
 



 URAL MATHEMATICAL JOURNAL 

 

 

Ural Mathematical Journal  

ISSN 2414-3952 

(Online) 

 

 

Vol. 5, no. 2, 2019 https://umjuran.ru 

 

Electronic Periodical Scientific Journal 

Founded in 2015 

The Journal is registered by the Federal Service for Supervision in the Sphere of 

Communication, Information Technologies and Mass Communications  

Certificate of Registration of the Mass Media Эл № ФС77-61719 of 07.05.2015  

Founders 

N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural 

Branch of Russian Academy of Sciences  

Ural Federal University named after the first President of Russia 
B.N. Yeltsin 

Contact Information 

16 S. Kovalevskaya str., Ekaterinburg, Russia, 620990 

Phone: +7 (343) 375-34-73    Fax: +7 (343) 374-25-81 
Email: secretary@umjuran.ru 

Web-site: https://umjuran.ru 

 EDITORIAL TEAM 

 EDITOR-IN-CHIEF 

Vitalii I. Berdyshev, Academician of RAS, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 

Ekaterinburg, Russia  

 DEPUTY CHIEF EDITORS 

Vitalii V. Arestov, Ural Federal University, Ekaterinburg, Russia 

Nikolai Yu. Antonov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 
Vladislav V. Kabanov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

 SCIETIFIC EDITORS 

Tatiana F. Filippova, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Vladimir G. Pimenov, Ural Federal University, Ekaterinburg, Russia 

 EDITORIAL COUNCIL 

Alexander G. Chentsov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 
Alexander A. Makhnev, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Irina V. Melnikova, Ural Federal University, Ekaterinburg, Russia 

Fernando Manuel Ferreira Lobo Pereira, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal 
Stefan W. Pickl, University of the Federal Armed Forces, Munich, Germany 

Szilárd G. Révész, Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences, Budapest, Hungary 

Lev B. Ryashko, Ural Federal University, Ekaterinburg, Russia 
Arseny M. Shur, Ural Federal University, Ekaterinburg, Russia 

Vladimir N. Ushakov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Vladimir V. Vasin, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 
Mikhail V. Volkov, Ural Federal University, Ekaterinburg, Russia 

 EDITORIAL BOARD 

Elena N. Akimova, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Alexander G. Babenko, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Vitalii A. Baranskii, Ural Federal University, Ekaterinburg, Russia 
Elena E. Berdysheva, Department of Mathematics, Justus Liebig University, Giessen, Germany 

Alexey R. Danilin, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 
Yuri F. Dolgii, Ural Federal University, Ekaterinburg, Russia 

Vakif Dzhafarov (Cafer), Department of Mathematics, Anadolu University, Eskişehir, Turkey 

Polina Yu. Glazyrina, Ural Federal University, Ekaterinburg, Russia 
Mikhail I. Gusev, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Éva Gyurkovics, Department of Differential Equations, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary 

Marc Jungers, National Center for Scientific Research (CNRS), CRAN, Nancy and Université de Lorraine, CRAN, Nancy, France 
Mikhail Yu. Khachay, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Anatolii F. Kleimenov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Anatoly S. Kondratiev, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 
Vyacheslav I. Maksimov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Dmitrii A. Serkov, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

Alexander N. Sesekin, Ural Federal University, Ekaterinburg, Russia 
Alexander M. Tarasyev, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

 MANAGING EDITOR 

Oxana G. Matviychuk, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia 

 TECHNICAL ADVISOR 

Alexey N. Borbunov, Ural Federal University, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 

Ekaterinburg, Russia 

 

https://umjuran.ru/
mailto:secretary@umjuran.ru
https://umjuran.ru/
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/38')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/76')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/75')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/2')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/83')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/88')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/9')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/37')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/95')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/169')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/167')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/102')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/96')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/98')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/35')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/36')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/94')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/87')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/26')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/92')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/101')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/29')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/93')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/168')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/91')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/28')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/164')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/165')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/77')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/32')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/5')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/33')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/78')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/97')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/79')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/64')
javascript:openRTWindow('https://umjuran.ru/index.php/umj/about/editorialTeamBio/15')


URAL MATHEMATICAL JOURNAL, Vol. 5, No. 2, 2019

TABLE OF CONTENTS

Nikolai I. Chernykh

INTERPOLATING WAVELETS ON THE SPHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12

Yurii F. Dolgii, Alexander N. Sesekin, Ilya G. Chupin

IMPULSE CONTROL OF THE MANIPULATION ROBOT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13–20

Tatiana F. Filippova

CONTROL AND ESTIMATION FOR A CLASS OF IMPULSIVE DYNAMICAL

SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21–30

Akram Lbekkouri

LOCAL EXTENSIONS WITH IMPERFECT RESIDUE FIELD. . . . . . . . . . . . . . . . . . . . . . . . . . . 31–54

A.P. Santhakumaran, K. Ganesamoorthy

RESTRAINED DOUBLE MONOPHONIC NUMBER OF A GRAPH . . . . . . . . . . . . . . . . . . . . . 55–63
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INTERPOLATING WAVELETS ON THE SPHERE1

Nikolai I. Chernykh

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,
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Abstract: There are several works where bases of wavelets on the sphere (mainly orthogonal and wavelet-like
bases) were constructed. In all such constructions, the authors seek to preserve the most important properties
of classical wavelets including constructions on the basis of the lifting-scheme. In the present paper, we propose
one more construction of wavelets on the sphere. Although two of three systems of wavelets constructed in
this paper are orthogonal, we are more interested in their interpolation properties. Our main idea consists in a
special double expansion of the unit sphere in R3 such that any continuous function on this sphere defined in
spherical coordinates is easily mapped into a 2π-periodic function on the plane. After that everything becomes
simple, since the classical scheme of the tensor product of one-dimensional bases of functional spaces works to
construct bases of spaces of functions of several variables.

Keywords: Wavelets, Multiresolution analysis, Scaling functions, Interpolating wavelets, Best approxima-
tion, Trigonometric polynomials.

Introduction

Different systems of wavelets on the sphere are constructed and studied in a number of works.
We would like to note the constructions in the paper by Skopina [9]. They are beautiful but difficult
to put in practice, as their author notes herself. In [2], the ideas of these constructions were extended
to spheres in R

n. These and some other works mentioned below contain a good analysis of the
studies on the specified or close subject. In [4, 6, 7], to construct bases of wavelets on spheres
in S

2 and S
3, the tensor product of bases of one-dimensional wavelets is used including a basis of

exponential splines on a segment. In the papers [1, 5, 8], which contain much of the bibliography
related or close to the subject and the analysis of the previous results, in particular, the lifting-
scheme technique is used to construct biorthogonal wavelets on the sphere. This is accompanied by
rejecting a number of properties of classical wavelets including, for instance, shifts with a constant
step at each scaling level and with localization of the compression–stretching operation in the right
places. In the present paper, we attempt to preserve the standard properties of classical wavelets
on the line and on the period in the construction of wavelets on the sphere. In so doing, we give
preference to interpolating wavelets. Orthogonal wavelets are only defined. The study of their
approximative properties is postponed for the future. Here, for the classical schemes to construct
wavelets on the sphere to work, we carry out a double expansion of the unit sphere with a special
extension to it of the function originally defined on the sphere. This makes it possible to apply one-
dimensional periodic interpolation and interpolation–orthogonal bases of expanding subspaces of

1 This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006
of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural
Federal University).

https://doi.org/10.15826/umj.2019.2.001
mailto:chernykh@imm.uran.ru
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multiresolution analysis (constructed and studied in [3, 10]) to construct wavelets on the expanded
sphere.

1. Construction of wavelets on the sphere

Without loss of generality, we assume that S is the sphere of unit radius centered at the origin of
a Cartesian coordinate system, (θ, ϕ) are spherical coordinates of points of S (θ ↑π0 denotes latitude
and ϕ ↑2π0 denotes longitude) associated in a standard way with the Cartesian coordinates. Thus,

S = {M(θ, ϕ) ∈ S : 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π}.

For a uniform grid with any small step h = 2π/l (l ∈ N, l ≫ 1) in the angular coordinates θ, ϕ,
the geometrical sizes of cells of the corresponding grids on the sphere are strongly nonuniform. We
have cells with size of order h × h in R

3 near the equator, where θ is close to π/2, and we have
cells with size of order h× h2 near the poles, where θ is close to 0 in the case of the north pole N
or θ is close to π in the case of the south pole S. On S, every value ϕ ∈ T (where ϕ and ϕ±2lπ are
indistinguishable) determines the ϕ-meridian, i.e., the great circle arc

Mϕ := {M(θ, ϕ) : 0 ≤ θ ≤ π},

and every value θ ∈ (0, π) determines θ-latitude, i.e., the circle Mθ := {M(θ, ϕ) : 0 ≤ ϕ < 2π}
of radius rθ = sin θ in the plane zθ = cos θ centered at the point (0, 0, zθ) of the Cartesian system.
Despite the noted disadvantage of spherical coordinates and the specified grids on S uniform in θ
and ϕ, their application is profitable and simple for both the construction of wavelets on S and the
practical use of the wavelets in computational algorithms.

Thus, to construct basis scaling functions of the subspaces Vj(S) ⊂ L2(S) (j ∈ Z+) of
multiresolu-tion analysis on S, a usual method of passage from one-dimensional to multi-dimensional
wavelets can be used here by choosing as those the tensor product of the bases of the subspaces Vj(T)
of the space L2(T) of 2π-periodic functions and the bases of the subspaces Vj [0, π] ⊂ L2[0, π] as
done in [4]. It is true that, in this case, one has to use a construction of wavelets on a segment,
which is more complicated than that on the line or on a period, for instance, applying a “folding”
operation. Instead of this, in the present paper, the sphere “doubles”. Due to this, the construction
of bases of the subspaces Vj(S) reduces to the tensor product of two (possibly different) bases of
the subspaces Vj(T) in the variables ϕ and θ, respectively.

It is clear that any ϕ-meridian Mϕ is connected with the opposite (ϕ ± π)-meridian Mϕ±π on
which as well as on Mϕ, by the definition of the spherical coordinates (θ, ϕ), θ changes from 0
(at the pole N) to π (at the pole S). These two meridians form together the great circle Cϕ

on S. Keeping the bypass direction of the ϕ-meridian by the points M(θ, ϕ) when θ increases
on ϕ-meridian and changing it to the opposite on the ϕ ± π-meridian, for every ϕ ∈ [0, 2π], we
define the full ϕ-meridian as follows:

Cϕ := {M(θ, ϕ) ∈ Mϕ ∪Mϕ±π : 0 ≤ θ ≤ 2π},

where M(0, ϕ) = M(2π, ϕ).

We note that, although the full ϕ-meridian Cϕ, element-wisely coinciding with Mϕ ∪ Mϕ±π,
crosses the equator {M(θ, ϕ) : θ = π/2, 0 ≤ ϕ < 2π} in the two points (π/2, ϕ) and (π/2, ϕ ± π),
this meridian is completely determined by the value of the angle ϕ, since its bypass direction with
the increase of θ is determined by the movement direction of the pointM(θ, ϕ) along the ϕ-meridian
and is continuously extended to the (ϕ ± π)-meridian changing its original direction from N to S
to the opposite.
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Any function f defined on S uniquely determines the function f(θ, ϕ) of the variables ϕ ∈ [0, 2π]
and θ ∈ [0, π]. In particular, this function is uniquely defined on any full ϕ-meridian as a function
of θ, and to apply periodic wavelets in the construction of wavelets on S, it is very important that
the coordinate θ changes on Cϕ over the full period from 0 to 2π, since, in Cϕ, the function f(θ, ϕ)
is 2π-periodic in θ because the functions f(0, ϕ) and f(π, ϕ) on S do not depend on ϕ. However,
it is easy to see that Cϕ and Cϕ±π coincide as sets of points on S differing only in the direction of
movement of their points M with coordinate θ as θ ↑2π0 . As a result, every function f(θ, ϕ) single-
valued on S generates a two-valued function F (θ, ϕ) of the variable θ on every set Cϕ = Cϕ±π and,
hence, on S. Namely, for any ϕ ∈ [0, 2π), we have

F (θ, ϕ) =

{
f(θ, ϕ), θ ↑π0 on Mϕ,

f(2π − θ, ϕ± π), θ ↑2ππ on Mϕ±π

(1.1)

on Cϕ and

F (θ, ϕ) =

{
f(θ, ϕ± π), θ ↑π0 on Mϕ±π,

f(2π − θ, ϕ), θ ↑2ππ on Mϕ

(1.2)

on Cϕ±π. Obviously, this function completely restores f(θ, ϕ) already for 0 ≤ ϕ < π. However, it
is also important for us to preserve the 2π-periodicity of the function F in ϕ.

To avoid the two-valuedness, we use the fact that S is a two-sided surface and we distinguish
external and internal points M(r, θ, ϕ) of S considering them as if for r = 1 + 0 and r = 1− 0.

In what follows, we assume that the continuous passage from one side of S to the other is
allowed only through the poles N and S of the sphere S. In so doing, any full ϕ-meridian is not
placed on one side of S but is placed in two parts on different sides of S. We place the part Mϕ

of any full ϕ-meridian Cϕ on the external side S1+0 of S and the part Mϕ±π with θ ↑2ππ on the
internal part S1−0 of S. As a result, the function F (θ, ϕ) in (1.1) becomes a single-valued and
well-defined function on S1+0 ∪ S1−0 coinciding with f(θ, ϕ) on S1+0. On the internal side S1−0,
the function F (θ, ϕ) is defined by the part of formula (1.1) which relates to the (ϕ ± π)-meridian.
Formula (1.2) is given only to explain the reason of the two-valuedness of the function F (θ, ϕ) on S.

Now, according the usual classical Meyer scheme, one can easily construct a multiresolution
analysis on the double sphere S̃(2) = S1+0 ∪ S1−0 with angular coordinates of points on S̃(2) still
denoted by (θ, ϕ). In this case, θ changes from 0 to 2π on any full ϕ-meridian and values of ϕ can still
be bounded by the interval [0, 2π). The coordinates of points M(θ, ϕ) on S1+0 are usual spherical
coordinates. They are extended on S1−0 as follows: the ϕ-coordinate of the point M ∈ S1−0

coincides with its value in the original spherical coordinate system, and the value of its usual
spherical latitude, say τ , is replaced by θ = 2π − τ . It is easy to see that the point M with such
coordinates (θ, ϕ) belongs to the part of the full (ϕ ± π)-meridian lying on S1−0 (the sign, plus or
minus, in the expression ϕ± π can always be taken so that ϕ± π ∈ [0, 2π)).

As basic functions of the subspaces Vj(T) of multiresolution analysis on S̃(2) (defining Vj(T)
themselves), we take systems of 2π-periodic functions constructed on the basis of Meyer wavelets.

