (qn, tn)).

4Hereinafter, we always use brackets like f [·] to denote arguments of functions, using parentheses (·) for
grouping.
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If some packages coincide, then the consumers actually have less than n different options, but
formally we shall discuss exactly n packages designed.

After the menu is set, each agent comes and “self-selects”, i.e., buys a single package (qi, ti)
from the menu in take-it-or-leave-it fashion. He/she can choose the zero outside option (not buy
anything), then (0,0) brings him/her zero “reservation utility” ui0 = 0. Whenever any agent (i, ξ)
chooses a package (qi, ti), his/her payoff, or gross utility ui will include his/her valuation vi[qi] for
the chosen quality qi minus the tariff ti, minus his/her personal transportation cost, as follows:

ui[qi, ti, ξ] = vi[qi]− ti − τξ ≥ ui0 = 0.

Here, the parameter τ > 0 is the “distance cost” coefficient for any consumer located at ξ, i.e.,
ξ-far from the seller located at 0. In other words, the farther is the consumer from the shop, the
more he/she spends on shopping. For any type i, the endogenous range of service xi is defined as
the location of the farthest consumer among this type who comes to buy anything:

xi : (qi[ξi] > 0 ∀ξi ≤ xi) , (qi[ξi] = 0 ∀ξi > xi) .

In other words, all ξi located closer than xi to 0 do buy from the seller, more distant consumers do
not (the ranges of service xi may be different among types i).

We have normalized the marginal cost c to zero (without loss of generality). So, the Principal’s
elementary payoff from a single purchase by consumer (i, ξ) is

πi[qi, ti] ≡ mi ∗ (ti − cqi) = mi ∗ ti.

Taking into account the endogenous range of service xi = xi [qi, ti] ≥ 0, we are going to maximize
the total Principal’s expected profit, which is the integral over all consumers served (the weighted
sum of individual net tariffs)

Π = Π[q, t, x] ≡ x1 ·m1 · t1 + ...+ xn ·mn · tn → max
{(xi,qi,ti)i≤n≥0}

. (2.1)

One may be surprised that the Principal is expected to design not only the packages but also the
range of service xi. Let us explain: traditionally for such theory, the consumers goals and behavior
are expressed through inequalities. Namely, profit is maximized w.r.t. all variables simultaneously,
including those chosen by consumers, under two groups of agents “rationality constraints”. These
are almost-standard Participation constraints (2.2) and Incentive-compatibility constraints (2.3):

[qi]− ti ≥ τxi ∀i, (2.2)

vi[qi]− ti − τxi ≥ vi[qj ]− tj − τxi ∀i, j. (2.3)

Here constraint (2.2) means that the consumer’s surplus from the purchase exceeds his/her trans-
port cost. It includes the novelty of our model: without the spatial dimension, the right-hand side
of the participation constraints would be just zero. We also have in mind participation constraints

vi[qi]− ti ≥ τξi ∀ξi < xi

for all close-to-producer agents (i, ξ), but they are weaker than such constraint (2.2) for the farthest
consumer xi, and therefore dropped.

Any Incentive-compatibility constraint (2.3) means that a consumer i is not “envying” any
other (jth) package, i.e., he/she has no incentive to take package j instead of one designed for
him/her. The transport cost τxi enters both sides of the Incentive Compatibility inequality, so, it
can be dropped.

Now we show that the usual Chain–Rule applies here, i.e., that many Incentive-compatibility
constraints can be dropped or replaced.
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Lemma 1 (Chain-Rule). Solving the maximization problem (2.1)–(2.3) is equivalent to maxi-

mizing the same objective function under the following constraints:

v1[q1]− t1 ≥ τx1, . . . , vn[qn]− tn ≥ τxn, (2.4)

v2[q2]− t2 ≥ v2[q1]− t1, (2.5)

v3[q3]− t3 ≥ v3[q2]− t2, (2.6)

. . .

vn[qn]− tn ≥ vn[qn−1]− tn−1, (2.7)

qn ≥ ... ≥ q2 ≥ q1 ≥ 0, (2.8)

where some Incentive-compatibility constraints are replaced by the ordering constraints (2.8).

P r o o f. We observe that our initial optimization problem (2.1)–(2.3) differs from the classical
one only in its participation constraints. This allows us to repeat the classical proof under the
Spence–Mirrlees condition (see [3]), and claim that a constraint “no-envy from any i to his/her
lower neighbor i− 1” implies “no-envy” from i to anybody else:

(vi[qi]− ti ≥ vi[qi−1]− ti−1) ⇒ vi[qi]− ti ≥ vi[qj]− tj ∀j.

First, we combine constraint of “no-envy” from any i to any lower j < i with its inverse:
“no-envy” from j to the higher type i:

vi[qi]− vi[qj] ≥ ti − tj ≥ vj [qi]− vj [qj] (2.9)

and compare this with the Spence–Mirrlees condition expressed in finite differences:

vi[qi]− vi[q̃] ≥ vj [qi]− vj [q̃] ∀j < i,∀ (qi, q̃) | qi ≥ q̃.

We conclude that all incentive-compatible packages must satisfy the q-ordering constraint (2.8),
i.e., a higher type must take a (weakly) bigger package. Thereby, adding this ordering constraint
to the constraints system (2.2)–(2.3) does not influence optimization. Since our objective function
is increasing in ti and our constraints take the form vi[qi]− ti ≥ ..., we realize that it is sufficient to
consider only intervals qi ≤ qoi below the argmaximum, where our valuations are increasing. Then, it
is easy to check that bigger packages imply weakly higher tariffs for higher types: t1 ≤ t2 ≤ ... ≤ tn
at any solution. Hence, we can ignore in optimization each “no-envy” constraint from j < i to
higher i. Indeed, it is the right inequality in (2.9), whereas a profitable increase in both tariffs ti, tj
can make only the left equality binding, not the right one.

Second, similarly using q-ordering and the Spence–Mirrlees condition, we check that “no-envy
from any i to his/her lower neighbor i − 1” implies also “no-envy” from i to any lower type
j < i − 1. Thereby, under (2.8) all non-neighboring incentive constraints are excessive, can be
dropped without changing our optimization. �

Thus, we have introduced a new model of screening, and represented a related Principal–Agent
game as the Principal’s optimization program (2.1), (2.4)–(2.8); all equilibria of our game (if any)
are some profit-maximizing solutions.

3. Reduction of variables and existence of solutions

To reduce variables, one can look at the objective function (2.1) increasing in ti, xi, and conclude
that, for each type i, the farthest-customer’s participation constraint must be active at any
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solution, i.e., become an equality (in the opposite case we could increase profit by increasing
variables ti, xi).

So, we can use these active constraints to express the variables ti as

t1 = v1[q1]− τx1, t2 = v2[q2]− τx2, . . . , tn = vn[qn]− τxn.

Plugging these ti into the IC constraints, we obtain their left-hand sides equal to the ranges of
service xi:

v2[q2]− t2 = v2[q2]− (v2[q2]− τx2) ≡ τx2, . . . , vn[qn]− (vn[qn]− τxn) ≡ τxn.

Now we plug these expressions into the profit Π and into the IC constraints, thereby excluding the
variables ti and participation constraints. Thus we come to the reduced maximization problem to
be solved:

Π ≡ x1 ·m1 · (v1[q1]− τx1) + ...+ xn ·mn · (vn[qn]− τxn) → max
(xi,qi)i≤n

s.t. (3.1)

τx2 ≥ v2[q1]− v1[q1] + τx1,

τx3 ≥ v3[q2]− v2[q2] + τx2,

. . .

τxn ≥ vn[qn−1]− vn−1[qn−1] + τxn−1,

qn ≥ qn−1 ≥ ... ≥ q1 ≥ 0. (3.2)

Possible solution “structures” and ideas of solving. It is common in constrained opti-
mization to find a solution through exploring many possible combinations of constraints — inequal-
ities, when finding out which of them will become active (equalities) at the true global maximum.
In convex optimization, e.g., linear programming, well-known are algorithms of directed search
among these combinations. An efficient directed search reduces the number of combinations ex-
plored, keeping a warranty of the true optimum. We are going to construct a sort of such search
here. We shall denote by

A = {ICij , ICjk, ..., Oi, ...}

any possible “solutions structure”, i.e., the list (combination) of names of constraints that we assume
are active at the current step. Hereinafter, ICij denotes the Incentive Compatibility constraint like
τxi ≥ vi[qj] − vj [qj] + τxj , and an ordering constraint like qi ≥ qi−1 is denoted by Oi. Under
any A-hypothesis, we call a related solution an “A-conditional optimum”. After trying all A, we
compare all such conditional optima to select a true optimum.

Unfortunately, in general, our optimization program need not be a convex one! Indeed, one
can note that our objective function includes the summands x1 · v1[q1] where both multipliers are
increasing, this form precludes concavity of this function. Moreover, our constraints include the
difference vi+1[qi] − vi[qi] (of concave functions) that need not be convex or concave without an
additional assumption. Generally, our domain for variables is not necessarily convex. However,
our specific problem often allows for some simplifications. We start discussing them with possible
empty set of active constraints A = ∅.

Disconnected kind of solutions. To introduce additional notions and notations before our
existence theorem, we now show some specific, “disconnected” type of solutions (equilibria), that
may occur under some specific valuations vi.

Let us suppose that all incentive constraints (IC) and all ordering constraints qi ≥ qi−1 are
inactive, play no role in the solution. Then, optimization in q alone would give us the so-called
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“Pareto-optimal” package sizes qoi , because they maximize vi[qi] per se:

qo3 ≡ argmax
z≥0

v3[z] ≥ qo2 ≡ argmax
z≥0

v2[z] ≥ qo1 ≡ argmax
z≥0

v1[z] > 0, (3.3)

to3 ≡ max
z≥0

v3[z]/2 ≥ to2 ≡ max
z≥0

v2[z]/2 ≥ to1 ≡ max
z≥0

v1[z]/2 > 0. (3.4)

Using these known values q, t, now we can optimize in xi each summand xi ·mi · (vi[q
o
i ]− τxi) and

obtain “Pareto-optimal” ranges xoi of service

xo1 ≡
v1[q

o
1]

2τ
, xo2 ≡

v2[q
o
2]

2τ
, . . . xon ≡

vn[q
o
n]

2τ
. (3.5)

Such a solution means that, out of common benefit vi[q
o
i ] from their contract, the closest-to-the-

seller consumer gets one half (as “consumer surplus”), and the seller gets the other half as his/her
profit. More distant consumers get less.

To find what kind of valuations may generate such disconnected equilibria, we plug these
expressions qo1, t

o
1 into the incentive constraints. Thus we get a necessary condition (3.6) on such

valuations:

vi+1[q
o
i+1]

2
−

vi[q
o
i ]

2
≥ vi+1[q

o
i ]− vi[q

o
i ] ⇒

vi+1[q
o
i+1] ≥ 2vi+1[q

o
i ]− vi[q

o
i ] (3.6)

for all i. Is the inequality plausible, is a disconnected solution possible under any valuations vi?
The following example confirms this.

Example 2. (Separated types #1, #2, #3.) The following example with three quadratic valua-
tions vi[qi] = ai ∗ qi − bi ∗ q

2
i shows a disconnected structure:

a1 = 2; a2 = 2.2; a3 = 2.3; b1 = 5; b2 = 2; b3 = 0.8.

The masses of types are m1 = m2 = m3 = 1, and the costs are c = 0; τ = 1.
These data and direct calculations yield the following profit-maximizing Pareto-optimal

sizes/tariffs:

q∗1 = qo1 ≡ argmax
q

v2[q] = 0.2, t1 = 0.1,

q∗2 = qo2 ≡ argmax
q

v2[q] = 0.55, t2 = 0.3025,

q∗3 = qo3 ≡ argmax
q

v3[q] = 1.4375, t3 = 0.826563.

Fig. 1 exhibits our Example 2 with a disconnected equilibrium. It gives also some geometry
intuitions for this kind of solutions and for our optimization problem per se.

Thick red, green, and blue dots are the consumers’ equilibrium packages: the quantity qi lies on
the horizontal axis, the tariff ti lies on the vertical one. The valuations vi[·] of the first, second, and
third consumers are the solid curves painted red, green, and blue, respectively. Each dashed curve
shows the equilibrium level of the valuation function for one consumer among this type, namely,
for one closest to the seller. The lower is the dashed curve, the better for the consumer because its
difference in height with related solid curve demonstrates the consumer’s surplus (payoff).

Small red, green, and blue squares demonstrate the equilibrium packages which would occur
under standard, space-less screening. Comparing standard and new outcomes, we observe that
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Figure 1. Valuations and solutions.

adding space to screening can diminish distortion. Namely, space increases quantities q and also
brings benefits for the close-to-seller consumers by diminishing tariffs t.

Example 3. (Connected types #1+#2, separated #3.) This example is almost the same as
Example 2, only b2 = 3. The quadratic valuations are

vi[qi] = ai ∗ qi − bi ∗ q
2
i

with
a1 = 2; a2 = 2.2; a3 = 2.3; b1 = 5; b2 = 3; b3 = 0.8,

the same masses m1 = m2 = m3 = 1 and costs c = 0; τ = 1. The solution shows a partially
disconnected structure:

q∗1 = 0.19 < argmax
q

v2[q], t1 = 0.1104336,

q∗2 = qo2 ≡ argmax
q

v2[q] = 0.366667, t2 = 0.19712,

q∗3 = qo3 ≡ argmax
q

v3[q] = 1.4375, t3 = 0.826563.

Example 4. (Connected types #1+#2+#3.) This example is almost the same as Example 3,
only b3 = 2. The quadratic valuations are

vi[qi] = ai ∗ qi − bi ∗ q
2
i

with
a1 = 2; a2 = 2.2; a3 = 2.3; b1 = 5; b2 = 3; b3 = 2,

the same masses m1 = m2 = m3 = 1 and costs c = 0; τ = 1. It shows a completely connected
solution structure:

q∗1 = 0.182261 < argmax
q

v2[q], t1 = 0.10786,

q∗2 = 0.34472 < argmax
q

v2[q], t2 = 0.208432,

q∗3 = qo3 ≡ argmax
q

v3[q] = 0.575, t3 = 0.31449.
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Economic intuitions. Economically, why the “chain of envy”, quite usual in standard screen-
ing, can be broken in spatial screening? Why disconnected profit-maximizing solutions may hap-
pen? Well, we know that in usual screening there are no reasons for the principal to leave any
incentive compatibility constraint, or the 1st participation constraint, inactive. Such a plan would
bring waste of profit. Respectively, the 1st type in usual screening gets zero informational rent,
nothing beyond the reservation utility.

By contrast, in our spatial screening model, all closer-than-the-farthest customers get equilib-
rium payoffs higher than their reservation ones; i.e., the tariff for them is lower than it could be.
This slack is not wasted, from the view of the profit-maximizing Principal, it is a sacrifice for ex-
tending his/her service range, his/her coverage of consumers. This objective, constructing a utility

slack to attract more consumers, can make one or more incentive constraints inactive. The realism
of such a trade-off in many markets — is the main reason for building our new model of screening.

Our discussion of examples and reasons for non-active constraints ends up with the following
conclusion. Generally, the list A of active constraints may be empty, or include all IC constraints
(A = {ICn,n−1, ICn,n−1, ..., IC21}), or may consist of various combinations of active constraints.

Equilibria existence. Returning to the general case with unknown A, we should ask: are there
always solutions {(xi, qi)i≤n} to our maximization program (3.1)–(3.2)? Our domain is not empty.
Indeed, to show a sample admissible plan we can take all partial Pareto-optimal sizes qoi . These
“separate maxima” exist under our assumptions, they satisfy our ordering.5 We can supplement
these q with sufficiently small x like x1 = x2 = x3 = ε < minj vj[q

o
j ]/τ . So, a positive admissible

plan (q, x) > 0 exists. Moreover, it brings a strictly positive profit Π > 0.

Now studying our objective function, we observe that the highest-type quality qn enters Π only
once, so, this variable must take its Pareto-optimal value qn = qon at any solution. As to the other
arguments qi of the objective function, we conclude that we can restrict them as qi ≤ qoi without
sacrificing our objective function (since, for higher values of q, our profit Π becomes smaller).
Similarly, without sacrificing our objectives, variables x can be restricted as (vi[qi]− τxi) ≥ 0, i.e.,
xi ≤ vi[qi]/τ ≤ vi[q

o
i ]/τ .

Therefore, without loss of optima, we can squeeze our initial domain (positive orthant), and
maximize now our function Π(q, x) on a restricted compact domain K constructed as

K ≡
{

(q, x)| 0 ≤ qi ≤ qoi + 1, 0 ≤ xi ≤ xmax ≡ max
j

vj [q
o
j ]/τ + 1 ∀i = 1, 2, 3

}

.

Our objective function Π(q, x) is continuous. Therefore, byWeierstrass’s extreme value theorem,
we have established the following statement.

Proposition 1. Under our assumptions, there exists a solution to our maximization prob-

lem (3.1)–(3.2).

Moreover, one can conclude from our discussion that the maximum lies strictly below the
artificial upper bounds qoi + 1, xmax (being an inner solution) and brings a positive profit Π.

How can we practically find a solution under any specific valuation functions vi?

Of course, one can exploit any iterative or exact numerical method. Since we deal here with
differentiable functions, it is possible to use exact finite methods, exploiting the first-order condi-
tions, even without being sure in convex optimization. Indeed, after finding all stationary points
and border solutions, one can compare (a finite number of) related local maxima, to choose the
global one.

5We also can take sufficiently small values of x1 = x2 = x2 = ε < v1[q
o

1 ]/τ < v2[q
o

2 ]/τ < v3[q
o

3 ]/τ > 0, and
assure that the objective function can be positive under some values of the optimizers.
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To implement this idea, solving first-order equations for all possible A-structures should be
sufficient to find the true optimum, but this way can be computationally tedious. We shall suggest
a heuristic method that explores some A-structures. To construct each step of this method, the
next section suggests a convenient way of using First-Order Conditions (FOC) for exploring any
hypothesis A about active constraints.

4. Using FOC for any hypothetical list A of active constraints

This section explains how to further reduce our variables and use First-Order Conditions to
find any A-conditional maximum under some hypothesis A. We explain it by an example.

Suppose that we have n = 4 consumer types and assume that family A of active IC constraints
(A explored on some step of our general search algorithm) connects three adjacent agent types
{#1,#2,#3} as A = {IC21, IC32}, whereas type #4 is separated and ordering constraints are not
binding. We find related A-conditional maximum as follows.

As we have ensured, the highest variable q∗3 among the chain {#1,#2,#3} must take its v3-
maximizing Pareto-value qo3 (here and further accent ∗ denotes solutions):

q∗3 = qo3 ≡ argmax v3[q3].

Similarly, the isolated variable q4 also takes its Pareto-optimal value q∗4 = qo4. (By contrast, lower
variables qi in the chain need not become Pareto-optimal because the incentive constraints may be
active.)

Whenever any ICji is active, we can define the difference function Vji[qi] ≡ vj[qi]− vi[qi]. E.g.,
for two IC included in A = {IC21, IC32}, these difference functions are

V32[q2] ≡ v3[q2]− v2[q2], V21[q2] ≡ v2[q1]− v1[q1].

(Special linear case. Such difference function V32[·] can appear linear in the particular case when the
valuations family vi[·] is built from a common function u[·] as its linear modification vi[x] = aix− u[x] with
a1 < a2 < .... In this case, V32[q2] ≡ a3q2 − a2q2 = (a3 − a2)q2, V21[q1] ≡ a2q1 − a1q1 = (a2 − a1)q2).

We can invert any difference function Vij because it is increasing, by Spence–Mirrlees assump-
tion. We denote the inverse Λij [·] ≡ V −1

ij [·]. Further, to reformulate active constraints — equations
τx3 = v3[q2] − v2[q2] + τx2 through these functions Λij , we express the volumes qi through the
differences in service ranges:

q2 = Λ32 [τx3 − τx2] ≡ V −1
32 [τx3 − τx2] ,

q1 = Λ21 [τx2 − τx1] ≡ V −1
21 [τx2 − τx1] .

Using this transform to simplify our optimization, we can get rid of all variables except the service
ranges xi:

τΠ = τx1 ·m1 · (v1[Λ21 [τx2 − τx1]]− τx1) + τx2 ·m2 · (v2[Λ32 [τx3 − τx2]]− τx2)+

τx3 ·m3 ·
(

v3[q
opt
3 ]− τx3

)

→ max
x=(x1,x2,x3)≥0

,
(4.1)

and deal with unconstrained optimization. We check after finding the unconstrained maxima
whether the ordering conditions and out-of-A IC constraints are satisfied. In the opposite case
(violated outside constraints), we reject the hypothesis A and explore another one.

In formulation (4.1), we have multiplied our objective function by τ to prepare subsequent usage
of auxiliary variables yi ≡ τxi, δij , to simplify the analysis. This trick explains also the following
remark.
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Remark 1. The parameter τ only multiplies our payoff but does not influence the main
variables — maximizers (x, q, t).

Solution for a connected component {#i,#i + 1,#i + 2} under A = {IC21, IC32}. To
find the solution components (x1, x2, x3), it is sufficient to differentiate the partial objective func-
tion (4.1) by (x1, x2, x3), explore these first-order conditions, and compare all resulting stationary
points (the points can be multiple if the function is non-concave, but their number is finite), to
choose the true maximum. Afterwards we derive the remaining variables (q, t) from these (x∗).
This gives the part (q∗i , t

∗
i , x

∗
i )i≤3 of the needed solution. Turning to the remaining type #4, the

part (q∗i , t
∗
i , x

∗
i )i≤3 is supplemented with the Pareto-optimal values (q∗4, t

∗
4, x

∗
4) = (qo4, t

o
4, x

o
4) found

for any isolated type from equations (3.3)–(3.5). Now we should check if the ordering conditions
and the unused IC constraints (IC43) are really satisfied, inactive. If it is wrong, this hypothesis
A = {IC21, IC32} is rejected, otherwise, it can be compared with other hypotheses.

To simplify using the first-order conditions, the objective function can be expressed in new
auxiliary variables δji ≡ yj − yi as:

τΠ = (y3 − δ32 − δ21) ·m1 · v1[Λ21 [δ21]]−m1 · (y3 − δ32 − δ21)
2+

(y3 − δ32) ·m2 · v2[Λ32 [δ32]]−m2 · (y3 − δ32)
2+

(y3) ·m3 · v3[q
opt
3 ]−m3 · y

2
3 → max

y=(δ21,δ32,y3)≥0
.

(4.2)

If we treat the variable y3 parametrically, it is easy to observe that the concavity in the remaining
variables δij of any summand is guaranteed when every function vi [Λi+1,i [z]] is concave for all z.
Concavity may help in practical optimization as well as the following technical lemma.

Lemma 2 (Existence of solutions for a component). Given a family A of active IC constraints
and its connected component {#i,#i + 1,#i + 2}, the first-order conditions for related function
formulated as (4.1) must give at least one solution that is a global maximum of this function.

P r o o f. Though Proposition 1 states that maxima do exist when the problem is ex-
pressed in terms of variables (q, x), the above lemma is more specific. Looking at the objective
function (4.2) we note that values of vi [Λi+1,i [z]] are bounded from above by the maximal
value maxz≥0 vi [z], whereas other terms are quadratic with minus and take arbitrarily low
(negative) values when any variable approaches infinity. So, in spite of the unknown concavity of
this objective function, we are sure that all its local maxima must be inner ones, not go to infinity. �

As to the uniqueness of a solution for any connected component, probably, it can be proved
using the assumption of “special linear case”, i.e., Λ′′

21 = 0, but this question remains unclear.

Now we explain how to use our A-conditional solutions and connected components to sequen-
tially search among A-conditional maxima for finding a true maximum. Related heuristic compu-
tational procedure hopefully economizes calculations. The next section also describes all possible
solution structures.

5. Non-active IC constraints and method of search among broken chains

We have shown how to find conditional optima for each connected component belonging to any
hypothetical family A of active constraints. Now let us show how to go step by step from one
hypothetical family A to another, revealing which constraints should be active at the solution, i.e.,
building a sequence of families that approaches the optimal family A∗.
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To begin with, we can try using Pareto-optimal sizes q∗i = qoi ≡ argmaxq vi[q] with related
profit-maximizing tariffs t∗i = toi ≡ vi[q

o
i ] and ranges x∗i = xoi = vi[q

o
i ]/2 as in (3.3)–(3.5). It can

happen that no IC or ordering constraints are violated. Then we can declare that it is a global
optimum with a disconnected solution structure: A = ∅, like our Example 2 (because adding any
constraint to A cannot enhance the objective function).

More typically, some constraints are violated at A = ∅, then some packages should become con-
nected, and finding the optimal solution structure A∗ becomes more difficult. These considerations
give us intuition for the following algorithm for finding A∗, through checking active IC constraint.

The idea of general optimization algorithm.

Let us denote by ICO ≡ {IC21, IC32, ..., ICn−1,n, O1, ..., On} the list of all possible Incentive-
compatibility and Ordering constraints in our reduced program (3.1). Now we describe an algorithm
of directed search among multiple possible combinations, various families A ⊂ ICO of active

constraints. Each family A may generate its own A-conditional-optimal solution (qA, xA), i.e., the
solution under these constraints only. If it happens that this solution (qA, xA) does not violate
other, non-included constraints ICO \ A, then we have reached an admissible A-conditionally-
optimal solution (local maximum). Otherwise, we reject the family A as a possible generator
of solutions. After we explore ALL admissible A-conditionally-optimal solutions for all possible
A ⊂ ICO (exploring finite number of combinations), we can compare their profits and choose the
best local maximum, being sure that it is a global maximum.

Computationally, it appears a tedious, long search. However, luckily, our specific optimization
problem allows for shorter, sequential, directed search among all possible families A, starting with
an empty set A = ∅ and then adding the active constraints one-by-one, going from lower to higher
consumer types, as follows. We provide reasons why during this search we cannot miss the optimal
system A∗ of active constraints.

Heuristic algorithm of sequential search among possible A-structures.
Let us denote packages by wi = (qi, ti).

1. We start from the lowest type #1. To assign his/her package w1, we first assume that his/her
upper IC21 is inactive (separated #1) and therefore assign the related Pareto-optimal values

q1 = q01, t1 = v1[q
0
1]/2, x1 =

v1[q
0
1]

2τ
.

2. Similarly, we find the second Pareto-optimal package w2 = (q2, t2), assuming that both IC21

and IC32 are inactive:

q2 = q02, t2 = v2[q
0
2]/2, x2 =

v2[q
0
2]

2τ
.

3. Now we check whether these two packages w1 and w2 violate the constraint IC21.

If IC21 is violated, then type 1 and type 2 are “connected”, i.e., their packages w1, w2 should
be optimized together, within one problem in the way explained in Section 4. In this case,
we solve program (4.2) that includes these two types: A = {IC21}. We already know that
among these agents the highest size q2 necessarily becomes Pareto-optimal: q∗2 = qo2, but the
tariff t2 will differ from Pareto-optimal v2[q

0
2]/2. Anyway, we get some partial plan — an

admissible couple (w1, w2) .

4. Now we find the third-type optimal package under the assumptions that IC32 and IC43 are
inactive and #3 is separated. Thereby, w3 should be Pareto-optimal:

q3 = q03, t3 = v3[q
0
3], x3 = v3[q

0
3]/2.
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Now we check (violated or not) the constraint IC32, using the packages w3 and w2 already
found previously. If IC32 is violated, then type 2 and type 3 become connected. They become
parts of a unified optimization problem with A = {IC32, IC21} in the case if 1 and 2 were
connected. At this stage, we apply program (4.2) and a related known method to the family
A = {IC32, IC21} and find three connected packages (w1, w2, w3). Thereby, our previously
found (w1, w2) will change.

In the opposite case, if agents #1,#2 were not connected (separated #1), we apply pro-
gram (4.2) and the related method with the smaller family A = {IC32} to find connected
packages (w2, w3). Then we check (violated or not) IC21: if it is not violated, then the
previously found Pareto-optimal w1 does not change, otherwise, it changes. In the latter
case, we again must solve the three-package component A = {IC32, IC21}. It means that
finding w3 may work in such a way that previously disconnected packages #1 and #2 become
connected.

We argue that adding a higher component wk to the previous locally-optimal partial plan
(w1, ..., wk−1) may only increase connectedness, but not break it!

Anyway, the calculations above produce some partial plan — an admissible triple (w1, w2, w3)
for three lowest components of the desired solution (w1, ..., wn).

5. Further, we proceed in the same way adding agent type #4 (package w4) to our analysis and
checking, whether #4 becomes connected with previous packages, or not. In the latter case,
the previous packages remain unchanged, otherwise, they change. When they change, any
disconnected (excluded) IC constraints below #4 may become connected into the solution
structure.

6. We repeat adding new, higher agent types one-by-one and adjusting the current plan w ac-
cordingly until we reach the highest type #n. At each step, adding a higher component wk to
the previous locally-optimal partial plan (w1, ..., wk−1) may only increase connectedness, but
not break it. When the connectedness increases, we must recalculate the lower components,
otherwise, this is not necessary.

In the end of this algorithm, various outcomes are possible: all types become separated; type 1 and
type 2 are linked but other separated; type #1 is separated, types #2 and #3 are linked but other
separated; all types can be connected, and so on.

This algorithm gives an exact solution through a finite number of steps, each step solving
equations, which are the specific first-order conditions for the related A-structure.

Commenting on the general idea, we observe that starting from the lowest types, we check
the connectivity of types. When we meet a new active IC constraint, we check if any previously
inactive constraint becomes active. The “impulse” of restrictions goes down through the chain
of lower connected types. Indeed, when ICi+1 becomes active, the lower-neighbor utility ui[wi]
decreases, therefore the lower ICi might force ui−1[wi−1] to decrease also, and so on — this is what
we mean by the “impulse”.

Why should the algorithm attain the optimal list of constraints A∗? At each step of the process,
we maximize the profit (from the partial plan) with the minimal possible number of constraints. We
always keep the partial plan admissible, always checking if any additional constraints are activated.
These considerations are not complete proof, but they support the idea that the solution found by
the algorithm should be the global maximum. We suppose that this algorithm reaches the true
optimal solution structure A∗ and the optimal plan w∗, and that we need not explore any other
structures A avoided by this method. We cannot provide more detailed proof of this fact so far.
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Conclusion

To summarize, this paper suggests a new model of screening, which is second-degree price
discrimination, for situations where consumers are both vertically and horizontally heterogeneous;
in their willingness to pay for quality and in their locations in geographical space or space of
preferred characteristics of the commodity.

The screening game is reformulated as an optimization program of the seller. The existence of
solutions, which are equilibria, is established under typical for the screening literature assumptions.
This constrained program being potentially non-convex, the heuristic algorithm is proposed to
reduce the search among all possible combinations of active constraints, “solution structures”.

The examples show that solution structures can vary: agent types can be connected by one
common chain of IC constraints (called “chain of envy” in the screening literature), or completely
separated, or consist of several chains of adjacently-numbered agents.

The important economic feature of such equilibria in spatial screening is that, like in the usual
screening, the highest (in each chain) agent type always gets a Pareto-efficient quality, whereas
others do not, their quality is distorted downwards. Unlike the usual screening, almost all agents
(all except “the farthest consumer”) get some informational rent, their payoffs are higher than their
reservation utility.

The most interesting economic extension of this study would be an application of our spatial
screening model to oligopoly screening. It promises an explanation of many real-life situations in
competition, poorly studied so far.
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Abstract: In this paper, we introduce the notion of nearly topological linear spaces and use it to formulate
an alternative definition of the Hahn–Banach separation theorem. We also give an example of a topological
linear space to which the result is not valid. It is shown that R with its ordinary topology is not a nearly
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1. Introduction

In this paper, all linear spaces are over the field K ∈ {R, C} unless clear from the context.
When we treat K as a topological space, we mean K is equipped with its standard topology. For
any undefined concepts and terminologies, refer to [9].