These are the trigonometric polynomials Φj,k
s (x) (s = 1, 2, 3) generating the finite-dimensional

subspaces Vj(T). We use them because of their simplicity. Furthermore, in order not to calculate
integral coefficients of function expansions in orthogonal systems, we restrict ourselves to the use
only of the interpolation properties of multiresolution analysis on finite grides in θ and ϕ. Since
the convergence of interpolation expansions for continuous (and especially smooth) functions on S

occurs with high rate, there is no need to apply the subspaces Vj(S̃(2)) with large indices j for
practical problems. Thus, one may not be afraid of a significant concentration of grid points near
the poles (especially in the case of computer implementation of algorithms of approximation of
functions f on S). The orthogonal properties of bases can be useful when approximating functions
integrable only on S.
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Thus, in what follows, we use (see [3, 10]) the scaling functions of periodic multiresolution
analyzes:

Φj,k
s (x) = 2−j

∑

|ν/2j |<(1+ε)/2

ϕ̂s

( ν

2j

)
eiν(x−2πk/2j), k = 0, 2j − 1, j ∈ Z+, s = 1, 2, 3, (1.3)

where
ϕ̂s(ω) = ϕ̂ε(ω)

2 + (1− δ3,s)i(signω)ϕ̂ε(ω)
(
ϕ̂ε(ω − 1) + ϕ̂ε(ω + 1)

)
, s = 2, 3. (1.4)

In turn, ϕ̂ε(ω), ε > 0, is an even continuous real function on R of Meyer type supported on the
interval |ω| < (1 + ε)/2 and such that ϕ̂ε(ω) = 1 for |ω| ≤ (1 − ε)/2 (0 < ε ≤ 1/3), the derivative
ϕ̂′
ε(ω) is a function of bounded variation, and ϕ̂2

ε(ω)+ ϕ̂2
ε(ω− 1) = 1 for (1− ε)/2 < ω ≤ (1+ ε)/2.

When s = 1, we replace ϕ̂ε(ω) in (1.4) by

ϕ̂1,ε(ω) =
1√
2

√
1 + ϕ̂ε(ω)− ϕ̂ε(ω − 1)− ϕ̂ε(ω + 1). (1.5)

For each s = 1, 2, 3, the functions Φj,k
s (x) form the interpolation basis of the subspaces V j

s (T)
(j ∈ Z+) of 2π-periodic multiresolution analysis:

Φj,k
s

(2πl
2j

)
= δk,l (k, l = 0, 2j − 1).

In addition, for s = 1, 2 and for any j ∈ Z+, the system {2j/2Φj,k
s (x)} is orthonormal on T:

1

2π

2π∫

0

2jΦj,k
s (x)Φj,l

s (x) dx = δk,l (k, l = 0, 2j − 1). (1.6)

For any j and for k, l = 0, 1, . . . , 2j − 1, we define

Φj,k,l
s (θ, ϕ) = Φj,k

s (θ)Φj,l
s (ϕ) for (θ, ϕ) ∈ T× T. (1.7)

Naturally, without any additional assumptions except for the 2π-periodicity, this is an interpolation
system of functions on the grid {(2πm/2j , 2πn/2j) : m,n = 0, 2j − 1}:

Φj,k,l
s

(2πm
2j

,
2πn

2j

)
= δk,m · δl,n.

This system inherits in C(T× T) all approximative properties of system (1.3) in C[0, 2π].

2. Approximation by interpolating wavelets in C(T× T)

We denote by sVj(T
2) the subspace of the space C(T×T) of 2π-periodic (in θ and ϕ) functions

on R
2 by setting

sVj(T
2) :=

{ 2j−1∑

k=0

2j−1∑

l=0

Ck,lΦ
j,k
s (θ)Φj,l

s (ϕ) : Ck,l ∈ R for all k, l = 0, 2j − 1
}
.

The interpolation projection of any function F (θ, ϕ) ∈ C(T× T) is defined as follows:

Ss,2jF (θ, ϕ) = P int
sVj(T2)F (θ, ϕ) :=

2j−1∑

k=0

2j−1∑

l=0

F
(2πk

2j
,
2πl

2j

)
Φj,k,l
s (θ, ϕ). (2.1)
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Obviously, |S2jF (θ, ϕ)| ≤ L2j(θ, ϕ)‖F‖C(T×T) , where L2j (θ, ϕ) is the Lebesgue function of the
operator S2j : C(T× T) → sVj ⊂ C(T× T),

Ls,2j(θ, ϕ) =

2j−1∑

k=0

2j−1∑

l=0

|Φj,k
s (θ)||Φj,l

s (ϕ)| = Ls,2j(θ)Ls,2j(ϕ), (2.2)

and Ls,2j(x) is the Lebesgue function of the projection operator of continuous 2π-periodic functions

on the line on the subspace V j
s (T) ⊂ C(T), which was studied in Lemmas 2 and 3 of the paper [10]

under the condition of smoothness of the functions ϕ̂s(ω) on R for s = 2, 3. Using this lemmas and
the remark to them on page 265 of the mentioned paper, for the 2π/2j -periodic Lebesgue function
Ls,2j(x) with s = 2, 3, we obtain

Ls,2j(x) ≤
( (1+ε)/2∨

1/2

(ϕ̂2
ε(ω))

′
ω

∣∣∣sin 2
j−1x

2j−1x

∣∣∣+ δs,2

(1+ε)/2∨

1/2

(ϕ̂ε(ω)ϕ̂ε(ω − 1))′ω
sin2 ε2j−2x

|2j−1x|

)
| sin 2j−1x|
|2j−1x| +

+

[ (1+ε)/2∨

1/2

(ϕ̂2
ε(ω))

′
ω + δs,2

(1+ε)/2∨

1/2

(ϕ̂ε(ω)ϕ̂ε(ω − 1))′ω

( 4

π2
+ ε+

1− 4/π2

22j

)
| sin 2j−1x|

for |x| < 2π/2j+1. We do not write an analogous estimate for s = 1, noting only that this estimate
is similar to the latter one with replacing δs,2 by δs,1 and ϕ̂ε(ω) by ϕ̂1,ε(ω) from (1.5).

For brevity, we use the following formulas from [10]:

∆ε =
[1
2
,
1 + ε

2

]
, ϕ̂3(ω) = ϕ̂2

ε(ω), β(ω) = ϕ̂ε(ω)ϕ̂ε(ω − 1).

Theorem 1. Assume that, in addition to the conditions2 on ϕ̂s(ω) imposed in the description

of formula (1.4), the functions ϕ̂3(ω) and β(ω) are smooth in a neighbourhood of the interval

[(1− ε)/2, (1 + ε)/2]. Then the Lebesgue constants Ls,2j(θ, ϕ), s = 2, 3, in (2.2) satisfy on their

period [−2π/2j+1, 2π/2j+1]× [−2π/2j+1, 2π/2j+1] the estimates

Ls,2j(θ, ϕ) ≤
{[∨

∆ε

ϕ̂′
3(ω)

∣∣∣sin 2
j−1ϕ

2j−1ϕ

∣∣∣+ δs,2
∨

∆ε

β′(ω)
sin2(ε2j−1ϕ/2)

|2j−1ϕ|

] | sin 2j−1ϕ|
|2j−1ϕ| +

+

[∨

∆ε

ϕ̂′
3(ω) + δs,2

∨

∆ε

β′
3(ω)

]( 4

π2
+

1− 4/π2

22j

)
| sin 2j−1ϕ|

}
×

×
{[∨

∆ε

ϕ̂′
3(ω)

| sin 2j−1θ|
2j−1θ

+ δs,2
∨

∆ε

β′(ω)
sin2(ε2j−1θ/2)

|2j−1θ|

] | sin 2j−1θ|
|2j−1θ| +

+

[∨

∆ε

ϕ̂′
3(ω) + δs,2

∨

∆ε

β′(ω)

]( 4

π2
+

1− 4/π2

22j

)
| sin 2j−1θ|

}
.

(2.3)

P r o o f follows from the above estimate and (2.2). �

We note that, to estimate the function (2.2) on the square T×T, it is needed to write its estimate
on every small square [2π(2k − 1)/2j+1, 2π(2k + 1)/2j+1]× [2π(2l − 1)/2j+1, 2π(2l + 1)/2j+1] con-
tained in T×T by replacing on the right-hand-side of (2.3) ϕ by (ϕ−2πk/2j) and θ by (θ−2πl/2j).

2Actually, this is a condition to estimate Ls,2j (x) in [10] allowing to drop terms outside the integrals
when integrating by parts.
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To estimate the Lebesgue constant, which is the norm in C(T × T) of the function Ls,2j(θ, ϕ) co-

inciding with the norm of the operator ‖S2j‖ = ‖S2j‖C(T×T)
C(T×T), it is sufficient to estimate it on any

period, in particular, for |θ| < π/2j and |ϕ| < π/2j . Estimating the right-hand side of (2.3) with
the use of the fact that | sinx|/|x| ≤ 1 for |x| < π/2, we obtain the following result.

Corollary 1. Assume that the conditions of Theorem 1 are satisfied. Then the norm of the

operators of the interpolation projection (2.1) from C(T× T) to the subspace sVj(T
2) ⊂ C(T× T)

satisfies the estimate

‖Ss,2j‖ ≤
(∨

∆ε

ϕ̂′
3(ω) + δs,2

∨

∆ε

β′(ω)

)2( 4

π2
+ ε+

1− 4/π2

22j

)2
. (2.4)

For one-dimensional periodic wavelets, the following well-known and easily verified remarkable
fact holds: for any ε ∈ (0, 1/3], the operator of interpolation (and also orthogonal) projection on
the subspaces Vj of periodic multiresolution analysis generated by any Meyer type function ϕ̂ε(ω)
is the identity operator on the subspace of trigonometric polynomials of order Nε = [2j−1(1 − ε)],
where [a] is the integer part of a for a ≥ 0.

We verify in what form this property is preserved for the operators (2.1). Computing Ss,2jg(θ, ϕ)
for g(θ, ϕ) = eiµθeiηϕ and integer µ and η, we have

Ss,2jg(θ, ϕ) =

2j−1∑

k=0

2j−1∑

l=0

e2πiµk/2
j

e2πiηl/2
j

Φj,k,l
s (θ, ϕ) =

=
∑

ν

2−jϕ̂s

( ν

2j

)
eiνθ

2j−1∑

k=0

e2πi(µ−ν)k/2j
∑

ν′

2−jϕ̂s

( ν ′
2j

)
eiν

′ϕ
2j−1∑

l=0

e2πi(η−ν′)l/2j =

=
∑

ν

2−jϕ̂s

( ν

2j

)
eiνθ

e2πi(µ−ν) − 1

e2πi(µ−ν)/2j − 1

∑

ν′

2−jϕ̂s

( ν ′
2j

)
eiν

′ϕ e2πi(η−ν′) − 1

e2πi(η−ν′)/2j − 1
=

=
∑

ν

2−jϕ̂s

( ν

2j

)
eiνθ2jδµ,ν

(µ−ν′)/2j∑

ν′

2−jϕ̂s

( ν ′
2j

)
eiν

′ϕ2jδν′,η = eiµθeiηϕϕ̂s

( µ

2j

)
ϕ̂s

( η

2j

)
,

which coincides with g(θ, ϕ) for |µ|/2j ≤ (1− ε)/2 and |η|/2j ≤ (1− ε)/2 (where ϕ̂s(ω) ≡ 1).

Thus, we obtain the following property of interpolation projections on the subspaces sVj(T
2).

Assertion 1. For the trigonometric polynomials of two variables

tn,m(θ, ϕ) =

n∑

µ=−n

m∑

η=−m

aµ,νe
i(µθ+νϕ)

of order n in the variable θ and order m in the variable ϕ, the equalities

Ss,2j tn,m(θ, ϕ) ≡ tn,m(θ, ϕ) (2.5)

hold for n and m not greater than Nε,j = [2j−1(1− ε)] and s = 1, 2, 3.

Note that the order Nε,j of the polynomials in (2.5) is allowed in each of the variables θ and
ϕ, not just in the totality of variables (when the summation in the formula for tn,m(θ, ϕ) is taken
over µ and ν such that |µ|+ |ν| ≤ Nε,j).
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According to the usual Lebesgue scheme, from inequality (2.4) and Assertion 1, we easily obtain
an estimate of the error of approximation of continuous 2π-periodic functions of two variables by
their interpolation projections on sVj(T

2). In view of the importance of this estimate for practical
applications of interpolating wavelets, we state it as a theorem. We denote by En(F )C(T×T) the
best approximation in the metric of C(T×T) of continuous 2π-periodic functions F on the square
T× T by trigonometric polynomials of order n in each variable.

Theorem 2. Under the conditions of Theorem 1 on ϕ̂s(ω), s = 2, 3, any function F (θ, ϕ) in

C(T× T) satisfies the estimates

‖F (θ, ϕ) − Ss,2jF (θ, ϕ)‖C(T×T) ≤ (1 + ‖Ss,2j‖)ENε,j
(F )C(T×T). (2.6)

P r o o f. To justify this estimate, we note that, applying formula (2.5) to the polynomial tNε,j

of the best approximation of the function F in C(T× T), we obtain

‖F (θ, ϕ) − Ss,2jF (θ, ϕ)‖ = ‖(F (θ, ϕ) − tNε,j
(θ, ϕ)) + Ss,2j

(
tNε,j

(θ, ϕ)− F (θ, ϕ)
)
‖,

From this, using the triangle inequality for norms, the definition of ‖Ss,2j‖, and Corollary 1, we
get (2.6). �

An estimate of the best approximations En(F )C(T×T) of the Jackson type in terms of the
modules of continuity or the parameters K and α of the Hölder class

KHα = {f : |f(x+∆x)− f(x)| ≤ K|∆x|α}

can be found in the known monographs on approximation theory.
The systems of functions

{Φj+1,2k+1,2l+1
s (θ, ϕ) : k = 0, 2j − 1}, j ∈ Z+ (s = 1, 2, 3), (2.7)

additional to (1.7) are the interpolation bases of the subspaces sWj(T
2) (sVj+1(T

2) =s Vj(T
2) ⊕s

Wj(T
2), j ∈ Z+). By their means, any function g ∈s Vj+1(T

2) is uniquely represented in the form

g = P int
sVj

g + P int
sWj

(g − P int
sVj

g), (2.8)

which is easily derived from the fact that sWj ⊂ sVj+1. For each s = 1, 2, 3, the family of sys-
tems (2.7) over all j ∈ Z+ together with Φ0,0 ≡ 1 is an interpolation basis of the whole space
C(T× T), so that any function F (θ, ϕ) is expanded in the series

F (θ, ϕ) = F (0, 0) +
∞∑

j=0

2j−1∑

k,l=0

cj,k,lΦ
j+1,2k+1,2l+1
s (θ, ϕ) (2.9)

converging uniformly in the square T × T and, hence, in R
2. According to the usual scheme, the

coefficients of this series are calculated recursively in j in terms of the grid values of the function F
and the partial sums

Σj−1(θ, ϕ;F ) = F (0, 0) +

j−1∑

λ=0

2λ−1∑

µ,ν=0

cλ,µ,νΦ
λ+1,2µ+1,2ν+1
s (θ, ϕ) (2.10)

of the same series, namely

cj,k,l = F
(2π(2k + 1)

2j+1
,
2π(2l + 1)

2j+1

)
−Σj−1

(2π(2k + 1)

2j+1
,
2π(2l + 1)

2j+1

)
.
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It follows from (2.8) that the sum Σj−1(θ, ϕ;F ) coincides with P int
sVj

F (θ, ϕ)=Ss,2jF (θ, ϕ) (see (2.1)),
so that we can write the values cj,k,l without recurrence:

cj,k,l = (F − P int
sVj

F )
(2π(2k + 1)

2j+1
,
2π(2l + 1)

2j+1

)
. (2.11)

Hence, it is easily deduced that the series (2.9) with the coefficients (2.11) coincides with the series

F (θ, ϕ) = F (0, 0) +

∞∑

j=0

(Ss,2j+1F (θ, ϕ)− Ss,2jF (θ, ϕ)) (2.12)

converging uniformly in T× T by Theorem 2. The partial sum of order J of the latter series is

F (0, 0) +
J−1∑

j=0

(Ss,2j+1 − Ss,2j)F (θ, ϕ) = Ss,2JF (θ, ϕ) = ΣJ−1(θ, ϕ;F ).

3. Interpolating wavelets on the sphere and their application

to the approximation of functions in C(S)

In the second section, unlike the first section, the arguments (θ, ϕ) of the functions F and Φj,k,l
s

were treated as the Cartesian coordinates of points of the square T × T on the opposite sides of
which the values of any function in C(T× T) coincide in view of its 2π-periodicity. Moreover, the
function F (θ, ϕ) constructed on S̃(2) by formula (1.1), if interpreted as a function on the square
T × T, has the additional feature that it is constant on each of the sides θ = 0 and θ = π of the
square.

Let F be a function defined on the sphere S and continuously depending on the points of the
sphere. For instance, F represented as F (x1, x2, x3) is a function continuous in all coordinates
connected by the relation x21 + x22 + x23 = 1. In particular, F is also continuous at the poles N
and S of the sphere S. Therefore, after the change x1 = cosϕ sin θ, x2 = cosϕ cos θ, x3 = sin θ,
the function F becomes a function of the coordinates ϕ ∈ T = [0, 2π) and θ ∈ [0, π] with the
following specificity: F (N) and F (S) do not depend on θ, since limθ→0 F (θ, ϕ) = F (N) and
limθ→π F (θ, ϕ) = F (S) for any ϕ ∈ [0, 2π]. Thus, the function F (θ, ϕ) defined on the double
sphere S̃(2) by formula (1.1) and glued from the continuous functions f(θ, ϕ) on Mϕ for θ ↑π0 and

f(2π − θ, ϕ± π) on Mϕ±π for θ ↑2ππ is continuous on S̃(2), since the values of the function F (0, ϕ)
and the values of the function F (π, ϕ) do not depend on ϕ at the gluing points θ = 2π and θ = π.

We note that the values of the function F (θ, ϕ) on S (i.e., for θ ↑π0 , ϕ ↑2π0 ) coincide with

the values of the original function f(θ, ϕ). Therefore, approximating F on S̃(2), we simultaneously
approximate f on S. Of course, the latter property could be preserved for any continuous extension
of f from S to S̃(2) \ S. However, if the original function f is smooth on S, i.e., at any point
(x1, x2, x3, f(x1, x2, x3)) (with x21 + x22 + x23 = 1) of the graph surface of f over S, there exists a
tangent plane to the graph, then, obviously, the extension chosen by means of (1.4) preserves the
smoothness of F (θ, ϕ) on any full ϕ-meridian Cϕ and, hence, on the whole double sphere S̃(2), since
there exists a tangent line to the graph of F (θ, ϕ) over any full ϕ-meridian at the points (θ, ϕ) (θ ↑π0 )
which is the section of the tangent plane at the point X(θ, ϕ) ∈ Cϕ by the plane containing Cϕ.

The basis functions Φj,k,l
s (θ, ϕ) are defined on the whole S̃(2) as 2π-periodic in θ and ϕ, since

the parameter θ changes from 0 to 2π on any full ϕ-meridian and the parameter ϕ defining Cϕ

changes similarly. Of course, not each of these functions is constant for θ = 0 (θ = 2π) or θ = π like

F (θ, ϕ) (these are the functions Φj,0,l
s (θ, ϕ) and Φj,2j−1,l

s (θ, ϕ)). However, only the continuity of F
is important to apply formula (2.1), estimates (2.3), (2.4), and (2.6), and formulas (2.9)–(2.12) to
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the functions F (θ, ϕ) defined by (1.1). Thus, the functions Φj,k,l
s (θ, ϕ) defined by (1.7) determine

multiresolution analysis on S̃(2), i.e. the subspaces sVj(S̃(2)) and sWj(S̃(2)). In so doing, a pair

(θ, ϕ) should be treated everywhere as parameters defining the points M(θ, ϕ) on S̃(2). The only
useful thing remaining is to rewrite formulas (2.1) in terms of the function f(θ, ϕ) on S defining
F (θ, ϕ) on S̃(2). Using (2.1) and (1.1), we set

P int
sVj

F (θ, ϕ) =

2j−1−1∑

k=0

2j−1∑

l=0

f
(2πk

2j
,
2πl

2j

)
Φj,k,l
s (θ, ϕ)+

+
2j−1∑

k=2j−1

( 2j−1−1∑

l=0

f
(2π(2j − k)

2j
,
2π(l + 2j−1)

2j

)
Φj,k,l
s (θ, ϕ)+

2j−1∑

l=2j−1

f
(2π(2j − k)

2j
,
2πl

2j

)
Φj,k,l
s (θ, ϕ)

)
.

By Theorem 2, one can estimate the error of approximation of the function F (θ, ϕ) by means
of P int

sVj
F (θ, ϕ) in terms of the best approximation ENε,l

(F )
C(S̃(2))

. In real applied problems, it

is unlikely to be required to approximate functions defined on both inner and outer sides of the
sphere S. Therefore, to approximate the original function f(θ, ϕ), it is sufficient to estimate the
deviation |f(θ, ϕ)− P int

sVj
F (θ, ϕ)|C([0,π]×T) that does not exceed the approximation error (2.6).

There are studies of the problem of approximation by trigonometric polynomials on an interval
less than the period. Here, one can expect an essential improvement of the estimate (2.6) by
learning to use the specificity of the function f on S, in particular, its singularities on S which
make it hardly changing in a neighborhood of the sides of the rectangle [0, π] × T with θ = 0 and
θ = π on which the function f(θ, ϕ) is naturally transferred from S.

Until now, we have discussed the use of interpolation properties of the wavelets Φj,k,l
s (θ, ϕ). As

noted, in view of (1.6) the systems {2j/2Φj,k
s (x) : k = 0, 2j − 1} are orthonormal for s = 1 or s = 2

and for every j ∈ N. This implies that, for any j ∈ N, the systems {2j/2Φj,k,l
2 (θ, ϕ) : k, l = 0, 2j − 1}

are also orthonormal:
( 1

2π

)2 ∫ 2π

0

∫ 2π

0
2j/2Φj,k,l

2 (θ, ϕ)2j/2Φj,m,n
2 (θ, ϕ)dθdϕ =

1

2π

∫ 2π

0
2j/2Φj,k

2 (θ)Φj,m
2 (θ)dθ×

× 1

2π

∫ 2π

0
2j/2Φj,l

2 (ϕ)Φj,n
2 (ϕ)dϕ = δk,m · δl,n =

{
1, (k, l) = (m,n),

0, (k, l) 6= (m,n).

However, the question on the application of the orthonormality properties of these systems to the
approximation of functions on the sphere in L2(S)-norm requires separate consideration.

4. Conclusion

In this paper, we have considered the question of approximation of continuous functions on
the sphere S ⊂ R

3 and have proposed once more approach to the construction of corresponding
interpolating wavelets. Due to a special double expansion of the sphere, this approach reduces to
the simple and well-studied problem on the construction of interpolating periodic wavelets on the
plane R

2. Two of the constructed wavelet systems are orthogonal on the expanded sphere S. This
property can be useful when the approximated function is inaccurately defined (for instance, is
obtained experimentally). The problem of accuracy of approximation of functions on the sphere
in L2 was not studied in this paper.
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Abstract: A nonlinear control problem for a manipulation robot is considered. The solvability conditions for
the problem are obtained in the class of special impulse controls. To achieve the control goal, the kinetic energy
of the manipulation robot is used. When finding analytical formulas for controls, the classical first integrals
of Lagrangian mechanics were used. The effectiveness of the proposed algorithm is illustrated by computer
simulation.

Keywords: Manipulation robot, Impulse controls, First integrals.

Introduction

The purpose of controlling the manipulation robot is to transfer it from the initial position
to the final. The significant nonlinearity of the mathematical model describing the movements of
the manipulation robot does not allow the use of the methods of the mathematical control theory
directly for the original model. Decomposition methods make it possible to reduce the dimension of
the control problem, passing to approximate linear or integrable mathematical control models [1, 2].
The work considers a manipulation robot with three degrees of freedom, imitating the movement of
a human hand, described in the monograph [3]. In [4], the problem of controlling the horizontal two-
dimensional motion of this robot was studied. The original nonlinear control model was replaced
with an integrable controlled model. The Pontryagin maximum principle was used to find controls
in the performance problem. The use of special impulse controls in this work allows the kinetic
energy of the manipulation robot to be used to reach the final position. This approach preserves
the integrability of the original controlled mathematical model and, when solving the problem,
uses the classical first integrals of Lagrangian mechanics. The article concludes with the results of
numerical simulation of the algorithm.

1. Mathematical statement of the problem

A manipulation robot with three degrees of freedom, imitating the movement of a human hand,
described in the monograph [3, p. 263]. Figure 1 shows a robot manipulator. The number 1
indicates the base of the robotic arm, 2 is a rack of vertically oriented shaft. This shaft is rigidly
connected to the guide beam 4 and hand 5.

Kinetic energy of the manipulation robot is determined by the formula

T =
1

2

(

m1z
′2 + (J1 + J2)ϕ

′2 +m2(z
′2 + x′2 + x2ϕ′2)

)

,

https://doi.org/10.15826/umj.2019.2.002
mailto:juri.dolgy@urfu.ru
mailto:a.n.sesekin@urfu.ru
mailto:mr.tchupin@yandex.ru
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where x is the coordinate of the center of mass of the arm, x > 0; z is the height of the arm, z > 0;
ϕ is the angle of rotation of the hand; m1 is the total mass of the shaft that rotates the arm, and the
guides that implement the horizontal displacement of the arm; m2 is the mass of the arm; J1 is the
moment of inertia of the shaft and guides relative to the vertical axis; J2 is the central moment of
inertia of the arm relative to the vertical axis. The potential energy of gravity is V = (m1 +m2)g,
where g is the gravitational acceleration.

The second-order Lagrange equations for the mechanical system under consideration are of the
form [3, p. 263]

z′′ + g = u1, (1.1)

x′′ − xϕ′2 = u2, (1.2)

ϕ′′ + α2
(

x2ϕ′
)′

= u3. (1.3)

Here u1 = P/(m1 +m2), u2 = F/m2, u3 = M/(J1 + J2) are the control force actions, where P is
the magnitude of the longitudinal force acting along the vertical axis, F is the magnitude of the
longitudinal force acting along the horizontal guides, M is the magnitude of the moment of force
directed along the vertical axis, α =

√

m2/(J1 + J2).

It is required to find the controls u1, u2, u3 that translate the system (1.1)–(1.3) from the initial
equilibrium position (z0, x0, ϕ0)

⊤ , z0 > 0, x0 > 0, to the given end position (z∗, x∗, ϕ∗)
⊤, z∗ > 0,

x∗ > 0, z∗ 6= z0, x∗ 6= x0, ϕ∗ 6= ϕ0.

To solve this problem, we use a special set U of impulse controls defined by the formulas

u1(t) = ż0δ(t), u2(t) = ẋ0δ(t), u3(t) = ϕ̇0δ(t), t ∈ R,

where δ(·) is the Dirac impulse function. Impulse controls at the initial moment of time t = 0 to
the dynamic system (1.1)–(1.3), which are in equilibrium, report the initial velocities z′(0) = ż0,
x′(0) = ẋ0, ϕ

′(0) = ϕ̇0. The initial speeds are control parameters, the choice of which should ensure
that the dynamic system (1.1)–(1.3) falls into the final position.

2. Impulse control parameters

The problem is divided into two problems. In the first problem, for the equation (1.1) that
determines the vertical movement of the manipulation robot, we use the set U1 of impulse controls
defined by the formula u1(t) = ż0δ(t), t ∈ R. It is required to find the control u1, which transfers
the dynamical system (1.1) from the initial equilibrium position z0, z0 > 0, to the given final
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position z∗, z∗ > 0, z∗ 6= z0. In the second problem, for the system of equations (1.2), (1.3),
which determines the horizontal movement of the manipulation robot, we use the set U2 of impulse
controls defined by the formulas u2(t) = ẋ0δ(t), u3(t) = ϕ̇0δ(t), t ∈ R. It is required to find
controls u2, u3 that translate the dynamical system (1.2), (1.3) from the initial equilibrium position
(x0, ϕ0)

⊤ , x0 > 0, to the given end position (x∗, ϕ∗)
⊤ , x∗ > 0, x∗ 6= x0, ϕ∗ 6= ϕ0.

Lemma 1. In the set U1 there are impulse controls u1 that transfer the dynamical system (1.1)
from an arbitrary initial position z0, z0 > 0, to an arbitrary end position z∗, z∗ > 0, z∗ 6= z0.

P r o o f. The impulse control u1 ∈ U1 provides the dynamic system (1.1) at the initial moment
t = 0 the initial velocity z′(0) = ż0. For t > 0, the motion of a free dynamic system is determined
by the differential equation z′′+ g = 0 with the initial conditions z(0) = z0, z

′(0) = ż0. The vertical
movement is described by the formula z(t) = −gt2/2 + ż0t + z0, t > 0. For any τ1 > 0 there is a
unique value of the control parameter z0 for which the equality z(τ1) = z∗, ż0 = τ−1

1 (z∗ − z0)+gτ1/2
is true.

We show that the velocity at the finite moment of time is minimal in absolute value if
τ1 =

√

2|z∗ − z0|/g. The velocity at the finite moment of time is determined by the formula

z′(τ1) = −gτ1 + ż0 = −gτ1/2 + τ−1
1 (z∗ − z0) .