Topological linear spaces are intensively studied since they are useful for instance in functional
analysis, fixed point theory, equilibrium problems and many others. In functional analysis and
fixed point theory, there are many popular theorems which are proven for topological linear spaces
like Schauder-Tychonoff fixed point theorem, Hahn Banach separation theorem, etc (for example,
see [1, 9, 10]). This paper acquires its inspiration from the following result which is very popular in
Functional Analysis and other related branches of Science (see [1, 5, 9, 10], for example) and some
papers of its applications (see [2–5, 8], for example):

Theorem 1 (Hahn-Banach Separation Theorem). Let a, b be disjoint, non-empty convex sets
in a topological linear space L.

(a) If a is open, then there exist a continuous linear functional ϕ : L → K and λ ∈ R such that
Reϕ(x) < λ ≤ Reϕ(y), for all x ∈ a, y ∈ b.

(b) If a is compact, b is closed, and L is locally convex, then there exist a continuous linear
functional ϕ : L → K and α, β ∈ R such that Reϕ(x) < α < β < Reϕ(y), for all x ∈ a,
y ∈ b.

A natural question to ask is: Is Theorem 1 still valid if L is not a topological linear space?
We exhibit that there is a partial answer to this question for a different class of topological linear
spaces.

Definition 1. Let L be a linear space and a a subset of L. Then a is called

(1) convex if ∀x, y ∈ a, and ∀α, β ≥ 0 such that α+ β = 1, αx+ βy ∈ a;

https://doi.org/10.15826/umj.2021.1.006
mailto:madhuram0502@gmail.com
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(2) absorbing if for each x ∈ L, ∃ r > 0 such that ∀λ ∈ K with |λ| ≤ r, we have λx ∈ a;

(3) balanced if ∀x ∈ a, and ∀λ ∈ K with |λ| ≤ 1, we have λx ∈ a.

Definition 2. Let L be a linear space and c be a non-empty subset of L which is absorbing.
The Minkowski (or gauge) functional of c is a function, p : L→ R, defined as

p(x) = inf{λ > 0: x ∈ λc}.

Lemma 1 [9, Theorem 1.35]. Suppose c is a convex absorbing set in a vector space L. Then

(1) p(x+ y) ≤ p(x) + p(y);

(2) p(λx) = λp(x) if λ ≥ 0;

(3) p is a semi-norm if c is balanced.

A subset a of a topological space X is called α-open [7] if a ⊆ Int (Cl (Int (a))). The complement
of an α-open set is called α-closed set. The class of α-open sets of a given topological space X
forms a topology on X and it is denoted by ℑα. In the following, for given a topological space X we
write the corresponding topological space (X, ℑα) by Xα. A subset a of X is called α-compact [6]
if every cover of a by α-open sets of X has a finite subcover.

Note that every open set in a topological space is α-open, every closed set in a topological space
is α-closed, and every α-compact set in a topological space is compact, but the converse of these
implications is not true in general.

Example 1. Consider the topological space (X, ℑ) where X = R, and ℑ is the usual topology
on R. Let

a =
{

x ∈ R : −1 < x < 1, x 6= 1

n
, n ∈ N

}

,

where N denotes the set of positive integers. Then a is α-open set in R which is not open. Further
let

b =
{ 1

n
: n ∈ N

}

,

then b is not closed set in R but it is α-closed set.

2. The main results

Definition 3. We call a pair (L, ℑ) (or simply, L if no confusion arises) nearly topological
linear space if :

• L is a linear space;

• ℑ is a topology on L, with

(1) for each α-open set W of L containing the vector sum x+ y with x, y ∈ L, there exist
α-open sets U and V of L containing x and y, respectively such that U + V ⊆W , and

(2) for each α-open set W of L containing the scalar product λx with x ∈ L and λ ∈ K,
there exist an open set U of K containing λ and an α-open set V of L containing x
such that UV ⊆W .
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From this definition, we have immediately:

Remark 1. A nearly topological linear space is not necessarily a topological linear space.
Conversely, R with its usual topology is a topological linear space which is not a nearly topological
linear space because for α-open set

W =
{

x ∈ R : −1 < x < 1, x 6= 1

n
, x 6= − 1

m
, m,n ∈ N

}

which visibly contains 0 = 0.0, there do not exist any open set U in K containing 0 and α-open set
V in L containing 0 such that UV ⊆W .

For a nearly topological linear space L, consider the mappings,

σx : L
α → Lα defined as σx(y) = x+ y,

πλ : L
α → Lα defined as πλ(x) = λx; x, y ∈ L, λ ∈ K.

Theorem 2. For a nearly topological linear space L, σx and πλ are continuous.

P r o o f. Follows from Definition 3. �

For a nearly topological linear space L, we denote by Z0 the class of α-open sets of L containing
the zero vector of L.

Theorem 3. In a nearly topological linear space L, the following statements are valid :

(a) Every c ∈ Z0 is absorbing and balanced.

(b) If in addition, c ∈ Z0 is convex, then the Minkowski functional p of c is a semi-norm and the
set

{x ∈ L : p(x) < 1} = c.

P r o o f. (a) Since 0 = 0.0, there exist an open set u in K containing 0, and v ∈ Z0 such that
uv ⊆ c. Then there exist a real ǫ > 0 and an open disk Dǫ with center 0 and radius ǫ such that
Dǫv ⊆ c. By Theorem 2, π1/λ is continuous, so the set a = Dǫv ∈ Z0. Clearly, a is balanced. Next,
by Definition 3, we have that for any element x ∈ L, there exists an open set u in K containing 0
s.t. ux ⊆ c. Then there exist a real r > 0 and an open disk Dr with center 0 and radius r such that
Drx ⊆ c, showing that c is absorbing.

(b) Follows from Lemma 1. �

Theorem 4. Suppose a, b are disjoint sets in a nearly topological linear space L. If a is an
α-compact set in L, b is an α-closed set in L, then there exists a symmetric set u ∈ Z0 such that
(a+ u) ∩ (b + u) = ∅.

P r o o f. Let x ∈ a be an element. By Definition 3, there are u1, u2 ∈ Z0 such that

(x+ u1 + u2) ∩ b = ∅.

Consider,
u = u1 ∩ u2 ∩ (−u1) ∩ (−u2).

Since πλ is continuous, u ∈ Z0. Consequently, there is a symmetric set ux ∈ Z0 such that

(x+ ux + ux + ux) ∩ b = ∅ ⇒ (x+ ux + ux) ∩ (b+ ux) = ∅.
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In a similar vein, we obtain a family

℧ = {x+ ux : x ∈ a}

of sets. By Theorem 2, x+ ux is α-open set in L. Therefore, for some positive integer n, we have

a ⊆
n
⋃

i=1

(xi + uxi
), xi ∈ a for all i = 1, 2, . . . , n.

Let

ν =

n
⋂

i=1

uxi
.

Then ν ∈ Z0, ν = −ν, and
(a+ ν) ∩ (b + ν) = ∅

also. �

Theorem 5. Suppose a, b are disjoint, non-empty convex sets in a nearly topological linear
space L.

(a) If a is α-open, then there is a linear continuous map ϕ : Lα → K such that Reϕ(x) < Reϕ(y),
for every x ∈ a and for every y ∈ b.

(b) If a is α-compact, b is α-closed and for every c ∈ Z0, there exists a convex set c0 ∈ Z0 such
that c0 ⊆ c, then there exist a linear continuous map ϕ : Lα → K, λ ∈ R and an ǫ > 0 such
that Reϕ(x) < λ < λ+ ǫ < Reϕ(y), for every x ∈ a and for every y ∈ b.

P r o o f. (a) We have two cases.
Case I: K = R. Fix x0 ∈ a, y0 ∈ b. Let

c = a− b+ y0 − x0.

Then c is convex set in L, with c ∈ Z0. Let p be the Minkowski functional of c. By Theorem 3, p
is semi-norm on L. Since

a ∩ b = ∅, y0 − x0 = w /∈ c

and so p(w) ≥ 1.
Consider the linear subspace M = Rw of L and define ψ : M → R by ψ(tw) = t. Evidently, ψ

is a linear functional on M s.t.
ψ(y) ≤ p(y), ∀y ∈M.

By Hahn–Banach extension theorem, there is a linear functional ϕ on L s.t.

ϕ|M = ψ and ϕ(y) ≤ p(y), ∀y ∈ L.

Now, for sufficiently small ǫ > 0, take u = (ǫc)∩ (−ǫc). By Theorem 2, u ∈ Z0, and for every x ∈ u,
±x ∈ ǫc, giving us ǫ−1(±x) ∈ c. By Theorem 3, p(±x) < ǫ. That is, |ϕ(x)| < ǫ for all x ∈ u.

Next, since for every x ∈ a, y ∈ b, ϕ(x− y) < 0 so we have

ϕ(x) ≤ λ ≤ ϕ(y), forall x ∈ a, y ∈ b,

where λ = sup{ϕ(x) : x ∈ a}.
Suppose there exists some a0 ∈ a s.t. ϕ(a0) = λ. By the continuity of the map

R ∋ α 7→ a0 + αw ∈ Lα
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we have a real number ǫ > 0 such that

a0 + αw ∈ a, for each α ∈ R satisfying |α| ≤ ǫ.

In particular, a0 + ǫw ∈ a, showing that λ+ ǫ ≤ λ, which is impossible.

Case II: K = C. The above case gives us a linear continuous function ϕ : Lα → R with the
requisite properties. Then considering the function ψ(ς) = ϕ(ς) − iϕ(iς) is the required function,
where i =

√
−1.

(b) By Theorem 4, there exists a set u ∈ Z0 such that (a+ u) ∩ b = ∅. Then part (a) indicates
that there are a continuous linear function ϕ : Lα → K, and λ ∈ R such that

Reϕ(x) < λ ≤ Reϕ(y), for every x ∈ a+ u, y ∈ b.

Since a is compact proper subset of a+ u ⊆ Lα, Reϕ(a) is compact proper subset of Reϕ(a + u).
Thus, there exists λ > 0 such that

Reϕ(x) < λ < λ+ ǫ < Reϕ(y), for every x ∈ a and for every y ∈ b.

Whence the proof easily follows. �

Corollary 1. Suppose b is a convex, balanced, α-closed set in a nearly topological linear
space L. If x0 ∈ L, but x0 /∈ b and for every v ∈ Z0, there exists a convex set u ∈ Z0 such
that v ⊆ u, then there is a continuous linear functional ϕ : Lα → K such that

|ϕ(x)| ≤ 1, for all x ∈ b, and |ϕ(x0)| > 1.

3. Conclusion

In this paper, we introduced the notion of nearly topological linear spaces and formulated an
alternative definition of Hahn–Banach separation theorem by using the notion of α-open sets in
topological spaces in the sense of Njastad. It is shown that R with its ordinary topology is not a
nearly topological linear space.

If we endow C, the real linear space of complex numbers with the topology generated by the
family of sets of the form

Dr,ǫ = {x+ iy : x, y ∈ R, r − ǫ < x < r + ǫ, i2 = −1}

with r ∈ R and ǫ > 0, then C is a nearly topological linear space.

Besides checking the validity of results of topological linear spaces in the field of nearly topolog-
ical linear spaces, it will be a good contribution finding some more examples of nearly topological
linear spaces which satisfy some separation axioms and Theorem 5.
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Abstract: Let P (z) be a polynomial of degree n, then concerning the estimate for maximum of |P ′(z)| on
the unit circle, it was proved by S.Bernstein that ‖P ′‖∞ ≤ n‖P‖∞. Later, Zygmund obtained an Lp-norm
extension of this inequality. The polar derivative Dα[P ](z) of P (z), with respect to a point α ∈ C, generalizes
the ordinary derivative in the sense that limα→∞Dα[P ](z)/α = P ′(z). Recently, for polynomials of the form
P (z) = a0 +

∑n
j=µ ajz

j , 1 ≤ µ ≤ n and having no zero in |z| < k where k > 1, the following Zygmund-type

inequality for polar derivative of P (z) was obtained:

‖Dα[P ]‖p ≤ n
( |α|+ kµ

‖kµ + z‖p

)

‖P‖p, where |α| ≥ 1, p > 0.

In this paper, we obtained a refinement of this inequality by involving minimum modulus of |P (z)| on |z| = k,
which also includes improvements of some inequalities, for the derivative of a polynomial with restricted zeros
as well.

Keywords: Lp-inequalities, Polar derivative, Polynomials.

1. Zygmund type inequalities for polynomials

Let Pn denote the space of all complex polynomials of degree at most n. Define

‖P‖p :=

(

1

2π

∫ 2π

0

∣

∣P (eiθ)
∣

∣

p
dθ

)1/p

, 0 < p <∞.

It is well known that the supremum norm satisfies

‖P‖∞ := max
|z|=1

|P (z)| = lim
p→∞

‖P‖p .
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It is also known [11] that lim
p→0

‖P‖p = ‖P‖0, where

‖P‖0 := exp

(

1

2π

∫ 2π

0
log

∣

∣P (eiθ)
∣

∣dθ

)

.

Let Dα[P ](z) denote the polar differentiation (see [12]) of a polynomial P(z ) of degree n with
respect to a complex number α, then

Dα[P ](z) := nP (z) + (α− z)P ′(z).

Note that Dα[P ](z) is a polynomial of degree at most n−1 and it generalizes the ordinary derivative
P ′(z) of P (z) in the sense that

lim
α→∞

Dα[P ](z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R, R > 0.
If P ∈ Pn, then

‖P ′‖p ≤ n‖P‖p. (1.1)

Inequality (1.1) is due to Zygmund [21] for the case p ≥ 1. In its proof, he uses M. Riesz’s inter-
polation formula by means of Minkowski’s inequality and obtained this inequality as an Lp-norm
analogue of Bernstein’s inequality (for details see [13] or [20]). A natural question was raised here:
whether the restriction on p was indeed necessary? The question remained open for quite a long
time despite some partial answers. Finally, it was Arestov [1] came up with some remarkable re-
sults which among other things proved that the inequality (1.1) remains valid for 0 < p < 1 as
well. This result is sharp as shown by P(z) = azn, a 6= 0. Arestov [2] also obtained some sharp
Bernstein–Zygmund type inequalities for the Szegö composition operators on the set of algebraic
polynomials with restrictions on the location of their zeros.

For the class of polynomials P ∈ Pn having no zero in |z| < 1, inequality (1.1) can be sharpened.
In fact, if P ∈ Pn and P(z) 6= 0 for |z| < 1, then

∥

∥P ′
∥

∥

p
≤

n

‖1 + z‖p
‖P‖p , p ≥ 1. (1.2)

Inequality (1.2) is due to De Bruijn [7]. Later Rahman and Schmeisser [16] followed Arestov’s
technique and proved that this inequality remains true for 0 < p < 1 as well. The estimates is
sharp and equality in (1.2) holds for P(z) = azn + b, |a| = |b| 6= 0.

Govil and Rahman [10] generalized inequality (1.2) and proved that if P ∈ Pn does not vanish
in |z| < k where k ≥ 1, then

∥

∥P ′
∥

∥

p
≤

n

‖k + z‖p
‖P‖p , p ≥ 1. (1.3)

Let Pn,µ ⊂ Pn be a class of lacunary type polynomials

P (z) = a0 +

n
∑

j=µ

ajz
j ,

where 1 ≤ µ ≤ n.
As a generalization of inequality (1.3), it was shown by Gardner & Weems [8] that if P ∈ Pn,µ

and P (z) 6= 0 for |z| < k, k ≥ 1, then

∥

∥P ′
∥

∥

p
≤

n

‖kµ + z‖p
‖P‖p , p > 0. (1.4)
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Aziz and Rather [5] extended inequality (1.2) to the polar derivative of a polynomial and proved
that if P ∈ Pn and P (z) does not vanish in |z| < 1, then for α ∈ C with |α| ≥ 1, and p ≥ 1,

‖Dα[P ]‖p ≤ n

(

|α|+ 1

‖1 + z‖p

)

‖P‖p . (1.5)

Concerning the concept and properties of the polar derivative refer to [14].
Aziz et. al [6] also obtained an analogue of inequality (1.3) to the polar derivative and proved

that if P ∈ Pn and P (z) 6= 0 for |z| < k where k ≥ 1, then for α ∈ C with |α| ≥ 1 and p ≥ 1,

‖Dα[P ]‖p ≤ n

(

|α|+ k

‖k + z‖p

)

‖P‖p . (1.6)

Rather [17, 18] showed that inequalities (1.5) and (1.6) remain valid for 0 < p < 1 as well.
Recently, as a generalization of inequality (1.6), Rather et. al [19] proved that if P ∈ Pn,µ and

P (z) does not vanish in |z| < k where k ≥ 1, then for α ∈ C with |α| ≥ 1 and 0 ≤ p <∞,

‖Dα[P ]‖p ≤ n

(

|α|+ kµ

‖kµ + z‖p

)

‖P‖p . (1.7)

2. Main results

In this paper, we obtain a refinement of inequality (1.7) by involving the minimum modulus of
a polynomial. We prove the following main result.

Theorem 1. If P ∈ Pn,µ and P (z) does not vanish in |z| < k where k ≥ 1, then for α ∈ C

with |α| ≥ 1, 0 ≤ p ≤ ∞ and 0 ≤ t ≤ 1,
∥

∥

∥

∥

|Dα[P ]|+ nmt

(

|α| − 1

1 + kµ

)
∥

∥

∥

∥

p

≤ n

(

|α| + kµ

‖z + kµ‖p

)

‖P‖p, (2.1)

where m = min|z|=k |P (z)|.

Since
nmt(|α| − 1)

1 + kµ
≥ 0 for |α| ≥ 1,

then one can easily observe that

‖Dα[P ]‖p ≤

∥

∥

∥

∥

|Dα[P ]|+ nmt

(

|α| − 1

1 + kµ

)
∥

∥

∥

∥

p

,

and this implies that the Theorem 1 is a refinement of inequality (1.7).
If we divide both sides of inequality (2.1) by |α| and let |α| → ∞, we obtain the following

refinement of inequality (1.4).

Corollary 1. If P ∈ Pn,µ and P (z) does not vanish in |z| < k where k ≥ 1, then for 0 ≤ p ≤ ∞,
∥

∥

∥

∥

|P ′|+
nmt

1 + kµ

∥

∥

∥

∥

p

≤
n

‖z + kµ‖p
‖P‖p, (2.2)

where m = min|z|=k |P (z)|. The result is best possible as shown by the polynomial

P (z) = (zµ + kµ)n/µ,

where µ divides n.
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Inequality (2.2) also includes a refinement of (1.3). By taking k = 1 and µ = 1 in (2.2), the
following improvement of inequality (1.2) follows immediately.

Corollary 2. If P ∈ Pn and P (z) does not vanish in |z| < 1 then for 0 ≤ p ≤ ∞,

∥

∥

∥

∥

|P ′|+
nmt

2

∥

∥

∥

∥

p

≤
n

‖1 + z‖p
‖P‖p, (2.3)

where m = min|z|=1 |P (z)|. The result is sharp and equality in (2.3) holds for P (z) = zn + 1.

3. Lemmas

For the proof of above theorem, we need the following lemmas.

Lemma 1. If

P (z) = a0 +

n
∑

j=µ

ajz
j , 1 ≤ µ ≤ n,

is a polynomial of degree n having no zeros in |z| < k, where k ≥ 1, then

kµ|P ′(z)| ≤ |Q′(z)| for |z| = 1,

where Q(z) = znP (1/z).

The above Lemma 1 is implicit in Qazi [15] and the proof of next lemma is implicit in [9].

Lemma 2. If P (z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then for every
λ ∈ C with |λ| < 1,

|Q′(z)| ≥ |λ|mn for |z| = 1,

where

m = min|z|=k|P (z)|, Q(z) = znP (1/z).

Lemma 3. If

P (z) = a0 +
n
∑

j=µ

ajz
j , 1 ≤ µ ≤ n,

is a polynomial of degree n having no zeros in |z| < k, where k ≥ 1, then for 0 ≤ t ≤ 1,

kµ|P ′(z)| ≤ |Q′(z)| −mnt for |z| = 1, (3.1)

where

Q(z) = znP (1/z), m = min|z|=k|P (z)|.

P r o o f. By hypothesis, the polynomial P (z) has no zero in |z| < k, k ≥ 1. We first show for
a given λ ∈ C with |λ| < 1, the polynomial F (z) = P (z) − λm does not vanish in |z| < k. This is
clear if m = 0, that is if P (z) has a zero on |z| = k. We now suppose that all the zeros of P (z) lie
in |z| > k, then clearly m > 0 so that m/P (z) is analytic in |z| ≤ k and

∣

∣

∣

∣

m

P (z)

∣

∣

∣

∣

≤ 1 for |z| = k.
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Since m/P (z) is not a constant, by the Minimum modulus principle, it follows that

m < |P (z)| for |z| < k. (3.2)

Now, if F (z) = P (z)− λm has a zero in |z| < k, say at z = z0 with |z0| < k, then

P (z0)− λm = 0.

This gives

|P (z0)| = |λm| = |λ|m ≤ m, where |z0| < k,

which contradicts (3.2). Hence, we conclude that in any case, the polynomial

F (z) = P (z) − λm

does not vanish in |z| < k, k ≥ 1, for every λ ∈ C with |λ| ≤ 1. Applying Lemma 1 to

F (z) = P (z)− λm,

we get

|Q′(z) − λmnzn−1| ≥ kµ|P ′(z)| for |z| = 1. (3.3)

Now choosing the argument of λ so that on |z| = 1,

|Q′(z) − λmnzn−1| = |Q′(z)| − |λ|mn (3.4)

which is possible due to lemma 2. By combining (3.3) and (3.4), we obtain

|Q′(z)| ≥ kµ|P ′(z)|+ tmn for |z| = 1, (3.5)

where t = |λ| and 0 ≤ t < 1. For the case t = 1, the inequality (3.1) follows immediately by letting
t→ 1 in (3.5) and this completes the proof.

The following lemma is due to Aziz and Rather [3].

Lemma 4. If A,B and C are non-negative real numbers such that B +C ≤ A, then for every
real number β,

|(A− C) + eiβ(B + C)| ≤ |A+ eiβB|.

Lemma 5 [19]. If a, b are any two positive real numbers such that a ≥ bc where c ≥ 1, then
for any x ≥ 1, p > 0 and 0 ≤ β < 2π,

(a+ bx)p
∫ 2π

0

∣

∣c+ eiβ
∣

∣

p
dβ ≤ (c+ x)p

∫ 2π

0

∣

∣a+ beiβ
∣

∣

p
dβ.

We also need the following lemma due to Aziz and Rather [4].

Lemma 6 [4]. If P ∈ Pn and Q(z) = znP (1/z), then for every p > 0 and β real , 0 ≤ β < 2π,

∫ 2π

0

∫ 2π

0

∣

∣P ′(eiθ) + eiβQ′(eiθ)
∣

∣

p
dθdβ ≤ 2πnp

∫ 2π

0

∣

∣P (eiθ)
∣

∣

p
dθ.
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4. Proof of Theorem 1

P r o o f. By hypothesis P ∈ Pn,µ and does not vanish in |z| < k, where k ≥ 1 further if

Q(z) = znP (1/z),

then, by Lemma 3, we have for |z| = 1,

kµ
∣

∣P ′(z)
∣

∣ ≤
∣

∣Q′(z)
∣

∣−mnt =
∣

∣Q′(z)
∣

∣ −mnt

(

1 + kµ

1 + kµ

)

.

Equivalently,

kµ
(

∣

∣P ′(z)
∣

∣ +
mnt

1 + kµ

)

≤ |Q′(z)| −
mnt

1 + kµ
for |z| = 1. (4.1)

Setting

A =
∣

∣

∣
Q′(eiθ)

∣

∣

∣
, B = |P ′(eiθ)|, C =

mnt

1 + kµ

in Lemma 4 we note by (4.1) that

B + C ≤ kµ(B + C) ≤ A− C ≤ A, since k ≥ 1.

Therefore, by Lemma 4 for each real β, we get

∣

∣

∣

∣

(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ eiβ
(

|P ′(eiθ)|+
mnt

1 + kµ

)∣

∣

∣

∣

≤
∣

∣

∣
|Q′(eiθ)|+ eiβ |P ′(eiθ)|

∣

∣

∣
.

This implies for each p > 0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dθ ≤

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|+ eiβ |P ′(eiθ)|

∣

∣

∣

p
dθ, (4.2)

where

F (θ) = |Q′(eiθ)| −
mnt

1 + kµ
and G(θ) = |P ′(eiθ)|+

mnt

1 + kµ
. (4.3)

Let P ′(θ) = |P ′(θ)|eiψ and Q′(θ) = |Q′(θ)|eiφ, then

∫ 2π

0

∣

∣

∣
Q′(eiθ)eiβ + P ′(eiθ)

∣

∣

∣

p
dβ =

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|ei(β+φ) + eiψ|P ′(eiθ)|

∣

∣

∣

p
dβ

=

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|ei(β+φ−ψ) + |P ′(eiθ)|

∣

∣

∣

p
dβ.

Putting β + φ− ψ = Φ, then we obtain,

∫ 2π

0

∣

∣

∣
Q′(eiθ)eiβ + P ′(eiθ)

∣

∣

∣

p
dβ =

∫ 2π+φ−ψ

φ−ψ

∣

∣

∣
|Q′(eiθ)|eiΦ + |P ′(eiθ)|

∣

∣

∣

p
dΦ.

Since the function

T (Φ) = |Q′(eiθ)|eiΦ + |P ′(eiθ)|



On Zygmund-Type Inequalities 93

is periodic with period 2π, hence we have

∫ 2π

0

∣

∣

∣
Q′(eiθ)eiβ + P ′(eiθ)

∣

∣

∣

p
dβ =

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|eiΦ + |P ′(eiθ)|

∣

∣

∣

p
dΦ

=

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|eiβ + |P ′(eiθ)|

∣

∣

∣

p
dβ.

(4.4)

Integrating (4.2) both sides with respect to β from 0 to 2π and using (4.4), we get

∫ 2π

0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dθdβ ≤

∫ 2π

0

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|+ eiβ |P ′(eiθ)|

∣

∣

∣

p
dβdθ

=

∫ 2π

0

∫ 2π

0

∣

∣

∣
Q′(eiθ) + eiβP ′(eiθ)

∣

∣

∣

p
dβdθ

=

∫ 2π

0

∫ 2π

0

∣

∣

∣
P ′(eiθ) + eiβQ′(eiθ)

∣

∣

∣

p
dθdβ.

By using Lemma 6 this implies,

∫ 2π

0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dθdβ ≤ 2πnp

∫ 2π

0

∣

∣

∣
P (eiθ)

∣

∣

∣

p
dθ. (4.5)

Now for |z| = 1, 0 ≤ t ≤ 1 and α ∈ C with |α| ≥ 1 and using the fact that

|nP (z)− zP ′(z)| = |Q′(z)|

for z with unit modulus, we have

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)

=
∣

∣nP (z) + (α− z)P ′(z)
∣

∣+ nmt

(

|α| − 1

1 + kµ

)

≤ |α||P ′(z)| + |nP (z)− zP ′(z)| + nmt

(

|α| − 1

1 + kµ

)

= |α||P ′(eiθ)|+ |Q′(eiθ)|+ nmt

(

|α| − 1

1 + kµ

)

= |α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)

+

(

|Q′(eiθ)| −
mnt

1 + kµ

)

.

By integrating both sides with respect to θ from 0 to 2π, for each p > 0, we get

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

≤

∫ 2π

0

∣

∣

∣

∣

|α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)

+

(

|Q′(eiθ)| −
mnt

1 + kµ

)
∣

∣

∣

∣

p

dθ.

Multiply both sides by
∫ 2π

0
|kµ + eiβ |pdβ,

we obtain
∫ 2π

0
|kµ + eiβ|pdβ

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

≤

∫ 2π

0

∣

∣

∣

∣

|α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)

+

(

|Q′(eiθ)| −
mnt

1 + kµ

)
∣

∣

∣

∣

p

dθ

∫ 2π

0
|kµ + eiβ |pdβ.

(4.6)
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Further, since kµ ≥ 1, 1 ≤ µ ≤ n, and if

a =
∣

∣

∣
Q′(eiθ)

∣

∣

∣
−

mnt

1 + kµ
, b =

∣

∣

∣
P ′(eiθ)

∣

∣

∣
+

mnt

1 + kµ
, c = kµ, x = |α| ,

then from (4.1) one can observe that a ≥ bc. Using Lemma 5, we get for every α ∈ C with |α| ≥ 1,

{(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ |α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)}p ∫ 2π

0
|kµ + eiβ |pdβ

≤ (|α|+ kµ)p
∫ 2π

0

∣

∣

∣

∣

(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ eiβ
(

|P ′(eiθ)|+
mnt

1 + kµ

)
∣

∣

∣

∣

p

dβ.

Again, integrating both sides with respect to θ from 0 to 2π, we obtain

∫ 2π

0

∣

∣

∣

∣

(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ |α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)
∣

∣

∣

∣

p

dθ

∫ 2π

0
|kµ + eiβ|pdβ

≤ (|α| + kµ)p
∫ 2π

0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dβdθ,

where F (θ) and G(θ) are given by (4.3). Using this in inequality (4.6), we get

∫ 2π

0
|kµ + eiβ|dβ

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

≤ (|α|+ kµ)p
∫ 2π

0

∫ 2π

0
|F (θ) + eiβG(θ)|pdβdθ.

(4.7)

By using (4.5) in (4.7), we obtain for each p > 0 and |α| ≥ 1

∫ 2π

0
|kµ + eiβ |dβ

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ ≤ (|α| + kµ)p2πnp
∫ 2π

0

∣

∣

∣
P (eiθ)

∣

∣

∣

p
dθ.

Equivalently,

(

1

2π

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

)1/p

≤
n(|α|+ kµ)

(

1/(2π)
∫ 2π
0 |kµ + eiβ |dβ

)1/p

(

1

2π

∫ 2π

0

∣

∣

∣
P (eiθ)

∣

∣

∣

p
dθ

)1/p

,

which immediately leads to (2.1) for 0 < p < ∞ and the cases p = 0 and p = ∞ follow by
respectively taking the limits p→ 0+ and p→ ∞. This completes the proof of Theorem 1. �
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Abstract: A family of generalized definite logarithmic integrals given by

∫

1

0

(

xim(log(a) + i log(x))k + x−im(log(a) − i log(x))k
)

(x+ 1)2
dx

built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the
general method as given in [5] to derive this integral. We then give a number of examples that can be derived
from the general integral in terms of well known functions.

Keywords: Entries of Gradshteyn and Ryzhik, Lerch function, Knuth’s Series.

1. Introduction

In connection with logarithmic integrals, the authors have the opportunity to evaluate integrals
of the form

∫ 1

0

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

(x+ 1)2
dx (1.1)

in terms of the Lerch function. We chose this integral as it forms the general case for some integrals
published in the Tables of Gradshteyn and Rhyzik. It yields some very interesting special cases in
terms of Euler–Mascheroni constant (γ), and a pair of Zeta function values ζ(1/2) and ζ(−1/2).
The constant ζ(1/2) is used to calculate Knuth’s Series and a new integral representation for this
constant is derived. The Lerch function is also used in the Bose–Einstein condensation for an
exponential density of states function [4]. We also provide formal derivations for some definite
integrals in [3] not previously listed in current literature along with new definite integrals in terms
of special functions. In our case the constants in the equation (1.1) are general complex numbers
subject to the restrictions given below. The derivations follow the method used by us in [5]. The
generalized Cauchy’s integral formula is given by

yk

k!
=

1

2πi

∫

C

ewy

wk+1
dw. (1.2)

This method involves using a form of equation (1.2) then multiply both sides by a function,
then takes a definite integral of both sides. This yields a definite integral in terms of a contour
integral. Then we multiply both sides of equation (1.2) by another function and take the infinite
sum of both sides such that the contour integral of both equations are the same.