If z∗ > z0 > 0, then we have z′(τ1) = 0 under the condition τ1 =
√

2(z∗ − z0)/g. The func-
tion f(τ) = g1/2 + τ−1 (z0 − z∗) has a minimum at τ = τ1 =

√

2 (z0 − z∗) /g which is equal to
√

2g (z0 − z∗) if z0 > z∗ > 0.
The impulse controls u2, u3 ∈ U2 prescribe the dynamic system (1.2), (1.3) at the initial moment

t = 0 the initial speeds x′(0) = ẋ0, ϕ
′(0) = ϕ̇0. For t > 0 the motion of a free dynamic system

is determined by differential equations x′′ − xϕ′2 = 0, ϕ′′ + α2
(

x2ϕ′
)′

= 0 with initial conditions
x(0) = x0, ϕ(0) = ϕ0, x

′(0) = ẋ0, ϕ
′(0) = ϕ̇0. For the horizontal free movement of the manipulation

robot, kinetic energy and momentum are kept the same [5]

T2 =
1

2

(

(J1 + J2)ϕ
′2 +m2(x

′2 + x2ϕ′2)
)

= const,

p2 =
∂T2

∂ϕ′
= (J1 + J2 +m2x

2)ϕ′ = const.

When describing horizontal motion for t > 0, we replace the system (1.1), (1.2) with the system of
differential equations

α2x′2 + (1 + α2x2)ϕ′2 = c1, (2.1)

(1 + α2x2)ϕ′ = c2, (2.2)

where
c1 = α2ẋ20 + (1 + α2x20)ϕ̇

2
0, c2 = (1 + α2x20)ϕ̇0.

�

Lemma 2. Let the conditions

|ϕ∗ − ϕ0| ≤
x∗
∫

x0

√

1 + α2x20ds
√

(1 + α2s2)(s2 − x20)
, 0 < x0 < x∗, (2.3)

|ϕ∗ − ϕ0| ≤
x0
∫

x∗

√

1 + α2x2∗ds
√

(1 + α2s2)(s2 − x2∗)
, 0 < x∗ < x0, (2.4)
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hold. Then in the set U2 there are impulse controls u1, u2 that move the dynamical system (1.2),
(1.3) from the starting position (x0, ϕ0)

⊤ , x0 > 0, to the ending position (x∗, ϕ∗)
⊤ , x∗ > 0, x∗ 6= x0,

ϕ∗ 6= ϕ0.

P r o o f. Under the condition ẋ0 6= 0, the system of differential equations (2.1), (2.2) is
transformed to the following form

x′ = sgn ẋ0

√

ẋ20 + (1 + α2x20) ϕ̇
2
0

x2 − x20
1 + α2x2

, x ∈ X, (2.5)

ϕ′ =
(1 + α2x20)ϕ̇0

1 + α2x2
, x ∈ X, (2.6)

where

X =
{

x ∈ R
+ : ẋ20 + (1 + α2x20)ϕ̇

2
0

x2 − x20
1 + α2x2

≥ 0
}

.

To move the motion of the dynamical system (2.5), (2.6) from the initial to the final position,
the control parameters ẋ0, ϕ̇0 must satisfy the conditions

ϕ̇0 6= 0, sgn ẋ0 = sgn (x∗ − x0), sgn ϕ̇0 = sgn (ϕ∗ − ϕ0).

We introduce the parameter p = |ẋ0|/|ϕ̇0|. Now the description of the set X = X(p) is simplified.
As a result, we have

X(p) = R
+ under p ≥ x0

√

1 + α2x20,

X(p) = R
+/(0, x1(p)) under p < x0

√

1 + α2x20,

where

x1(p) =

√

x20(1 + α2x20)− p2

1 + α2x20
+ α2p2.

The equation (2.5) is converted to

x′ = sgn (x∗ − x0)|ϕ̇0|

√

p2 + (1 + α2x20)
x2 − x20
1 + α2x2

, x ∈ X. (2.7)

It is also valid for p = 0. Using (2.7) and (2.6), we obtain a differential equation for finding the
trajectory of a horizontal movement

dx

dϕ
=

sgn (x− x0)(1 + α2x2)

sgn (ϕ∗ − ϕ0)(1 + α2x20)

√

p2 + (1 + α2x20)
x2 − x20
1 + α2x2

, x ∈ X(p).

Integrating the differential equation, we find the equation of the trajectory of a horizontal movement

sgn (x∗ − x0)

x
∫

x0

(1 + α2x20)ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

= sgn (ϕ∗ − ϕ0)(ϕ− ϕ0), x ∈ X(p).

The trajectory passes through the end point if the condition is true

∣

∣

∣

∣

∣

x∗
∫

x0

(1 + α2x20)ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

= |ϕ∗ − ϕ0|, x∗ ∈ X(p).
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We select the value of the parameter p to satisfy the condition obtained. For 0 < x0 < x∗, the
required value of the parameter p is determined by the equation

x∗
∫

x0

ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

=
|ϕ∗ − ϕ0|
1 + α2x20

, 0 ≤ p < +∞. (2.8)

For 0 < x∗ < x0, the required value of the parameter p is determined by the equation

x0
∫

x∗

ds

(1 + α2s2)

√

p2 + (1 + α2x20)
s2 − x20
1 + α2s2

=
|ϕ∗ − ϕ0|
1 + α2x20

, pkp ≤ p < +∞, (2.9)

where

pkp =

√

(1 + α2x20)(x
2
0 − x2∗)

1 + α2x2∗
.

The equation (2.8) has a unique solution p = p∗ under the condition (2.3) and equation (2.9) also
has a unique solution p = p∗ if the conditions (2.4) hold.

Suppose that the condition (2.3) holds for 0 < x0 < x∗ and for 0 < x∗ < x0 the condition (2.4)
is satisfied. Then impulse control u2(t) = ẋ0δ(t), u3(t) = ϕ̇0δ(t) (t ∈ R) bring the dynamic
system (1.2), (1.3) to the given final position, if the control parameters are determined by the
formulas

ẋ0 = |ẋ0| sgn (x∗ − x0), ϕ̇0 = |ϕ̇0| sgn (ϕ∗ − ϕ0), |ẋ0| = p∗|ϕ̇0|,
where p∗ is the root of the equation (2.8) for 0 < x0 < x∗, and for 0 < x∗ < x0 there is a root of
the equation (2.9).

Integrating the differential equation (2.7), we find the arrival time of the motion of the dynamical
system (1.2), (1.3) at the end point

τ2 =
1

|ϕ̇0|

∣

∣

∣

∣

∣

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

.

We synchronize the arrival times of the movements of the dynamical systems (1.1)–(1.3) to the
end points. �

Theorem 1. Let the conditions of Lemma 2 be satisfied. Then the values of the parame-

ters of the impulse controls that move the dynamical system (1.1)–(1.3) from the initial position

(z0, x0, ϕ0)
⊤ , z0, x0 > 0, to end position (z∗, x∗, ϕ∗)

⊤ , z∗ > 0, x∗ > 0, z∗ 6= z0, x∗ 6= x0, ϕ∗ 6= ϕ0

are defined by formulas

ż0 =
√

2g(z∗ − z0) for 0 < z0 < z∗,

ż0 = 0 for 0 < z∗ < z0,

ϕ̇0 =

√
g sgn (ϕ∗ − ϕ0)
√

2|z∗ − z0|

∣

∣

∣

∣

∣

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

,

ẋ0 =

√
gp∗

√

2|z∗ − z0|

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

.
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P r o o f. Using Lemma 1 and the arrival time τ1 of the motion of the dynamical system (1.1) to
the end point, we find the value of the control parameter ż0. The synchronization condition τ1 = τ2
of the arrival times of the motions of dynamical systems (1.1)–(1.3) at end points determines
the arrival time τ =

√

2|z∗ − z0|/g of dynamic system movements (1.1)–(1.3) to the end point

(z∗, x∗, ϕ∗)
⊤ and the equation for the control parameter ϕ̇0. From this equation we find

|ϕ̇0| =
√
g

√

2|z∗ − z0|

∣

∣

∣

∣

∣

x∗
∫

x0

ds
√

p2∗ + (1 + α2x20)
s2 − x20
1 + α2s2

∣

∣

∣

∣

∣

.

Using Lemma 2, we find the control parameters ϕ̇0, ẋ0. �

3. Stabilization of manipulation robot in a final position

When stabilizing the manipulation robot in a small neighborhood of the final position, we use
special positional controls, the choice of which turns the final position into a stable equilibrium
position of the controlled system. For this purpose we use substitutions for coordinates

z = z∗ + ẑ, x = x∗ + x̂, ϕ = ϕ∗ + ϕ̂

and controls
u1 = û1 + g, u2 = û2, u3 = û3(1 + α2x2∗).

In a small neighborhood of the final equilibrium, the controlled system (1.1)–(1.3) is replaced by
the following controlled system

ẑ′′ = û1, x̂′′ = û2, ϕ̂′′ = û3. (3.1)

We find the stabilizing control using the theory of optimal stabilization for linear systems with
quadratic quality criteria. Choosing the quality criterion

J1 =

+∞
∫

0

(

ẑ2(t) + k21 ẑ
′2(t) + û21(t)

)

dt, k1 > 0, (3.2)

for the first control of the system (3.1), we find the stabilizing control

û1 = −ẑ −
√

k21 + 2ẑ′.

We also can find stabilizing controls for the second and third equations in (3.1)

û2 = −x̂−
√

k22 + 2x̂′, û3 = −ϕ̂−
√

k23 + 2ϕ̂′,

using a quality criteria similar to (3.2) with constants k2 and k2, respectively.

4. Numerical modeling

In the numerical simulation of the system motions (1.1)–(1.3), the following values of the
parameters of the mechanical system were used

m1 = 20, m2 = 8, J1 = 12, J2 = 6, g = 9.8.
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The start and the end positions are z0 = 0, x0 = 0, ϕ0 = 0 and z∗ = 1.4, x∗ = 0.5, ϕ∗ = 1.2.
We take the controls

u1(t, z) = upr1 (t) + ups1 (z), u2(t, x) = upr2 (t) + ups2 (x), u3(t, ϕ) = upr3 (t) + ups3 (ϕ).

The program control is defined by formulas

upr1 (t) = ż0δ(t), upr2 (t) = ẋ0δ(t), upr3 (t) = ϕ̇0δ(t), t ∈ R,

where the parameters are given by formulas

ż0 =
√

2gz∗, ẋ0 = p∗ϕ̇0, ϕ̇0 =

√

g

2z∗

x∗
∫

0

√

1 + α2s2

p2∗(1 + α2s2) + s2
ds.

Here p = p∗ is the positive root of the equation

x∗
∫

0

ds
√

(1 + α2s2)((1 + α2s2)p2 + s2)
= ϕ∗.

Impulse controls moves the mechanical system into equilibrium, the initial speeds are

z′(+0) = ż0, x′(+0) = ẋ0, ϕ̇(+0) = ϕ̇0.

We also consider software controls in the form of rectangular impulses, which are approximations
of ideal impulses

upr1 (t) = ż0δ∆(t), upr2 (t) = ẋ0δ∆(t), upr3 (t) = ϕ̇0δ∆(t), t ∈ R,

where
δ∆(t) = 1/∆, t ∈ (0,∆), δ∆(t) = 0, t ∈ R/(0,∆), ∆ = 0.1.

For these controls, the initial velocities of the equilibrium mechanical system are determined by
the formulas z′(0) = 0, x′(0) = 0, ϕ̇(0) = 0.

Positional controls are determined by the following formulas

ups1 (z) = 0, 0 < z ≤ z∗ − ǫ1,

ups1 (z) = g − (z − z∗)−
√

k21 + 2 z′, z > z∗ − ǫ1,

ups2 (x) = 0, 0 < x ≤ x∗ − ǫ2,

ups2 (x) = −(x− x∗)−
√

k22 + 2x′, x > x∗ − ǫ2,

ups3 (ϕ) = 0, 0 < ϕ ≤ ϕ∗ − ǫ3,

ups3 (ϕ) = −(1 + α2x2∗)
(

(ϕ− ϕ∗) +
√

k23 + 2ϕ′
)

, ϕ > ϕ∗ − ǫ3,

where
k1 = 1, k2 = 1, k3 = 1, ǫ1 = 0.1, ǫ2 = 0.1, ǫ3 = 0.1.

In the final position, the following conditions must be met

|z(τf )| < ǫ, |x(τf )| < ǫ, |ϕ(τf )| < ǫ, |z′(τf )| < ǫ, |x′(τf )| < ǫ, |ϕ′(τf )| < ǫ.

In the computational experiment, we assumed that ǫ = 0.01.
The time movement to the final position is τf = 7.5 sec. for impulse controls and τf = 7.51 sec.

for rectangular impulses approximating ideal impulse actions. Projections of phase trajectories on
state planes (x, x′) and (ϕ,ϕ′) are shown in Fig. 2 and Fig. 3.

The trajectories corresponding to impulse controls are shown in blue, the trajectories corre-
sponding to the approximations of ideal impulse controls are shown in brown.
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5. Conclusion

The impulse control is constructed in the work that transfers the manipulator from a given
position to its final position. A computational experiment showing the efficiency of the proposed
algorithm is presented. The proposed algorithm is simulated in the case when the ideal impulse is
approximated by the usual bounded control.
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Abstract: The nonlinear dynamical control system with uncertainty in initial states and parameters is
studied. It is assumed that the dynamic system has a special structure in which the system nonlinearity is due
to the presence of quadratic forms in system velocities. The case of combined controls is studied here when both
classical measurable control functions and the controls generated by vector measures are allowed. We present
several theoretical schemes and the estimating algorithms allowing to find the upper bounds for reachable sets
of the studied control system. The research develops the techniques of the ellipsoidal calculus and of the theory
of evolution equations for set-valued states of dynamical systems having in their description the uncertainty of
set-membership kind. Numerical results of system modeling based on the proposed methods are included.

Keywords: Control systems, Nonlinearity of quadratic type, Uncertainty, Impulse control, Ellipsoidal cal-
culus, Tube of trajectories

Introduction

The paper is devoted to the state estimation problems for nonlinear control systems with
uncertainty in description of their models. One of the central places in the theory of optimal control
of dynamical systems is occupied by questions of constructing the corresponding reachable sets of
the studied controlled systems, that is, the sets of all system positions obtained at a given time
from a fixed initial state (or a set of such states) when all admissible controls are applied. Analysis
of reachable sets and the construction of their different estimates may greatly facilitate the solution
of many theoretical and applied problems of mathematical control theory. For linear controlled
systems, the problem of describing and finding reachable sets has been considered in many papers
and numerous ideas were involved to obtain external and internal estimates of reachable sets, basing
on the corresponding versions of the ellipsoidal and polyhedral calculus [7, 8, 24, 26, 28, 35]. Note
that even for linear systems studied at that time, the assumption that there are different kinds
of uncertainties in describing the dynamics of systems significantly complicated the problem and
transferred it to the class of nonlinear optimization problems.

A new stage in the development of approaches to solving nonlinear problems of estimating the
states of control systems with uncertainty was carried out in connection with important researches
in the field of set-valued analysis and in the theory of differential inclusions, including studies of
sets of trajectories of control systems or differential inclusions with additional state constraints (the
viability theory) [2, 27, 29, 32, 36, 37].

In this paper we study the case of a set-membership uncertainty [26–29, 32, 35] when only
upper bounds on uncertain items are known and any additional probability characteristics for un-
certainties are not done. Under such informational assumptions it is not possible to construct

https://doi.org/10.15826/umj.2019.2.003
mailto:ftf@imm.uran.ru
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precisely related reachable sets of the dynamical control system but instead we may find external
and (or) internal estimating sets for them using simple canonical structures (for example, ellipsoids
or polyhedra). The proposed approaches are motivated by the development of the theory of un-
certain control systems and can be used in further researches related to filtering, forecasting and
smoothing problems for mechanical systems described by stochastic differential equations, multi-
step equations and inclusions, these results may help in solving a range of optimization problems
for nonlinear controlled systems with impulse control, state constraints and uncertainty, they may
be used also in the study of irregular problems of optimal control and in studies of resistance
movements systems with generalized controls and with a delay uncertainty.

The approaches presented in this paper are based on main ideas of early research [2, 9, 27]
and are further developed for a different and more complicated classes of uncertain systems, the
research continues and develops the results of the most recent studies [8, 11, 13, 15–19] for a wider
class of control systems. Here we study the problems of constructing and estimating reachable sets
of dynamical systems with impulse control [10, 12] and with uncertainty in the parameters of the
systems dynamics and in the specification of its initial state. We further develop here the approaches
related to consideration of bilinear uncertainties using the Minkowski gauge functionals [20].

Here we consider a more complicated case of a dynamic system than in papers [10, 12, 21], and
we assume here that the impulse controls in the system are vectorial, which somewhat complicates
both the previous analysis of the system dynamics and the corresponding proposed constructions,
as well as the basic algorithm for constructing external estimates of reachable sets. Note that
the issues of constructing internal ellipsoidal estimates of reachable sets of control systems with
generalized (impulse) controls in both scalar and vector cases are much more complicated and are
under development.

The results given here may be used in model-based advanced control of complex systems, such
as adaptive control, robust control, sliding-mode control, H-infinite control, etc. [1, 3–6, 23, 25, 30].
Methods and schemes proposed in the paper possess such features as reliability, sufficient simplicity
of computational algorithms and relatively high speed of their processing, so these schemes allow
using them in real time e.g. in problems of robust control, stability, problems of control synthesis
for dynamic systems of various types including problems of forecasting financial results in economic
planning and other fields.

The paper is organized as follows. We introduce first some notations and definitions and
formulate the main problem in Section 2. The approach related to upper estimates of reachable
sets in nonlinear case under study is described in Section 3. Example illustrating the results is
given in Section 4. Finally, some concluding remarks are given.

1. Problem formulation

In this section we introduce some basic notations and constructions and formulate further the
main problem of state estimation for nonlinear control system with uncertainty and with impulsive
controls of vector type.

1.1. Main notations

Let Rn denote the n–dimensional Euclidean space and x′y is the usual inner product of vectors
x, y ∈ R

n (the prime corresponds to a transpose), ‖x‖ = (x′x)1/2. We will use also other norms of
x = (x1, . . . , xn) ∈ R

n, namely ‖x‖p = (
∑n

i=1 |xi|
p)1/p for 1 ≤ p <∞. The symbol comp R

n stands
for the variety of all compact subsets A ⊂ R

n and conv R
n corresponds to a variety of all compact

convex subsets A ⊂ R
n.
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Denote by clconv R
n the set of all closed convex subsets A ⊆ R

n. Let R
n×m be the set of all

n × m-matrices, diag {v} denotes a diagonal matrix with elements of a vector v standing at the
main diagonal (and with zeros at other places). Let I ∈ R

n×n be the identity matrix and Tr (A)
be the trace of n× n-matrix A = {aij} (the sum of its diagonal elements, Tr (A) =

∑n
i=1 aii).

We denote also as B(a, r) = {x ∈ R
n : ‖x− a‖ ≤ r} the ball in R

n with a center a ∈ R
n and a

radius r > 0 and denote as

E(a,Q) = {x ∈ R
n : (Q−1(x− a), (x− a)) ≤ 1}

the ellipsoid in R
n with a center a ∈ R

n and with a symmetric positive definite n× n-matrix Q.

1.2. Problem description

Consider the following impulsive control system (t0 ≤ t ≤ T , x ∈ R
n)

dx(t) =
(

A(t)x(t) + x′Bx · d+ u(t)
)

dt+ Cdv(t),

x(t0 − 0) = x0 ∈ X0 = E(a0, Q0).
(1.1)

Here a matrix A(t) is unknown but satisfies the constraint

A(t) ∈ A = A0 +A1, t0 ≤ t ≤ T,

where A0 is a given matrix and

A1 =
{

A={aij}∈R
n×n : aij = 0 for i 6= j, and

aii = ai, i = 1, . . . , n, a = (a1, . . . , an), a′Da ≤ 1
}

,
(1.2)

with D ∈ R
n×n being a given symmetric and positive definite matrix.

We assume that the impulsive part v : [t0, T ] → R
m of the control pair {u(·), v(·)} in (1.1) is of

bounded variation on [t0, T ], with

Var
t∈[t0,T ]

v(t) = sup
{ti}

{

k
∑

i=1

||v(ti)− v(ti−1)||1 : ∀ti : t0 ≤ t1 ≤ . . . ≤ tk = T
}

≤ µ, (1.3)

where µ > 0 is given. Denote the above class of functions v(·) as V.
We assume also that u(t) ∈ U = E(â, Q̂) where the center â and the matrix Q̂ of the ellipsoid U

are known.
The guaranteed estimation problem consists in describing the set

X (t) = X (t; t0,X0) =
{

x ∈ R
n : ∃ x0 ∈ X0, ∃ u(·) ∈ U , ∃ v(·) ∈ V, ∃ A(·) ∈ A1

such that x = x(t) = x(t; u(·), v(·), x0, A(·))
}

.

of solutions to the system (1.1)–(1.2).

The problem studied here is to construct external ellipsoidal estimates for reachable sets X (t)
(t0 < t ≤ T ) basing on recent results and on related techniques of the estimation theory for
control systems with uncertainty and nonlinearity. We investigate a more complicated case than
in [15, 17] and use here the technique recently developed in [19]. The main ideas used to solve
the estimation problem go back to the results and reparametrization procedure of the papers [10,
31], with corresponding changes and improvements caused by the presence of vector measures
(generalized controls).
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2. Problem solution

The main result of the paper is connected with a special scheme of transition from a system
of impulse type to a control system (or the corresponding differential inclusion) that does not
contain impulse control components. Note that the proposed construction differs from the schemes
of [10, 12, 21] where the case of scalar impulse components of control components was investigated.

2.1. Auxiliary constructions: impulsive differential inclusions

Consider a differential inclusion of the following type

dx(t) ∈ F (t, x(t))dt +C(t)dv(t), (2.1)

with the initial condition
x(t0 − 0) = x0, x0 ∈ X0.

Here we use the notation

F (t, x) = f(t, x, U) =
⋃

{f(t, x, u) : u ∈ U}.

Definition 1 [33]. A function x[t] = x(t, t0, x0) (x0 ∈ X0, t ∈ [t0, T ]) will be called a solution
(a trajectory) of the differential inclusion (2.1) if for all t ∈ [t0, T ] the following equality holds true

x[t] = x0 +

t
∫

t0

ψ(t)dt +

t
∫

t0

C(t)dv(t), (2.2)

where ψ(·) ∈ Ln
1 [t0, T ] is a selector of F , that is ψ(t) ∈ F (t, x[t]) a.e. (the last integral in (2.2) is

taken as the Riemann–Stieltjes integral).

Following the scheme of the proof of the well-known Caratheodory theorem we can prove the
existence of solutions x(·) = x(·, t0, x0) ∈ BV n[t0, T ] for all x0 ∈ X0 where BV n[t0, T ] is the space
of n-vector functions with bounded variation at [t0, T ].

2.2. Discontinuous time replacement

Let us introduce a new time variable [10, 31, 34],

η(t) = t+

t
∫

t0

||dv(t)||1,

and a new state coordinate τ(η) = inf {t : η(t) ≥ η}. Consider the following auxiliary differential
inclusion

d

dη

(

z
τ

)

∈ H(τ, z) (2.3)

with the initial condition

z(t0) = x0, τ(t0) = t0, t0 ≤ η ≤ T + µ.

Here we denote

H(τ, z) =
⋃

0≤ν≤1

{

ν

(

C∗

0

)

+ (1− ν)

(

Az + z′Bz · d+E(â, Q̂)
1

)}

, (2.4)
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where C∗ = co {c(1), . . . , c(m)} and c(i) ∈ R
n (i = 1, . . . ,m) are columns of the matrix C ∈ R

n×m.
Under the above assumptions on the impulsive system we have two lemmas which will be used

in further analysis.

Lemma 1. The map H(τ, z) is convex and compact valued

H : [t0, T + µ]× R
n → convRn+1

and H(τ, z) is Lipschitz continuous in both variables τ , z.

P r o o f. The required properties can be easily derived from the specific type of set-valued
map H(τ, z) defined above. �

Remark 1. Note that the design of the auxiliary differential inclusion (2.3) is different from
the scheme used in [14]. The reason is the assumption of a vector type for impulse controls
in (2.3)–(2.4). We also indicate that in the paper [14] a different type of constraints on undefined
elements of the matrix A1 (in (1.2)) was investigated.

Denote w = {z, τ} the extended state vector of the system (2.3) and consider trajectory tube
of this differential inclusion (which has no measure or impulse components):

W (η) =
⋃

w0∈X0×{t0}

w(η, t0, w
0), t0 ≤ η ≤ T + µ.

The next lemma explains the construction of the auxiliary differential inclusion (2.3)–(2.4).

Lemma 2. The set X (T ) is the projection of W (T + µ) at the subspace of state variables z:

X (T ) = πzW (T + µ).

P r o o f. The proof of this result can be carried out according to the scheme of the paper
[10], with a slight modification due to a more complicated case of the vector measure dv(t) in (1.1)
considered here. �

Denote as hM (z) the Minkowski (gauge) functional for a set M ⊂ R
n [9, 20],

hM (z) = inf{t > 0 : z ∈ tM, x ∈ R
n},

and let W (t; t0,X0 × {t0}) be a trajectory tube of the inclusion (2.3)–(2.4).
Denote as E(c̃, Q̃) the ellipsoid with minimal volume and such that

C∗ ⊆ E(c̃, Q̃). (2.5)

Theorem 1. For any σ > 0 the following inclusion is true

W (t0 + σ) ⊆ W(t0, σ, ν) + o(σ)B∗(0, 1), lim
σ→+0

σ−1o(σ) = 0,

where

W(t0, σ, ν) =





E
(

a∗(σ, ν), Q∗(σ, ν)
)

t0 + σ(1− ν)



 ,

a∗(σ, ν) = a0 + σ
(

(1− ν)(a0
′Ba0 · d+ k2d+ â) + νc̃

)

,

Q∗(σ, ν) = (p−1 + 1)Q̃(σ, ν) + (p + 1)σ2Q̂∗
ν ,

(2.6)
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with E(âν , Q̂
∗
ν) being the ellipsoid with minimal volume such that

νE(c̃, Q̃) + (1− ν)E(â, Q̂) + 2(1 − ν)d · a′0B · E(0, k2B−1) ⊆ E(âν , Q̂
∗
ν),

âν = νc̃+ (1− ν)â,

and where the function Q̃(σ, ν) in (2.6) is defined as follows,

Q̃(σ, ν) = diag {(p−1 + 1)σ2a20i + (p+ 1)r2(σ) : i = 1, . . . , n}, (2.7)

with
r(σ) = max

z
||z|| · (h(I+σA)∗X0

(z, σ))−1, (2.8)

and p = p(σ, ν) is the unique positive root of the equation

n
∑

i=1

1

p+ λi
=

n

p(p+ 1)
,

with numbers λi = λi(σ, ν) ≥ 0 (i = 1, . . . , n) satisfying the equation |Q̃(σ, ν)− λσ2Q̂∗
ν | = 0.

P r o o f. In order to calculate the upper estimate for W [t0+σ] we use first the inclusion (2.5)
and therefore we may weaken the estimate (2.3)–(2.4) in the following way, considering the modified
differential inclusion

d

dη

(

z
τ

)

∈ H∗(τ, z)

with the initial condition

z(t0) = x0, τ(t0) = t0, t0 ≤ η ≤ T + µ,

where the set-valued map H∗(τ, z) is defined as

H∗(τ, z) =
⋃

0≤ν≤1

{

ν

(

E(c̃, C̃)
0

)

+ (1− ν)

(

Az + z′Bz · d+E(â, Q̂)
1

)}

.

Estimating the sum of two ellipsoids νE(c̃, C̃) and (1 − ν)E(â, Q̂) in the above formula (see,
e.g., related procedures in [7, 28]) and using the results of Theorem 3 in [22] we come to the
relations (2.6)–(2.8). �

Remark 2. To determinate a better estimate of the reachable set W(t0 + σ) we may in-
troduce a small parameter ε > 0 and embed the set W(t0, σ, ν) into a nondegenerate ellipsoid
Eε

(

w(t0, σ, ν), Oε(t0, σ, ν)
)

:

W(t0, σ, ν) ⊆ Eε

(

w(t0, σ, ν), Oε(t0, σ, ν)
)

,

w(t0, σ, ν) =

(

a∗(σ, ν)
t0 + σ(1− ν)

)

, Oε(t0, σ, ν) =

(

Q∗(σ, ν) 0
0 ε2

)

.

For small ε > 0 we will have

W(t0, σ) ⊂ Wε(t0, σ) =
⋃

0≤ν≤1

Eε

(

w(t0, σ, ν), Oε(t0, σ, ν)
)

⊂ Eε(w
+(σ), O+(σ)),

lim
ε→+0

h(W(t0, σ),Wε(t0, σ)) = 0,
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here h(A,B) is the Hausdorff distance between compact sets A,B ⊂ R
n.

Further as the next step of the describing estimation procedure we may use the algorithms
developed in [21] and applying them we construct the upper estimate Eε(w

+(σ), O+(σ)) for the
union of ellipsoids Wε(t0, σ). Thus we get the ellipsoidal estimate of the reachable set W(t0 + σ)

W(t0 + σ) ⊂ Eε(w
+(σ), O+(σ)) + o(σ)B(0, 1).