1This research is supported by NSERC Canada under Grant 504070. The authors confirm there are no
conflicts of interest.
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2. Definite integral of the contour integral

We use the method given in [5]. The contour integral is over α = m+ w. Here the contour is
in the upper left quadrant with ℑ(α) < 0 and going round the origin with zero radius. Using a
generalization of Cauchy’s integral formula we first replace y by log(a) + ix then multiply by emxi

for the first equation and then y by log(a) − ix and multiply by e−mxi to get the second equation
followed by replacing x by log(x). Then we add these two equations, followed by multiplying both
sides by 1/2(x + 1)2 to get the equality

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

2(x+ 1)2k!
=

1

2πi

∫

C

aww−k−1 cos(α log(x))

(x+ 1)2
dα. (2.1)

Next we take the definite integral of equation (2.1) over x ∈ [0, 1] to get the following relations

∫ 1

0

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

2(x+ 1)2k!
dx

=
1

2πi

∫ 1

0

∫

C

aww−k−1 cos(α log(x))

(x+ 1)2
dαdx

=
1

2πi

∫

C

∫ 1

0

aww−k−1 cos(α log(x))

(x+ 1)2
dxdα

=
1

2πi

∫

C

1

2
π(m+w)aww−k−1csch(π(m+ w))dw

(2.2)

from equation (3.883.1) in [3] where the logarithmic function is defined in equation (4.1.2) in [1].
The integral is valid for a, k and m complex and ℑ(α) < 0.

3. Infinite sum of the contour integral

In this section we will again use the generalized Cauchy’s integral formula to derive equivalent
contour integrals. First we replace y by log(a)+π(2y+1)) and multiply both sides by −mπeπm(2y+1)

to get

−π
k+1meπm(2y+1) (log(a)/π + 2y + 1)k

k!
= − 1

2πi

∫

C

παw−k−1 exp(w log(a) + πα(2y + 1))dα.

Next we take the infinite sum over y ∈ [0,∞) simplify the left-hand in terms of the Lerch
function side to get

−2kπk+1eπmm

k!
Φ

(

e2mπ,−k, log(a) + π

2π

)

= − 1

2πi

∞
∑

y=0

∫

C

πmw−k−1(exp(w log(a) + πα(2y + 1)))dα

= − 1

2πi

∫

C

∞
∑

y=0

πmw−k−1(exp(w log(a) + πα(2y + 1)))dα

=
1

2πi

∫

C

1

2
πmaww−k−1csch(πα)dα.

(3.1)
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Next we derive the second contour integral by replacing k by k − 1 and dropping the linear
factor m in equation (3.1) to get

−2k−1πkeπmΦ
(

e2mπ, 1− k, (log(a) + π)/2π
)

(k − 1)!
=

1

2πi

∫

C

1

2
πaww−kcsch(πα)dα

from (1.232.3) in [3], where csch(x) = icsc(ix) from (4.5.10) in [1] and ℑ(α) < 0 for the sum to
converge.

We use (9.550) and (9.556) in [3] where Φ(z, s, v) is the Lerch function which is a generalization
of the Hurwitz Zeta and polylogarithm functions.

The Lerch function has a series representation given by

Φ(z, s, v) =

∞
∑

n=0

(v + n)−szn,

where |z| < 1, v 6= 0,−1, .. and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt,

where Re (v) > 0, or |z| ≤ 1, z 6= 1, Re (s) > 0, or z = 1, Re (s) > 1.

4. Definite integral in terms of the Lerch function

Since the right-hand sides of equation (2.2) and (3.1) are equivalent we can equate the left-hand
sides simplifying the factorials to get

∫ 1

0

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

(x+ 1)2
dx

= (2π)k (−eπm)
(

kΦ
(

e2mπ , 1− k,
log(a) + π

2π

)

+ 2πmΦ
(

e2mπ,−k, log(a) + π

2π

))

.

(4.1)

5. Derivation of entry (4.325.3) in [3]

In this section will derive an integral representation for the Riemann zeta function. Using
equation (4.1) setting m = 0, a = 1 and simplifying the left-hand side we get

∫ 1

0

logk (1/x)

(x+ 1)2
dx = 2−k(2k − 2)ζ(k)Γ(k + 1). (5.1)

This formula is equivalent to applying integration by parts to equation (1.12.5) in [2].
Next we take the partial derivative with respect to k of equation (5.1) simplifying to get

∫ 1

0

log (log (1/x)) logk (1/x)

(x+ 1)2
dx

= 2−kΓ(k + 1)
(

(2k − 2)ζ ′(k) + ζ(k)
(

(2k − 2)ψ(0)(k + 1) + log(4)
)

)

.

(5.2)

Next we set k = 0 and simplify to get
∫ 1

0
log (log (1/x))

dx

(x+ 1)2
=

1

2
(log (π/2)− γ)

from [7, p. 236].
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6. Derivation of special case in terms of ζ(−1/2)

Using equation (5.2) and setting k = −1/2 we get

∫ 1

0

log(log(1/x))
√

log(1/x)

dx

(x+ 1)2

=
√
π
(

2
√
2ζ(−1/2) log(2)− (2

√
2− 1)(ζ ′(−1/2) + ζ(−1/2)ψ(0)(1/2))

)

.

7. Derivation of special cases in terms of ζ(1/2)

Using equation (5.2) and setting k = 1/2 we get

∫ 1

0

√

log(1/x) log
(

log(1/x)
) dx

(x+ 1)2

=

√
π

8
ζ(1/2)

(

8− 8
√
2 + 2(

√
2− 1)γ + π +

√
2(log(64/π2)− π) + log(π2/4)

)

from [7, p. 236].

8. Derivation of a special case involving combinations of rational functions of
log(x) and powers

8.1. Definite integral in terms of the hypergeometric and Lerch functions

Setting k = −1 and replacing a by ea in (4.1) we derive one equation by replacing m by ip and
a second equation by replacing m by −ip then subtracting the two equations and simplifying to get

∫ 1

0

(xp − x−p) log(x)

(a2 + log2(x))

dx

(x+ 1)2

=
1

4π(a+ π)

(

ie−iπp(a+ π)Φ
(

e−2ipπ, 2,
a+ π

2π

)

− i(a+ π)eiπpΦ
(

e2ipπ, 2,
a+ π

2π

)

− 4π2pe−iπp
(

2F1

(

1,
a+ π

2π
;
1

2

(a

π
+ 3

)

; e−2ipπ
)

+ eiπp 2F1

(

1,
a+ π

2π
;
1

2

(a

π
+ 3

)

; e2ipπ
))

)

from equation (9.559) in [3] and where ℜ(a) > 0. This is a new entry for Table 4.282 in [3].

8.2. Definite integral in terms of the Lerch functions

Setting k = −2 and replacing a by ea in (4.1) we derive one equation by replacing m by ip and
a second equation by replacing m by −ip then subtracting the two equations and simplifying to get

∫ 1

0

(xp − x−p) log(x)
(

a2 + log2(x)
)2

dx

(x+ 1)2
=

1

8π2a

(

− πpe−iπpΦ
(

e−2ipπ, 2,
a+ π

2π

)

+ ie−iπpΦ
(

e−2ipπ, 3,
a+ π

2π

)

− eiπp
(

πpΦ
(

e2ipπ, 2,
a+ π

2π

)

+ iΦ
(

e2ipπ, 3,
a+ π

2π

))

)

,

where ℜ(a) > 0. This is a new entry for Table 4.282 in [3].
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9. Derivation of a special case of combinations involving powers of the
logarithm and other powers

9.1. Derivation in terms of the hyperbolic tangent and Lerch functions

Setting k = −1 and a = 1 in (4.1) we derive one equation by replacing m by ip and a second
equation by replacing m by −ip then subtracting the two equations and simplifying to get

∫ 1

0

(xp − x−p)

(x+ 1)2
dx

log(x)
= −p tanh−1(cos(πp)) +

i

4π

(

e−iπpΦ
(

e−2ipπ, 2,
1

2

)

− eiπpΦ
(

e2ipπ, 2,
1

2

)

)

from equations (9.121.27) and (9.559) in [3]. This is a new entry for Table 4.283 in [3].

9.2. Derivation in terms of Lerch function

Setting a = 1 in (4.1) we derive one equation by replacing m by ip and a second equation by
replacing m by −ip then subtracting the two equations and simplifying the logarithmic functions
on the left-hand side to get

∫ 1

0
logk(1/x)

(

xp − x−p
)

(x+ 1)2dx = i2k−1πk csc
(πk

2

)

(

− ke−iπpΦ
(

e−2ipπ, 1− k,
1

2

)

+ 2iπpe−iπpΦ
(

e−2ipπ,−k, 1
2

)

+ eiπp
(

kΦ
(

e2ipπ, 1− k,
1

2

)

+ 2iπpΦ
(

e2ipπ,−k, 1
2

))

)

.

This is a new entry for Table 4.272 in [3].

10. Discussion

In this paper we have derived a new integral representation for ζ(1/2) the value of which is
apparently unknown in terms of known constants. We were able to derive an efficient method
for evaluating Knuth’s series using this integral representation. We also derived a new integral
representation for evaluating ζ(−1/2). We have dealt with a similar integral in the paper “A Definite
Integral Involving the Logarithmic Function in Terms of the Lerch Function” [6]. The present paper
should be seen as an extension of these results.

11. Conclusion

In this paper, we have presented a novel method for deriving some interesting definite inte-
grals using contour integration. The results presented were numerically verified for both real and
imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.
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Abstract: The vertex distance complement (VDC) matrix C, of a connected graph G with vertex set
consisting of n vertices, is a real symmetric matrix [cij ] that takes the value n − dij where dij is the distance
between the vertices vi and vj of G for i 6= j and 0 otherwise. The vertex distance complement spectrum of the

subdivision vertex join, G1

∨̇
G2 and the subdivision edge join G1

∨
G2 of regular graphs G1 and G2 in terms of

the adjacency spectrum are determined in this paper.

Keywords: Distance matrix, Vertex distance complement spectrum, Subdivision vertex join, Subdivision
edge join.

1. Introduction

Spectral graph theory deals with the study of the eigenvalues of various matrices associated
with graphs. Initially, the spectrum of the adjacency matrix of a graph was studied. Collatz and
Sinogowitz initiated the exploration of this topic in 1957 [2]. Since then spectral theory of graphs
is an active research area [1, 3].

In this paper, we consider the matrix derived from a type of distance matrix, viz., vertex distance
complement (VDC) matrix. The VDC spectra of some classes of graphs are found in [8, 9]. The
VDC matrix C of a graph G [7] is defined as follows

C =

{

n− dij , i 6= j,

0, i = j,

where dij is the distance between the vertices vi and vj of G and n denotes the number of vertices
of G.

https://doi.org/10.15826/umj.2021.1.009
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The subdivision graph S(G) of a graph G is obtained by inserting a new vertex of degree two in
every edge of G. Let V (G) and I(G) denote respectively the existing vertex set and the set of the
newly introduced vertices of the subdivision graph S(G) of a graph G. The adjacency spectrum of
two joins, G1

˙∨ G2 and G1
∨

G2, based on subdivision graph was determined in [4]. The distance
spectrum of the same was calculated in [6].

Throughout this article we consider connected simple graphs of diameter at most two. We
determine the VDC spectrum of G1

˙∨ G2 and G1
∨

G2 when G1 and G2 are regular graphs. The
eigenvalues of V DC(G) are called the V DC-eigenvalues of G and they form the V DC spectrum
of G, denoted by specV DC(G). We denote J and I as the all-one matrix and identity matrix,
respectively, of appropriate orders.

The definitions of the subdivision graphs are as follows.

Definition 1 [4]. The subdivision-vertex join G1
˙∨ G2 of two vertex disjoint graphs G1 and

G2 is the graph obtained from S(G1) and G2 by joining each vertex of V (G1) with every vertex
of V (G2).

Definition 2 [4]. The subdivision-edge join G1
∨

G2 of two vertex disjoint graphs G1 and
G2 is the graph obtained from S(G1) and G2 by joining each vertex of I(G1) with every vertex
of V (G2).

The following results are very useful for computing the VDC spectrum.

Lemma 1 [3]. Let G be an r-regular graph with adjacency matrix A and incidence matrix R.
Let A(L(G)) denote the adjacency matrix of the line graph L(G) of G. Then,

RRT = A+ rI, RTR = A(L(G)) + 2I.

Also,

JR = 2J = RTJ, JRT = rJ = RJ.

Lemma 2 [3]. Let G be r-regular (n;m) graph with spec (G) = {λ1, λ2, · · · , λn}. Then

spec (L(G)) =











2r − 2,

λi + r − 2, i = 2, 3, . . . , n,

−2, m− n times.

Also, Z is an eigenvector corresponding to the eigenvalue -2 if and only if RZ = 0 where R is the
incidence matrix of G.

Theorem 1 (Perron–Frobenius). If all entries of an n × n matrix are positive, then it has
a unique maximal eigenvalue. Its eigenvector has positive entries.

2. The VDC spectrum of G1
˙∨ G2

Theorem 2. Let Gi be an ri regular graph with ni vertices and mi edges, for i = 1, 2.
If {λi1, λi2, . . . , λini

} denotes the adjacency spectrum corresponding to the adjacency matrix Ai

of Gi, the specV DC(G1
˙∨G2) consists of

(i) 2λ1i + 2r1 − n+ 2, for i = 2, 3, . . . , n1;
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(ii) −n, repeated m1 − 1 times;

(iii) λ2i − n+ 2, for i = 2, 3, . . . , n2;

(iv) the 3 roots of the equation

x3 − (n1n− 2n1 + n2n− 2n2 +m1n
2 − 4m1 + 4r1 + r2 − 3n+ 4)x2

−(2n1n2n− 3n1n2 + n1m1 − 2n1r1n+ 2n1r1 − n1r2n+ 2n1r2 + 2n1n
2

−6n1n+ 4n1 + 2n2m1n− 4n2m1 − 4n2r1n+ 8n2r1 + 2n2n
2 − 6n2n+ 4n2 −m1r2n

+4m1r2 + 2m1n
2 − 8m1n+ 4m1 − 4r1r2 + 8r1n− 8r1 + 2r2n− 2r2 − 3n2 + 8n− 4)x

−(2n1n2m1 − 4n1n2r1n+ 4n1n2r1 + 2n1n2n
2 − 3n1n2n− n1m1r2

+n1m1n− 2n1m1 + 2n1r1r2n− 2n1r1r2 − 2n1r1n
2 + 6n1r1n− 4n1r1 − n1r2n

2

+2n1r2n+ n1n
3 − 4n1n

2 + 4n1n+ 2n2m1n
2 − 8n2m1 − 4n2r1n

2 + 8n2r1n+ n2n
3

−4n2n
2 + 4n2n−m1r2n

2 + 2m1r2n+ 4m1r2 +m1n
3 − 4m1n

2 + 8m1 − 4r1r2n

+4r1n
2 − 8r1n+ r2n

2 − 2r2n− n3 + 4n2 − 4n) = 0,

where n = n1 +m1 + n2.

P r o o f. Given that G1 and G2 are regular graphs with regularity r1 and r2 respectively. Let R
be the incidence matrix of G1 and A(L(G1) be the adjacency matrix of the line graph of G1. The
distance matrix of a graph with diameter at most two and adjacency matrix A can be rewritten as
A+ 2Ā or 2(J − I)−A [5].

The subdivision-vertex join G1
˙∨ G2 has n = n1 +m1 + n2 vertices. With the proper labeling

of vertices, the VDC matrix of G1
˙∨ G2 is a square matrix of order n given by

C =





(n− 2)(J − I) (n− 3)J + 2R (n− 1)J
(n− 3)J + 2RT (n − 4)(J − I) + 2A(L(G1)) (n− 2)J

(n− 1)J (n− 2)J (n− 2)(J − I) +A2



 .

Let X be an eigenvector corresponding to the eigenvalue λ1i 6= r1 of A1. Using Lemma 1, we note
that

A(L(G1))R
TX = (λ1i + r1 − 2)RTX.

Hence, λ1i + r1 − 2 are the eigenvalues of A(L(G1)) with an eigenvector RTX.

By Perron–Frobenius theorem, X and RTX are orthogonal to the all-one vector J .

Let

Υ =





X

RTX

0



 .

Then,

2λ1i + 2r1 − n+ 2, i = 2, 3, . . . , n1
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is an eigenvalue of the VDC matrix of G1
˙∨ G2 corresponding to the eigenvector Υ. This is because





(n− 2)(J − I) (n− 3)J + 2R (n − 1)J
(n− 3)J + 2RT (n− 4)(J − I) + 2A(L(G)) (n − 2)J

(n− 1)J (n − 2)J (n− 2)(J − I) +A2









X

RTX

0





=





−(n− 2)X + 2(A1 + r1I))X
2RTX − (n− 4)RTX + 2A(L(G1))R

TX

0



 =





(2λ1i + 2r1 − n+ 2)X
(2λ1i + 2r1 − n+ 2)RTX

0





= (2λ1i + 2r1 − n+ 2)





X

RTX

0



 .

By a similar reasoning, if Y is an eigenvector of A(L(G1)) corresponding to the eigenvalue
λ1i + r1 − 2, for i = 2, 3, . . . , n1,

Φ =





RY

−Y

0





is an eigenvector of VDC matrix of G1
˙∨ G2 corresponding to the eigenvalue −n. (Note that the

line graph of a regular graph is also regular).
Hence, −n is an eigenvalue of G1

˙∨ G2 repeated n1 − 1 times.
Now, −2 is an eigenvalue of A(L(G1)) with multiplicity m1 − n1. Let Z be an eigenvector

of A(L(G1)) corresponding to the eigenvalue −2. Then, by Lemma 2, RZ = 0 and by Perron–
Frobenius theorem, JZ = 0.

Let

Ω =





0
Z

0



 .

Then −n is an eigenvalue of the VDC matrix of G1
˙∨ G2 repeated m1−n1 times with an eigenvector

Ω. This is because




(n − 2)(J − I) (n− 3)J + 2R (n− 1)J
(n− 3)J + 2RT (n− 4)(J − I) + 2A(L(G)) (n− 2)J

(n− 1)J (n− 2)J (n− 2)(J − I) +A2









0
Z

0





=





0
−(n− 4)Z + 2A(L(G1))Z

0



 =





0
−nZ

0



 .

In total, −n is an eigenvalue of G1
˙∨ G2 repeated m1 − 1 times.

Now, let λ2i 6= r2 be an eigenvalue of G2 with an eigenvector W. Since G2 is regular, JW = 0.
Hence

Ψ =





0
0
W





is an eigenvector of the VDC matrix of G1
˙∨ G2 corresponding to the eigenvalue λ2i − n + 2, for

i = 2, 3, . . . n2. Thus, we have obtained n1 +m1 + n2 − 3 eigenvalues.
The remaining three eigenvalues are to be determined. We note that all the eigenvectors

constructed so far, are orthogonal to




J

0
0



 ,





0
J

0



 and





0
0
J



 .
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The remaining three eigenvectors are spanned by these three vectors and is of the form

Θ =





αJ

βJ

γJ



 .

for some (α, β, γ) 6= (0, 0, 0).

Thus, if ρ is an eigenvalue of the VDC matrix with an eigenvector Θ, then from CΘ = ρΘ, we can
see that the remaining three eigenvalues are obtained from the matrix





(n− 2)(n1 − 1) (n− 3)m1 + 2r1 (n− 1)n2

(n − 3)n1 + 4 n(m1 − 1)− 4(m1 − r1) (n− 2)n2

(n− 1)n1 (n− 2)m1 (n − 2)(n2 − 1) + r2



 .

Thus we determine the VDC spectrum of G1
˙∨ G2. �

3. The VDC spectrum of G1

∨

G2

In this section we present the VDC spectrum of G1
∨

G2.

Theorem 3. Let Gi be ri regular graph with ni vertices and mi edges, for i = 1, 2.
If {λi1, λi2, . . . , λini

} denotes the adjacency spectrum corresponding to the adjacency matrix Ai

of Gi, then, the specV DC(G1
∨

G2) consists of

(i) λ1i + 3±
√

(λ1i + 1)2 + 4(λ1i + r1)− n, for i = 2, 3, . . . , n1;

(ii) −n+ 2, repeated m1 − n1 times;

(iii) λ2i − n+ 2, for i = 2, 3, . . . , n2;

(iv) the 3 roots of the equation

x3 − (n1n− 4n1 + n2n− 2n2 +m1n− 2m1 + 2r1 + r2 − 3n+ 8)x2

−(2n1n2n− 4n1n2 + n1m1 + 2n1r1n− 6n1r1 − n1r2n+ 4n1r2 + 2n1n
2 − 12n1n+ 16n1

+2n2m1n− 3n2m1 − 2n2r1n+ 4n2r1 + 2n2n
2 − 10n2n+ 12n2 − 2m1r1n+ 4m1r1 + 2m1n

2

−6m1n−m1r2n− 2r1r2 + 4r1n+ 2m1r2 + 2r2n− 6r2 − 3n2 + 16n − 20)x

−(2n1n2m1 + 4n1n2r1n− 8n1n2r1 + 8n1n2 + 2n1r1n
2 − 8n1r2 − 16n1

−4n2m1r1n+ 6n2m1r1 − 3n2m1n− 16n2 + 2m1r1r2n− 4m1r1r2 − 2m1r1n
2

+8m1r1n− 8m1r1 − 4r1r2 + 2n1n2n
2 − 8n1n2n− n1m1r2 + n1m1n− 2n1m1

−2n1r1r2n+ 6n1r1r2 + 2n1r1n
2 − 10n1r1n+ 12n1r1 − n1r2n

2 + 6n1r2n

+n1n
3 − 8n1n

2 + 20n1n+ 2n2m1n
2 − 4n2m1 − 2n2r1n

2 + 8n2r1 + n2n
3

−8n2n
2 + 20n2n−m1r2n

2 + 2m1r2n+ 4m1r2 +m1n
3 − 4m1n

2 + 8m1 − 2r1r2n

+2r1n
2 − 8r1 + r2n

2 − 6r2n− n3 + 8n2 − 20n+ 8r2 + 16) = 0.

where n = n1 +m1 + n2.
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P r o o f. Given that G1 and G2 are regular graphs with regularity r1 and r2 respectively.
Let R be the incidence matrix of G1. G1

∨

G2 has n = n1 +m1 + n2 vertices. With the proper
labeling of vertices, the VDC matrix of G1

∨

G2 of order n is given by

C =





(n− 4)(J − I) + 2A1 (n− 3)J + 2R (n − 2)J
(n− 3)J + 2RT (n− 2)(J − I) (n − 1)J

(n− 2)J (n− 1)J (n− 2)(J − I) +A2



 .

Let λ1i 6= r1 be an eigenvalue of A1 with an eigenvector X. By Perron–Frobenius theorem, X is
orthogonal to the all-one vector J .

Let us test the condition under which

Υ =





tX

RTX

0





is an eigenvector of the given VDC matrix.
If Υ is an eigenvector of the VDC matrix of G1

∨

G2 corresponding to the eigenvalue η, then
CΥ = ηΥ implies





(n− 4)(J − I) + 2A1 (n− 3)J + 2R (n− 2)J
(n− 3)J + 2RT (n− 2)(J − I) (n− 1)J

(n− 2)J (n− 1)J (n− 2)(J − I) +A2









tX

RTX

0



 = η





tX

RTX

0





i. e.,
−(n− 4)t+ 2tλ1i + 2λ1i + 2r1 = ηt (3.1)

and
2t− (n− 2) = η. (3.2)

Substituting the value of η from equation (3.2) in equation (3.1), we get a quadratic equation in t

as
t2 − (1 + λ1i)t− (λ1i + r1) = 0

Hence

t =
(1 + λ1i)±

√

(1 + λ1i)2 + 4(λ1i + r1)

2
.

Thus corresponding to each eigenvalue λ1i 6= r1 of A1, we get two VDC eigenvalues η = 2t+ 2− n

of G1
∨

G2 and hence a total of 2(n1 − 1) VDC eigenvalues are obtained.
Now, −2 is an eigenvalue of A(L(G1)) with multiplicity m1 − n1. Let Z be an eigenvector

of A(L(G1)) with eigenvalue −2. Then, by Lemma 2, RZ = 0.
However,

Ω =





0
Z

0





is an eigenvector of the VDC matrix of G1
∨

G2 corresponding to the eigenvalue −n+ 2.
Let λ2i 6= r2 be an eigenvalue of G2 with an eigenvector W . Then,

Ψ =





0
0
W





is an eigenvector of the VDC matrix of G1
∨

G2 corresponding to the eigenvalue λ2i − n + 2, for
i = 2, 3, . . . n2.
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Thus, we have obtained n1 +m1 + n2 − 3 eigenvalues.
Next, we will determine the remaining three eigenvalues. We note that all the eigenvectors

constructed are orthogonal to





J

0
0



 ,





0
J

0



 , and





0
0
J



 .

The remaining three eigenvectors are spanned by these three vectors and is of the form

Θ =





αJ

βJ

γJ





for some (α, β, γ) 6= (0, 0, 0). Thus, if ρ is an eigenvalue of C with an eigenvector Θ then from
CΘ = ρΘ, we can see that the remaining three eigenvalues are obtained from the matrix





(n− 4)(n1 − 1) + 2r1 (n− 3)m1 + 2r1 (n− 2)n2

(n− 3)n1 + 4 (n− 2)(m1 − 1) (n− 1)n2

(n− 2)n1 (n− 1)m1 (n − 2)(n2 − 1) + r2



 .

�

4. Conclusion

In this paper we have computed the Vertex Distance Complement Spectrum of Subdivision
Vertex Join, G1

˙∨ G2, and Subdivision Edge Join, G1
∨

G2 of regular graphs G1 and G2. The
work can be extended to graphs with diameter greater than two, graphs that are not regular etc.
It is worth exploring the nature of the spectrum of graphs with arbitrary subdivisions.
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Abstract: In this paper, we study modified-type proximal point algorithm for approximating a common
solution of a lower semi-continuous mapping and fixed point of total asymptotically nonexpansive mapping
in complete CAT(0) spaces. Under suitable conditions, some strong convergence theorems of the proposed
algorithms to such a common solution are proved.

Keywords: Proximal point algorithm, Total asymptotically nonexpansive mapping, Fixed point, △ conver-
gence, Strong convergence, CAT(0) space.

1. Introduction

In recent years, much attention has been given to develop several iterative methods including
the proximal point algorithms (PPA) which was suggested by Martinet [26] for solving convex opti-
mization problems which was extensively developed by Rockafellar [28] in the context of monotone
variational inequalities. The main idea of this method consists of replacing the initial problem with
a sequence of regularized problems, so that each particular auxiliary problem can be solved by one
of the well-known algorithms. Quiet number of different method of proximal point algorithm have
been proposed and studied from the classical linear spaces such as Euclidean spaces, Hilbert spaces,
and Banach spaces to the setting of manifolds (see [5, 6, 13, 18, 20, 26, 28]).
Recently, the classical proximal point algorithms have been extended from linear spaces such as
Hilbert spaces or Banach spaces to the setting of nonlinear version.

In 2013, Bačák [6] introduced the PPA in a CAT(0) space (X, d) as follows: x1 ∈ X and

xn+1 = argmin
y∈X

(

f(y) +
1

2λn

d2(y, xn)
)

, ∀ n ≥ 1,

where λn > 0, ∀ n ≥ 1. It was shown that if f has a minimizer and

∞
∑

n=1

λn = ∞,

then the sequence {xn} △−converges to its minimizer [5].
It is a known fact that iterative methods for finding fixed points of nonexpansive mappings have

received vast investigations due to its extensive applications in a variety of applied areas of inverse

https://doi.org/10.15826/umj.2021.1.010
mailto:ugwunnadi4u@yahoo.com
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problem, partial differential equations, image recovery, and signal processing; see [2, 5, 8, 15, 21]
and the references therein.

Fixed-point theory in CAT(0) spaces was first studied by Kirk [22, 23]. He showed that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete
CAT(0) space always has a fixed point. Since then, the fixed-point theory for single-valued and
multivalued mappings in CAT(0) spaces has been rapidly developed.

Recently, Suparatulatorn et al. [29] presented a new modified proximal point algorithm for
solving the minimization of a convex function and the fixed points of nonexpansive mappings
in CAT(0) spaces. Chang et al. [12] proved some strong convergence theorems of the PPA to
a common fixed point of asymptotically nonexpansive mappings and to minimizers of a convex
function in CAT(0) spaces.

Let C be a nonempty subset of a complete CAT(0) space X and T a mapping from C into
itself. Then, a point x ∈ C is called a fixed point of T if Tx = x. We denote by F (T ) the set of all
the fixed points of T . A mapping T from C into itself is said to be:

(N) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C;

(AN) asymptotically nonexpansive, if there is a sequence {un} ⊆ [0,∞) with un → 0 as n → ∞
such that

d(T nx, T ny) ≤ (1 + un)d(x, y), ∀n ≥ 1, x, y ∈ C;

(UL) uniformly L-Lipschitzian, if there exists a constant L > 0 such that

d(T nx, T ny) ≤ Ld(x, y), ∀n ≥ 1, x, y ∈ C.

The concept of total asymptotically nonexpansive mappings was first introduced by Alber et al. [1].
A mapping T : C → C is said to be total asymptotically nonexpansive mapping if there exists
nonnegative sequences {µn}, {νn} with µn → 0, νn → 0 as n → ∞ and a strictly increasing
continuous function ζ : [0,∞) → [0,∞) with ζ(0) = 0 such that

d(T nx, T ny) ≤ d(x, y) + νnζ(d(x, y)) + µn, ∀n ≥ 1, x, y ∈ C.

Remark 1. From the definitions, it is known that each nonexpansive mapping is asymptotically
nonexpansive mapping with sequence {un = 0}, and each asymptotically nonexpansive mapping
is ({µn}, {νn}, ζ)-total asymptotically nonexpansive mapping with µn = 0, νn = un, ∀n ≥ 1 and
ζ(t) = t, t ≥ 0. But the opposite may not be true for each of them in a general sense. Furthermore,
every asymptotically nonexpansive mapping is a uniformly L-Lipschitzian mapping with

L = sup
n≥1

(1 + un).

Motivated and inspired by the above works, in this paper, we study a modified algorithm for
proximal point and fixed point of total asymptotically nonexpansive mapping in CAT(0) space.
Strong convergence of this algorithm is proved. Our method of proof is different from the method
in Chang et al. [12].

2. Preliminaries

Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x to y

is an isometry c : [0, l] → X such that c(0) = x and c(l) = y. The image of a geodesic path is
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called a geodesic segment. A metric space X is a (uniquely) geodesic space, if every two points
of X are joined by only one geodesic segment. A geodesic triangle △(x1, x2, x3) in a geodesic
space X consists of three points x1, x2, x3 of X and three geodesic segments joining each pair of
vertices. A comparison triangle of a geodesic triangle △(x1, x2, x3) is the triangle △̄(x1, x2, x3) :=
△(x̄1, x̄2, x̄3) in the Euclidean space R

2 such that

d(xi, xj) = dR2(x̄i, ȳj), ∀i, j = 1, 2, 3.

A geodesic space X is a CAT(0) space, if for each geodesic triangle △(x1, x2, x3) in X and its
comparison triangle △̄ := △(x̄1, x̄2, x̄3) in R

2, the CAT(0) inequality d(x, y) ≤ dR2(x̄, ȳ) is satisfied
for all x, y ∈ △ and x̄, ȳ ∈ △̄.

A thorough discussion of these spaces and their important role in various branches of mathe-
matics are given in [9, 10]. Let x, y ∈ X and λ ∈ [0, 1], we write λx⊕ (1− λ)y for the unique point
z in the geodesic segment joining from x to y such that

d(z, x) = (1− λ)d(x, y) and d(z, y) = λd(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, that is,

[x, y] =
{

λx⊕ (1− λ)y : λ ∈ [0, 1]
}

.

A subset C of a CAT(0) space is convex if [x, y] ⊆ C for all x, y ∈ C.

Berg and Nikolaev [7] introduced the concept of an inner product-like notion (quasi-
linearization) in complete CAT(0) spaces to resolve these difficulties as follows:

Let denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. The quasilinearization is a map

〈., .〉 : (X ×X)× (X ×X) → R defined by

〈
−→
ab,

−→
cd〉 =

1

2

(

d2(a, d) + d2(b, c) − d2(a, c)− d2(b, d)
)

, ∀a, b, c, d ∈ X. (2.1)

It is easily seen that 〈
−→
ab,

−→
cd〉 = 〈

−→
cd,

−→
ab〉, 〈

−→
ab,

−→
cd〉 = −〈

−→
ba,

−→
cd〉 and 〈−→ax,

−→
cd〉 + 〈

−→
xb,

−→
cd〉 = 〈

−→
ab,

−→
cd〉 for

all a, b, c, d ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,

−→
cd〉 ≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X. It is known that a geodesically connected metric space is a CAT(0) space if
and only if it satisfies the Cauchy–Schwarz inequality (see [7]).

Lemma 1 [16]. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

d(λx⊕ (1− λ)y, z) ≤ λd(x, z) + (1− λ)d(y, z).

Lemma 2 [16]. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y).

Lemma 3 [14]. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

d2(λx⊕ (1− λ)y, z) ≤ λ2d2(x, z) + (1− λ)2d2(y, z) + 2λ(1 − λ)〈−→xz,−→yz〉.
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Let {xn} be a bounded sequence in a complete CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf
{

r(x, {xn}) : x ∈ X
}

,

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{

x ∈ X : r(x, {xn}) = r({xn})
}

.

It is well known that in a CAT(0) space A({xn}) consists of exactly one point (see [15, Proposi-
tion 7]).

Lemma 4 [24]. Every bounded sequence in a complete CAT(0) space always has a
△−convergent subsequence.

Lemma 5 [19]. Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X. Then
{xn} △−converges to x if and only if lim supn→∞〈−−→xxn,

−→xy〉 ≤ 0 for all y ∈ C.

A function f : C → (−∞,∞] defined on a convex subset C of a CAT(0) space is convex if, for
any geodesic

[x, y] := {γx,y(λ) : 0 ≤ λ ≤ 1} := {λx⊕ (1− λ)y : 0 ≤ λ ≤ 1}

joining x, y ∈ C, the function f ◦ γ is convex, i.e.

f(γx,y(λ)) := f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

For examples of convex functions in CAT(0), see [12]. For any λ > 0, define the Moreau–Yosida
resolvent of f in CAT(0) space X as

Jλ(x) = argmin
y∈X

[

f(y) +
1

2λ
d2(y, x)

]

, ∀ x ∈ X.

Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function. It is shown
in [3] that the set F (Jλ) of fixed points of the resolvent associated with f coincides with the set
argminy∈X f(y) of minimizers of f . Also for any λ > 0, the resolvent Jλ of f is nonoexpansive [17].

Lemma 6 (Sub-differential inequality [4]). Let (X, d) be a complete CAT(0) space and
f : X → (−∞,∞] be proper convex and lower semi-continuous. Then, for all x, y ∈ X and λ > 0,
the following inequality holds:

1

2λ
d2(Jλx, y)−

1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).

Lemma 7 [17, 27] (The resolvent identity). Let (X, d) be a complete CAT(0) space and
f : X → (−∞,∞] be proper convex and lower semi-continuous. Then the following identity holds:

Jλx =
(λ− µ

λ
Jλx⊕

µ

λ
x
)

for all x ∈ X and λ > µ > 0.
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Lemma 8 [11]. If C is a closed convex subset of a complete CAT(0) space X and T : C → X be
a uniformly L-Lipschitzian and total asymptotically nonexpansive mappings. Let {xn} be a bounded
sequence in C such that xn ⇀ p and

lim
n→∞

d(xn, Txn) = 0.

Then Tp = p.

Lemma 9 [25]. Let {an} be a sequence of real numbers such that there exists a subsequence {ni}
of {n} such that ani

< ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N

such that mk → ∞ and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N

amk
≤ amk+1 and ak ≤ amk+1.

In fact,
mk = max{j ≤ k : aj < aj+1}.

Lemma 10. (Xu, [30]) Let {an} be a sequence of nonnegative real numbers satisfying the fol-
lowing relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where, (i) {αn} ⊂ [0, 1],
∑

αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),
∑

γn < ∞.

Then, an → 0 as n → ∞.

3. Main Result

Theorem 1. Let X be a complete CAT(0) space and C be a nonempty closed convex subset
of X. Let f : C → (−∞,∞] be a proper convex and lower semi-continuous function and T : C → C

be L−Lipschitzian and total asymptotically nonexpansive mappings with {un}, {vn} and mappings
ζ : [0,∞) → [0,∞) satisfying

∑∞
n=1 un < ∞ and

∑∞
n=1 vn < ∞ such that

Ω := F (T )
⋂

argmin
y∈C

f(y) 6= ∅.

Let {xn}
∞
n=1 be a sequence generated by x1 = w ∈ C chosen arbitrarily,















zn = argmin
y∈C

[

f(y) +
1

2λn

d2(y, xn)
]

,

yn = αnw ⊕ (1− αn)zn,
xn+1 = (1− βn)xn ⊕ βnT

nyn,

(3.1)

where {αn}
∞
n=1 ⊂ (0, 1), {βn}

∞
n=1 ⊂ [c, d] ⊂ (0, 1) satisfying

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞, lim
n→∞

un

αn

= 0, lim
n→∞

vn

αn

= 0.

Assume there exists constant M > 0, such that ζ(r) ≤ Mr,∀r ≥ 0. Then {xn}
∞
n=1 converges

strongly to Ω.

P r o o f. Let p ∈ Ω and f(p) ≤ f(y), ∀ y ∈ C. Therefore we obtain

f(p) +
1

2λn

d2(p, p) ≤ f(y) +
1

2λn

d2(y, p), ∀ y ∈ C,
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hence p = Jλn
p, ∀ n ≥ 1. Indeed zn = Jλn

xn and Jλn
is nonexpansive [17]. Thus

d(zn, p) = d(Jλn
xn, Jλn

p) ≤ d(xn, p).

Let δn := αnβn(1 + unM). Since there exists N0 > 0 such that

un

αn

≤
ǫ(1 + unM)

M
,

vn

αn

≤ (1 + unM),

for all n ≥ N0 and for some ǫ > 0 satisfying 0 ≤ (1 − ǫ)δn ≤ 1. For any point p ∈ Ω and n ≥ N0,
then we have from (3.1) and from Lemma 1 that

d(xn+1, p) = d((1 − βn)xn ⊕ βnT
nyn, p)

≤ (1− βn)d(xn, p) + βnd(T
nyn, p)

≤ (1− βn)d(xn, p) + βn(1 +Mun)d(yn, p) + βnvn

= (1− βn)d(xn, p) + βn(1 +Mun)[d(αnw ⊕ (1− αn)zn, p)] + βnvn

≤ (1− βn)d(xn, p) + αnβn(1 +Mun)d(w, p) + βn(1− αn)(1 +Mun)d(zn, p) + βnvn

≤ [1− βn + βn(1− αn)(1 +Mun)]d(xn, p)

+αnβn(1 +Mun)d(w, p) + βnvn

≤ [1− (1− ǫ)δn]d(xn, p) + δn(1− ǫ)
(d(w, p) + 1)

(1− ǫ)

≤ max
{

d(xn, p),
(d(w, p) + 1)

(1− ǫ)

}

.

Thus, by induction

d(xn, p) ≤ max
{

d(xN0
, p),

(d(w, p) + 1)

(1− ǫ)

}

, ∀ n ≥ N0.

It implies that {xn} is bounded, it follows that {yn} and {zn} are also bounded. Furthermore,
from (3.1) and Lemma 2 and letting ūn := 2Mun + u2n, we obtain

d2(xn+1, p) = d2((1 − βn)xn ⊕ βnT
nyn, p)

≤ (1− βn)d
2(xn, p) + βnd

2(T nyn, p)− βn(1− βn)d
2(xn, T

nyn)

≤ (1− βn)d
2(xn, p) + βn((1 +Mun)d(yn, p) + vn)

2 − βn(1− βn)d
2(xn, T

nyn)

= (1− βn)d
2(xn, p) + βn(1 +Mūn)d

2(yn, p) + βnvn[2(1 +Mun)d(yn, p) + vn]

−βn(1− βn)d
2(xn, T

nyn), (3.2)

also from Lemma 3, we have

d2(yn, p) = d2(αnw ⊕ (1− αn)zn, p)

≤ α2
nd

2(w, p) + (1− αn)
2d2(zn, p) + 2αn(1− αn)〈

−→wp,−→znp〉

≤ α2
nd

2(w, p) + (1− αn)d
2(zn, p) + 2αn(1− αn)〈

−→wp,−→znp〉 (3.3)

≤ α2
nd

2(w, p) + (1− αn)d
2(xn, p) + 2αn(1− αn)〈

−→wp,−→znp〉. (3.4)

From (3.2) and (3.4) and the fact that {yn} is bounded, we have that there exists D > 0 such that
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for any n ≥ N0, d(yn, p) ≤ D and letting θn := αnβn, we obtain

d2(xn+1, p) ≤ (1− βn)d
2(xn, p) + βn[α

2
nd

2(w, p) + (1− αn)d
2(xn, p) + 2αn(1− αn)〈

−→wp,−→znp〉]

+βnūnd
2(yn, p)βnvn[2(1 +Mun)d(yn, p) + vn]− βn(1− βn)d

2(xn, T
nyn)

≤ (1− θn)d
2(xn, p) + θn[αnd

2(w, p) + (1− αn)〈
−→wp,−→znp〉]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n]− βn(1− βn)d

2(xn, T
nyn) (3.5)

≤ (1− θn)d
2(xn, p) + θn[αnd

2(w, p) + (1− αn)〈
−→wp,−→znp〉]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n]. (3.6)

To complete the proof, we have to consider the following two cases.

Case 1. Suppose {d(xn, p)} is non-increasing, then {d(xn, p)} is convergent, from (3.5) and
boundedness of {zn}, then there exists D1 > 0 such that for any n ≥ N0, d(zn, p) ≤ D1, thus

βn(1− βn)d
2(xn, T

nyn) ≤ d2(xn, p)− d2(xn+1, p)

+θn[αnd
2(w, p) + 2(1− αn)〈

−→wp,−→znp〉 − d2(xn, p)]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n]

≤ d2(xn, p)− d2(xn+1, p)

+θn[αnd
2(w, p) + 2(1− αn)D1d(w, p) − d2(xn, p)]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n], (3.7)

which implies that

βn(1− βn)d
2(xn, T

nyn) → 0 as n → ∞,

hence

lim
n→∞

d(xn, T
nyn) = 0 (3.8)

and from (3.1), we have

d(yn, zn) ≤ αnd(w, zn) + (1− αn)d(zn, zn) → 0 as n → ∞, (3.9)

also from (3.1) and (3.8), we obtain

d(xn+1, xn) ≤ (1− βn)d(xn, xn) + βnd(T
nyn, xn) → 0 as n → ∞. (3.10)

Furthermore from Lemma 6, we see that

1

2λn

d2(zn, p)−
1

2λn

d2(xn, p) +
1

2λn

d2(xn, zn) ≤ f(p)− f(zn),

since f(p) ≤ f(zn) for all n ≥ 1, it follows that

d2(xn, zn) ≤ d2(xn, p)− d2(zn, p). (3.11)

But from (3.2) and (3.3), we obtain

d2(xn+1, p) ≤ (1− βn)d
2(xn, p) + βn[α

2
nd

2(w, p) + (1− αn)d
2(zn, p) + 2αn(1− αn)〈

−→wp,−→znp〉]

+βn[2vn(1 +Mun)d(yn, p) + v2n + ūnd
2(yn, p)],
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therefore, from (2.1) and boundedness of {zn}, we obtain

d2(xn, p) ≤
1

βn
(d2(xn, p)− d2(xn+1, p)) + α2

nd
2(w, p) + (1− αn)d

2(zn, p)

+2αn(1− αn)D1d(w, p) + 2Dvn(1 +Mum) + ūnD
2,

(3.12)

from (3.11) and (3.12), we obtain

d2(xn, zn) ≤
1

βn
(d2(xn, p)− d2(xn+1, p)) + αn(αnd

2(w, p) − d2(zn, p))

+2αn(1− αn)D1d(w, p) + 2Dvn(1 +Mum) + ūnD
2,

since {xn} and {zn} are bounded and {d(xn, p)} is non-increasing sequence, it follows from that

lim
n→∞

d(xn, zn) = 0, (3.13)

from (3.9) and (3.13), we obtain

lim
n→∞

d(xn, yn) = 0 (3.14)

and

d(yn, T
nyn) ≤ d(yn, xn) + d(xn, T

nyn) → 0 as n → ∞, (3.15)

also from (3.14) and (3.15), we obtain

d(xn, T
nxn) ≤ d(xn, yn) + d(yn, T

nyn) + d(T nyn, T
nxn)

≤ (2 +Mun)d(xn, yn) + d(yn, T
nyn) + vn → 0 (3.16)

as n → ∞. Observe also that since T is uniformly L-Lipschitzian, we have

d(xn, Txn) ≤ d(xn, T
nxn) + d(T nxn, Txn)

≤ d(xn, T
nxn) + Ld(T n−1xn, xn)

≤ d(xn, T
nxn) + L[d(T n−1xn, T

n−1xn−1) + d(T n−1xn−1, xn−1) + d(xn−1, xn)]

≤ d(xn, T
nxn) + Ld(T n−1xn−1, xn−1) + L(1 + L)d(xn, xn−1),

it follows from (3.10) and (3.16) that

lim
n→∞

d(xn, Txn) = 0, (3.17)

from (3.14) and (3.17), we obtain

d(yn, T yn) ≤ d(yn, xn) + d(xn, Txn) + d(Txn, T yn)

≤ (1 + L)d(yn, xn) + d(xn, Txn) → 0

as n → ∞. Also since λn ≥ λ > 0, from Lemma 7, we obtain

d(Jλxn, Jλn
xn) = d

(

Jλxn, Jλ

(λn − λ

λn

Jλn
xn ⊕

λ

λn

xn

))

≤ d(xn, (1−
λ

λn

)Jλn
xn ⊕

λ

λn

xn)

≤ (1−
λ

λn

)d(xn, zn) → 0
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as n → ∞, hence

d(xn, Jλxn) ≤ d(xn, zn) + d(zn, Jλxn) → 0 as n → ∞. (3.18)

Moreover, since {xn} is bounded and X is a complete CAT(0) space, by Lemma 4 we choose
a subsequence {xni

} of {xn} such that △ − limxni
= v, where v := PΩ(w). Then, from (3.15),

(3.18), Lemma 8 and the fact that Jλ is nonexpansive [17], we have v ∈ F (T ), also from Lemma 5,
we have

lim sup〈−→wv,−−→xnv〉 ≤ 0. (3.19)

Furthermore, since

〈−→wv,−→znv〉 = 〈−→wv,−−→znxn〉+ 〈−→wv,−−→xnv〉

≤ d(w, v)d(zn, xn) + 〈−→wv,−−→xnv〉,

it follows from (3.13) and (3.19) that

lim sup〈−→wv,−→znv〉 ≤ 0.

Thus, now putting v := p in inequality (3.6), we get that, for n ≥ N0

d2(xn+1, v) ≤ (1− θn)d
2(xn, v) + θn[αnd

2(w, v) + (1− αn)〈
−→wv,−→znv〉]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n].

(3.20)

Hence
d2(xn+1, v) ≤ (1− θn)d

2(xn, v) + θnσn + γn,

where

σn := αnd
2(w, v) + (1− αn)〈

−→wv,−→znv〉, γn := βn[ūnD
2 + 2Dvn(1 +Mun) + v2n],

it follows from Lemma 10 that d(xn, v) → 0 as n → ∞. Consequently, xn → v.

Case 2. Suppose that {d(xn, p)}n≥1 is non-decreasing sequence. Then, there exists a subse-
quence {ni} of {n} such that

d(xni
, p) < d(xni+1, p)

for all i ∈ N. Then, by Lemma 9, there exists an increasing sequence {mj}j≥1 such that mj → ∞,

d(xmj
, p) ≤ d(xmj+1, p) and d(xj , p) ≤ d(xmj+1, p) for all j ≥ 1. Then from (3.7), we obtain

βmj
(1− βmj

)d2(xmj
, Tmjymj

) ≤ d2(xmj
, p)− d2(xmj+1, p)

+θmj
[αmj

d2(w, p) + 2(1 − αmj
)〈−→wp,−−→zmj

p〉 − d2(xmj
, p)]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
]

≤ d2(xmj
, p)− d2(xmj+1, p)

+θmj
[αmj

d2(w, p) + 2(1 − αmj
)D1d(w, p) − d2(xmj

, p)]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
].

This implies d(xmj
, Tmjymj

) → 0 as j → ∞. Thus, as in Case 1, we obtain that d(xmj
, Txmj

) → 0
and d(xmj

, Jλxmj
) → 0 as j → ∞ and also following the same argument in Case 1, we get

lim sup〈−→wv,−−→zmj
v〉 ≤ 0, where v := PΩ(w). Also from (3.20), we obtain that,

d2(xmj+1, v) ≤ (1− θn)d
2(xmj

, v) + θmj
[αmj

d2(w, v) + (1− αmj
)〈−→wv,−−→zmj

v〉]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
].

(3.21)
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Since d2(xmj
, v) ≤ d2(xmj+1, v), it follows that

θmj
d2(xmj

, v) ≤ d2(xmj
, v)− d2(xmj+1, v) + θmj

[αmj
d2(w, v) + (1− αmj

)〈−→wv,−−→zmj
v〉]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
]

≤ θmj
[αmj

d2(w, v) + (1− αmj
)〈−→wv,−−→zmj

v〉]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
].

In particular, since θmj
> 0, we get

d2(xmj
, v) ≤ [αmj

d2(w, v) + (1− αmj
)〈−→wv,−−→zmj

v〉] +
[ ūmj

αmj

D2 + 2D
vmj

αmj

(1 +Mumj
) + vmj

vmj

αmj

]

.

Then, since lim sup〈−→wv,−−−→xmj
v〉 ≤ 0 and the fact that αmj

→ 0 as j → ∞ and

lim
j→∞

umj

αmj

= 0, lim
j→∞

vmj

αmj

= 0

we obtain that d(xmj
, v) → 0 as j → ∞. This together with (3.21) give d(xmj+1, v) → 0 as j → ∞.

But d(xj , v) ≤ d(xmj+1, v), for all j ≥ 1, thus we obtain that xj → v. Therefore, from the above
two cases, we can conclude that {xn}

∞
n=1 converges strongly to an element of Ω and the proof is

complete. �

4. Conclusion

In this work, we study a modified Halpern-type proximal point algorithm for finding the mini-
mizer of a convex lower semi-continuous function which is also a fixed point of total asymptotically
nonexpansive mapping. Under some appropriate assumption, we have obtained a strong conver-
gence theorem for the proposed algorithm in the framework of a complete CAT(0) space.
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Abstract: A nonlinear control system depending on a parameter is considered in a finite-dimensional
Euclidean space and on a finite time interval. The dependence on the parameter of the reachable sets and
integral funnels of the corresponding differential inclusion system is studied. Under certain conditions on the
control system, the degree of this dependence on the parameter is estimated. Problems of targeting integral
funnels to a target set in the presence of an obstacle in strict and soft settings are considered. An algorithm
for the numerical solution of this problem in the soft setting has been developed. An estimate of the error
of the developed algorithm is obtained. An example of solving a specific problem for a control system in a
two-dimensional phase space is given.

Keywords: Control system, Differential inclusion, Reachable set, Integral funnel, Parameter dependence,
Approximation.

Introduction

A nonlinear control system depending on a parameter is considered in a finite-dimensional
Euclidean space and on a finite time interval.

The reachable sets and integral funnels of the differential inclusion corresponding to the system
are studied. The problems related to the study of reachable sets and integral funnels of dynamical
systems are closely intertwined with numerous problems in the theory of dynamical systems in-
cluding those that arise in control theory and the theory of differential games [5, 6, 10–13, 16, 17].
Various theoretical approaches and associated computational methods [1–3, 5–14, 16–21] are used
in the study of reachable sets, their construction, and estimation. These control problems and
differential games include, for example, various types of approach problems, resolving construc-
tions of which include one of the main components that are called solvability sets, i.e., the sets
of those positions of the control system from which the approach problem is solvable [10–13]. For
many problems, these sets can be described quite simply in terms of reachable sets and integral
funnels [1, 2, 5–9, 12, 13, 16–21]. Some problems can be formulated as problems of the theory of
controllability of dynamical systems [19].

In this paper, we study the dependence on a parameter of reachable sets and integral funnels:
the degree of this dependence on the parameter is estimated under certain conditions imposed on
the control system. We introduce systems of sets in the phase space that approximate reachable
sets and integral funnels on a given time interval corresponding to a finite partition of this interval.
In this case, the degree of dependence on the parameter of the approximating system of sets is
first estimated, and then this estimate is used to estimate the dependence on the parameter of

1This research was supported by the Russian Science Foundation (project no. 19-11-00105).

https://doi.org/10.15826/umj.2021.1.011
mailto:ushak@imm.uran.ru
mailto:ale10919@yandex.ru
mailto:aushakov.pk@gmail.com
mailto:okuvshinov@inbox.ru


Control Systems Depending on a Parameter 121

the reachable sets and integral funnels of the differential inclusion. This approach is natural and
especially useful for studying specific applied control problems, when, in the end, one has to deal
not with ideal reachable sets and integral funnels, but with their approximations corresponding to
a discrete representation of the time interval.

1. Estimates of reachable sets and integral funnels of differential inclusions

Consider a control system Σ

dx

dt
= fα(t, x, u), u ∈ P ∈ comp (Rp) (1.1)

on a time interval [t0, ϑ], t0 < ϑ < ∞; here x ∈ R
n is the phase vector of Σ, u is the control vector,

α is a parameter from a set L ∈ comp (Rl); comp (Rk) is the set of compact subsets of Rk with
the Hausdorff metric

d(X(1),X(2)) = max(h(X(1),X(2)), h(X(2),X(1))), h(X(1),X(2)) = max
x(1)∈X(1)

ρ(x(1),X(2))

is the Hausdorff deviation of X(1) from X(2), where

ρ(x(1),X(2)) = min
x(2)∈X(2)

‖x(1) − x(2)‖.

We assume that the system Σ satisfies the following conditions.

A. The function fα(t, x, u) is defined on [t0, ϑ]× R
n × P × L and, for any bounded and closed

domain D ⊂ [t0, ϑ]× R
n, there are a continuous function ω∗(r), r ∈ (0,∞) (ω∗(r) ↓ 0, r ↓ 0)

and a continuous function L(t) ∈ (0,∞), t ∈ [t0, ϑ], satisfying the relations

‖fα(t, x, u)− fβ(τ, x, u)‖ 6 ω∗(|t− τ |+ ‖α− β‖),
(t, x) ∈ D, (τ, x) ∈ D, u ∈ P, α, β ∈ L ;

‖fα(t, x, u) − fα(t, y, u)‖ 6 L(t)‖x− y‖,
(t, x) ∈ D, (t, y) ∈ D, u ∈ P, α ∈ L .

B. There is γ ∈ (0,∞) such that

‖fα(t, x, u)‖ 6 γ(1 + ‖x‖), (t, x, u) ∈ [t0, ϑ]× R
n × P, α ∈ L .

We introduce a multivalued mapping

(t, x) 7→ Fα(t, x) = coFα(t, x),

Fα(t, x) = {fα(t, x, u) : u ∈ P} ∈ comp (Rn),

(t, x) ∈ [t0, ϑ]×R
n, α ∈ L .

The mapping (t, x) 7→ Fα(t, x) ∈ comp (Rn) satisfies the following conditions.

A∗. For any bounded and closed domain D ⊂ [t0, ϑ]×R
n, there are a continuous function ω∗(r),

r ∈ (0,∞) (ω∗(r) ↓ 0, r ↓ 0) and a continuous function L(t) ∈ (0,∞), t ∈ [t0, ϑ], satisfying
the relations

d(Fα(t, x), Fβ(τ, x)) 6 ω∗(|t− τ |+ ‖α− β‖),
(t, x) ∈ D, (τ, x) ∈ D, α, β ∈ L ;

(1.2)

d(Fα(t, x), Fα(t, y)) 6 L(t)‖x− y‖,
(t, x) ∈ D, (t, y) ∈ D, α ∈ L .

(1.3)
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B∗. There is γ ∈ (0,∞) such that

h(Fα(t, x), {0}) 6 γ · (1 + ‖x‖), (t, x, α) ∈ [t0, ϑ]× R
n × L ;

here 0 is the null-vector in R
n.

Let us introduce on [t0, ϑ] the differential inclusion

dx

dt
∈ Fα(t, x), α ∈ L , (1.4)

that satisfies the system Σ.
Let t∗ and t∗ (t∗ < t∗) be from [t0, ϑ], x∗ ∈ R

n, X∗ ∈ comp (Rn), and α ∈ L .
Let us introduce the notation:

• Xα(t
∗, t∗, x∗) is the reachable set of the differential inclusion (1.4) at the time t∗ with the

initial point x(t∗) = x∗;

• Xα(t
∗, t∗,X∗) =

⋃
x∗∈X∗

Xα(t
∗, t∗, x∗) is the reachable set of the differential inclusion (1.4) at

the time t∗ with the initial set X∗.

It is known that Xα(t
∗, t∗,X∗) ∈ comp (Rn), the mapping (t∗, t∗,X∗) 7→ Xα(t

∗, t∗,X∗) is continuous
in t∗ on [t∗, ϑ] for fixed (t∗,X∗) ∈ [t0, ϑ]×comp (Rn) in the Hausdorff metric, and also Xα(t

∗, t∗,X∗)
continuously depends on X∗ for fixed t∗, t

∗, and α.

The mapping α 7→ Xα(t
∗, t∗,X∗) is also continuous on L for fixed (t∗, t∗,X∗), t0 6 t∗ < t∗ 6 ϑ,

and X∗ ∈ comp (Rn).
Let us refine the continuous dependence of α 7→ Xα(t

∗, t∗,X∗) on the set L . To do this, we
derive an upper bound for the Hausdorff distance

d(Xα(t
∗, t∗,X∗),Xβ(t

∗, t∗,X∗)), α, β ∈ L , (1.5)

which we represent as a function of ‖α− β‖.
It is known that, under the conditions A∗ and B∗, the reachable set Xα(t

∗, t∗,X∗) satisfies the
equality

Xα(t
∗, t∗,X∗) = lim

∆=∆(Γ)↓0
X̃Γ∗

α (t∗).

Here X̃Γ∗

α (t∗) ⊂ R
n, α ∈ L are the sets corresponding to the partition

Γ∗ = {τ0 = t∗, τ1, ..., τi, ..., τN = t∗}
(τi+1 − τi = ∆ = ∆(Γ∗) = N−1(t∗ − t∗), i = 0, N − 1)

of the interval [t∗, t
∗] defined by the equality X̃Γ∗

α (t∗) = X̃Γ∗

α (tN ) and the recurrence relations

X̃Γ∗

α (τ0) = X∗, X̃Γ∗

α (τi+1) = X̃α(τi+1, τi, X̃
Γ∗

α (τi)), i = 0, N − 1, (1.6)

where

X̃α(τ
∗, τ∗,W∗) =

{
x∗ ∈ R

n : x∗ = w∗ + (τ∗ − τ∗)f∗, w∗ ∈ W∗, f∗ ∈ Fα(τ∗, w∗)
}
,

t∗ 6 τ∗ < τ∗ 6 t∗, W∗ ∈ comp (Rn).

Taking into account the condition B∗ and the size of the compact set X∗, we can specify a
bounded and closed domain D ⊂ [t0, ϑ]×R

n containing all sets arising in the subsequent reasoning
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and estimates in the space [t0, ϑ] × R
n. We assume that functions ω∗(r), r ∈ (0,∞), and L(t),

t ∈ [t0, ϑ], corresponding to this domain D are used in further estimates.
We first estimate quantity (1.5) for a one-point set X∗ = {x∗}, (t∗, x∗) ∈ D.
When deriving an estimate for quantity (1.6), we will apply the so-called “step-by-step” rea-

soning scheme and “step-by-step” estimates, that is, we will move through the steps [τi, τi+1],
i = 0, N − 1, of the partition Γ∗.

We start deriving an estimate with the interval [τ0, τ1] of the partition Γ∗. Let us find an upper
bound for the Hausdorff deviation

h(X̃Γ∗

α (τ1), X̃
Γ∗

β (τ1)), α, β ∈ L ;

here X̃Γ∗

α (τ1) = X̃α(τ1, τ0, x∗) and X̃Γ∗

β (τ1) = X̃β(τ1, τ0, x∗).

In X̃Γ∗

α (τ1), we choose a point x(τ1) such that ρ(x(τ1), X̃
Γ∗

β (τ1)) = h(X̃Γ∗

α (τ1), X̃
Γ∗

β (τ1)). The
point x(τ1) is representable as

x(τ1) = x∗ +∆fα(τ0), fα(τ0) ∈ Fα(τ0, x∗).

Let us choose a vector fβ(τ0) in Fβ(τ0, x∗) closest to fα(τ0). The following estimate is valid:

‖fα(τ0)− fβ(τ0)‖ = ρ(fα(τ0), Fβ(τ0, x∗)) 6 h(Fα(τ0, x∗), Fβ(τ0, x∗)) 6 ω∗(‖α − β‖).

In X̃Γ∗

β (τ1), we consider the point y(τ1) = x∗ +∆fβ(τ0), ∆ = ∆(Γ∗). There is an estimate

‖x(τ1)− y(τ1)‖ 6 ∆ω∗(‖α − β‖).

The definition of the point x(τ1) and the inclusion y(τ1) ∈ X̃Γ∗

β (τ1) imply the estimate

h(τ1) 6 ∆ω∗(‖α− β‖); (1.7)

here h(τ1) = h(X̃Γ∗

α (τ1), X̃
Γ∗

β (τ1)).
Let us turn to the next interval [τ1, τ2] of the partition Γ∗ and consider the sets

X̃Γ∗

α (τ2) = X̃α(τ2, τ1, X̃
Γ∗

α (τ1)) and X̃Γ∗

β (τ2) = X̃β(τ2, τ1, X̃
Γ∗

β (τ1)).

In X̃Γ∗

α (τ2), we choose a point x(τ2) such that

ρ(x(τ2), X̃
Γ∗

β (τ2)) = h(X̃Γ∗

α (τ2), X̃
Γ∗

β (τ2)). (1.8)

The point x(τ2) is representable as

x(τ2) = x∗(τ1) + ∆fα(τ1), x∗(τ1) ∈ X̃Γ∗

α (τ1), fα(τ1) ∈ Fα(τ1, x∗(τ1)).

Let us choose a point y∗(τ1) in X̃Γ∗

β (τ1) closest to x∗(τ1):

‖x∗(τ1)− y∗(τ1)‖ = ρ(x∗(τ1), X̃
Γ∗

β (τ1)).

The following estimate is valid:

‖x∗(τ1)− y∗(τ1)‖ 6 h(τ1).

Let us choose a vector fβ(τ1) in Fβ(τ1, y∗(τ1)) closest to fα(τ1). By (1.2) and (1.3), the following
inequalities hold:

‖fα(τ1)− fβ(τ1)‖ 6 h(Fα(τ1, x∗(τ1)), Fβ(τ1, y∗(τ1)))

6 d(Fα(τ1, x∗(τ1)), Fβ(τ1, y∗(τ1))) 6 ω∗(‖α − β‖) + L(τ1)h(τ1).
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We introduce the point

y(τ2) = y∗(τ1) + ∆fβ(τ1), y∗(τ1) ∈ X̃Γ∗

β (τ1), fβ(τ1) ∈ Fβ(τ1, y∗(τ1)).