Now we can formulate a new computational algorithm for the numerical construction of exter-
nal ellipsoidal estimates for reachable sets of the system (1.1), this algorithm essentially uses the
Theorem 1.

Algorithm (External Estimation of Reachable Sets).

Subdivide the time segment [t0, T + µ] into subsegments
{

[ti, ti+1]
}

, where ti = t0 + ih
(i = 1, . . . ,m), h = (T +µ− t0)/m, tm = T +µ. Subdivide also the segment [0, 1] into subsegments
[νj , νj+1], where νi = ih∗, h∗ = 1/m, ν0 = 0, νm = 1.

1. Repeated steps begin with Step 1:

• Take σ = h and for given X0 = E(a0, k
2B−1) define by Theorem 1 the sets W(t0, σ, νi)

(i = 0, . . . ,m).

• Find ellipsoid Eε(w1(σ), O1(σ)) in R
n+1 such that

W(t0, σ, νi) ⊆ Eε(w1(σ), O1(σ)) (i = 0, . . . ,m).

At this step we find the ellipsoidal estimate for the union of a finite family of ellip-
soids [21].

• Find the projection E(a1, Q1) = πzEε(w1(σ), O1(σ)) by Lemma 2.

• Find the smallest k1 > 0 such that E(a1, Q1) ⊆ E(a1, k
2
1B

−1) (k21 is the maximal eigen-
value of the matrix B1/2Q1B

1/2).

• Consider the system on the next subsegment [t1, t2] with E(a1, k
2
1B

−1) as the initial
ellipsoid at instant t1.

2. The next step repeats the previous iteration beginning with new initial data. At the end of
the process we will get the external estimate E(a+(T ), Q+(T )) of the reachable set of the
system (1.1)–(1.3).

Remark 3. One of the subsequent steps of the above algorithm contains the projection of an
ellipsoid on the subspace of the part of state variables, it complicates a bit the whole estimation
procedure. But it is not possible to avoid this difficult step of the whole estimation process because
of the presence of impulsive components in the control functions. One of the main goals of this
paper is to overcome this complication.

3. Example

In this section we illustrate the main ideas and results obtained above by an example of an
impulsive control system with uncertain initial set and with nonlinearity in dynamics.
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Example. Consider the following control system






dx1 = a1x1dt+ u1(t)dt+ dv1,

dx2 = a2x2dt+ x21dt+ x22dt+ u2(t)dt+ 0.01dv2,
0 ≤ t ≤ T,

with unknown initial state which belongs to a unit ball

x0 ∈ X0 = B(0, 1).

Here we take t0 = 0, T = 0.4, U = B(0, r), with r = 0.01. We have also A = 2I, B = I, d1 = 0,
d2 = 1.

External ellipsoidal tube E+(t) = E(a+(t), Q+(t)) is shown at Fig. 1, it is found using the main
result of Theorem 1 and is constructed according to the the main Algorithm. The first estimating
ellipsoid E(0, k20B

−1) is shown in red color and it contains X0 (it is shown in blue color). It is
worth recalling that the construction of the set E(0, k20B

−1) begins the whole iterative estimation
process described by the Algorithm.
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Figure 1. External ellipsoidal tube E+(t) = E(a+(t), Q+(t)), t ∈ [0, 0.4].

Remark 4. The example shows that the estimation errors can increase with time (accumulation
effect). However, this is due to two factors of the model, the presence of nonlinear terms in the
equations of dynamics and the presence of impulse controls.

4. Conclusions

The problems of state estimation for nonlinear impulsive control systems with unknown but
bounded initial states were studied here. The solution was implemented based on the techniques
of trajectory tubes of differential inclusions theory and also based on results of ellipsoidal calculus
developed recently for these class of problems.

We study here the case when the system nonlinearity is generated by the combination of two
types of functions in related differential equations, one of which is bilinear and the other one is
quadratic. Additional difficulties in solving the considered problems were caused by the presence
in the dynamic system of impulsive actions of a vector type.
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The applications of the problems studied in this paper are in guaranteed state estimation for
nonlinear systems with unknown but bounded errors and in related applied fields (e.g., in robotics,
in problems of motor actuation, hydraulic actuation and others fields), the approaches developed
here may be used in the model-based advanced control of complex systems, such as adaptive control,
robust control, sliding-mode control, H-infinite control, etc.

Directions for further investigation continuing the paper research may be motivated by the
studies in the theory of dynamic systems with uncertainty and with vector impulse controls under
more complicated assumptions e.g. when the right hand sides of differential equations describing the
system dynamics contain the product of state coordinates and the generalized (impulse) controls.
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Abstract: The paper deals with some aspects of general local fields and tries to elucidate some obscure
facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly
speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability,
prosolvability and procyclicity. Furthermore, we give a result that makes “some” generalization to Abhyankar’s
Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed,
presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning
Hilbert’s theory.
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Introduction

Local fields with perfect residue field (or more generally when the residue extension is assumed
to be separable) were deeply studied. The general case, when dropping off the separability of the
residue extension, considered for the first time in [25] still needs more work.

This condition of separability implies that the extension of the valuation rings is monogenic
and plays an imminent role in the proofs of some standard results for example Hilbert formula,
Herbrand property and Hasse-Arf Theorem which remain true under the less strong condition of
monogeneity. Meanwhile the property of the congruence of the ramification breaks modulo the
residual characteristic, (necessarily p > 0) does not hold if the residue extension is not separable,
even by assuming the monogeneity of the respective valuation rings extension.

The residue field is only a “fair” field, and does not have to be CDV. When assuming it as local,
we can characterize a large “family” of general local fields, more precisely “the higher dimensional
local fields” (such fields need not be necessarily monogenic). Pars̆in introduced the “2-dimensional”
local fields and constructed a class field theory of them, then Hyodo defined “upper” ramification
breaks, as m-tuples, for a Galois extension of “m-dimensional” local fields (with finite last residue
field).

The perfectness of the residue field (char (K) = p > 0), implies necessarily the separability of
the residue extension. So, by assuming the less strong condition [K : K

p
] = pc < ∞, we make

a step ahead to the generalization (“c” is called the degree of imperfectness). By taking c = 1,
I. Zhukov in [26, §1] defines a good ramification theory under the hypothesis [K : K

p
] = p (i.e. K

has a p basis of length 1). Especially for such fields, he proved that all weakly unramified extensions
are well ramified and then monogenic. Zhukov’s theory was for “2-dimensional” local fields only,
then later it was generalized to “n-dimensional” local fields by V.A. Abrashkin [2].

It depends on the choice of a subfield of “1-dimensional constants” K in K (a field is “1-
dimensional” if it is complete with respect to its discrete valuation and has a finite residue field, it
is said to be “2-dimensional” if it is complete with respect to its discrete valuation and has a residue
field which is itself “1-dimensional”, and so on and so forth, we can define an “n-dimensional” local
field).

https://doi.org/10.15826/umj.2019.2.004
mailto:lbeka11@gmail.com
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The theory is presented by a ramification filtration on gal (Ksep/K), the absolute Galois group
of K, by steps beginning with gal (Ksep/K), the absolute Galois group of K .

In fact, in characteristic zero he defined K as the set of all x ∈ K which are algebraic over the

fraction field K0 of W (F ) where F = ∩Kpi
andW (F ) is the Witt ring of F . Such K is the maximal

for this property and is complete with a perfect residue field. Meanwhile, in characteristic p > 0 it
is possible to fix a “base” subfield B in K, complete with respect to the valuation of K and having
Fp as a residue field. That are the Fp((τ)) with vK(τ) > 0, if K is the algebraic closure in K of the
completion of B(RK). Here RK consists of Teichmüller representatives of elements of the maximal
perfect subfield in K.

Defining first a ramification filtration in classical way on gal (Ksep/K) he introduces then a new
lower filtration on gal (L/K) indexed by a special linear ordered set I ⊂ Q2 (lexicographic order).
Then a new Hasse-Herbrand function Φ : I 7→ I is defined with all the usual properties. Therefore,
a theory of upper ramification groups, in this case, is stated. He uses the method of “eliminating
wild ramification” due to Epp [6] to reduce, in a canonical way, the study of completely ramified
extensions to the last one of ferociously ramified extensions. For such extension the hypothesis on
[K : K

p
] implies that the extension to consider is in fact ferociously ramified with L/K generated

by only one element i.e. it is monogenenic (Section 5), for which L. Spriano defines a more general
ramification theory what he calls “case II”, see [20, §5], [21]. Particularly in this case, the question
of the “passage of the ramification to the quotient” is affirmatively solved.

Lastly, Abbes and Saito, using techniques of rigid geometry, define an upper ramification fil-
tration in the general case successfully. Till now they cannot make the two filtrations (namely the
lower of Hilbert–Zariski–Samuel and their upper) corresponding in a satisfactory way.

To sum up, the assumption of the monogeneity remains the first important step to generalization
without losing the trueness of large number of important results.

Section Progression:

Here are three main sections, then a section of limelight questions and a last as annexe.

In Section 1 we prove the solvability of the inertia group of any finite extension regardless of
the residual extension, then we give a discussion on the solvability of the Galois group.

In Section 2 we give a full description of the absolute Galois group in all cases.

In Section 3 Theorem 9 makes some generalization of Abhyankar’s Lemma in local case.

Section 4 contains a view of some future research, an attempt to develop of the theory.

Section 5 is an Annexe section destined to briefly elucidate several important points, necessary
for the study, concerning Hilbert’s theory.

The main results are Theorems 1, 2, 3, 4, 5 and 9, Propositions 1 and 4, Lemma 1.

Nowhere else in the realm of abstract algebra does one see such an elegant interaction of topics
as in the subject of General Theory of Local Fields.

By local field we mean a complete discrete-valued field (CDVF), the residue field being not
necessarily perfect. We say classical case when the residue field is perfect or at least when the
residue extension is separable, otherwise we name it as general case.

1. On the solvability in finite local extensions

Here, we study the solvability of the Galois group of some local extensions with possibly imperfect
residue field. Theorem 1 is a direct proof of the solvability of the inertia group in general case, then
results on solvability of n-dimensional local fields are given.
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1.1. On the solvability of the inertia group

Let L/K be a finite Galois extension of local fields. The residue extension L/K is normal, see
[18, Proposition I.7.20], but need not be separable. Consider D the set of all automorphisms of L
unvarying all elements of K, there is a natural surjective homomorphism ϕ : G → D. Indeed, let
g ∈ G, g preserves OL as well asML, therefore g induces an automorphism of L = OL/ML. Since
g fixes each element of K it fixes each element of K as well, for the surjectivity of ϕ see the same
reference. So, the inertia group of L/K is G0 = ker(ϕ), also G is solvable if and only if D and G0

are too.

Theorem 1. Let L/K be a finite Galois extension of any local fields without any assumption
on the residual extension. Then the inertia group G0 of L/K is solvable, furthermore it is cyclic
when the residual characteristic is zero.

It is a generalization of Serre’s results in [18, Proposition IV.2.7] and its corollaries. Published
in [11], the proof needs some necessary retouches that can be found here.

P r o o f. An uniformizer π of L being fixed, let us fix a set of generators of the residue field
extension and their lifts u1, ..., un to OL. Put it in another way, OL is generated by π, u1, ..., un as
an OK -algebra, with v(π) = 1, ui being units. Consider the map:

ϕ1 : G0 → K
⋆
,

g → g(π)/π.

It is clear that this is a homomorphism, write J1 = ker(ϕ1) for the kernel of this map, so J1 = H1;
we use Zariski–Samuel notation [25, ch. V, § 10]. Then again consider the homomorphism:

ϕ2 : J1 → K ⊕ ...⊕K; (n+1) of them,

g → ((g(π) − π)/π2, (g(u1)− u1)/π, ..., (g(un)− un)/π)),

where (g(α) − α)/πi is the class of (g(α) − α)/πi mod π. Set J2 = ker(ϕ2). Again by considering,

ϕ3 : J2 → K ⊕ ...⊕K; (n+1) of them,

g → ((g(π) − π)/π3, (g(u1)− u1)/π2, ..., (g(un)− un)/π2))

and so on and so forth, until the filtration stabilizes (of course, since OL ≃ lim←−OL/M
i
L) and we

get a trivial Jr. From this, we conclude

1. If the residual characteristic is p > 0: it is clear that J1 has a filtration by normal
subgroups Ji, where the subquotients Ji/Ji+1 are p-elementary abelian groups as Ji/Ji+1

injectively maps to (1+Mi
L)/(1+Mi+1

L ) which is canonically isomorphic to (L,+) for i ≥ 1.

Furthermore, G0/J1 is cyclic as it injectively maps to R⋆L/(1 +ML) ≃ (L
⋆
,×), and to

AutL(ML/M2
L) ≃ (L

⋆
,×) as well, and the field L is of characteristic p. (Remark the order

of G0/J1 is prime to p if p ≥ 3). Furthermore, worthy to note that the maximal tamely
ramified subfield T of L corresponds to the subgroup J1. Finally, J1 is a p-group (the unique
Sylow p-subgroup of G0) it is of order ewildfinsep, which then implies the solvability of G0.

2. When the residual characteristic is zero: for i ≥ 1 the subquotients Ji/Ji+1 being
isomorphic to a subgroup of (L,+) (additive), which has no finite subgroup except {0}, Ji
are trivial for all i ≥ 1 and G0 is cyclic. �
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Remark 1. J.P. Serre in [18, Corollary IV.2.5 of Proposition 7], inspired by Zariski–Samuel
in [25], gives a proof of this theorem in the classical case. Unhappily his proof breaks down in
the general case because he uses the (Gn)n (lower ramification subgroups Hilbert–Zariski–Samuel’s
filtration of G0). Of course, in general G0/G1 need not be abelian, see [25, page 297, last line],
the purely inseparable part of the residue extension playing main role. Indeed, Theorem 1 in the
same reference claims that the group G0/G1 contains a normal subgroup G′

1 which is reduced to
the identity in separable case (see § 5.1).

1.2. Consequences

From Theorem 1 we straightforwardly deduce the corollaries:

Corollary 1. Let K be a local field, and let L/K be a finite Galois extension. Then L/K is
solvable if and only if the maximal separable subextension of L/K is solvable.

Corollary 2. Consequently, in the classical case the Galois group of L/K is solvable if and
only if the Galois group of L/K is solvable.

1.3. On n-dimensional local fields

A complete discrete-valued field K is said to have the structure of an n-dimensional local field
if there is a chain of fields K = Kn,Kn−1, ...,K1,K0 where Ki+1 is a complete discrete valuation
field with residue field Ki and K0 is a finite field. The field K = Kn = Kn−1 is said to be the first
residue field of K, respectively K0 is the last.
Recall some facts about n-dimensional local fields:

• When assuming the last residue K0 is perfect rather than finite, we preserve most of the
properties of n-dimensional local fields.