The points x(τ2) and y(τ2) satisfy the inequalities

‖x(τ2)− y(τ2)‖ 6 ‖x∗(τ1)− y∗(τ1)‖+∆‖fα(τ1)− fβ(τ1)‖
6 h(τ1) + ∆ · (ω∗(‖α− β‖) + L(τ1)h(τ1))

6 ∆ω∗(‖α − β‖) + eL(τ1)∆1 · h(τ1),
(1.9)

where ∆1 = ∆ = ∆(Γ∗).
Considering (1.8) and the inclusion y(τ2) ∈ X̃Γ∗

β (τ2) = X̃β(τ2, τ1, X̃
Γ∗

β (τ1)), we obtain

h(X̃Γ∗

α (τ2), X̃
Γ∗

β (τ2)) 6 ‖x(τ2)− y(τ2)‖. (1.10)

Estimates (1.9) and (1.10) imply that

h(X̃Γ∗

α (τ2), X̃
Γ∗

β (τ2)) 6 ∆ω∗(‖α− β‖) + eL(τ1)∆1h(τ1). (1.11)

Consider the next interval [τ2, τ3] of the partition Γ∗ and the sets X̃Γ∗

α (τ3) = X̃α(τ3, τ2, X̃
Γ∗

α (τ2))
and X̃Γ∗

β (τ3) = X̃β(τ3, τ2, X̃
Γ∗

β (τ2)).
Let us find an upper bound for the Hausdorff deviation

h(X̃Γ∗

α (τ3), X̃
Γ∗

β (τ3)), α, β ∈ L .

To do this, we choose a point x(τ3) in the X̃Γ∗

α (τ3) such that

ρ(x(τ3), X̃
Γ∗

β (τ3)) = h(X̃Γ∗

α (τ3), X̃
Γ∗

β (τ3)). (1.12)

The point x(τ3) is representable as

x(τ3) = x∗(τ2) + ∆fα(τ2), x∗(τ2) ∈ X̃Γ∗

α (τ2), fα(τ2) ∈ Fα(τ2, x∗(τ2)).

Let us choose a point y∗(τ2) in X̃Γ∗

β (τ2) closest to the point x∗(τ2):

‖x∗(τ2)− y∗(τ2)‖ = ρ(x∗(τ2), X̃
Γ∗

β (τ2)).

The following inequality is valid

‖x∗(τ2)− y∗(τ2)‖ 6 h(X̃Γ∗

α (τ2), X̃
Γ∗

β (τ2)).

Let us choose a vector fβ(τ2) in Fβ(τ2, y∗(τ2)) closest to fα(τ2). We obtain the estimate

‖fα(τ2)− fβ(τ2)‖ 6 h(Fα(τ2, x∗(τ2)), Fβ(τ2, y∗(τ2)))

6 d(Fα(τ2, x∗(τ2)), Fβ(τ2, y∗(τ2)))

6 ω∗(‖α − β‖) + L(τ2)‖x∗(τ2)− y∗(τ2)‖.

Consider the point y(τ3) = y∗(τ2)+∆fβ(τ2) in X̃Γ∗

β (τ3). The points x(τ3) and y(τ3) satisfy the
inequalities

‖x(τ3)− y(τ3)‖ 6 ‖x∗(τ2)− y∗(τ2)‖+∆ · (ω∗(‖α− β‖) + L(τ2)‖x∗(τ2)− y∗(τ2)‖)
6 ∆ · ω∗(‖α − β‖) + eL(τ2)∆2h(X̃Γ∗

α (τ2), X̃
Γ∗

β (τ2))

6 ∆ · ω∗(‖α − β‖) + eL(τ2)∆2(∆ · ω∗(‖α− β‖) + eL(τ1)∆1h(τ1)),



Control Systems Depending on a Parameter 125

where ∆2 = ∆ = ∆(Γ∗).
As a result, we get

‖x(τ3)− y(τ3)‖ 6 (1 + eL(τ2)∆2) ·∆ω∗(‖α− β‖) + eL(τ1)∆1+L(τ2)∆2 · h(τ1). (1.13)

Considering (1.12) and the inclusion y(τ3) ∈ X̃Γ∗

β (τ3), we get

h(X̃Γ∗

α (τ3), X̃
Γ∗

β (τ3)) 6 ‖x(τ3)− y(τ3)‖. (1.14)

From (1.13) and (1.14), it follows that

h(X̃Γ∗

α (τ3), X̃
Γ∗

β (τ3)) 6 (1 + eL(τ2)∆2) ·∆ω∗(‖α − β‖) + eL(τ1)∆1+L(τ2)∆2 · h(τ1). (1.15)

For a final understanding of the structure of the estimate of the quantity h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)),

i = 0, N − 1, we consider the next interval [τ3, τ4] of the partition Γ∗ and the sets

X̃Γ∗

α (τ4) = X̃α(τ4, τ3, X̃
Γ∗

α (τ3)) and X̃Γ∗

β (τ4) = X̃β(τ4, τ3, X̃
Γ∗

β (τ3)).

Let us estimate from above the quantity

h(X̃Γ∗

α (τ4), X̃
Γ∗

β (τ4)), α, β ∈ L .

To do this, we choose a point x(τ4) in X̃Γ∗

α (τ4) such that

ρ(x(τ4), X̃
Γ∗

β (τ4)) = h(X̃Γ∗

α (τ4), X̃
Γ∗

β (τ4)).

The point x(τ4) is representable in the form

x(τ4) = x∗(τ3) + ∆fα(τ3), x∗(τ3) ∈ X̃Γ∗

α (τ3), fα(τ3) ∈ Fα(τ3, x∗(τ3)).

Let us choose a point y∗(τ3) in X̃Γ∗

β (τ3) closest to x∗(τ3):

‖x∗(τ3)− y∗(τ3)‖ = ρ(x∗(τ3), X̃
Γ∗

β (τ3)).

The following inequality holds:

‖x∗(τ3)− y∗(τ3)‖ 6 h(X̃Γ∗

α (τ3), X̃
Γ∗

β (τ3)). (1.16)

Let us choose a vector fβ(τ3) in Fβ(τ3, y∗(τ3)) closest to fα(τ3).
By relations (1.2) and (1.3), the following estimate is valid:

‖fα(τ3)− fβ(τ3)‖ 6 h(Fα(τ3, x∗(τ3)), Fβ(τ3, y∗(τ3))) 6 d(Fα(τ3, x∗(τ3)), Fβ(τ3, y∗(τ3)))

6 ω∗(‖α − β‖) + L(τ3)‖x∗(τ3)− y∗(τ3)‖.

Let us choose the point y(τ4) = y∗(τ3) + ∆fβ(τ3) in X̃Γ∗

β (τ4).
Taking into account (1.15) and (1.16), we obtain

‖x(τ4)− y(τ4)‖ 6 ‖x∗(τ3)− y∗(τ3)‖+∆‖fα(τ3)− fβ(τ3)‖
6 ‖x∗(τ3)− y∗(τ3)‖+∆ω∗(‖α− β‖) + L(τ3)‖x∗(τ3)− y∗(τ3)‖ 6

6 ∆ω∗(‖α− β‖) + eL(τ3)∆3
(
(1 + eL(τ2)∆2) ·∆ω∗(‖α− β‖) + eL(τ1)∆1+L(τ2)∆2 · h(τ1)

)
,

∆3 = ∆ = ∆(Γ∗).
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As a result, we get the estimate

‖x(τ4)− y(τ4)‖ 6 ∆ω∗(‖α − β‖) ·
(
1 + eL(τ3)∆3 + eL(τ3)∆3+L(τ2)∆2

)

+eL(τ3)∆3+L(τ2)∆2+L(τ1)∆1 · h(τ1).

Further, taking into account the choice of the points x(τ4) and y(τ4), we obtain

h(X̃Γ∗

α (τ4), X̃
Γ∗

β (τ4)) 6 ‖x(τ4)− y(τ4)‖.

The latter two inequalities imply the estimate

h(X̃Γ∗

α (τ4), X̃
Γ∗

β (τ4)) 6
(
1 + eL(τ3)∆3 + eL(τ3)∆3+L(τ2)∆2

)
·∆ω∗(‖α− β‖)+

+eL(τ3)∆3+L(τ2)∆2+L(τ1)∆1 · h(τ1).
(1.17)

Analyzing estimates (1.11), (1.15), and (1.17), we conclude that the interval [τi, τi+1],
i = 1, N − 1, of the partition Γ∗ corresponds to the following estimate of the Hausdorff de-
viation h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) of the set X̃Γ∗

α (τi+1) = X̃α(τi+1, τi, X̃
Γ∗

α (τi)) from the set

X̃Γ∗

β (τi+1) = X̃β(τi+1, τi, X̃
Γ∗

β (τi)):

h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6
(
1 + e

∑i
k=i L(τk)∆k + e

∑i
k=i−1 L(τk)∆k+

+e
∑i

k=i−2 L(τk)∆k + ...+ e
∑i

k=1 L(τk)∆k
)
· h(τ1).

(1.18)

Further, given that h(τ1) = h(X̃Γ∗

α (τ1), X̃
Γ∗

β (τ1)) satisfies (1.7), from (1.18) we obtain the fol-
lowing estimate:

h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6
(
1 + e

∑i
k=i L(τk)∆k + e

∑i
k=i−1 L(τk)∆k+

+e
∑i

k=i−2 L(τk)∆k + ...+ e
∑i

k=1 L(τk)∆k
)
∆ω∗(‖α − β‖).

(1.19)

Let us supplement the estimate (1.19) with a comment related to the function L(t) continuous
on the interval [t0, ϑ], which was introduced in the condition B.

Remark 1. In numerous studies devoted to nonlinear control systems described by ordinary
differential equations, the condition of the local Lipschitz property of its right-hand side with
respect to the phase variable is introduced as one of the main conditions imposed on the system. In
this case, often in the process of studying control problems for such systems, it becomes necessary
to choose in the space of positions of the control system a domain D that would contain all the
components of the resolving structure (resolving sets, trajectories of systems, phase constraints,
etc.). In other words, quite often, when studying and solving control problems, it is necessary to
choose a domain D in the space of positions of the system, in which the problem is solved. In this
case, the Lipschitz constant L corresponding to this domain D is used for constructing a solution
and justifying its correctness. However, the introduced domain D may turn out to be large, and
the corresponding constant L may also turn out to be large. In this case, the estimates justifying
the correctness of the solution of the control problem in which this constant L is involved may turn
out to be rough. For various reasons, these estimates in a specific control problem (with a specific
control system) may be unsatisfactory from the point of view of the person solving the problem and
counting on finer estimates. In this regard, taking into consideration the conditions imposed on the
nonlinear control system (1.1), in this paper, instead of the traditional local Lipschitz condition with
the Lipschitz constant L, we introduce a continuous function L(t) ∈ (0,∞) on [t0, ϑ], which is more
suitable for the dynamics of (1.1). Estimate (1.19) of h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) is more accurate
in the sense that, for each interval [τi, τi+1] of the partition Γ∗, the step-by-step estimates involve
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its own value L(τi) ∈ (0,∞), which is close to L(t), t ∈ [τi, τi+1], for small ∆ = ∆(Γ∗), and not
some constant L ∈ (0,∞) common to all [τi, τi+1] from the interval [t0, ϑ]. Note, however, that this
reasoning assumes that the domain D is in the position space of the system and the corresponding
function L(t) on [t0, ϑ] is chosen sufficiently adequately to the dynamics of the control system. So,
for example, in control problems related to the study of reachable sets and integral funnels, the
domain D should track more or less accurately the dynamics of reachable sets and, therefore, the
spatial structure of integral funnels.

Thus, in many specific control problems, the problem of choosing the domain D and the cor-
responding function L(t), t ∈ [t0, ϑ], in our opinion, is very significant, since the accuracy of the
estimates related to solving problems depends on this.

Obviously, one of the ways to solve this problem in each specific task related to the study of
reachable sets and integral funnels is to form the domain D and the function L(t), t ∈ [t0, ϑ], in a
step-by-step procedure (by time layers [τi, τi+1]×R

n, i = 0, 1, ..., N −1) along with the construction
of reachable sets.

Let us now return to estimate (1.19) and present some roughness of this estimate in a simpler
form.

Replacing in (1.19) 1 and the exponents e
∑i

k=r L(τk)∆k , r = 1, i, by the exponent e
∑i

k=0 L(τk)∆k ,
we get the estimate

h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6 e
∑i

k=0 L(τk)∆k · (i+ 1)∆ω∗(‖α − β‖),

i.e.,

h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6 e
∑i

k=0 L(τk)∆k · (τi+1 − τ0)ω
∗(‖α− β‖). (1.20)

In particular, the following estimate holds:

h(X̃Γ∗

α (t∗), X̃Γ∗

β (t∗)) 6 e
∑N−1

k=0 L(τk)∆k · (t∗ − t∗)ω
∗(‖α − β‖). (1.21)

Replacing in estimates (1.19)–(1.21) the numbers L(τk), k = 0, N − 1, with some L satisfying
the inequality 0 < max

t∈[t0,ϑ]
L(t) 6 L < ∞, we obtain the following estimates for i ∈ 1, N − 1 and α,

β from L , respectively:

h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6
i∑

k=0

eLk∆∆ω∗(‖α− β‖), (1.22)

h(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6 eL·(τi+1−τ0)(τi+1 − τ0)ω
∗(‖α− β‖), (1.23)

h(X̃Γ∗

α (t∗), X̃Γ∗

β (t∗)) 6 eL·(t
∗−t∗)(t∗ − t∗)ω

∗(‖α− β‖). (1.24)

Reasoning similar to those given above for h(X̃Γ∗

α (τi+1) and X̃Γ∗

β (τi+1)) yields estimates for

h(X̃Γ∗

β (τi+1), X̃
Γ∗

α (τi+1)) similar to (1.19)–(1.24). Taking this into account, we come to the following
statement.

Lemma 1. Assume that [t∗, t
∗] ⊂ [t0, ϑ], X∗ ∈ comp (Rn), Γ∗ = {τ0 = t∗, τ1, ..., τi, ..., τN = t∗}

(τi+1 − τi = ∆i = ∆, i = 0, N − 1), and {X̃Γ∗

α (τi) : τi ∈ Γ∗} is the system of sets (1.6) approxi-
mating the reachable set Xα(t

∗, t∗,X∗), α ∈ L , of the differential inclusion (1.4). Then, under the
conditions A and B on system (1.1), the following estimates hold :

d(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6
(
1 +

i−1∑

s=0

e
∑i

k=i−s L(τk)∆k

)
∆ω∗(‖α − β‖), (1.25)

d(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6 e
∑i

k=0 L(τk)∆k(τi+1 − τ0)ω
∗(‖α − β‖), (1.26)
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d(X̃Γ∗

α (t∗), X̃Γ∗

β (t∗)) 6 e
∑N−1

k=0 L(τk)∆k(t∗ − t∗)ω
∗(‖α− β‖), (1.27)

d(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6

i∑

k=0

eLk∆∆ω∗(‖α − β‖), (1.28)

d(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6 eL·(τi+1−τ0) · (τi+1 − τ0)ω
∗(‖α− β‖), (1.29)

d(X̃Γ∗

α (t∗), X̃Γ∗

β (t∗)) 6 eL(t
∗−t∗)(t∗ − t∗)ω

∗(‖α − β‖). (1.30)

From estimate (1.28), we derive estimates (1.29) and (1.30).
Let us write one more important estimate that follows from (1.28):

d(X̃Γ∗

α (τi+1, X̃
Γ∗

β (τi+1)) 6
e(i+1)L∆ − 1

eL∆ − 1
∆ω∗(‖α − β‖), i = 0, N − 1.

Let us estimate from above the right-hand side of this inequality, assuming that, along with
the conditions A and B on system (1.1), the following condition on the partition Γ∗ of the time
interval [t∗, t

∗] holds.

C. The diameter of the partition Γ∗ satisfies the relation

0 < ∆ = ∆(Γ∗) < L−1 ln
(
1 +

3

2
L∆
)
.

Under the condition C, the following inequalities are valid:

e(i+1)L∆ − 1

eL∆ − 1
<

eL∆ · eL(τi+1−τ0) − 1

L∆

<

(
1 + 3/2 · L∆

)
eL(τi+1−τ0) − 1

L∆
=

eL(τi+1−τ0) − 1

L∆
+

3

2
eL(τi+1−τ0).

Taking this inequality into account, we obtain

d(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) < L−1(eL(τi+1−τ0) − 1)ω∗(‖α− β‖)+

+
3

2
eL(τi+1−τ0)∆ω∗(‖α− β‖), i = 0, N − 1.

(1.31)

As a result, the following statement is true.

Theorem 1. Let [t∗, t
∗] ⊂ [t0, ϑ] and X∗ ∈ comp (Rn). Then, under the conditions A, B ,

and C on system (1.1), the sets Xα(t
∗) = Xα(t

∗, t∗,X∗) and Xβ(t
∗) = Xβ(t

∗, t∗,X∗), α and β
from L , satisfy estimate (1.31).

Obviously, for small ∆ = ∆(Γ∗), the strict estimate (1.31) will turn into the following estimate:

d(X̃Γ∗

α (τi+1), X̃
Γ∗

β (τi+1)) 6 L−1(eL(τi+1−τ0) − 1)ω∗(‖α− β‖), i = 0, N − 1.

In particular, the following statement is true.

Assertion 1. Assume that [t∗, t
∗] ⊂ [t0, ϑ] and X∗ ∈ comp (Rn). Then, under the conditions

A, B , and C on system (1.1), the sets Xα(t
∗) = Xα(t

∗, t∗,X∗) and Xβ(t
∗) = Xβ(t

∗, t∗,X∗), α and
β from L , satisfy the estimate

d(X̃Γ∗

α (t∗), X̃Γ∗

β (t∗)) 6 L−1(eL(t
∗−t∗) − 1)ω∗(‖α− β‖). (1.32)
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The question arises, at what ratios between the numbers L and (t∗ − t∗) one or another of
estimates (1.30) and (1.32) is better. To answer it, let us compare the numbers L−1(eL(t

∗−t∗) − 1)
and eL(t

∗−t∗)(t∗ − t∗), i.e., compare eL(t
∗−t∗) − 1 and eL(t

∗−t∗)L(t∗ − t∗).

Assuming that L(t∗ − t∗) = ρ > 0, we come to the comparison of eρ · (1− ρ) and 1 for ρ > 0.

Since the function eρ · (1− ρ) equals 1 for ρ = 0 and decreases on [0,∞), we get

eρ · (1− ρ) < 1, ρ > 0

and therefore

L−1(eL(t
∗−t∗) − 1) < eL(t

∗−t∗)(t∗ − t∗)

for every L ∈ (0,∞) and (t∗ − t∗) > 0.

This means that estimate (1.32) is more precise than estimate (1.30) for sufficiently small
∆ = ∆(Γ∗).

We have considered the case X∗ = {x∗}, (t∗, x∗) ∈ D, and received estimates (1.25)–(1.30).
Estimates (1.25)–(1.30) are also true in the general case X∗ ∈ comp (Rn), (t∗,X∗) ⊂ D.

Bearing in mind the general case, we choose from (1.25)–(1.30) estimate (1.27) for the following
reasons. Along with the sets X̃Γ∗

α (t∗) and X̃Γ∗

β (t∗) included in (1.27), consider the reachable sets
Xα(t

∗) = Xα(t
∗, t∗,X∗) and Xβ(t

∗) = Xβ(t
∗, t∗,X∗) of the differential inclusion (1.4).

We are looking for upper bounds for the values d(Xα(t
∗), X̃Γ∗

α (t∗)) and d(Xβ(t
∗), X̃Γ∗

β (t∗)),
where α and β are from L . It is known that, under the conditions A and B on system (1.1), these
estimates are of the form

d(Xα(t
∗), X̃Γ∗

α (t∗)) 6 eL·(t
∗−t∗)(t∗ − t∗)(ω

∗(∆) + LK∆),

d(Xβ(t
∗), X̃Γ∗

β (t∗)) 6 eL·(t
∗−t∗)(t∗ − t∗)(ω

∗(∆) + LK∆);
(1.33)

here L ∈ (0,∞) is defined on p. 127, K = max
(t,x,u,α)∈D×P×L

‖fα(t, x, u)‖ ∈ (0,∞), and ∆ = ∆(Γ∗).

Remark 2. It can be shown that, along with estimates (1.33), there are more subtle estimates:

d(Xα(t
∗), X̃Γ∗

α (t∗)) 6 e
∫ t∗

t∗
L(t)dt(t∗ − t∗)(ω

∗(∆) + LK∆),

d(Xβ(t
∗), X̃Γ∗

β (t∗)) 6 e
∫ t∗

t∗
L(t)dt(t∗ − t∗)(ω

∗(∆) + LK∆).

Taking into account (1.27) and (1.33), we get

d(Xα(t
∗),Xβ(t

∗)) 6 d(Xα(t
∗), X̃Γ∗

α (t∗)) + d(X̃Γ∗

α (t∗), X̃Γ∗

β (t∗)) + d(X̃Γ∗

β (t∗),Xβ(t
∗))

6 e
∑N−1

k=1 L(τk)∆k · (t∗ − t∗)ω
∗(‖α − β‖) + 2eL·(t

∗−t∗) · (ω∗(∆) + LK∆),

where α and β from L .

Since this estimate holds for any partitions Γ∗ of the interval [t∗, t
∗], letting the diameter

∆ = ∆(Γ∗) of the partition Γ∗ tend to zero, we obtain

d(Xα(t
∗),Xβ(t

∗)) 6 e
∫ t∗

t∗
L(t)dt · (t∗ − t∗) · ω∗(‖α − β‖); (1.34)

here
∫ t∗

t∗
L(t)dt is the Riemann integral of the function L(t) over the interval [t∗, t

∗] ⊂ [t0, ϑ].

Now let us turn to the interval [t0, ϑ], on which the control system (1.1) and the differential
inclusion (1.4) are initially considered.
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Assume that in the previous calculations t∗ = t0, t
∗ = t ∈ [t0, ϑ], X∗ = X(0) ∈ comp (Rn),

and (t0,X
(0)) ⊂ D, where X(0) is the initial set for system (1.1) and the differential inclu-

sion (1.4), so that the reachable sets Xα(t) and Xβ(t) of the differential inclusion (1.4) become
Xα(t) = Xα(t, t0,X

(0)) and Xβ(t) = Xβ(t, t0,X
(0)).

For these sets, we write estimate (1.34):

d(Xα(t),Xβ(t)) 6 e
∫ t
t0

L(τ)dτ · (t− t0)ω
∗(‖α − β‖), (1.35)

where t ∈ [t0, ϑ] and α, β ∈ L .
We also introduce the partition Γ = {t0, t1, ..., ti, ..., tN = ϑ} of the interval [t0, ϑ] with the

diameter ∆ = ∆(Γ) = ti+1 − ti = N−1(ϑ − t0).
Along with the reachable sets Xα(t), α ∈ L , t ∈ [t0, ϑ], we consider the integral funnel

Xα(t0,X
(0)) =

⋃

t∈[t0,ϑ]

(t,Xα(t)), α ∈ L ,

of the differential inclusion (1.4).
Assume that

XΓ
α (t0,X

(0)) =
⋃

ti∈Γ

(ti,Xα(ti)), X̃
Γ
α (t0,X

(0)) =
⋃

ti∈Γ

(ti, X̃
Γ
α (ti))

are sets in D, where X̃Γ
α (ti) are defined on p. 122 by the recurrent relations with τ0 = t0 and

X̃Γ
α (t0) = X̃Γ

α (τ0) = X(0).
Here the sets XΓ

α (t0,X
(0)) and X̃Γ

α(t0,X
(0)) are some approximations of the integral funnel

Xα(t0,X
(0)), α ∈ L , discrete by the parameter t ∈ [t0, ϑ].

From the estimate

d(Xα(ti), X̃
Γ
α (ti)) 6 eL·(ti−t0)(ti − t0)(ω

∗(∆) + LK∆), i = 1, N, α ∈ L ,

we obtain the estimate

d(XΓ
α (t0,X

(0)), X̃Γ
α (t0,X

(0))) 6 eL·(ϑ−t0)(ϑ − t0)(ω
∗(∆) + LK∆); (1.36)

here L is defined on p. 127 and K on p. 129.
Since the following inequality holds for each interval [ti, ti+1] of the partition Γ, every t ∈

[ti, ti+1], and every α ∈ L :

d
(
(t,Xα(t)), (ti,Xα(ti))

)
6 (1 +K)∆,

we have
d(Xα(t0,X

(0)),XΓ
α (t0,X

(0))) 6 (1 +K)∆. (1.37)

Considering estimates (1.36) and (1.37), we get

d(Xα(t0,X
(0)), X̃Γ

α (t0,X
(0))) 6 eL·(ϑ−t0)(ϑ − t0)(ω

∗(∆) + LK∆) + (1 +K)∆. (1.38)

Obviously, using the technique of obtaining estimates described above, we can replace esti-
mate (1.38) with a more accurate one:

d(Xα(t0,X
(0)), X̃Γ

α (t0,X
(0))) 6 e

∑N−1
i=0 L(ti)∆i · (ϑ− t0)(ω

∗(∆) + LK∆) + (1 +K)∆,

∆i = ∆ = ∆(Γ), i ∈ 0, N − 1, α ∈ L .

Inequality (1.35) implies the following statement for the integral funnels Xα(t0,X
(0)) and

Xβ(t0,X
(0)).

Theorem 2. Let the control system (1.1) satisfy the conditions A, B , and C , and let
X(0) ∈ comp (Rn). Then the integral funnels Xα(t0,X

(0)) and Xβ(t0,X
(0)) satisfy the inequality

d(Xα(t0,X
(0)),Xβ(t0,X

(0))) 6 e
∫ ϑ

t0
L(t)dt · (ϑ− t0)ω

∗(‖α − β‖), α, β ∈ L .
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2. Problems of targeting integral funnels to target sets in R
2

In this section, we restrict ourselves to considering system (1.1) and the differential inclusion
(1.4) in the space R

2. Let us study problems of targeting integral funnels Xα(t0, x0), α ∈ L , x0 ∈
X(0), and their approximations X̃Γ

α(t0, x0) to target sets in R
2. We formulate some of these problems

using the concept of the area of a set in R
2. In this regard, we will study questions concerning

the approximate calculation of the areas of reachable sets Xα(t, t0, x0), x0 ∈ X(0) ∈ comp (R2),
and sets associated with Xα(t, t0, x0). In this case, we use the estimates of the Hausdorff distances
obtained in Section 1.

Let us start the study of targeting problems by considering the individual integral funnels
Xα(t0,X

(0)), X(0) ∈ comp (R2). Of course, the funnels Xα(t0, x0), α ∈ L , x0 ∈ X(0), also belong
to the class of these funnels. Thus, the estimates of the Hausdorff distances obtained for integral
funnels Xα(t0,X

(0)), α ∈ L , also hold for funnels Xα(t0, x0), α ∈ L .

Let us take an arbitrary funnel Xα(t0,X
(0)), α ∈ L , X(0) ∈ comp (R2), and its approximating

set X̃Γ
α (t0,X

(0)) =
⋃

ti∈Γ

(ti, X̃
Γ
α (ti)) in D corresponding to the partition Γ = {t0, t1, ..., ti, ..., tN = ϑ}

(ti+1 − ti = ∆i = ∆ = ∆(Γ), i = 0, N − 1).

The mismatch between the time sections Xα(ti) and X̃Γ
α (ti), ti ∈ Γ, of the sets Xα(t0,X

(0))
and X̃Γ

α(t0,X
(0)) is restricted by the estimate

d(Xα(ti), X̃
Γ
α (ti)) 6 e

∑N−1
j=0 L(tj)∆j ·

(
K∆

N−1∑

j=0

L(tj)∆j + (tj − t0)ω
∗(∆)

)
. (2.1)

Along with the set X̃Γ
α (t0,X

(0)) and its sections X̃Γ
α (ti), ti ∈ Γ, we consider the set X̃Γ

β (t0,X
(0)),

β ∈ L , and its sections X̃Γ
β (ti), ti ∈ Γ. The following estimate is valid:

d(X̃Γ
α (ti), X̃

Γ
β (ti)) 6 e

∑N−1
j=0 L(tj)∆j · (ti − t0)ω

∗(‖α − β‖). (2.2)

Estimates (2.1) and (2.2) implpy

d(Xα(ti), X̃
Γ
β (ti)) 6 κ(∆, ‖α− β‖), (2.3)

where

κ(∆, ρ) = e
∑N−1

j=0 L(tj)∆j

(
(ϑ − t0)ω

∗(ρ) + (ϑ − t0)ω
∗(∆) +K∆

N−1∑

j=0

L(tj)∆j

)
,

α, β ∈ L , ti ∈ Γ, ρ ∈ (0,∞).

We will use estimates (2.1)–(2.3) for studying problems of targeting integral funnels to target
sets. These estimates will also be taken into account when estimating the mismatch of sets of the
type of reachable sets in R

2.

Let us formulate these targeting problems.

Assume that a finite set T of times η1, η2, ..., ηN∗
from the interval [t0, ϑ] is given and the

partition Γ = {t0, t1, ..., ti, ..., tN = ϑ} considered previously contains this set T .

Assume that compact sets X(0), X(ϑ), and Φ(k) in R
2 are given, where each set Φ(k) corresponds

to its time ηk ∈ T ; moreover, the sets X(0), X(ϑ), and Φ(k), ηk ∈ T , have rectifiable boundaries
∂X(0), ∂X(ϑ), and ∂Φ(k), ηk ∈ T .

Here we assume that Φ(k) = Φ(ηk), ηk ∈ T , where the set Φ(t) ∈ comp (R2), t ∈ [t0, ϑ], is
interpreted by us as an obstacle to system (1.1).
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Problem 1 on targeting integral funnels (strict setting). It is required to find a pair
(α∗, x∗) ∈ L ×X(0) such that the following relations hold:

X(ϑ) ⊂ Xα∗
(ϑ, t0, x∗), Φ(k) ∩Xα∗

(ηk, t0, x∗) = ∅, ηk ∈ T .

Exact computation of the sets Xα(ti, t0, x0), α ∈ L , ti ∈ Γ, x0 ∈ X(0) is not possible due to
the complexity of the system dynamics (1.1). In particular, it is impossible to compute the sets
Xα∗

(ϑ, t0, x∗) and Xα∗
(ηk, t0, x∗), ηk ∈ T . Also in the case when, for example, one of the sets L

and X(0) is infinite, the complete enumeration of all pairs (α, x) ∈ L ×X(0) is impossible.

Therefore, it makes sense to go from the statement of Problem 1 to a statement in terms of the
sets X̃Γ

α (ti, t0, x0), α ∈ L , ti ∈ Γ, x0 ∈ X(0). Moreover, under the sets X̃Γ
α (ti, t0, x0) we understand

time sections of the sets X̃Γ
α (t0, x0), α ∈ L , x0 ∈ X(0), corresponding to the times ti ∈ Γ.

More precisely, we assume that there are given ε, ρ, and σ from (0,∞) and finite sets corre-
sponding to the numbers ρ and σ in the sets L and X(0), a ρ-net L (ρ) = {α(r) : r = 1, r∗} and a
σ-net X(σ) = {x(s) : s = 1, s∗}.

Problem 1(ε) on targeting integral funnels. It is required to find a pair (α(r), x(s)) ∈
L (ρ) ×X(σ) such that the following relations hold:

X(ϑ) ⊂ X̃Γ
α(r)(ϑ, t0, x

(s))ε, Φ(k)
ε ∩ X̃Γ

α(r)(ηk, t0, x
(s)) = ∅, ηk ∈ T .

For Problems 1 or 1(ε) formulated for a particular system (1.1), it may turn out that there is no
solution. Taking into account such situations, we formulate the targeting problem in a less strict
setting, using the concept of the area of a set in R

2. At the same time, we assume that such a
formulation does not contradict the meaning of the original real targeting problem.

First, we give a statement in terms of ideal reachable sets Xα(ti, t0, x0), α ∈ L , x0 ∈ X(0),
ti ∈ Γ.

Let us introduce the notation

J (1)(α, x) =
∑

ηk∈T

s(Φ(k)\Xα(ηk, t0, x)),

J (2)(α, x) = s(X(ϑ) ∩Xα(ϑ, t0, x)),

α ∈ L , x ∈ X(0);

here s(Y ) is the area of the set Y ∈ comp (R2), by which we mean the Lebesgue measure (see, e.g.,
[4, Ch. 2, Sect. 2.5]) of the compact set Y in R

2.

Let us fix λ1 and λ2 from [0, 1], λ1 + λ2 = 1.

Let us clarify once again that, under a strict setting of the problem of targeting integral funnels
of the differential inclusion (1.4), we mean a setting in which an integral funnel Xα(t0, x

(0)), α ∈ L ,
should not intersect an obstacle Φ(t), t ∈ [t0, ϑ]; in the worst case, it can only touch its boundary
∂Φ(t), t ∈ [t0, ϑ]. In this case, the integral funnel Xα(t0, x

(0)), α ∈ L , must completely cover the
target set X(ϑ) at the terminal time ϑ.

The soft setting of the targeting problem allows the integral funnel Xα(t0, x
(0)) to creep on

the obstacle Φ(t), t ∈ [t0, ϑ] and admits incomplete coverage of the target set X(ϑ) by the integral
funnel Xα(t0, x

(0)) (more precisely, by its latter section Xα(ϑ, t0, x
(0))) at the time ϑ. However, this

involves some quantitative estimates of the effectiveness of the integral funnel Xα(t0, x
(0)) when

solving the problem of targeting X(ϑ). These quantitative estimates are associated with calculating
the areas of sets in the space R

2.

We assume that J(α, x) = λ1J
(1)(α, x) + λ2J

(2)(α, x).
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Problem 2 on targeting integral funnels (soft setting). It is required to find a pair
(α∗, x∗) ∈ L ×X(0) such that the following relation is true:

J(α∗, x∗) = max
(α,x)∈L×X(0)

J(α, x). (2.4)

Since we are not able to solve Problem 2 exactly for the same reasons as Problem 1, we formulate
and solve some approximation problem in which, instead of the sets L and X(0), in the cases where
they are not finite, there are their finite nets L (ρ) and X(σ) and, instead of (ideal) reachable sets
Xα(t, t0, x0), α ∈ L , x0 ∈ X(0), there are their approximations X̃Γ

α(r)(ti, t0, x
(s)), (α(r), x(s)) ∈

L (ρ) ×X(σ).
Let us introduce the notation

J̃
(1)
Γ (β, y) =

∑

ηk∈T

s(Φ(k)\X̃Γ
β (ηk, t0, y)),

J̃
(2)
Γ (β, y) = s(X(ϑ) ∩ X̃Γ

β (ϑ, t0, y)),

(β, y) ∈ L
(ρ) ×X(σ).

We assume that J̃Γ(β, y) = λ1J̃
(1)
Γ (β, y) + λ2J̃

(2)
Γ (β, y).

Problem 3 on targeting integral funnels (soft setting). It is required to find a pair
(β∗, y∗) ∈ L (ρ) ×X(σ) such that the following relation holds:

J̃Γ(β
∗, y∗) = max

(β,y)∈L (ρ)×X(σ)
J̃Γ(β, y). (2.5)

Let us show that, for small ρ and σ from (0,∞), the solution of the approximation Problem 3 is
close to the solution of Problem 2. This circumstance justifies replacing Problem 2 with Problem 3.
In this case, we understand the proximity of solutions as the proximity of optimal values (2.4) and
(2.5) in Problems 2 and 3 and the proximity of optimal pairs in L ×X(0) and L (ρ) ×X(σ).

So, consider first pairs (α, x) and (β, y), where (α, x) is chosen in L ×X(0) arbitrarily and the
pair (β, y) ∈ L (ρ) ×X(σ) is such that ‖α − β‖ 6 ρ and ‖x− y‖ 6 σ.

Let us find an upper bound for the Hausdorff distance

d(Xα(ηk, t0, x), X̃
Γ
β (ηk, t0, y)), ηk ∈ T .

In view of (2.3) and the estimate

d(X̃Γ
β (ηk, t0, x), X̃

Γ
β (ηk, t0, y)) 6 e

∑N−1
j=0 L(tj)∆j · ‖x− y‖ 6 e

∑N−1
j=0 L(tj )∆j · σ,

we have

d(Xα(ηk, t0, x), X̃
Γ
β (ηk, t0, y)) 6 d(Xα(ηk, t0, x), X̃

Γ
β (ηk, t0, x)) + d(X̃Γ

β (ηk, t0, x), X̃
Γ
β (ηk, t0, y))

6 κ(∆, ρ) + e
∑N−1

j=0 L(tj)∆j · σ, ηk ∈ T .

For simplicity, we introduce the notation

κ
∆(ρ, σ) = κ(∆, ρ) + e

∑N−1
j=0 L(tj)∆j · σ, ρ, σ ∈ (0,∞).

Finally, for pairs (α, x) ∈ L × X(0) and (β, y) ∈ L (ρ) × X(σ) such that ‖α − β‖ 6 ρ and
‖x− y‖ 6 σ, we have the estimate

d(Xα(ηk, t0, x), X̃
Γ
β (ηk, t0, y)) 6 κ

∆(ρ, σ). (2.6)
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Let us describe the function κ
∆(ρ, σ) in more detail and estimate it from above. The following

representation is valid:

κ
∆(ρ, σ) = e

∑N−1
j=0 L(tj)∆j ·

(
(ϑ − t0)ω

∗(ρ) + (ϑ − t0)ω
∗(∆) +K∆

N−1∑

j=0

L(tj)∆j + σ
)
.

Since, by the condition A, the function L(t) ∈ (0,∞) is continuous on [t0, ϑ], the following
estimate is valid for L ∈

(
max
t∈[t0,ϑ]

L(t),∞
)
:

κ
∆(ρ, σ) 6 eL·(ϑ−t0)

(
(ϑ− t0)ω

∗(ρ) + (ϑ− t0)ω
∗(∆) + LK(ϑ− t0)∆ + σ

)
.

This estimate implies the limit equality lim
∆↓0,ρ↓0,σ↓0

κ
∆(ρ, σ) = 0.

We supplement the conditions A, B and C with the following condition.

D. The lengths of the boundaries ∂X(0), ∂X(ϑ), ∂Φ(k), ∂Xα(ti, t0, x), and ∂X̃Γ
β (ti, t0, y) ((α, x) ∈

L ×X(0), (β, y) ∈ L (ρ) ×X(σ), ηk ∈ T , ti ∈ Γ) are bounded from above by some l∗ ∈ (0,∞).

The condition D holds for many problems on guiding integral funnels, since the lengths of the
boundaries ∂X(0), ∂X(ϑ), and ∂Φ(k) (ηk ∈ T ) are bounded, and the lengths of the boundaries
∂Xα(ti, t0, x) and ∂X̃Γ

β (ti, t0, y), ti ∈ Γ, do not increase abruptly with increasing the times ti. So,

for example, the set Xα(t, t0, x), α ∈ L , x ∈ X(0), continuously depends on t on [t0, ϑ] (see Sect. 1,
p. 122) and the set ∂Xα(t, t0, x) also continuously depends on t on [t0, ϑ] for many control problems.
In these problems, it continuously depends on t and the length of the boundary ∂Xα(t, t0, x).

Let
Uα(ηk) = cl(Xα(ηk, t0, x)κ∆(ρ,σ)\Xα(ηk, t0, x))

be the κ
∆(ρ, σ)-layer around the set Xα(ηk, t0, x), and let

ŨΓ
β (ηk) = cl

(
(X̃Γ

β (ηk, t0, y)κ∆(ρ,σ)\X̃Γ
β (ηk, t0, y)

)

be the κ
∆(ρ, σ)-layer around the set X̃Γ

β (ηk, t0, y).
Estimate (2.6) implies

Xα(ηk, t0, x) ⊂ X̃Γ
β (ηk, t0, y) ∪ ŨΓ

β (ηk),

X̃Γ
β (ηk, t0, y) ⊂ Xα(ηk, t0, x) ∪ Uα(ηk).

(2.7)

From inclusions (2.7), we obtain

Xα(ηk, t0, x) ∩ Φ(k) ⊂
(
X̃Γ

β (ηk, t0, y) ∩ Φ(k)
)
∪
(
ŨΓ
β (ηk) ∩ Φ(k)

)
, ηk ∈ T ,

X̃Γ
β (ηk, t0, y) ∩ Φ(k) ⊂

(
Xα(ηk, t0, x) ∩ Φ(k)

)
∪
(
Uα(ηk) ∩ Φ(k)

)
, ηk ∈ T .

(2.8)

Inclusions (2.8) imply the following inequalities for the areas:

s(Xα(ηk, t0, x) ∩ Φ(k)) 6 s(X̃Γ
β (ηk, t0, y) ∩ Φ(k)) + s(ŨΓ

β (ηk)), ηk ∈ T ,

s(X̃Γ
β (ηk, t0, y) ∩ Φ(k)) 6 s(Xα(ηk, t0, x) ∩Φ(k)) + s(Uα(ηk)), ηk ∈ T .

(2.9)

From inequalities (2.9), we derive the estimate

∣∣s(Xα(ηk, t0, x) ∩ Φ(k))− s(X̃Γ
β (ηk, t0, y) ∩ Φ(k))

∣∣ 6
6 max

(
s(Uα(ηk), s(Ũ

Γ
β (ηk))

)
, ηk ∈ T .

(2.10)
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Let us make a short note about the layers surrounding compact sets in R
2; these layers include

the sets Uα(ηk) and ŨΓ
β (ηk), ηk ∈ T .

It is known (see., e.g., [15]) that if X ∈ comp (R2) is a convex set, then the area s(Uε) of the
ε-layer Uε = cl(Xε\X) surrounding X and the length l(∂X) of the boundary ∂X of the set X are
connected as follows:

s(Uε) = l(∂X) · ε+ π · ε2. (2.11)

If the set X ∈ comp (R2) is not convex and connected, then the area s(Uε) can satisfy the
inequality

s(Uε) 6 l(∂X) · ε+ π · ε2, (2.12)

which we will use to estimate the areas s(Uα(ηk), s(Ũ
Γ
β (ηk)), τk ∈ T .

Remark 3. We will give examples of non-convex sets for which equality (2.11) turns into
inequality (2.12) and examples of non-convex sets for which equality (2.11) is satisfied. We will
also demonstrate that the connectedness condition is necessary.

Example 1. Consider the simplest example of a convex set: X = {x = (x1, x2) : ‖x‖ 6 R},
where R > 0 is the radius of the disk X (Fig. 1).

In this case, equality (2.11) is easily verified by direct computation. Indeed,

s(Uε) = π(R+ ε)2 − πR2 = 2πRε+ πε2.

Here the length of the boundary ∂X is equal to l(∂X) = 2πR in full accordance with (2.11).

Example 2. Consider a non-convex set (Fig. 2)

X =
{
x = (x1, x2) : max{|x1|, |x2|} 6 R,

‖x−A∗‖ > R, ‖x−B∗‖ > R, ‖x− C∗‖ > R, ‖x−D∗‖ > R
}
,

where A∗ = (−R,−R), B∗ = (−R,R), C∗ = (R,R), and D∗ = (R,−R), R > 0.
We denote by K =

{
x = (x1, x2) : max{|x1|, |x2|} 6 R} the square A∗B∗C∗D∗. In this case,

the ε-layer Uε consists of four semidisks of radius ε centered in the middle of the segments A∗B∗,
B∗C∗, C∗D∗, and A∗D∗ and the four curvilinear sets

U1 = (B(A∗, R)\B(A∗, R − ε)) ∩K,

U2 = (B(B∗, R)\B(B∗, R− ε)) ∩K,

U3 = (B(C∗, R)\B(C∗, R − ε)) ∩K,

X
Uε

Figure 1. Example 1: the simplest convex set in the
form of a disk.

X

Uε

A∗

B∗ C∗

D∗

RR

Figure 2. Example 2: a simple non-convex set.
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U4 = (B(D∗, R)\B(D∗, R− ε)) ∩K,

where B(a, r) = {x = (x1, x2) : ‖x− a‖ 6 r} denotes the closed disk of radius r > 0 centered at a
point a ∈ R

2.
Obviously, the total area of the four semidisks is 2πε2, and the sum of the areas of the curvilinear

sets is
s(U1) + s(U2) + s(U3) + s(U4) = πR2 − π(R− ε)2 = 2πRε− πε2.

As a result, we get
s(Uε) = 2πRε+ πε2.

Since l(∂X) = 2πR, equality (2.11) is satisfied in this case even though X is a non-convex set.

Example 3. Consider another non-convex set X = X1 ∪X1, (Fig. 3), where

X1 = {x = (x1, x2) : R 6 ‖x−O1‖ 6 R+ µ, x2 > 0},
X2 = {x = (x1, x2) : R 6 ‖x−O2‖ 6 R+ µ, x2 6 0},
O1 = (0, 0), O2 = (2R + µ, 0), R > 0, µ > 0.

X

Uε

A B C D E HO1 O2

Figure 3. Example 3: a non-convex S-shaped set.

In this case, the ε-layer consists of four quarters of disk of radius ε centered at the points A,
B, E, and H, respectively, and four curvilinear sets adjacent to the arcs AD, BC, DE, and CH.

It is easy to calculate that, firstly,

l(∂X) = 2µ+ 2πR + 2π(R + µ);

secondly,

s(Uε) = πε2 + π(R + µ+ ε)2 − π(R+ µ)2 + πR2 − π(R− ε)2 = πε2 + 2π(R+ µ)ε+ 2πRε.

Thus, in this case, equality (2.11) holds despite the non-convexity of X.

Example 4. Let us give an example of a non-convex set X for which equality (2.11) nevertheless
turns into inequality (2.12). Let X = K2\K1 (Fig. 4), where

K1 = {x = (x1, x2) : max{|x1|, |x2|} 6 1},
K2 = {x = (x1, x2) : max{|x1|, |x2|} 6 2}.

In this case, it is easy to calculate that

l(∂X) = 8 + 4 = 12, s(Uε) = 8ε+ πε2 + 4ε− 4ε2 = 12ε− (4− π)ε2,
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X

Uε

Figure 4. Example 4: a set with a cut-out square
hole for which equality (2.11) is violated.

X

Uε

Figure 5. Example 5: a set with three holes for
which equality (2.11) is violated to a large extent.

i.e., instead of equality (2.11), inequality (2.12) holds.

Example 5. Obviously, by increasing the number of “holes” inside the set X, one can increase
the absolute value of the difference between s(Uε) and l(∂X) · ε + πε2. For example, the area of
the ε-layer for the set X shown in Fig. 5 (and consisting of a disk with three round holes)

s(Uε) = l(∂X) · ε− 2πε2

regardless of the values of the radii of the disk and holes, provided that the radii of all holes are
not less than ε.

Example 6. Note that the presence of “holes” inside X is not necessary to violate equal-
ity (2.11). Fig. 6 shows a simply connected set X for which

s(Uε) = l(∂X) · ε+ 5πε2 − 16ε2.

X

Uε

A B

CD

E

GH

K

Figure 6. Example 6: a simply connected set with a negative quadratic addition in the formula for the
ε-layer area.

Example 7. This example of the set X consisting of two separate disks of radius R (Fig. 7)
shows that the connectedness condition for the set X is necessary for inequality (2.12). Indeed, in
this case,

s(Uε) = l(∂X) · ε+ 2πε2,
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X

Uε

RR

Figure 7. Example 7: a non-simply connected set for which inequality (2.12) is violated.

which violates inequality (2.12).

Example 8. In the last example, we will show that the addition to the main part l(∂X) · ε in
the expression for s(Uε) is not always proportional to ε2. Indeed, let X = B(O1, R) ∪ B(O2, R),
0 < ε < R. In this case, the boundaries ∂B(O1, R) and ∂B(O2, R) (which are circles) intersect at
two points B and D. Define ∠O1O2B = ϕ (Fig. 8).

X

Uε

R

R

A

B
C

D

HO1 O2ϕ

Figure 8. Example 8: two intersecting disks.

Then l(∂X) = 4R(π − ϕ).
From ∆BHO2, we get |BH| = R sinϕ, |HO2| = R cosϕ.
Considering the right-angled triangle ∆AHO2 and the Pythagorean theorem, we find that

|AO2| = R+ ε, |AH| =
√

(R + ε)2 −R2 cos2 ϕ.

Further, the length of the segment AB is

|AB| = |AH| − |BH| =
√

(R+ ε)−R2 cos2 ϕ−R sinϕ,
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the area of the triangle ∆ABO2 is

s(∆ABO2) =
1

2
|AB| · |HO2| =

1

2

(√
(R+ ε)−R2 cos2 ϕ−R sinϕ

)
R cosϕ,

the value of the angle ∠HO2A is

∠HO2A = arccos
|HO2|
|AO2|

= arccos
(R cosϕ

R+ ε

)
,

and the value of the angle ∠BO2A is

∠BO2A = ∠HO2A− ϕ = arccos
(R cosϕ

R+ ε

)
− ϕ.

Consider the figure ABC whose sides AB and AC ⊂ AO2 are segments and BC is an arc of
the circle centered at O2. Denote by O2BC the sector based on the arc BC. The area of the figure
ABC is

s(ABC) = s(∆ABO2)− s(O2BC)

=
1

2

(√
(R + ε)2 −R2 cos2 ϕ−R sinϕ

)
R cosϕ− 1

2
R2
(
arccos

(R cosϕ

R+ ε

)
− ϕ

)
.

Taking into account the symmetry of the set X about the lines AD and O1O2, we obtain the
area of the ε-layer:

s(Uε) = 4s(ABC) + 2 · 2π − 2ϕ

2

(
(R+ ε)2 −R2

)

= 2
(√

(R+ ε)2 −R2 cos2 ϕ−R sinϕ
)
R cosϕ

+2R2
(
ϕ− arccos

(R cosϕ

R+ ε

))
+ 2
(
π − arccos

(R cosϕ

R+ ε

))
(2Rε+ ε2)

or

s(Uε) = l(∂X) · ε+ 4
(
ϕ− arccos

(R cosϕ

R+ ε

))
Rε

+2
(√

(R + ε)2 −R2 cos2 ϕ−R sinϕ
)
R cosϕ

+2R2
(
ϕ− arccos

(R cosϕ

R+ ε

))
+ 2
(
π − arccos

(R cosϕ

R+ ε

))
ε2.

Note that, in the particular case ϕ = 0,

s(Uε) = l(∂X) · ε− 4R arccos
( R

R+ ε

)
ε

+2
(√

(R+ ε)2 −R2
)
R− 2R2 arccos

( R

R+ ε

)
+ 2
(
π − arccos

( R

R+ ε

))
ε2

= l(∂X) · ε− 8

3

√
2R · ε3/2 + 2πε2 − 14

15

√
2ε5/2√
R

+
71

420

√
2ε7/2

R3/2
+O(ε9/2), ε → 0.

Thus, the addition to l(∂X) in the expression for s(Uε) may have rather complicated asymptotics
and may not start with a term of the form C · ε2.

Remark 4. As can be seen from the examples, the question of the asymptotic behavior of
the areas of the ε-layers Uε surrounding the set X is nontrivial. It is related to questions of the
geometric and topological structure of sets X in R

2 and has an independent meaning.
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In connection with Remark 3, we introduce one more condition concerning the sets Xα(ti, t0, x)
and X̃Γ

β (ti, t0, y), (α, x) ∈ L ×X(0), (β, y) ∈ L (ρ) ×X(σ), ti ∈ Γ.

E. The areas s(Uα(ti)), s(Ũ
Γ
β (ti)), α, β ∈ L , ti ∈ Γ, satisfy inequality (2.12) for ε = κ

∆(ρ, σ):

s(Uα(ti)) 6 l(∂Xα(ti, t0, x))ε + πε2,

s(Ũβ(ti)) 6 l(∂X̃Γ
β (ti, t0, y))ε+ πε2.

Taking into account the definition of the sets Uα(ηk) and ŨΓ
β (ηk), ηk ∈ T , and the condition E,

we obtain

max
(
s(Uα(ηk)), s(Ũ

Γ
β (ηk))

)
6 max

(
l(∂Xα(ηk, t0, x) ∩ Φ(k)),

l(∂X̃Γ
β (ηk, t0, y) ∩Φ(k))

)
· κ∆(ρ, σ) + π · κ∆(ρ, σ)2 6 l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2.

(2.13)

From (2.10) and (2.13), it follows that

∣∣s(Xα(ηk, t0, x) ∩ Φ(k))− s(X̃Γ
β (ηk, t0, y) ∩ Φ(k))

∣∣ 6 l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2, ηk ∈ T . (2.14)

From (2.14), it follows the estimate

∣∣s(Φ(k)\Xα(ηk, t0, x)) − s(Φ(k)\X̃Γ
β (ηk, t0, y))

∣∣ 6 l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2, ηk ∈ T . (2.15)

From (2.15), we obtain the estimate
∣∣∣
∑

ηk∈T

s(Φ(k)\Xα(ηk, t0, x))−
∑

ηk∈T

s(Φ(k)\X̃Γ
β (ηk, t0, y))

∣∣∣ 6 N∗ ·
(
l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2

)
,

which can be written in the form

|J (1)(α, x) − J̃
(1)
Γ (β, y)| 6 N∗ ·

(
l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2

)
. (2.16)

A similar scheme is used to derive the estimate

|J (2)(α, x) − J̃
(2)
Γ (β, y)| 6 l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2. (2.17)

From estimates (2.16) and (2.17), we obtain

|J(α, x) − J̃Γ(β, y)| 6 ζ∆(ρ, σ), (2.18)

where
ζ∆(ρ, σ) = (N∗ + 1) ·

(
l∗ · κ∆(ρ, σ) + π · κ∆(ρ, σ)2

)
;

∆, ρ, and σ are from (0,∞).
Based on esimate (2.18), we show that, for small ∆, ρ, and σ, the solutions of Problems 2 and 3

are close, and we estimate this proximity.
Indeed, according to (2.18), the following inequality holds for every pair (β, y) ∈ L (ρ)×X(σ) ⊂

L ×X(0):
|J(β, y) − J̃Γ(β, y)| 6 ζ∆(ρ, σ),

since the pair (β, y) ∈ L ×X(0) is the closest pair in L (ρ) ×X(σ) to itself and, therefore, satisfies
the inequalities ‖β − β‖ 6 ρ and ‖y − y‖ 6 σ.

Hence, the following inequality holds for every pair (β, y) ∈ L (ρ) ×X(σ):

J̃Γ(β, y)− ζ∆(ρ, σ) 6 J(β, y) 6 max
(α,x)∈L ×X(0)

J(α, x),
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which implies
max

(β,y)∈L (ρ)×X(0)
J̃Γ(β, y)− ζ∆(ρ, σ) 6 max

(α,x)∈L×X(0)
J(x, α). (2.19)

On the other hand, according to (2.18), the inequality

J(α, x) 6 J̃Γ(β, y) + ζ∆(ρ, σ)

is true for every (α, x) ∈ L ×X(0) and (β, y) ∈ L (ρ)×X(σ) such that ‖α−β‖ 6 ρ and ‖x−y‖ 6 σ.
Hence, for every pair (α, x) ∈ L ×X(0), the inequality

J(α, x) 6 max
(β,y)∈L (ρ)×X(σ)

J̃Γ(β, y) + ζ∆(ρ, σ)

holds, which, in turn, implies

max
(α,x)∈L×X(0)

J(α, x) 6 max
(β,y)∈L (ρ)×X(σ)

J̃Γ(β, y) + ζ∆(ρ, σ). (2.20)

Inequalities (2.19) and (2.20) imply

max
(β,y)∈L (ρ)×X(0)

J̃Γ(β, y) − ζ∆(ρ, σ) 6 max
(α,x)∈L×X(0)

J(α, x) 6 max
(β,y)∈L (ρ)×X(σ)

J̃Γ(β, y) + ζ∆(ρ, σ),

i.e., we have the estimate

∣∣ max
(α,x)∈L ×X(0)

J(α, x) − max
(β,y)∈L (ρ)×X(0)

J̃Γ(β, y)
∣∣ 6 ζ∆(ρ, σ).

Let us say a pair (β∗, y∗) ∈ L (ρ) ×X(σ) is the optimal in the Problem 3, i.e.,

J̃Γ(β
∗, y∗) = max

(β,y)∈L (ρ)×X(σ)
J̃Γ(β, y).

Then we have the estimate

∣∣ max
(α,x)∈L×X(0)

J(α, x) − J̃Γ(β
∗, y∗)

∣∣ 6 ζ∆(ρ, σ). (2.21)

In addition, as shown above, the pair (β∗, y∗), like any pair (β, y) ∈ L (ρ) ×X(σ), satisfies the
inequality

|J̃Γ(β∗, y∗)− J(β∗, y∗)| 6 ζ∆(ρ, σ). (2.22)

From (2.21) and (2.22), we obtain

∣∣ max
(α,x)∈L×X(0)

J(α, x) − J(β∗, y∗)
∣∣ 6 2ζ∆(ρ, σ). (2.23)

Inequality (2.23) states that every optimal pair (β∗, y∗) ∈ L (ρ)×X(σ) for Problem 3 is 2ζ∆(ρ, σ)-
optimal for Problem 2.

Taking into account the quadratic dependence of the function ζ∆(ρ, σ) from the function
κ
∆(ρ, σ) and the equality lim

∆↓0,ρ↓0,σ↓0
κ
∆(ρ, σ) = 0, we obtain lim

∆↓0,ρ↓0,σ↓0
ζ∆(ρ, σ) = 0. Hence,

for a predetermined ε > 0, one can choose ∆ = ∆(Γ), ρ, and σ from (0,∞) so that the following
inequality is true:

ζ∆(ρ, σ) 6 ε. (2.24)

Using ρ and σ satisfying (2.24), we can find a pair (β∗, y∗) ∈ L (ρ)×X(σ) optimal for Problem 3.
As a result, the following statement is true.
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Theorem 3. Assume that the control system (1.1) in R
2 satisfies the conditions A and B

and, together with the partition Γ = {t0, t1, ..., ti, ..., tN = ϑ} (∆ = ∆(Γ) = N−1(ϑ − t0)), the
condition C . Assume that, in Problems 2 and 3, along with the conditions A, B , and C , the
conditions D and E are satisfied for the sets X(0), X(ϑ), Φk = Φ(ηk), Xα(ti, t0, x), and X̃Γ

β (ti, t0, y),

where (α, x) ∈ L ×X(0), (β, y) ∈ L (ρ) ×X(σ), ti ∈ Γ, and ηk ∈ T .

Then every optimal pair (β∗, y∗) ∈ L (ρ) ×X(σ) in Problem 3 is a 2ζ(∆)(ρ, σ)-optimal pair in
Problem 2.

3. Example

In this section, we consider a nonlinear control system in R
2 on the time interval [t0, ϑ] = [0, 1]

depending on parameter α:





ẋ1=−x2 ·
1

2

(
7 +

1

4
cos(x2) +

1

2
sin(α1t)

)
+ â(x)

‖x‖
1 + ‖x‖u1+0.1α1,

ẋ2 = x1 ·
1

2

(
7 +

1

4
cos(x1) +

1

2
sin(α2t)

)
+ â(x)

‖x‖
1 + ‖x‖u2 + 0.1α2,

x(0) ∈ X(0),

(3.1)

where

â(x) =





0.01 for ‖x‖ < 1,

0.01

‖x‖ for ‖x‖ > 1,

α = (α1, α2) ∈ I =

[
2

3
,
4

3

]
×
[
− 1

3
,
1

3

]
,

u = (u1, u2) ∈ P = {u = (u1, u2) : ‖u‖ 6 1} .

One problem of targeting the integral funnels of system (3.1) is formulated and solved in a soft
setting close to Problem 3 from the previous section.

In this setting, the set X(0) of initial positions of system (3.1) is a closed set in R
2 bounded by

the Cassini oval

(x2 + y2)2 − 2c2(x2 − y2)2 6 a4 − c4,

where a = 4.4 and c = 4.

Along with X(0) in R
2, the following two sets are also given:

(1) the rectangle Φ(t), t ∈ [0, 1], with the initial set Φ(t0) = [−9,−3]× [−10,−6] rotating in one
direction around its center (−6,−8) over time 0.01 at the angle 1◦;

(2) the ellipse

X(ϑ) =

{
(x1, x2) ∈ R

2 :
(2
5

)2
(x1 − 12)2 +

( 2

15

)2
(x2 + 5)2 6 1

}
.

There are given the rectangle Φ(t), t ∈ [0, 1], changing its orientation over time t, that we treat as
a zone of dangerous stay during the entire period of time [0, 1], and the ellipse X(ϑ) that we treat
as a target set for the system (3.1) at the terminal time ϑ = 1.

We have the following two goals for the control system (3.1):



Control Systems Depending on a Parameter 143

(1) assuming that the reachable sets Xα(t, t0,X
(0)), α ∈ L , t ∈ [t0, ϑ], can intersect the sets Φ(t),

we must strive to ensure that the total intersection area Φ(ηi)
⋂

Xα(ηi, t0,X
(0)), ηi ∈ T , will

be as small as possible; here T is some finite set in [t0, ϑ];

(2) we must strive to ensure that the area of the intersection X(ϑ)
⋂

Xα(ϑ, t0,X
(0)) is as much

as possible.

Let us formalize our targeting problem.
Introduce the notation

J (1)(α) =
∑

ηk∈T

s(Φ(ηk)\Xα(ηk, t0,X
(0))),

J (2)(α) = s
α∈L

(X(ϑ)
⋂

Xα(ϑ, t0,X
(0))),

J(α) = λ1J
(1)(α) + λ2J

(2)(α),

where λ1 and λ2 are from [0,1], λ1 + λ2 = 1.

Problem 4 on targeting integral funnels of system (3.1) (soft setting). It is required
to find α∗ ∈ L such that

J(α∗) = max
α∈L

J(α).

Remark 5. Problem 4 is close in setting to Problem 2 from Section 2 and differs from it by
considering the sets Xα(tk, t0,X

(0)), α ∈ L , with initial set X(0) instead of the sets Xα(tk, t0, x),
(α, x) ∈ L ×X(0). This limitation will not affect the key estimates that we use in Problem 4.

Since we cannot solve Problem 4 exactly, we formulate an approximation problem in which,
instead of the set L , there is a ρ-net L (ρ). The partition Γ is used as the interval [t0, ϑ] and,
instead of ideal reachable sets Xα(t, t0,X

(0)), their approximations X̃Γ
α(r)(ti, t0,X

(0)), α(r) ∈ L (ρ),
ti ∈ Γ, are used.

Let us introduce the notation

J̃
(1)
Γ (α(r)) =

∑

ηi∈T

s(Φ(ηi)\X̃Γ
α(r)(ηi, t0,X

(0))),

J̃
(2)
Γ (α(r)) = s(X(ϑ)

⋂
X̃Γ

α(r)(ϑ, t0,X
(0)));

recall that s(X) is the area of a set X ⊂ R
2.

Let us clarify how we define the partition Γ in the approximation problem and the ρ-net L (ρ).
Assume that

Γ = {t0 = 0, t1, ..., ti, ..., tN = ϑ = 1} ,
where ti+1 − ti = ∆i = ∆ = 0.01 and N = 100;

L
(ρ) = L

(ρ)
1 × L

(ρ)
2 ,

where

ρ =

√
2

15
,

L
(ρ)
1 =

{
α
(l)
1 ∈

[2
3
,
4

3

]
, α

(0)
1 =

2

3
, α

(l)
1 = l

(0)
1 +

l

15
, l = 1, 10

}
,

L
(ρ)
2 =

{
α
(k)
2 ∈

[
− 1

3
,
1

3

]
, α

(0)
2 = −1

3
, α

(k)
2 = l

(0)
2 +

k

15
, k = 1, 10

}
;
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in addition, points of the set L (ρ) are parameterized by the parameter r = 1, 121 and are denoted
by α(r).

Assume that
J̃Γ(α

(r)) = λ1J̃
(1)
Γ (α(r)) + λ2J̃

(2)
Γ (α(r)),

where λ1 and λ2 are defined above. Let us formulate an approximation problem.

Problem 4(a). It is required to find α(r∗) ∈ L (ρ) such that

J̃Γ(α
(r∗)) = max

α(r)∈L (ρ)
J̃Γ(α

(r)).