• Some authors referred to as an n-dimensional local field over a perfect field, rather than a
finite field. But we consider an n-dimensional local field over an arbitrary field K0 as well.

• Let L/K be a finite extension. If K is an n-dimensional local field, then so is L.

Since finite extensions of a finite field are cyclic, by induction (use Corollary 1) we get:

Corollary 3. Every finite Galois extension of a “n-dimensional” local field with the residue
field of the corresponding “1-dimensional” field is finite, has a solvable Galois group.

In “Serre’s sense” a field is said to be quasi-finite if it is perfect and gal (Ksep/K) ≃ Ẑ (Ksep

being a separable closure of K and Ẑ the profinite completion of Z). Every finite quotient of Ẑ is
cyclic (Ẑ is a profinite group as the projective limit of the finite cyclic groups Z/nZ) and thus is
abelian and procyclic). Some authors allow themselves to say Ẑ is cyclic as a topological group,
even if it is not countable since the natural homomorphism Z→ Ẑ has a dense image.

So, Corollary 3 can be immediately generalized (in some sense) to the case when the residue field
of the “1-dimensional” field is assumed to be quasi-finite only, if we allow ourselves to generalize
the notion of “high-dimensional” local fields such way (replacing the finiteness of the residue field
of the “1-dimensional” field by its perfectness). Even the perfectness of the residue field is not
necessary. We can only assume that gal (K

sep
/K) ≃ Ẑ, or more generally prosolvable (K being the

residue field of the “1-dimensional” field K).
But we cannot say that the result remains true when gal (K

sep
/K) is any profinite group.

Indeed, a finite quotient of a profinite group need not be solvable. For this it is easy to construct
a counter-example of course, PSL(2,Fq) is very often simple.
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Corollary 4. Every finite Galois extension of a “n-dimensional” local field, has necessarily a
solvable Galois group if the residue field K of the corresponding “1-dimensional” form K = k((T ))
with k being an algebraically closed field of characteristic zero.

P r o o f. It suffices to use the Corollary of the Proposition IV.2.8 in [18]. Indeed, we have the
Galois group of the algebraic closure of K which is isomorphic to Ẑ. �

Notice that if gal (Ksep/K) ≃ Ẑ (e.g. if K is quasi-finite) then for every supernatural number n,
K has only one Galois extension of degree n. Since Ẑ has a unique closed subgroup of a given index
n, see Theorem 2.7.2 in [14].

2. Absolute groups

Here, we give a whole description of the absolute groups and their classification by residual
characteristic in the general case. More precise facts are found in § 2.4. Then we answer questions
concerning: the nature of these groups.

By absolute groups of K a CDVF, we mean the Galois group G, the inertia group G0 and GW
the wild ramification subgroup of a separable closure Ksep/K.

2.1. Hilbert decomposition of the separable closure

2.1.1. Presentation

For K being any field, consider Ksep/K a separable closure (that is the union of all finite Galois
extensions of K), it is necessarily normal and then Galois. In general Ksep ⊆ Kalg, nevertheless
Ksep = Kalg if and only if K is perfect. Now, if K is a complete discrete-valued field then its
valuation extends uniquely to Ksep but it is no more discrete on it, actually v((Ksep)⋆) = Q;
furthermore, Ksep is not complete for the discussed valuation.

The Galois group gal (Ksep/K) = AutK(Ksep/K), called absolute Galois group of K, is a
compact topological group with respect to the profinite topology. Indeed, going over all finite
extensions L/K, denote by L the set of all finite Galois extensions L of K contained in Ksep/K,
then we can write,

Ksep =
⋃
L∈L L; and gal (Ksep/K) = lim←−L∈L gal (L/K).

Now, the maximal unramified extension Kunr of K in Ksep is the union of all fields L0 (L0 being
the maximal unramified extension of K in L and is Galois over K), we too find that KW , the union
of all fields Lw (where Lw is a tamely ramified Galois extension in L that contains every tamely
ramified extension of K in L), is a tamely ramified extension of K in Ksep. That is we have the
tower:

K ——– Kunr ——– KW ——– Ksep .

Kunr/K and KW /K both are Galois and GW = gal (Ksep/KW ) os the absolute wild ramification
group (maybe trivial), which can be considered as the projective limit of a sequence of corresponding
finite wild ramification p-subgroups (in all cases the ramification filtration always exists). So, GW
is prosolvable even more pronilpotent, but in general not solvable. That is the p-Sylow subgroup
of G0 = gal (Ksep/Kunr) (the absolute inertia group), and a closed normal pro-p-subgroup of
G = gal (Ksep/K). Furthermore, write K

sep
as a separable closure of K, K

sep
= OKunr/MKunr =
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Kunr. Indeed, the residue field of the maximal unramified extension of K is a separable closure of
K. Furthermore, gal (Kunr/K) = gal (K

sep
/K), see [13, ch. II, Proposition 7.5].

Remark 2. It is well known that G0/GW is a torsion free abelian group, the q-Sylow subgroups
of which are free Zq-modules of rank dimFqΓ/qΓ where Γ is the additive value group. The prime
numbers q are necessarily different from the residue characteristic.

2.2. General description

First, let us notice some relatiohship between the unit group and the Galois group. Recall
that the unit group is abelian and the absolute Galois group is not. However we know that there
is some correspondence between the unit group and the Galois group of certain subextension of
Ksep. Indeed, when K is a local field with finite residue field its unit group is isomorphic to the
Galois group of a certain totally ramified abelian extension of K. For example, the extension of Qp
obtained by adjoining all p-power roots of unity has Galois group Z⋆p over Qp. This generalizes to
other base fields using Lubin–Tate formal groups.

If K is any complete discrete-valued field then the unit group O⋆K (as well as OK) is compact if
and only if the residue field of K is finite, so in the case of an infinite residue field the topological
group O⋆K could not be a Galois group since profinite groups are compact.

2.2.1. Classification by residual characteristic

Let us proceed by cases:

1. If char (K) = 0, all Galois extensions are tamely ramified, the inertia group of every finite
extension is cyclic and its wild ramification subgroup is trivial, see the proof of Theorem 1,
hence the absolute inertia group G0 of the absolute Galois group is the profinite completion
of Z i.e. is isomorphic to Ẑ so it is procyclic (by the way abelian), meanwhile GW is trivial.
In consequence the absolute Galois group is a semi-direct product of the absolute inertia
group by the absolute Galois group of the residue field i.e. G ≃ Ẑ ⋊ gal (Ksep/K).
Now, when the residue field K is algebraically closed K

sep
= K, the maximal unramified

extension is trivial, in consequence the absolute inertia group equals the absolute Galois
group G0 = G. So, we find the main result of Theorem 4 that comes.

2. If char (K) = p > 0, the absolute inertia subgroup G0 of G is isomorphic to the extension
of GW by

∏
q¬p Zq, where Zq is the ring of q-adic integers with q 6= p. With Kunr being

the field fixed by G0 in Ksep, Kunr/K is a Galois extension such that gal (Kunr/K) is
isomorphic to GK where GK is the absolute Galois group of the residue field K. That is
G0 = G/GW ≃

∏
q 6=p Zq⋊GK with its Galois action. Indeed, for each integer q prime to p, the

group of q-th roots of unity µq(K
sep

) is cyclic of order q. Consider Q the set of all integers q
prime to p ordered by divisibility, if q′ = q.m by means of the transition map (rising to power
m) µq′(K

sep
)→ µq(K

sep
) we have a canonical isomorphism G0/GW ≃ lim←−q∈Q µq(K

sep
).

The Tate twist of Zq being defined by Zq(1) = µq∞(K
sep

), write, Ẑ′ =
∏
r 6=p Zr, and Ẑ

′(1) =
∏
r 6=p Zr(1), we have that Ẑ′(1) ≃ Ẑ′ the isomorphism being not canonic. Then we get G0/GW ≃∏
r 6=p Zr(1). Since, G/G0 ≃ GK the action by conjugation of GK on G/G0 gives the natural action

on Ẑ′(1).

Furthermore, G/G0 ≃ GK and T the absolute “tame-inertia” subgroup T ≃
∏
r 6=p Zr is a

normal subgroup of G/GW . In other words, we have: (G/GW )/T ≃ GK .
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Remark 3. For q prime, q 6= p and n ∈ N⋆, any cyclic finite extension of K of degree qn, if
it exists, corresponds to a quotient of gal (Ksep/K)/GW that looks like Z/qnZ. Indeed, if L/K is
cyclic of degree qn, then [KWL : KW ] has degree qm with m 6= n. GW being pro-p-group, m = 0,
so L ⊂ KW hence gal (L/K) is a quotient of gal (Ksep/K)/GW .

2.3. Pro-solvability, pro-cyclicity and solvability

2.3.1. When is the absolute Galois group prosolvable?

Remark 4. The absolute Galois group of any Henselian discrete-valued field need not be
prosolvable in general. Indeed, it admits a canonical surjection onto the absolute Galois group of
the residue field given by the action on the maximal unramified extension, so if the latter is not
prosolvable, the former cannot be either. See the following example.

Example 1. The absolute Galois group of Q is a quotient of the absolute Galois group of Q((X)).
The first is not prosolvable so, neither is the last. More generally, if K is any Henselian discrete-
valued field, then the maximal unramified extensionKunr ofK has a Galois group gal (Kunr/K) iso-
morphic to the absolute Galois group of K (i.e. gal (Kunr/K) ≃ gal (K

sep
/K)), since gal (Kunr/K)

is a quotient of gal (Ksep/K) then so is gal (K
sep
/K).

More precisely, we have the following result.

Theorem 2. For any Henselian discrete-valued field,

• the absolute wild ramification group and all wild ramification subgroups are always pronilpo-
tent. Meanwhile,

• its absolute Galois group is prosolvable if and only if this is true for the absolute Galois group
of the residue field.

P r o o f. Indeed, in all cases GW (maybe trivial) is a closed normal pro-p-subgroup of the
absolute Galois group G = gal (Ksep/K) and is then pronilpotent. See § 2.1.1.

Consider first the case of a positive residual characteristic p > 0.
Denote by (v((Ksep)⋆)p/v((K)⋆)) the p-free part of the abelian torsion group

(v((Ksep)⋆)/v((K)⋆)) (a quotient group of Q), then we have the exact sequence see [18]:

1→ (v((Ksep)⋆)p/v((K)⋆))∨ → gal (KW /K)→ gal (K
sep
/K)→ 1,

where, (v((Ksep)⋆)p/v((K)⋆))∨ is the dual of (v((Ksep)⋆)p/v((K)⋆)) in the sense that is the full
character group of

(v((Ksep)⋆)p/v((K)⋆)) i.e.
(v((Ksep)⋆)p/v((K)⋆))∨ = Hom((v((Ksep)⋆)p/v((K)⋆)),K

sep
).

In consequence we have that,

gal (KW /K) is an extension of gal (K
sep
/K) by

(v((Ksep)⋆)p/v((K)⋆))∨ ≃ gal (KW /K
unr) = G0/GW ≃

∏
r 6=p Zr(1).

It follows that all its Sylow subgroups are normal. Then the results follow.
Furthermore, G/G0 ≃ GK and (G/GW )/T ≃ GK ; T the absolute “tame-inertia” subgroup.

See § 2.2.1. Finally, we get that gal (Ksep/K) is prosolvable if and only if this is true for GK the
absolute Galois group of the residue field.

Consider now the case when the characteristic is zero. It still holds, indeed, GW is trivial, so
G0 ≃

∏
r 6=p Zr(1). �
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Remark 5. It is worthy to notice that

• G0 need not be pronilpotent. Indeed, the tame quotient can act by a non trivial outer
automorphisms on the wild subgroup.

• The equivalence in Theorem 2 concerns the prosolvability only but not the solvability. Of
course take for example p-adic field Qp its absolute Galois group is prosolvable (but not
solvable) since every finite Galois extension of it is solvable see Proposition 1, meanwhile the
absolute Galois group of its residue field, Fp, is procyclic.

• Since, any finite quotient of a pronilpotent profinite group is nilpotent. In general, the
absolute Galois group of any Henselian discrete-valued field need not be pronilpotent. See
Theorem 3.

Theorem 3. Every finite normal totally ramified extension of Qp for p being an odd prime
number is either cyclic or nonnilpotent. Moreover if the extension is wildly ramified, then it is
cyclic.

P r o o f. Consider such extension K/Qp with the Galois group G. Suppose first that G is a
p-group and let Φ(G) be its Frattini subgroup. Since G/Φ(G) is an elementary abelian p-group thus
the group G/Φ(G) is cyclic and therefore from a property of Frattini subgroups G is itself cyclic.
Now let the group G be nilpotent, then it is the direct sum of its Sylow subgroups. Consequently
G = G1 × R where G1 is a p-group and the order of R is prime to p. Remark that G1 is the
ramification group of K/Qp. Since KR/Qp is a normal totally ramified extension (KR the fixed
field by the elements of R) and its Galois group GKR/Qp

= GK/Qp
/GK/KR = G/R = G1 is a

p-group it follows from above that G1 is cyclic. Since for p 6= 2 every normal totally and tamely
ramified extension K/Qp is cyclic of degree dividing p− 1, furthermore with M = KG1 we get that
the group GM/Qp

= GKG1/Qp
= G/G1 = R is cyclic of order prime to p. Consequently the group

G = G1 ×R is cyclic. �

2.3.2. When is the absolute Galois group procyclic?

Here we prove the converse of Proposition IV.2.8 in [18].

Theorem 4. For a complete discrete-valued field K, the absolute Galois group is isomorphic
to Ẑ if and only if the residue field K of K is algebraically closed and is of characteristic 0.

P r o o f. If char (K) = p > 0 then the structure of the inertia group is not commutative since
it has non-Galois separable finite extensions (discreteness of the valuation bounds the amount of
p-power roots of unity in the maximal unramified extension when char (K) = 0, so pn-th root
extractions of a uniformizer will be non-Galois for large n; in characteristic p one can use Artin-
Schreier extensions of some tamely ramified extensions to make non-Galois extensions). So if the
Galois group is commutative then char , (K) = 0, so by completeness the field must be K = K((T ))
for a field K of characteristic 0, and then the Galois group is an extension of gal (K

sep
/K) by Ẑ,

but this Ẑ being a closed subgroup of Ẑ can only happen in case of equality, so can only happen
when K

sep
= K, which is to say K is algebraically closed. Nothe that the necessary condition is

proved in Proposition IV.2.8 in [18]. In such case the absolute inertia subgroup equals the absolute
Galois group, G0 = G. �
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2.3.3. When is the absolute Galois group solvable?

If a profinite group G is solvable then it is prosolvable, the converse is not true. Of course prosolvable
does not mean that G(n) = {1} for some finite n (i.e. the derived length of G is finite, G(n) being
the n-th commutator subgroup of G), but it only means that the series G(n) of higher commutator
groups converges to {1}, i.e. every neighbourhood of {1} contains almost all higher commutator
subgroups.