It is important for us not only to calculate the optimal result J̃Γ(α
(r∗)) in Problem 4(a), but also

find out how accurately it approximates the optimal result J(α∗) in Problem 4. In other words, we
are also interested in an upper estimate of the quantity |J(α∗)− J̃Γ(α

(r∗))|. Note that this estimate
is completely analogous to estimate (2.18) from Section 2 with the only difference that here σ = 0.

Let us calculate the numerical characteristics in Problem 4(a) involved in an estimate of type
(2.18). Some of them will turn out to be quite significant in size. This is connected both with the
dynamics of system (3.1) and with the roughness of the approximations Γ and L (ρ) of the sets
[t0, ϑ] and L .

The right-hand side of system (3.1) has the form

fα(t, x, u) =



−x2

2
·
(
7 +

1

4
cos(x2) +

1

2
sin(α1t)

)

x1
2

·
(
7 +

1

4
cos(x1) +

1

2
sin(α2t)

)


+ â(x) · ‖x‖

1 + ‖x‖ u+ 0.1α.

Let us estimate from above the value ‖fα(t, x, u)‖:

‖fα(t, x, u)‖

6

√
x22
4

(
7 +

1

4
cos(x2) +

1

2
sin(α1t)

)2
+

x21
4

(
7 +

1

4
cos(x1) +

1

2
sin(α2t)

)2

+â(x)
‖x‖

1 + ‖x‖‖u‖ + 0.1‖α‖

6
31

16
‖x‖+ 0.01 · 1 + 0.1

√(4
3

)2
+
(1
3

)2
< 1.9375‖x‖ + 0.1475,

i.e.,
‖fα(t, x, u)‖ 6 1.9375‖x‖ + 0.1475. (3.2)

Hence, under the condition B for system (3.1), we can set γ = 1.9375.
Using the Cauchy–Bunyakovsky inequality and an inequality of the type 2ab 6 a2 + b2, we

estimate the variation of ‖x(t)‖2 along the trajectory x = x(t) of system (3.1):

d‖x‖2
dt

= 2〈x, ẋ〉 = 2(x1ẋ1 + x2ẋ2)

= −x1x2

(
7 +

1

4
cos x2 +

1

2
sin(α1t)

)
+ 2x1α̂(x)

‖x‖
1 + ‖x‖u1 + 0.2α1x1

+x1x2

(
7 +

1

4
cos x1 +

1

2
sin(α2t)

)
+ 2x2α̂(x)

‖x‖
1 + ‖x‖u2 + 0.2α2x2

=
x1x2
4

(
cos x1− cos x2+2 sin(α2t)−2 sin(α1t)

)
+2(x1u1+x2u2)α̂(x)

‖x‖
1+‖x‖+0.2(α1x2+α2x2)
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6
6

4
|x1x2|+ 2‖x‖ · ‖u‖â(x) ‖x‖

1 + ‖x‖ + 0.2‖α‖ · ‖x‖

6
3

4
‖x‖2 + 2α̂(x)‖x‖ + 0.2‖x‖

√(4
3

)2
+
(1
3

)2

6
3

4
‖x‖2 + 0.295‖x‖ 6

3

4
‖x‖2 + 3

10
‖x‖.

Given the equality
d‖x‖2
dt

= 2‖x‖d‖x‖
dt

,

from the inequality
d‖x‖2
dt

6
3

4
‖x‖2 + 3

10
‖x‖,

we get
d‖x‖
dt

6
3

8
‖x‖+ 3

20
for ‖x‖ 6= 0.

From this inequality, we easily deduce the estimate

‖x(t)‖ 6 ‖x(t0)‖ · e3/8·(t−t0) +
3 · 8
20 · 3(e

3/8·(t−t0) − 1), t ∈ [t0, ϑ] = [0, 1].

Hence,

max
t∈[t0,ϑ]

‖x(t)‖ 6 ‖x(t0)‖e3/8 +
2

5
· (e3/8 − 1). (3.3)

Taking into account the equation for the Cassini oval, we obtain

max
x(t0)∈X(0)

‖x(t0)‖ =
√

a2 + c2 =
√

42 + 4.42 ≈ 5.946. (3.4)

From (3.3) and (3.4), we conclude that the following estimate holds for the trajectories x(t),
x(0) ∈ X(0) of system (3.1):

max
t∈[t0,ϑ]

‖x(t)‖ 6 8.833.

As constraints and a closed domain D in the space of positions (t, x) containing all possible
motions (t, x(t)) of the control system together with some of their neighborhood (with respect to
the phase variable), we can take the set

D = {(t, x) : t ∈ [t0, ϑ], ‖x‖ 6 8.833 + ε} ,

where we set ε = 0.167. In this case, we find that

D = {(t, x) : t ∈ [0, 1], ‖x‖ 6 9}.

Estimate (3.2) and inclusion (t, x) ∈ D imply

‖fα(t, x, u)‖ 6 1.9375 · ‖x‖+ 0.1475 6 1.9375 · 9 + 0.1475 = 17.585

for α ∈ L and u ∈ P .

It follows the inequality

max
{
‖x(t)‖ : t ∈ [t0, ϑ], x(t0) ∈ X(0)

}
6 8.833.
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The following inequality is valid for (t, x, u) and (t, y, u) from D × P and α ∈ L :

‖fα(t, x, u) − fα(t, y, u)‖

6

∥∥∥∥∥∥∥



(y2 − x2) ·

1

2

(
7 +

1

2
sin(α1t)

)

(x1 − y1) ·
1

2

(
7 +

1

2
sin(α2t)

)




∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥




1

8

(
y2 cos y2 − x2 cos x2

)

1

8

(
x1 cos x1 − y1 cos y1

)




∥∥∥∥∥∥∥

+

∣∣∣∣α̂(x) ·
‖x‖

1 + ‖x‖ − α̂(y) · ‖y‖
1 + ‖y‖

∣∣∣∣ · ‖u‖.

Let us estimate from above each of the three terms on the right-hand side of this inequality.
We have ∥∥∥∥∥∥∥



(y2 − x2) ·

1

2

(
7 +

1

2
sin(α1t)

)

(x1 − y1) ·
1

2

(
7 +

1

2
sin(α2t)

)




∥∥∥∥∥∥∥
6 ϕ(t)‖x− y‖,

where

ϕ(t) =





1

2
+

1

2
sin
(4
3
t
)

for t <
3π

8
,

1 for t >
3π

8
.

Further, taking into account the inequality

∥∥∥
d(xk cos(xk))

dxk

∥∥∥ = ‖ cos(xk)− xk sin(xk)‖ 6

√
1 + x2k 6

√
1 + 92 ≈ 9.055,

(t, xk) ∈ D, k = 1, 2,

we get ∥∥∥∥∥∥∥




1

8

(
y2 cos y2 − x2 cosx2

)

1

8

(
x1 cos x1 − y1 cos y1

)




∥∥∥∥∥∥∥
6

9.055

8
‖x− y‖.

Let us now estimate the third term. To do this, we introduce

R = α̂(x) · ‖x‖
1 + ‖x‖ − α̂(y) · ‖y‖

1 + ‖y‖

and estimate |R|:

|R| =
∣∣∣∣
α̂(x)‖x‖(1 + ‖y‖)− α̂(y)‖y‖(1 + ‖x‖)

(1 + ‖x‖) · (1 + ‖y‖)

∣∣∣∣ 6
∣∣α̂(x)‖x‖ − α̂(y)‖y‖ + ‖x‖‖y‖(α̂(x)− α̂(y))

∣∣.

We consider four cases for further estimation of |R|.
Case 1. ‖x‖ < 1 and ‖y‖ < 1. Then

α̂(x) = α̂(y) = 0.01,

|R| 6 0.01
∥∥|x‖ − ‖y‖

∣∣.

Case 2. ‖x‖ > 1 and ‖y‖ > 1. Then

α̂(x) =
0.01

‖x‖ , α̂(y) =
0.01

‖y‖ ,

|R| 6
∣∣0.01(‖y‖ − ‖x‖)

∣∣ = 0.01
∥∥|x‖ − ‖y‖

∣∣.



Control Systems Depending on a Parameter 147

Case 3. ‖x‖ < 1 and ‖y‖ > 1. Then

α̂(x) = 0.01, α̂(y) =
0.01

‖y‖ ,

|R| 6
∣∣∣0.01‖x‖ − 0.01

‖y‖ · ‖y‖+ ‖x‖ · ‖y‖
(
0.01 − 0.01

‖y‖
)∣∣∣ = 0.01 ·

∣∣1− ‖x‖ · ‖y‖
∣∣.

Consider two subcases.

(a) ‖x‖ · ‖y‖ > 1. Then

|R| 6 0.01
∣∣1− ‖x‖ · ‖y‖

∣∣ 6 0.01
∣∣1− ‖y‖

∣∣ 6 0.01
∥∥|x‖ − ‖y‖

∣∣ < 0.01‖x − y‖.

(b) ‖x‖ · ‖y‖ < 1. Then

|R| 6 0.01
∣∣1− ‖x‖‖y‖

∣∣ 6 0.01
∣∣1− ‖x‖

∣∣ 6 0.01
∥∥|y‖ − ‖x‖

∣∣ 6 0.01‖y − x‖.

Case 4. ‖x‖ > 1 and ‖y‖ < 1. Since this case is similar to Case 3, we have the inequality
|R| 6 0.01‖x − y‖.

Thus, in all cases, we have the inequality |R| 6 0.01‖x − y‖.
Taking this inequality into account, we obtain an estimate for the third term:

|R| · ‖u‖ 6 0.01 · ‖x− y‖.

As a result, for (t, x, u) and (t, y, u) from D × P and α ∈ L , we get

‖fα(t, x, u) − fα(t, y, u)‖ 6 L(t)‖x− y‖,

where L(t) = ϕ(t) + 1.142, and we can take L = 2.142.

Let us now estimate from above the value

‖fα(t, x, u) − fβ(τ, x, u)‖,

where (t, x, u) and (τ, x, u) from D × P and α and β are from L :

‖fα(t, x, u) − fβ(τ, x, u)‖ 6

∥∥∥∥∥∥∥



−1

4
x2 · (sin(α1t)− sin(β1τ))

1

4
x1 · (sin(α2t)− sin(β2τ))




∥∥∥∥∥∥∥
+ 0.1

∥∥∥∥∥

(
α1 − β1

α2 − β2

)∥∥∥∥∥

=
1

4

√
x22 · (sin(α1t)− sin(β1τ))2 + x21 · (sin(α2t)− sin(β2τ))2 + 0.1‖α − β‖

6
1

4
‖x‖
√

(α1t− β1τ)2 + (α2t− β2τ)2 + 0.1‖α − β‖

6
1

4
‖x‖
(
|α1t− β1τ |+ |α2t− β2τ |

)
+ 0.1‖α − β‖

=
1

4
‖x‖
(
|α1t− α1τ + α1τ − β1τ |+ |α2t− α2τ + α2τ − β2τ |

)
+ 0.1‖α − β‖

6
1

4
‖x‖
(
α1|t− τ |+ τ |α1 − β1|+ α2|t− τ |+ τ |α2 − β2|

)
+ 0.1‖α − β‖

6
1

4
‖x‖
(
(α1 + α2)|t− τ |+ τ(|α1 − β1|+ |α2 − β2|)

)
+ 0.1‖α − β‖

6
1

4
‖x‖
(5
3
|t− τ |+ τ

√
2‖α− β‖

)
+ 0.1‖α − β‖
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6
1

4
max

(t,x)∈D
‖x‖ ·

(5
3
|t− τ |+

√
2‖α− β‖

)
+ 0.1‖α − β‖

6
1

4
max

(t,x)∈D
‖x‖ ·max

(5
3
,
√
2 +

0.2

max(t,x)∈D ‖x‖
)
· (|t− τ |+ ‖α− β‖)

=
1

4
· 9 · 5

3
· (|t− τ |+ ‖α− β‖) = 15

4
· (|t− τ |+ ‖α− β‖).

As a result, we obtain the following estimate for (t, x, u) and (τ, x, u) from D × P and α and β
from L :

‖fα(t, x, u)− fβ(τ, x, u)‖ 6
15

4
(|t− τ |+ ‖α− β‖),

from which it follows that, in the problem under consideration, we can take

ω∗(ξ) =
15

4
ξ, ξ ∈ (0,∞).

So, we have calculated the main characteristics involved in this problem in an estimate of the
type of estimate (2.18): K,L(t), t ∈ [0, 1], L ∈ (0,∞), and ω∗(ξ), ξ ∈ (0,∞). Let us supplement
them with several more characteristics participating in this estimate. Namely, the performed
calculations show that the lengths of the boundaries of the sets X(0), X(ϑ), Φ(ti), ti ∈ Γ, and
X̃Γ

α(r)(ti, t0,X
(0)), ti ∈ Γ, α(r) ∈ L (ρ), can be etsimated by the number l∗ = 32. We also assume

that ∆ = ∆(Γ) = ∆i = ti+1 − ti = 1/N = 0.01, where N = 100, N∗ = N , ρ = 1/15, and σ = 0 as
noted above.

Having determined all the main numerical characteristics in the considered problem, we proceed
to calculating the main estimate of the type of estimate (2.18).

The following relations are valid:

κ
∆(ρ, σ) = e

∑N−1
k=0 L(tk)∆k ·

(
(ϑ− t0) · ω∗(ρ) + 2(ϑ− t0)ω

∗(∆) + 2K

N−1∑

k=0

L(tk)∆k + σ
)

≈ e1.926 ·
(15
4
ρ+ 2 · 15

4
∆ + 2 · 17.585∆ · 1.926

)
≈ 516.3 ·∆+ 25.73 · ρ;

ζ∆(ρ, σ) = (N∗ + 1) ·
(
l∗ · κ∆(ρ, σ) + πκ∆(ρ, σ)2

)

≈ (N + 1) · (32 · (516.3 ·∆+ 25.73 · ρ) + 3.142 · (516.3 ·∆+ 25.73 · ρ)2
)
≈ 37242.74.

Hence, we obtain the following estimate of the mismatch of the optimal results J(α∗) and
J̃Γ(α

∗
r) in Problems 4 and 4(a):

|J(α∗)− J̃Γ(α
r∗)| 6 ζ∆(ρ, σ) ≈ 37242.74. (3.5)

Remark 6. Estimating the mismatch between the optimal results in Problems 4 and 4(a), we
found that estimate (3.5) is very rough. The roughness of estimate (3.5) is due to several factors:

(1) the dynamics of system (3.1);

(2) the presence of exponential quantities in the derivation of an estimate, which is standard for
control problems with a Lipschitz right-hand side of the control system with a phase variable;

(3) the roughness of our discrete approximations L (ρ) and Γ of the compact set L and the
interval [0,1] due to the limited capabilities of computer technology.
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Note that, although estimate (3.5) is rough, it was obtained within the framework of the theory
developed in Sections 1 and 2 and does not reflect the real value of the mismatch |J(α∗)− J̃Γ(α

r∗)|,
which is much smaller.

Nevertheless, the question arises, how and by what means can estimate (3.5) be improved. One
way to improve this is to establish more accurate approximations L (ρ) and Γ for the compact
set L and the time interval [t0, ϑ] = [0, 1]. In addition, if in the setting of Problems 4 and 4(a), the
number N∗ is small, then it also improves estimate (3.5).

As an example, let us set ρ = 1/150, N∗ = 1, N = 1000, and therefore ∆ = ∆(Γ) = 0.001.
Then

κ
∆(ρ, σ) = e

∑N−1
k=0 L(ηk)∆k ·

(
(ϑ− t0) · ω∗(ρ) + 2(ϑ− t0)ω

∗(∆) + 2K∆
N−1∑

k=0

L(ηk)∆k

)

≈ e1.928
(15
4
ρ+ 2 · 15

4
∆ + 2 · 17.585 ·∆ · 1.928

)
≈ 517.8 ·∆+ 25.78 · ρ,

ζ∆(ρ, σ) = (N∗ + 1) ·
(
l∗ · κ∆(ρ, σ) + πκ∆(ρ, σ)2

)

≈ 2 ·
(
32 · (517.8∆ + 25.78ρ) + 3.142(517.8 ·∆+ 25.78 · ρ)2

)
≈ 47.13.

We see that the decrease in the values ρ and ∆ by a factor of 10 and the number N∗ by a factor
of 100 led to a significant improvement in the value of ζ∆(ρ, σ).

Note also that if the compact set L is finite by the statement of Problem 4(a), then we can
treat it as a finite approximation L (ρ) of itself with the value ρ = 0.

In this case, with the same N∗ and N as in the previous example, we get the estimate

|J(α∗)− J̃Γ(α
r∗)| 6 ζ∆(ρ, σ) ≈ 34.82.

For the example under consideration, we considered three variants of Problem 2 on targeting
integral funnels (in a soft setting). Moreover, the peculiarity of our consideration is that we do
not vary the starting point x(0) in the set X(0) and, instead of the sets X̃Γ

α (ti, t0, x
(0)), consider the

reachable sets X̃Γ
α(ti, t0,X

(0)), α ∈ L .

Each of the variants is determined by the choice of a pair of numbers λ1 and λ2 (λ1, λ2 ∈ [0, 1],
λ1 + λ2 = 1):

Variant 1. λ1 = 0.1 and λ2 = 0.9;
Variant 2. λ1 = 0.5 and λ2 = 0.5;
Variant 3. λ1 = 0.9 and λ2 = 0.1.

For each of the variants, in the set L (ρ) ⊂ L , the optimal point α∗ = (α∗
1, α

∗
2) is calculated:

Variant 1. α∗
1 = 0.66667 and α∗

2 = 0.33333;
Variant 2. α∗

1 = 0.80000 and α∗
2 = 0.33333;

Variant 3. α∗
1 = 1.26670 and α∗

2 = 0.33333.

Each of the three options is illustrated with six figures (Fig. 9–Fig. 14, Fig. 15–Fig. 20, Fig. 21–
Fig. 26) that correspond to the times ti = 0; 0.2; 0.4; 0.6; 0.8; 1.0 of the partition Γ. The figures
show the sets X̃Γ

α∗(ti, t0,X
(0)) and Φ(ti) corresponding to these numbers and the target set M .

Also, each of the three variants indicates the optimal result obtained in the course of an ap-
proximate solution of Problem 2:

Variant 1. J(α∗,X(0)) = 38.4361;
Variant 2. J(α∗,X(0)) = 743.9625;
Variant 3. J(α∗,X(0)) = 2450.
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Variant 1

Figure 9. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.66667, α∗

2 = 0.33333, and ti = 0.

Figure 10. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.66667, α∗

2 = 0.33333, and ti = 0.2.
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Figure 11. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.66667, α∗

2 = 0.33333, and ti = 0.4.

Figure 12. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.66667, α∗

2 = 0.33333, and ti = 0.6.
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Figure 13. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.66667, α∗

2 = 0.33333, and ti = 0.8.

Figure 14. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.66667, α∗

2 = 0.33333, and ti = 1.
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Variant 2

Figure 15. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.8, α∗

2 = 0.33333, and ti = 0.

Figure 16. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.8, α∗

2 = 0.33333, and ti = 0.2.
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Figure 17. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.8, α∗

2 = 0.33333, and ti = 0.4.

Figure 18. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.8, α∗

2 = 0.33333, and ti = 0.6.
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Figure 19. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.8, α∗

2 = 0.33333, and ti = 0.8.

Figure 20. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 0.8, α∗

2 = 0.33333, and ti = 1.
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Variant 3

Figure 21. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 1.2667, α∗

2 = 0.33333, and ti = 0.

Figure 22. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 1.2667, α∗

2 = 0.33333, and ti = 0.2.
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Figure 23. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 1.2667, α∗

2 = 0.33333, and ti = 0.4.

Figure 24. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 1.2667, α∗

2 = 0.33333, and ti = 0.6.
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Figure 25. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 1.2667, α∗

2 = 0.33333, and ti = 0.8.

Figure 26. The sets M , Φ(ti), and X̃Γ
α
(ti, t0, X

(0)) for α∗

1 = 1.2667, α∗

2 = 0.33333, and ti = 1.



Control Systems Depending on a Parameter 159

REFERENCES

1. Anan’evskii I.M. Control of a nonlinear vibratory system of the fourth order with unknown parameters.
Autom. Remote Control, 2001. Vol. 62, No. 3. P. 343–355. DOI: 10.1023/A:1002832924913

2. Anan’evskii I.M. Control synthesis for linear systems by methods of stability theory of motion. Differ-
ential Equations, 2003. Vol. 39, No. 1. P. 1–10. DOI: 10.1023/A:1025170521270

3. Beznos A.V., Grishin A.A., Lensky A.V., Okhotsimsky D. E., Formalsky A.M. Pendulum control using
a flywheel. In: Spetspraktikum po teoreticheskoi i prikladnoi mehanike [Special workshop on theoretical
and applied mechanics]. V.V. Aleksandrov, Yu.V. Bolotov (eds.). Moscow: MSU Press, 2019. P. 170–195.

4. BogachevV.I., SmoljanovO.G. Deistvitel’nyi i funktsional’nyi analiz: universitetskii kurs [Real and
Functional Analysis: University Course]. Moscow-Izhevsk: Research Center “Regular and Chaotic Dy-
namics”, Institute for Computer Research, 2009. 724 p. (in Russian)

5. Chernousko F. L. State Estimation for Dynamic Systems. CRC Press: Boca Raton, 1994. 320 p.

6. Chernousko F. L., Melikyan A.A. Igrovye zadachi upravlenija i poiska [Game Control and Search Prob-
lems]. Moscow: Nauka, 1978. 270 p. (in Russian)

7. Ershov A.A., Ushakov V.N. An approach problem for a control system with an unknown parameter.
Sb. Math., 2017. Vol. 208. No. 9. P. 1312–1352. DOI: 10.1070/SM8761

8. Filippova T. F. Construction of set-valued estimates of reachable sets for some nonlinear dynamical
systems with impulsive control. Proc. Steklov Inst. Math., 2010. Vol. 269, Suppl. 1. P. S95–S102.
DOI: 10.1134/S008154381006009X

9. Gusev M. I. Estimates of reachable sets of multidimensional control systems with nonlin-
ear interconnections. Proc. Steklov Inst. Math., 2010. Vol. 269, Suppl. 1. P. S134–S146.
DOI: 10.1134/S008154381006012X

10. Krasovsky N.N. Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezul’tata
[Control of a Dynamical System: Problem on the Minimum of Guaranteed Result]. Moscow: Nauka,
1985. 520 p. (in Russian)

11. Krasovsky N.N., Subbotin A. I. Pozitsionnye differentsial’nye igry [Positional Differential Games].
Moscow: Fizmatlit, 1974. 456 p. (in Russian)

12. Kurzhansky A.B. Izbrannye trudy [Selected Works]. Moscow: MSU Press, 2009. 756 p. (in Russian)

13. Kurzhanski A.B., Valyi I. Ellipsoidal Calculus for Estimation and Control. Systems Control Found.
Appl. Basel: Birkhäuser, 1997. 321 p.
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Abstract: We consider a set membership estimation problem for linear non-stationary systems for which
initial states belong to a compact set and uncertain disturbances in an observation equation are integrally
restricted. We prove that the exact information set of the system can be approximated by a set of external
ellipsoids in the absence of disturbances in the dynamic equation. There are three examples of linear systems.
Two examples illustrate the main theorem of the paper, the latter one shows the possibility of generalizing the
theorem to the case with disturbances in the dynamic equation.
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1. Introduction and notations

Set membership approaches to estimation problems have been studied for a long time [3, 10].
In 1968, Krasovskii proposed [7], and later Kurzhanski developed [8, 9] a more general theory
of guaranteed estimation without the statistics of disturbances based on results of convex and
functional analysis.

This paper is an addition to [2] which describes the approximation of the estimation problem
for joint constraints on the initial state and disturbances with the ellipsoid technique. In this case,
an optimization problem arises. The paper considers a simpler case when the exact information set
of the system can be found without solving an optimization problem. The technique of ellipsoidal
approximation is used, which was developed by Kurzhanski [9], Chernousko [4], and their followers
(see, for example, [6]).

The paper is structured as follows. First, we formulate the estimation problem in our case, then
construct exact information sets and their approximation using external ellipsoids. After that, we
prove the validity of the approximation. The latter part consists of three numerical examples.

Let us introduce the notation. Let

|x|Q =
√

x′Qx,

where x ∈ R
n and Q is a matrix with the property Q′ = Q > 0. For Q = I (an identity matrix),

we set |x|I = |x|. If M ⊂ R
n is convex and compact, then

ρ(l|M) = max
x∈M

l′x

1This study is a part of the research carried out at the Ural Mathematical Center and supported by the
Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2021-1383).
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is a support function. The set

E(Q, c) = {x ∈ R
n | |x− c|Q 6 1}

is called an ellipsoid.

If a system is linear and non-stationary, i.e., ẋ = A(t)x, then its general solution has the form
x(t, t0, x0) = X(t, t0)x0, where X(t, t0) is a fundamental matrix, which can be found as a solution
to the equation Ẋ(t, t0) = A(t)X(t, t0), X(t0, t0) = I.

2. Problem statement

Consider a linear non-stationary system with measurements

ẋ = A(t)x, y = G(t)x+ w, t ∈ [0, T ], (2.1)

where x(t) ∈ R
n is a state vector, y(t) ∈ R

m is an output, w(t) ∈ R
m is an uncertain disturbance in

the measurement equation, and A(t) ∈ R
n×n and G(t) ∈ R

m×n are bounded continuous matrices.
Suppose that undefined functions w(·) in (2.1) and an initial state x0 satisfy the following integral
and geometric constraints, respectively:

∫ T

0
|w(t)|2R 6 1, R′(t) = R(t) > 0, (2.2)

x0 ∈ X0, (2.3)

where X0 ∈ R
n is a convex compact set bounding the initial state, and R(t) ∈ R

m×m is a contin-
uous positive definite matrix. The constraints are separate, i.e., (2.2) and (2.3) are independent.
According to the general theory of guaranteed estimation (see, for example, [9]) we can give a
definition.

Definition 1. A family of state vectors X (T, y) = {xT } is called an information set (IS) if,
for any xT ∈ X (T, y), there exists a function w and an initial state x0 satisfying constraints (2.2)
and (2.3) and such that equalities (2.1) hold almost everywhere with x(T ) = xT .

For system (2.1) under constraints (2.2) and (2.3), an exact set X (T, y) can be found.

Theorem 1. The set X (T, y) is an intersection

X (T, y) = X(T, 0)X0

⋂

X(T, y, 0, 0),

where X(T, s) is the fundamental matrix of system (2.1), X(T, y, 0, 0) is the IS for (2.1) and (2.2)
without constraints on the initial set (2.3).

Consider linear system (2.1) under constraint (2.2). A solution to the estimation problem is
the IS X(T, y, 0, 0), which is an ellipsoid x′P (T )x − 2x′d(T ) + q(T ) 6 1 whose parameters can be
found as solutions to the differential equations [1, 2]

Ṗ (t) = −A′(t)P − PA(t) +G′RG, P (0) = 0;

ḋ(t) = −A′(t)d+G′Ry, d(0) = 0;

q̇(t) = y′Ry, q(0) = 0.
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3. Approximation of information sets

The original problem included integral constraints on perturbations (2.2) and geometric con-
straints on the initial state (2.3) of the system. Geometric constraints in form (2.3) are complicated
to deal with. Kurzhanski proposed an approach for approximating arbitrary sets (see, for exam-
ple, [9]) by sets of ellipsoids. In this paper, we discuss the approximation by a set of external
ellipsoids.

We approximate the set of initial states X0 by a family of ellipsoids E(P0, c) ⊃ X0, where P0

is a symmetric positive definite matrix P ′
0 = P0 > 0. Then constraints (2.2) and (2.3) will be

approximated by the family of constraints

α|x0|
2
P0

+ (1− α)

∫ T

0
|w(t)|2R 6 1, α ∈ [0, 1]. (3.1)

Thus, we obtain the second estimation problem of (2.1) under constraints (3.1).
If disturbances w(t) satisfy the constraint in (2.2), then they necessarily obey the constraints

in (3.1). Therefore, it is possible to build an IS X(T, y, α, P0) for a real signal with different
parameters and use it to approximate the original IS X (T, y).

Lemma 1. The set X(T, y, α, P0) has the form of an ellipsoid

x′P (T )x− 2x′d(T ) + q(T ) 6 1,

where the parameters are defined as solutions to the differential equations [1, 2]

Ṗ = −A′(t)P − PA(t) +G′RG(1− α), P (0) = P0α;

ḋ = −A′(t)d+G′Ry(t)(1− α), d(0) = 0;

q̇ = y′(t)Ry(t)(1 − α), q(0) = 0.

(3.2)

Lemma 2 (Ellipsoid Separation Lemma). For every convex compact set M ⊂ R
n and a point

p /∈ M, there exist an ellipsoid E(Q, c) such that E(Q, c) ⊃ M and p /∈ E(Q, c).

P r o o f. It is known from convex analysis (see, for example, [5]), that the condition p /∈ M
implies the existence of a unit vector l1 such that l′1p > ρ(l1|M). Further, since the set M is fixed,
we use the shorter notation ρ(l). Let us complement the vector l1 to an orthonormal basis in R

n

with vectors {l2, . . . , ln}. Build a rectangular box along li centered at the point

c =

n
∑

i=1

li(ρ(li)− ρ(−li))/2

and having vertices at the points

Ak =
n
∑

i=1

kiliρ(kili) : Π =
{

x ∈ R
n | ρ(−li) 6 l′ix 6 ρ(li) ∀i ∈ 1 : n

}

.

Here, k ∈ K ⊂ R
n is a vector with coordinates ki = ±1. The number of such vectors and vertices

is 2n; the set K contains all such vectors k. Let us arrange the set K =
{

k1, . . . , k2n
}

assuming
that k1 = [1; . . . ; 1]. This box will contain the original compact set: Π ⊃ M .

We introduce an orthogonal matrix T = [l1, . . . , ln] and perform an orthogonal transformation
to new coordinates y = T ′x. In the new coordinates, the set M becomes M∗ = T ′M , and the box
Π becomes the box Π∗ = T ′Π with center c∗ = T ′c and edges parallel to the coordinate axes. We
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have l′1p = l′1Tp = [1, 0, . . . , 0]p∗ = p∗1 > ρ(l1) by the condition. We build an ellipsoid with the
center c∗ through the vertices of the box A∗

k and axes parallel to the coordinate axes, consisting of
vectors of the form c∗ + y, where the coordinates of the vector y satisfy the equation

n
∑

i=1

y2i /b
2
i = 1. (3.3)

Denote by ai = (ρ(li)+ρ(−li))/2 the box semiaxes. Let us choose the parameters bi of the ellipsoid
so that

n
∑

i=1

a2i /b
2
i = 1, ρ(l1) < b1 + c∗1 < p∗1. (3.4)

Since ρ(l1)− c∗1 = a1 < b1, the other bi can be taken equal to ai + t, i ∈ 2 : n, where t can be found
from the equation

n
∑

i=2

a2i /(ai + t)2 = 1− a21/b
2
1. (3.5)

The obtained ellipsoid E∗ with conditions (3.3), (3.4), and (3.5) is such that E∗ ⊃ Π∗ ⊃ M∗

and p∗ /∈ E∗. We obtain the desired ellipsoid with the properties E(Q, c) ⊃ Π ⊃ M and
p /∈ E(Q, c) by performing the inverse transformation x = Ty. Here, the matrix Q = TΛT ′ and
Λ = diag(1/b1, . . . , 1/bn). �

Remark 1. If the set M is centrally symmetric, then c = 0.

Theorem 2. Let X0 be a centrally symmetric set. Then the set X (T, y) is an intersection

X (T, y) =
⋂

P0∈P0, α

X(T, y, P0, α),

where P0 is a set of symmetric positive matrices P0 such that E(P0, 0) ⊃ X0.

P r o o f. We construct the proof by contradiction. Consider the inclusion

X (T, y) ⊃
⋂

P0∈P0,α

X(T, y, P0, α).

Let
x∗ ∈

⋂

P0∈P0,α

X(T, y, P0, α),

but x∗ /∈ X (T, y). Then either x∗ /∈ X(T, y, 0, 0) or x∗ /∈ X(T, 0)X0. The first is impossible, since
X(T, y, 0, 0) is among X(T, y, P0, α) when the parameters P0 = 0 and α = 0 are chosen. Consider
the second possibility. If x∗ /∈ X(T, 0)X0 is true, then x0 = X(0, T )x∗ /∈ X0. By Lemma 2 and
Remark 1, there exists an ellipsoid E(Q, 0) containing X0 but not containing x0. There is also a
parameter α such that x∗ /∈ X(T, y,Q, α).

We get a contradiction, since the set includes only vectors x∗, for which x′0Qx0 6 1 and
x∗ ∈ X(T, y, 0, 0). The embedding

⋂

P0∈P0,α

X(T, y, P0, α) ⊃ X (T, y)

is obvious. �
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4. Numerical examples

4.1. Double integrator

Consider the one-dimensional equations of motion of a material point

ẋ1 = x2, ẋ2 = 0.

The set of possible initial states is a square:

X0 = {x0 : |x
1
0| 6 1, |x20| 6 1}.

The measurement y(t) are related to the state vector via the observation equation

y = x1 +w(t),

where w(t) is the measurement noise satisfying the integral constraint

∫ T

0
w2(t)dt 6 1.

Figure 1. The set of possible initial states (black dashed line) and its approximation by external ellipses
(pink fill).

Fig. 1 shows the approximation of the set of possible initial states by the intersection of a
one-parameter family of ellipsoids with diagonal matrices P0 = [a, 0; 0, 1−a], where a ∈ (0, 1). The
intersection of the family of ellipses does not perfectly approximate the set of initial states, which is
a square; to avoid this, one should use degenerate ellipsoids. Then, each ellipse {x | x′P0x 6 1} will
contain the square of initial states X0, and their intersection will give an external approximation.

The parameters here are G = [1, 0], A = [0, 1; 0, 0], and T = 2. For illustration, let us choose
the signal generated by the admissible function w(t) = 0.8 cos(t) and the admissible initial state
x0 = [1;−1]/2. Fig. 2 shows an approximation of the IS by a set of ellipsoids. The approximation
of the IS (the white area on the left side of Fig. 2) coincides with the exact IS (the pink area on
the right side of Fig. 2). The exact IS is obtained by the intersection of the reachable set at the
terminal time (the black dashed line) and the IS without constraints on the initial state (the red
dashed line).
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Figure 2. Double integrator. Approximation of the IS (on the left side) and the exact IS (on the right side).
The red dot is the true state, the black dashed line is the reachable set at the terminal time (T = 2), and
the red dashed line is the IS without constrains on the initial state.

4.2. Mathematical pendulum

Consider the equation
ẋ1 = x2, ẋ2 = −25x1.

The set of possible initial states is a circle: X0 = {x0 : |x0| 6 1}. The measurement equation is
given by

y = x1 + 0.8 cos(t),

where w(t) is the measurement noise, for which

∫ T

0
|y(t)− x1(t)|2dt 6 1

holds. The parameters here are G = [1, 0], A = [0, 1;−25, 0], and T = 2. The implementation of
disturbances and the initial state coincide with those in the previous example: w(t) = 0.8 cos(t)
and x0 = [1; 1]/2.

4.3. Double integrator II

Consider a one-dimensional motion of a material point under disturbances w1(t) [2]:

ẋ1 = x2, ẋ2 = w1(t), 0 6 t 6 T.

Let the disturbances w1 also affect the measurement equation y(t) = x1(t) + w1(t) + w2(t), where
w2 is the measurement noise. Unfortunately, the calculation in [2] is inaccurate. Therefore, we
need perform a new one. Define w1 −w2 by z(t). Since w1 +w2 = y − x1, we obtain the following
equations:

ẋ1 = x2, ẋ2 =
(

y − x1 + z(t)
)

/2. (4.1)

The vector-valued function w(t) subjects to the integral constraint (2.2) with

R = I2, V = R
2, X0 =

{

x ∈ R
2 | |x10| 6 1, |x20| 6 1

}

,
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Figure 3. Mathematical pendulum. Approximation of the IS (left) and the exact IS (right). The red dot is
the true state, the black dashed line is the reachable set at the terminal time (T = 2), and the red dashed
line is the IS without constrains on the initial state.

i.e., this is the case of the absence of geometric constraints on w(t). Since

(w1 + w2)2 + z2 = 2|w|2,

inequality (2.2) takes the form

J(T, xT , v, y) =

∫ T

0

(

∣

∣y(t)− x1(t)
∣

∣

2
+ z2(t)

)

dt/2 6 1. (4.2)

The constraints on initial states are the same as in the first example: a square is approximated
by a one-parameter family of ellipses with diagonal matrices P0 = [a, 0; 0, 1 − a], where a ∈ (0, 1).
Then, each ellipse {x | x′P0x 6 1} contains the square of initial states X0. Let is choose one more
parameter α ∈ (0, 1) and consider the constraints

(1− α)|x0|
2
P0

+ αJ(T, xT , v, y) < 1, (4.3)

where J is defined in (4.2). The IS X
a,α
T (y) for (4.1) under constrains (4.3) will contain the original

IS XT (y) for any signal in the original system. We will use relations (3.2). Then, we have

X
a,α
T (y) =

{

xT | |xT − x̂(T )|2P (T ) + h(T ) < 1
}

,

Ṗ = −P (t)Ã− Ã′P (t) + αG′G/2 − P (t)bC1b
′P (t)/α, P (0) = (1− α)P0;

˙̂x(t) = Ax̂(t) + α
(

bc′ + P−1(t)G′
)

(y(t)− x̂1(t))/2,

ḣ(t) = α
∣

∣y(t)− x̂1(t)
∣

∣

2
/2.

The parameters here are the same as in [2]: b = [0, 0; 1, 0], c = [1, 1], G = [1, 0], C = 1/2,
C1 = [1,−1;−1, 1]/2, and Ã = [0, 1;−0.5, 0]. We take the signal generated by the admissible
functions w1(t) = 0.8 cos(t) and w2(t) = 0.8 sin(t) and the admissible initial state x0 = [1;−1]/2.

5. Conclusion

The problem of estimating the state vector for a linear autonomous system under uncertainty
has been solved. For such systems, the IS can be obtained as an intersection of ellipsoids. The third
example shows that this can be also true for systems with disturbances in the dynamics equation.
The issue will be considered in subsequent works.



Set Membership Estimation 167

Figure 4. Double integrator II. The red dot is the true state at time T = 3.
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Abstract: For the multidimensional heat equation, the long-time asymptotic approximation of the solution
of the Cauchy problem is obtained in the case when the initial function grows at infinity and contains loga-
rithms in its asymptotics. In addition to natural applications to processes of heat conduction and diffusion,
the investigation of the asymptotic behavior of the solution of the problem under consideration is of interest for
the asymptotic analysis of equations of parabolic type. The auxiliary parameter method plays a decisive role
in the investigation.
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1. Introduction

In 1822, J. Fourier published his most fundamental work [4], where the heat conduction equation
was presented and analyzed. This event provided a strong impetus for later researches in the fields
of partial differential equations and trigonometric series. The famous equation has been further
successfully used for effective descriptions of molecular diffusion, stochastic motion, the capillary
conduction of liquids in porous media, and even for the analysis of social economic data. Already
Fourier himself pointed out the universality of this mathematical model sine qua non in his eminent
book as follows: “Il est facile de juger combien ces recherches intéressent les sciences physiques et
l’économie civile, et quelle peut être leur influence sur les progrès des arts qui exigent l’emploi
et la distribution du feu.”2 Fourier’s preliminary theoretical studying of heat phenomena and
some vivid particulars of his elaborations in early 1800s are expressively reflected in the prefatory
part of [4]. The historical survey [10] supplied with appropriate general and specialized references
depicts many significant details of the subsequent life of the heat equation during the XIX and XX
centuries.

Since the literature about the heat equation, in particular, and parabolic equations, in general,
is immense, it is impossible in this introduction to give a complete picture of available results, and
the bibliography below is of course by no means exhaustive. Here, we mention that existence and
uniqueness theorems were obtained for a wide class of parabolic equations and systems [6, 15, 18, 19];
some results for unbounded solutions were presented in [11, 13]. As for the long-time behavior
of solutions, we see that their stabilization, certain estimates, and the leading terms of asymptotics

1Dedicated to the 200th anniversary of Charles Hermite and “Théorie analytique de la chaleur” by
Joseph Fourier.

2“It is easy to judge how much these researches are interesting for the physical sciences and the civil
economy and what may be their influence on the progress of the arts which require the employment and the
distribution of fire.”

https://doi.org/10.15826/umj.2021.1.013
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were mainly considered [2, 8, 12, 17]. Complete asymptotic expansions of solutions into infinite
series in inverse integer powers of the time variable were earlier obtained by Friedman in [5] and [6,
Ch. 6] for bounded space-domains.

In the present paper, the long-time asymptotics of the solution of the Cauchy problem for the
multidimensional heat equation

∂u

∂t
=

∂2u

∂x21
+ . . .+

∂2u

∂x2m
, t > 0, m > 2, (1.1)

u(x1, . . . , xm, 0) = Λ(x1, . . . , xm), (x1, . . . , xm) ∈ R
m, (1.2)

is obtained for a locally Lebesgue integrable initial function Λ : Rm → R of polynomial growth.
As is well known [18], in the class of smooth functions of moderate growth for t > 0, there exists
a unique solution of problem (1.1)–(1.2) and it can be written in the form of the Poisson integral3

u(x, t) =
1

(4πt)m/2

∫

Rm

Λ(s) exp
(
− |s− x|2

4t

)
ds, (1.3)

where x = (x1, . . . , xm) ∈ R
m, s = (s1, . . . , sm) ∈ R

m, and ds = ds1 . . . dsm.
It should be noted that the investigation of the asymptotic behavior of the function u(x, t),

in addition to possible natural applications to the modeling of physical processes of heat conduction
and diffusion, may be of interest for the asymptotic analysis of solutions of nonlinear parabolic
equations by the matching method [9, 21] as well as for the theory of invariants [7] and some issues
of matrix geometry [14].

Below, a complete asymptotic expansion of the solution u(x, t) of problem (1.1)–(1.2) is found
as |x|+ t → +∞ under the following suppositions:

Λ(x1, . . . , xm) = 0, x1 < 0, (1.4)

Λ(x1, . . . , xm) = xp1

∞∑

n=0

x−n
1

n∑

j=0

Λn,j(x
′) lnj x1, x1 → +∞, (1.5)

where p is a positive integer and Λn,j(x
′) are Lebesgue integrable functions of x′ = (x2, . . . , xm);

for simplicity, we also suppose that

suppΛ ⊂
{
(x1, . . . , xm) : x1 > 0, |x2|+ . . .+ |xm| < xν1

}
, ν > 0,

suppΛn,j ⊂
{
(x2, . . . , xm) : |x2|+ . . .+ |xm| < rn

}
, rn > 0.

(1.6)

Although Λ is a function of several variables, the asymptotic series (1.5) must be understood here
in the usual sense of Poincaré [16, § 1] due to the second condition (1.6), that is

Λ(x1, . . . , xm) =

N−1∑

n=0

xp−n
1

n∑

j=0

Λn,j(x
′) lnj x1 +O

(
xp−N
1 lnN x1

)
, x1 → +∞, (1.7)

for any integer N > 1. It should be also said that the appearance of asymptotic series of form (1.5)
is typical for the matching method [9].

The main difficulty of the calculation of the asymptotic expansion of integral (1.3) is exactly
due to condition (1.5) and the “smearing” of the integrand exponent as t → +∞; if we formally
put t = +∞, then we generally get the divergence of the integral. Thus, the asymptotic limit under
consideration is diametrically opposite to the well-known case of the integrals of Laplace’s type
with the sharpening exponent and a suitable computational technique suggested by Danilin in [1]
is therefore complementary to the standard Laplace method. This technique is called the auxiliary
parameter method.

3In essence, this solution was given by Fourier [4, Ch. IX, §392].
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2. Applying the auxiliary parameter method

To obtain the asymptotic behavior of integral (1.3) as the space-time variables (x, t) indepen-
dently tend to infinity, we apply a scheme similar to that used in [20] for the solution of the heat
equation in R

1
x × R

+
t . First of all, taking into account condition (1.4), we represent function (1.3)

in the form of the sum
u(x, t) = U0(x, t) + U1(x, t), (2.1)

where

U0(x, t) =

σ(x,t)∫

0

∫

Rm−1

. . . ds′ds1, U1(x, t) =

+∞∫

σ(x,t)

∫

Rm−1

. . . ds′ds1,

σ(x, t) =
(
|x|2 + t

)β/2
, 0 < β < 1, (2.2)

the dots denote the integrand in formula (1.3) together with the factor (4πt)−m/2, the number β
is an arbitrary parameter, and ds′ = ds2 . . . dsm. Under conditions (1.4) and (1.5), the asymptotics
of the integrals U0(x, t) and U1(x, t) can be computed by using the expansions of the kernel exponent
and the initial function Λ, respectively.

2.1. Asymptotics of U1(x, t)

In the integral U1(x, t), we make the change s1 = 2z
√
t and put

µ(x, t) =
σ(x, t)

2
√
t

, η1 =
x1

2
√
t
. (2.3)

Next, using condition (1.5), for any integer N > p + 1, we obtain (hereinafter we often omit
the arguments of σ and µ)

U1(x, t) =
1

πm/2(4t)(m−1)/2

+∞∫

µ

exp
(
−(η1 − z)2

) ∫

Rm−1

Λ(2z
√
t, s′) exp

(
−|s′ − x′|2

4t

)
ds′dz

=
tp/2√
π

N−1∑

n=0

2p−nt−n/2
n∑

j=0

+∞∫

µ

zp−n lnj(2z
√
t) exp

(
−(z − η1)

2
)
dz

× 1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
−|s′ − x′|2

4t

)
ds′ +R(x, t),

where

|R(x, t)| 6 MN√
t

+∞∫

σ

sp−N
1 lnN s1 exp

(
−(s1 − x1)

2

4t

)
ds1, MN > 0,

by formula (1.7). Then, for N > p+ 1, we have

U1(x, t) =
tp/2√
π

N−1∑

n=0

2p−nt−n/2
n∑

j=0

j∑

l=0

j! lnl t

2ll!(j − l)!

+∞∫

µ

zp−n lnj−l(2z) exp
(
−(z − η1)

2
)
dz

× 1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
−|s′ − x′|2

4t

)
ds′ +O

(
σp−N lnN σ

)
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as σ = σ(x, t) → +∞. Changing the order of summation, we find

U1(x, t) = tp/2
N−1∑

n=0

t−n/2
n∑

l=0

lnl t

n∑

j=l

j! 2p−n−l

√
π l!(j − l)!

+∞∫

µ

zp−n lnj−l(2z) exp
(
−(z − η1)

2
)
dz

× 1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
−|s′ − x′|2

4t

)
ds′ +O

(
σp−N lnN σ

)
, σ → +∞.

(2.4)

To handle the integral with respect to z, it is convenient to consider first the following set of inde-
pendent variables:

Tα =
{
(x, t) : x ∈ R

m, t > |x|α > 1, 1 + β < α < 2
}
. (2.5)

The obvious inequalities

σ(x, t) 6 (t2/α + t)β/2 < 2β/2tβ/α

for (x, t) ∈ Tα imply that

t > 2−α/2[σ(x, t)]α/β for (x, t) ∈ Tα; (2.6)

therefore, on account of the first definition (2.3), we obtain

0 < µ(x, t) < 2α/4−1[σ(x, t)]−γ for (x, t) ∈ Tα, where γ =
α

2β
− 1 > 0. (2.7)

For 0 6 n 6 p, we have

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz =

+∞∫

0

zp−n lnj−l(2z) e−(z−η1)2dz −
µ∫

0

zp−n lnj−l(2z) e−(z−η1)2dz

=

+∞∫

−η1

(η1 + s)p−n lnj−l(2(η1 + s)) e−s2ds−
µ∫

0

zp−n lnj−l(2z) e−(z−η1)2dz.

Since by (2.7) µ → +0 as σ → +∞ for (x, t) ∈ Tα, it follows that

+∞∫

µ

zp−n lnj−l(2z)e−(z−η1)2dz =

p−n∑

q=0

(p − n)! ηp−n−q
1

q!(p − n− q)!

+∞∫

−η1

sq lnj−l[2(η1 + s)]e−s2 ds

+ e−η2
1

∑

s: r2s+l2s 6=0

b′sη
ns

1 µrs lnls µ+O
(
σ−γN

)
, σ → +∞,

(2.8)

where the finite sum over s with b′s being some constants and ns, rs, ls being some nonnegative
integers depends naturally on N . For n > p, we have

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz =

+∞∫

1

zp−n lnj−l(2z) e−(z−η1)2dz

+

1∫

µ

lnj−l(2z)Ψn−p(z, η1)dz + e−η2
1

n−p−1∑

r=0

Pr(η1)

1∫

µ

lnj−l(2z)zr+p−ndz,
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where Pr(η1) are some polynomials of degree r,

Ψn−p(z, η1) = zp−n

[
e−(z−η1)2 − e−η2

1

n−p−1∑

r=0

Hr(η1)
zr

r!

]
, (2.9)

and the sum in the square brackets is a partial sum of the Maclaurin series for the function
exp(2zη1 − z2) in variable z with Hr(η1) being the Hermite polynomials of degree r. This implies
the equality

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz

=

+∞∫

1

zp−n lnj−l(2z) e−(z−η1)2dz + e−η2
1

∑

s: r2s+l2s 6=0

b′′s η
ns

1 µrs lnls µ

+

1∫

0

lnj−l(2z)Ψn−p(z, η1)dz −
µ∫

0

lnj−l(2z)Ψn−p(z, η1)dz

(2.10)

with b′′s being some constants and ns, rs, ls being some nonnegative integers. From formula (2.9)
we easily conclude that the function Ψn−p(z, η1) has no singularities as z → 0; therefore, the last
two integrals in (2.10) converge and relation (2.10) itself thus becomes

+∞∫

µ

zp−n lnj−l(2z) e−(z−η1)2dz = Jp,n,j,l(η1) + e−η2
1

∑

s: r2s+l2s 6=0

b′′′s ηns

1 µrs lnls µ + O
(
σ−γN

)
(2.11)

as σ → +∞, where

Jp,n,j,l(η1) =

+∞∫

1

zp−n lnj−l(2z) e−(z−η1)2dz +

1∫

0

lnj−l(2z)Ψn−p(z, η1)dz, (2.12)

b′′′s are some constants, ns, rs, ls are some nonnegative integers, and γ is defined in (2.7).

Using the second condition (1.6) and Maclaurin’s expansion for the exponent in the integrand
of (2.4) in s′t−1/2, for any natural N∗ > 1, we obtain

1

(4πt)(m−1)/2

∫

Rm−1

Λn,j(s
′) exp

(
− |s′ − x′|2

4t

)
ds′

= t(1−m)/2 exp
(
−|η′|2

) [N∗−1∑

l=0

t−l/2Q
(n,j)
l (η′) +O

(
t−N∗/2|η′|N∗

)]
,

(2.13)

where Q
(n,j)
l (η′) are some lth degree polynomials in η′ = 2−1t−1/2x′ whose coefficients depend on n

and j. Substituting expressions (2.8), (2.11), and (2.13) into formula (2.4) and taking into account
that σ−(γ+α/2β)N = O(σ−N ), since γ + α/2β = α/β − 1 > 1, we find that

U1(x, t) = t(p−m+1)/2
N−1∑

n=0

t−n/2
n∑

l=0

S̃n,l(η) ln
l t+ V1,N (µ, η, t) +O

(
σp−N lnN σ

)
(2.14)
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as σ → +∞, where, according to formulas (2.9) and (2.12), the coefficients S̃n,l(η) are some smooth
functions of polynomial growth for 0 6 n 6 p and of superexponential decreasing for n > p,

V1,N (µ, η, t) = exp
(
−|η|2

) ∑

s: r2s+l2s 6=0

a′s t
ksηnsµrs lnls µ (2.15)

is a finite sum with ηns = η
n1,s

1 . . . η
nm,s
m , a′s being some real constants, ks being half-integer numbers,

and nj,s, rs, ls being some nonnegative integers. Because of the factor exp(−|η|2), the estimate
of the remainder in formula (2.14) remains true for the values of the independent variables from
the set

Xα =
{
(x, t) : |x| > 1, 0 < t < |x|α

}
, (2.16)

since for (x, t) ∈ Xα there hold the following inequalities:

µ2 =
(|x|2 + t)β

4t
< 2|η|2|x|−2(1−β), |η|2 >

1

4
|x|2−α >

1

8
σ(2−α)/β . (2.17)

2.2. Asymptotics of U0(x, t)

Now, let us pass to the evaluation of the integral

U0(x, t) =
1

(4πt)m/2

σ(x,t)∫

0

ds1

∫

Rm−1

ds′Λ(s1, s
′) exp

(
− |s− x|2

4t

)
ds.

From the obvious inequality |x|2 6 [σ(x, t)]2/β and inequality (2.6) we conclude that

|s|2
t

= O(σ−2δ),
xksk
t

=
2ηksk√

t
= O(σ−δ), δ =

α− 1

β
− 1 > 0, (2.18)

for |s| 6 σ and (x, t) ∈ Tα, where 1 6 k 6 m. Then, using conditions (1.6), (1.7) and esti-
mates (2.18), we represent the integral U0(x, t) in the following form:

U0(x, t) =
exp(−|η|2)
(4πt)m/2

[ σ∫

0

∫

Rm−1

Λ(s1, s
′)

N−1∑

q=0

1

q!

(
η1s1 + . . .+ ηmsm√

t
− |s|2

4t

)q

ds′ds1+ O
(
σp+1−δN

)]

as σ → +∞ with any N > 1. Because of the factor exp(−|η|2), the estimate of the remainder
holds also true on the set Xα defined by (2.16). Expanding the parenthesis in the above formula
for U0(x, t) and changing the order of summation, we obtain

U0(x, t) =
exp(−|η|2)

tm/2

N−1∑

n=0

t−n/2
∑

06k1+...+km6n
06l1+l2,2+...+l2,m6n

ak,l η
k

σ∫

0

∫

Rm−1

sl11 (s
′)l2Λ(s1, s

′)ds′ds1

+O
(exp(−|η|2)

tm/2
σp+1−δN

)

as σ → +∞, where ak,l = ak1,...,km,l1,l2,2,...,l2,m are some constants, ηk = ηk11 . . . ηkmm ,

and (s′)l2 = s
l2,2
2 . . . s

l2,m
m . Keeping in mind the asymptotic condition (1.7), we transform the mul-

tiple integral appeared above as follows:

σ∫

0

∫

Rm−1

sl11 (s
′)l2Λ(s1, s

′) ds′ds1 =

1∫

0

∫

Rm−1

sl11 (s
′)l2Λ(s1, s

′) ds′ds1
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+

σ∫

1

∫

Rm−1

sl11 (s
′)l2

[
Λ(s1, s

′)−
p+l1+1∑

q=0

sp−q
1

q∑

j=0

Λq,j(s
′) lnj s1

]
ds′ds1

+

σ∫

1

∫

Rm−1

[
(s′)l2

p+l1+1∑

q=0

sp−q+l1
1

q∑

j=0

Λq,j(s
′) lnj s1

]
ds′ds1

=

p+l1+1∑

j=0

cl1,l2,j lnj+1 σ +
∑

i,j: i 6=0

c∗l1,l2,i,j σ
i lnj σ +O

(
σ−N∗

lnN
∗

σ
)
, σ → +∞,

with cl1,l2,j and c∗l1,l2,i,j being some constants, where the finite sum over i, j depends naturally
on a sufficiently large N∗; here we used the elementary relation

σ∫

1

sk1 ln
j s1ds1 = σk+1

j−1∑

l=0

(−1)lj! lnj−l σ

(k + 1)l+1(j − l)!
+ (σk+1 − 1)

(−1)jj!

(k + 1)j+1
(k > 0, j > 1).

From formulas (2.3), inequality (2.6), the uniform estimate

t−m/2ηn exp
(
−|η|2

)
= O

(
σ−αm/2β

)
,

and the previous asymptotic expression for U0(x, t), it follows that

U0(x, t) =
exp

(
−|η|2

)

tm/2

N−1∑

n=0

t−n/2
p+n+2∑

j=0

Πn,j(η) ln
j t+ V0,N (µ, η, t) +O

(
σp+1−δN

)
(2.19)

as σ → +∞, where δ is defined in (2.18), Πn,j(η) are some polynomials of degree n, and the finite
sum

V0,N (µ, η, t) = exp
(
−|η|2

) ∑

s: r2s+l2s 6=0

a′′s t
ksηnsµrs lnls µ, (2.20)

with a′′s being some constants, is obtained similarly to expression (2.15).

2.3. Evaluation of the “virtual terms”

In the sequel, it is convenient to suppose that 1 + β < α < 1 + 2β, whence we find the in-
equalities 0 < δ = (α− 1)/β − 1 < 1 and the asymptotic estimate σp−N lnN σ = O

(
σp+1−δN

)

as σ → +∞. Then substituting expansions (2.14) and (2.19) into formula (2.1), we summarize
the results of the previous two subsections as follows.

Lemma 1. For the solution of the Cauchy problem (1.1)–(1.2), the asymptotic formula

u(x, t) = t−m/2
N−1∑

n=0

t−n/2

[ n∑

l=0

t(p+1)/2S̃n,l(η) ln
l t+

p+n+2∑

j=0

Πn,j(η) exp
(
−|η|2

)
lnj t

]

+V0,N (µ, η, t) + V1,N (µ, η, t) +O
(
σp+1−δN

)
(2.21)

holds true as σ → +∞, where N > p + 1, S̃n,j(η) are smooth functions of polynomial growth,
Πn,j(η) are nth degree polynomials, and the functions V0,N (µ, η, t) and V1,N (µ, η, t) are defined by
expressions (2.15) and (2.20).
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Now we must evaluate the “virtual terms” that depend on the value
µ(x, t) = 2−1t−1/2(|x|2 + t)β/2 with the arbitrary parameter β.

From inequalities (2.17), we conclude that, for (x, t) ∈ Xα, any integer numbers ns,j, rs, ls, and
half-integer number ks, there exist C > 0 and q > 0 such that

∣∣tksηns,j

j µrs lnls µ
∣∣ exp

(
−|η|2

)
6 Cσq exp

(
− 8−1σ(2−α)/β

)
.

Consequently, the expressions V0,N (µ, η, t) and V1,N (µ, η, t) in formulas (2.14) and (2.19) are expo-
nentially small for (x, t) ∈ Xα, since α < 2 by (2.5).

For (x, t) ∈ Tα, we introduce a small quantity ε = (|x|2 + t)−1/4; whence, according to (2.2) and
(2.3), we easily get the relations

σ = ε−2β , µ = 2−1t−1/2ε−2β . (2.22)

Then, by formulas (2.15), (2.20), and (2.22), we have

V0,N (µ, η, t) + V1,N (µ, η, t) = exp
(
−|η|2

) L(N)∑

s=1

a′′′s tks lnk
′

s t ηnsε−2βrs lnls ε2β, (2.23)

where ε → +0 as |x|2 + t → +∞, L(N) ∈ N, a′′′s are some constants, ηns = η
ns,1

1 . . . η
ns,m
m , ks

are half-integer numbers, k′s, ns,j, rs, ls, are nonnegative integers such that r2s + l2s 6= 0, and β is
an arbitrary parameter, without loss of generality, such that 0 < β1 6 β 6 β2 < 1, where β1 < β2.

By virtue of the arbitrariness of the value β, from formulas (2.21) and (2.23) with β = β1
and β = β2 such that all numbers 2β1r1, . . . , 2β1rL(N), 2β2r1, . . . , 2β2rL(N) are pairwise distinct,
we obtain the following asymptotic relation with r2s + l2s 6= 0:

exp
(
−|η|2

) L(N)∑

s=1

a′′′s tks lnk
′

s t ηns

(
ε−2β1rs lnls ε2β1 − ε−2β2rs lnls ε2β2

)
= O

(
ε2(α−1−β1)N−2β1(p+1)

)

as ε → +0. Consequently, taking into account the finiteness of the sum in the left-hand side,
we have to conclude about every particular term in the left-hand side that either its order is not
greater than the estimate in the right-hand side or the corresponding coefficient a′′′s is equal to zero.
Thus, we arrive at the following statement with β = β1.

Lemma 2. For some β ∈ (0, 1) and α ∈ (1 + β, 1 + 2β), the asymptotic estimate

V0,N (µ, η, t) + V1,N (µ, η, t) = O
(
(|x|2 + t)−(α−1−β)N/2+β(p+1)/2

)
(2.24)

holds true as |x|2 + t → +∞.

3. Asymptotics of the solution

Immediately from Lemmas 1 and 2, we obtain our main result.

Theorem 1. Let u : Rm × R
+ → R be the solution of the Cauchy problem

∂u

∂t
=

∂2u

∂x21
+ . . .+

∂2u

∂x2m
, t > 0, m > 2,

u(x1, . . . , xm, 0) = Λ(x1, . . . , xm), (x1, . . . , xm) ∈ R
m,
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with a locally Lebesgue integrable initial function Λ : Rm → R. And let the following conditions
be fulfilled :

Λ(x1, . . . , xm) = 0 for x1 < 0,

Λ(x1, . . . , xm) = xp1

∞∑

n=0

x−n
1

n∑

j=0

Λn,j(x2, . . . , xm) lnj x1 as x1 → +∞,

where p is a positive integer,

suppΛ ⊂
{
(x1, . . . , xm) : x1 > 0, |x2|+ . . .+ |xm| < xν1

}
, ν > 0,

suppΛn,j ⊂
{
(x2, . . . , xm) : |x2|+ . . .+ |xm| < rn

}
, rn > 0.

Then there holds the asymptotic formula

u(x1, . . . , xm, t)=t−m/2
∞∑

n=0

t−n/2
p+n+2∑

j=0

lnj t
[
t(p+1)/2Sn,j(η1, . . . , ηm)+Πn,j(η1, . . . , ηm) exp

(
−|η|2

) ]

as |x1| + . . . + |xm| + t → +∞, where Sn,j(η1, . . . , ηm) are smooth functions of polynomial growth
and Πn,j(η1, . . . , ηm) are nth degree polynomials in the self-similar variables

η1 =
x1

2
√
t
, . . . , ηm =

xm

2
√
t
.

4. Conclusion

According to formulas (2.14), (2.19), and (2.24), the obtained expansion of the solution in
Theorem 1 is understood in the sense of Erdélyi [3, Definition 2.4] with the gauge (asymptotic)
sequence

{
(|x|2 + t)−ρN

}∞

N=1
, where ρ > 0, that is

u(x, t) =

N−1∑

n=0

t−(m+n)/2
p+n+2∑

j=0

lnj t

[
t(p+1)/2Sn,j

( x

2
√
t

)
+Πn,j

( x

2
√
t

)
exp

(
− |x|2

4t

)]

+O
(
(|x|2 + t)−ρN

)

for each N > p + 1 as |x|2 + t → +∞. In general, the exact formulas for Sn,j(η) and Πn,j(η) are
fairly cumbersome; however, by using the above proofs, one can derive them in particular cases.
Note that, as shown by earlier investigations, asymptotic expansions in half-integer powers of t are
naturally intrinsic to solutions of the heat equation, see, for example, [19, Ch.X, §1] and [20].

In conclusion, following Poincaré’s thesis “sans généralisation, la prévision est impossible”4 (see
his “La Science et l’Hypothèse”, Ch. IX), it is appropriate to say that the immense variety of asymp-
totics of initial data together with the account of possible external sources of heat opens a wide
field of further investigation of the long-time behavior of heat distribution by the above-presented
method; in addition, other types of equations whose solutions have the form of convolutions can
also be treated in a similar way.
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