For K being any CDVF, with the current notations, GW = gal (Ksep/KW ) is the absolute wild
ramification group, maybe trivial, otherwise, it is a free pro-p-group of infinite rank, where p is the
residual characteristic. It, is prosolvable, pronilpotent, but in general not solvable. By Corollary 5,
we have G/GW is metabelian if and only if the absolute Galois group of the residue field of K,
G = gal (Ksep/K) is too.

We have also the following properties.

1. If char (K) = p and char (K) = p > 0.

Since a free pro-p-group is either isomorphic to Ẑ when it is of rank 1 otherwise it is non-
solvable, G(p) being the biggest quotient of G which is a pro-p-group. For more details see
§ 2.5 is then non-solvable, neither is G; (indeed, G(p) is a factor group of it). So, we get the
following result.

Let K be any CDVF of characteristic p > 0 the residue field being not algebraically closed
i.e. G is not trivial, (with no further assumption on the residue field). Then the absolute
Galois group of K is not solvable.

2. If char (K) = p and char (K) = 0.
Then GW the absolute wild ramification group is not trivial and a free pro-p-group of infinite
rank. Therefore, GW is not solvable. And consequently G is too.

So, we have the recapitulative result:

Proposition 1. With the current notations, for K any CDVF regardless of its characteristic,
if char (K) = p, then if the absolute Galois group is not trivial it is then not solvable as an abstract
group.

Now, let us prove a nice and necessary result on profinite groups.

Proposition 2. Let N be an abelian profinite group whose automorphisms group Aut(N) being
abelian profinite too. Consider the profinite group (semi-direct product) G = N⋊H. Then we have:
1. If H is metabelian then G′ (derived group) is abelian (i.e. G is metabelian too). Consequently:
2. G is metabelian if and only if H is too.

P r o o f. 1. Let K = CH(N), the centralizer of N within H (the set of elements in H that
commute with every element of N , in the semi-direct product). As the action of H on N by
automorphisms is given by a homomorphism H → Aut(N) the kernel of which is K so H/K
embeds in Aut(N), and as Aut(N) is abelian, H/K is abelian as well. In other words, K contains
H ′ the group generated by the commutators of H, so H ′ centralizes N . Furthermore, since H is
metabelian then H ′ is commutative, knowing that, G′ = N ⋊ H ′, we get N ⋊ H ′ = N × H ′ is
commutative. Hence, G′ is abelian.
2. Consequently G/G′ is commutative. Conversely, if G is metabelian then H is too. �
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Remark 6. Two important remarks are worthy to be noticed:

1. For N a profinite group Aut(N) need not be profinite, see Example 4.4.6 in [14].

2. If Aut(N) is abelian, N need not be abelian too, even when N is a finite group. (There are
nonabelian finite p-groups for each prime p such that the automorphism groups are abelian
see [8].)

Now, from Proposition 2, and since Aut(∏q 6=p Zq) is abelian, we get the following result.

Corollary 5. Let K be any CDVF of characteristic p > 0 with no assumption on K, G being
the absolute Galois group and GW the absolute (wild) ramification subgroup of G. Then, G/GW is
metabelian if and only if the absolute Galois group of K, G is too.

2.4. Recapitulation

Let K being any CDVF with no special assumption on K.

1. Let char (K) = p > 0. The absolute Galois group of K is not solvable, see Remark 7.

2. Let char (K) = 0 and char (K) = p. We have wild ramification, so a non trivial GW which
is not solvable, neither is the absolute Galois group is not solvable as an abstract group, see
Proposition 1.

3. Let char (K) = 0 and char (K) = 0. There is no wild ramification, so the subgroup GW
is trivial, and the absolute inertia group G0 ≃ Ẑ. Now since the absolute Galois group
is isomorphic to a semi-direct product of G0 by gal (K

sep
/K) i.e. gal (Ksep/K) ≃ Ẑ ⋊

gal (K
sep
/K). We may have the three following cases:

(a) If K is algebraically closed then, gal (K
sep
/K) is trivial. So, gal ((K)sep/K) ≃ Ẑ it

procyclic hence abelian, see Theorem 4.

(b) If K is not algebraically closed but can be endowed with a structure of C.D.V.F with
residual characteristic p > 0. we still have the non solvability straightforwardly with
respect to Proposition 1. (Particularly if the field K is a High dimensional local field).

(c) The only case that remains to study, is that when K is not algebraically closed and
cannot be endowed with a structure of C.D.V.F with residual characteristic p > 0. Note
that, for example, if the residue field is Q it is clearly not solvable, whereas if the residue
field is the fixed field of a single element from the absolute Galois group of Q then it is
solvable. (For more details on the solvable profinite groups occurring as absolute Galois
groups see [9].)

Question 1. A question that is staring immediately in the face is: “Is an absolute Galois group
either procyclic or else nonabelian?”

But the answer is surprisingly simple, it is negative! See the following Example 2:

Example 2. Take the field K = C((X))((Y )) with C the field of complex numbers. It is
Henselian according to the discrete Y -adic valuation, (the residue field being C((X))).But the
absolute Galois group G of K is the direct product of two copies of Ẑ, G ≃ Ẑ × Ẑ, hence abelian
but non procyclic.

Note 1. With respect to our study, the result in [9]: “For any commutative field, if the absolute
Galois group is solvable then it is metabelian,” turns out to be more relevant in global case then for
CDVF, except in the single case when char (K) = 0 and char (K) = 0 and no structure of CDVF
with residual characteristic p > 0, can be defined on K.
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2.5. On the p-maximal extension

For details see § 2.2.1.
First case same characteristic. Here let us assume that charK = p > 0.
Let K be any CDVF of characteristic p > 0 with no special assumption on K, the residue

field of K. Write G(p) for the biggest quotient of G which is a pro-p-group. G(p) is the Galois
group of the maximal p-extension K(p)/K i.e. the compositum of all Galois extensions of p-power
order. It is a free pro-p-group of rank > 1, see [19, Chap. II., § 2.2, Corollary 1, p. 75], (i.e.
G(p) is the profinite completion of a free group with respect to a system of normal subgroups the
quotients of which are finite p-groups) such that H1(G(p)) can be identified with K/℘ (K) (where
℘ : x 7→ xp−x) which is a vector space of infinite dimension over Fp (the field of p elements), since
the powers T n (with n ranging over N and prime to p, T being a prime element in the DVF) are
linearly independent over Fp.
First let us recall the following well known results:

Proposition 3. Let L = K((t)) (Laurent Series field) with char (K) = p > 0, K(p)/K being
the maximal p-extension (compositum of all Galois extensions of p-power order), then:

• If K is finite or countable then G(p) = gal (K(p)/K) is a free pro-p-group of countably infinite
rank,

• If K is uncountable then G(p) = gal (K(p)/K) is a free pro-p-groups of uncountable rank
(see [12, Proposition 6.1.7]).

In other words and in classical case more precisely for any local field K with finite residue field we
have:

Theorem 5. Let K be any local field with finite residue field K, let char (K) = p, then G(p)
as well as GW (the wild ramification group) are free pro-p-groups of countably infinite rank.

P r o o f. See Proposition 7.5.1 and [12, Theorem 7.5.10]. �

Remark 7. Since a free pro-p-group is either isomorphic to Ẑ when it is of rank 1 otherwise it
is non-solvable. Then G(p), being a free pro-p-group of rank > 1, is non-solvable, neither is G as
G(p) is a factor group of it.

So, we get the following result:

Theorem 6. Let K be any complete discrete-valued field of characteristic p > 0 with no as-
sumption on the residue field. Then the absolute Galois group of K is not solvable.

Remarks on the q-maximal extension with q 6= char (K): K being some field containing a q-th
root of unity, q being an odd prime number and different from the characteristic of K. Write G(q)
for the Galois group of the q-maximal extension of K, and assume that G(q) has a finite normal
series with abelian factor groups (i.e. solvable). Then the derived subgroup G(q)′ of G(q) is abelian,
moreover, G(q) has a normal abelian subgroup with a pro-cyclic factor group. Furthermore, we
have the following result:

Theorem 7 [22]. Under the current hypotheses and notations the following statements are
equivalent:

• G(q) is solvable.
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• G(q) is metabelian.

• G(q) does not contain a free non-abelian subgroup.

Now, GW is a pro-p-group therefore, the absolute Galois group of K is prosolvabe if and only
if gal (KW /K) is too (a pro-p-group is pro-nilpotent but need not be solvable). See [5].

Second case: mixed characteristic. In this case, Safarevic̆ in [15] showed that for K/Qp an
extension of degree n not containing the p-th roots of unity and if K/Qp is finite of degree n < +∞
then G(p) is a free pro-p-group of rank n + 1. Now if K contains µp (the group of the p-th roots
of unity) then G(p) is a Poincare group of dimension 2 that is a Demuskin group of rank n + 2.
See Theorem 7.5.11 in [12]. So, in both cases if K/Qp is finite of degree n < +∞ then the absolute
Galois group G of K can be generated by n+ 2 elements. See Theorem 7.4.1 in [12].

Furthermore, we have the following:

• By local class field theory, the abelianized group G(p)/G(p)′ is isomorphic to the pro-p-
completion of K⋆ hence it is isomorphic to U1

K × Zp which is not procyclic, of course U1
K ,

the subgroup of 1-units in K⋆ is not procyclic, but it is free abelian for p > 2 and K not
containing the p-th roots of unity.

• Any complete discrete-valued field of residue characteristic p > 0 has an (unramified) pro-
cyclic extension K(p′) generated over K by all the ℓ-th roots of unity for ℓ describing all
natural integers not divisible by p, thanks to Hensel’s Lemma. Of course, from Galois theory
of finite fields, by adjoining such roots of unity at residual level is obtained from doing so
over the prime subfield Fp of the residue field K. For more details see § 3.4.

Note that the unramified extension K(p′)/K maybe trivial. For example if k is algebraically
closed of characteristic p, then k((t)) has no unramified extension.

It is worthy to notice the following result:

Lemma 1. In case if G has G(p) as free pro-p-group of “1 < rank ≤ +∞′′ with (char (K) = p),
we can add that G is a semi-direct product of gal (Ksep/K(p)) by a subgroup isomorphic to G(p).

P r o o f. Indeed, according to Theorem 7.7.4 in [14] “G(p) is a free pro-p-group if and
only if G(p) is projective group (in the category of profinite groups)”, that is it has the lifting
property for every extension, which is equivalent to say that for every surjective morphism from
any profinite group H → G(p) there is a section (a right inverse of the morphism in question)
G(p) → H. So, if f is an epimorphism from G onto G(p) by the projectivity of G(p) there exists
a homomorphism h from G(p) to G such that fh is the identity map on G(p). Hence, G is a
semi-direct product ker(f) and h(G(p)) (which is isomorphic to G(p)). �

2.6. On the maximal unramified extension

Let K be any complete discrete-valued field of residue characteristic p > 0 with K being the
residue field of K, write K

sep
= OKunr/MKunr , it is a separable closure of K; (Kunr being the

maximal unramified extension of K that is the composite of all unramified extensions inside an
algebraic closure of K ).

From [13, ch. II, § 7] in the general case that is when K is assumed to be Henselian only
Kunr contains all roots of unity of order m not divisible by the residue characteristic, because the
separable polynomial Xm − 1 splits over the separable closure of the residue field of K, and hence
also over the maximal unramified extension Kunr of K, by Hensel’s Lemma. Now write K(p′) for
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the (unramified) pro-cyclic extension of K generated by all the ℓ-th roots of unity for ℓ describing
all natural integers not divisible by p, it contains a subextension K(p′′) that is generated over K
by all the q-th roots of unity for q describing all the primes different from p.

The question remains to prove that K(p′) = K(p′′).

First, notice that the question is certainly a question of residue fields, par excellence.

Consider, the largest finite field contained in K, Fℓ (the finite field of ℓ elements) where ℓ is
power of p. Since the finite field Fℓ consists of the (ℓ− 1)-th roots of unity and 0, the said roots of
unity are contained in K. Now, if a complete discrete valuation field has residue field containing Fℓ,
then K contains the (ℓ−1)–th roots of unity (Hensel’s Lemma). This is an if and only if statement.

Now, we can say that K(p′) (defined as above) is included in the residue field of K(p′)/K and
then Fℓ(p

′) is included in the residue field of K(p′)/K too, as well as K(p′′).

(Note that Fℓ(p
′) and Fℓ(p

′′) are no more finite, but infinite fields of characteristic p > 0.)

In other words, we can replace K by Fℓ.

Hence, if we prove that: Fℓ(p
′′) is an algebraic closure of Fℓ. Then we get that Fℓ(p

′) = Fℓ(p
′′)

and consequently that K(p′) = K(p′′).

Since to get a primitive f -th root of unity in a field is equivalent to getting primitive roots of
unity of order equal to each prime-power factor of f , our question amounts to asking if for a given
prime p and prime power ℓr (allowing ℓ = p), does there exist a square-free n not divisible by p
such that p mod n has order divisible by ℓr (so then adjoining a primitive n-th root of unity to Fp
would give an extension of degree divisible by ℓr, and then do this for several such prime powers
to get an extension of Fp generated by prime-order roots of unity such that its degree is divisible
by whatever we want).

But if (Z/nZ)⋆ is going to contain a cyclic subgroup of order ℓr then under the decomposition
(Z/nZ)⋆ =

∏
(Z/qiZ)

⋆ for the prime factors qi of the square-free n we see that one of the projections
(Z/nZ)⋆ → (Z/qiZ)

⋆ is injective on that cyclic subgroup of order ℓr. Hence, if some such n is going
to exist then even a prime n will have to exist which does the job. In other words, the question is
exactly asking this:

Given a prime p and a prime power ℓr (allowing ℓ = p), does there exist a prime q distinct from
p such that p mod q has order divisible by ℓr?

Since (Z/qZ)⋆ is cyclic, the only way it contains an element with order divisible by ℓr is if the
size of this cyclic group is divisible by ℓr, which is to say q = 1 mod ℓr.

Lemma 2. Let p be prime. To generate an algebraic closure of Fp it is enough to adjoin the
q-th roots of unity for all prime q different from p.

Here we must use C̆ebotarev’s Theorem (see, [13, ch. VII, § 13, Theorem 13.4]). Indeed,
C̆ebotarev density Theorem reduces the problem of classifying Galois extensions to that of describ-
ing the splitting of primes in extensions. Specifically, it implies that as a Galois extension of K, L
is uniquely determined by the set of primes of K that split completely in it. A related corollary is
that if almost all prime ideals of K split completely in L, then in fact L = K.

P r o o f of Lemma 2. By a simple application of non-abelian C̆ebotarev result, it is enough
to settle that “For (possibly equal) primes p and ℓ and any integer r > 0 that there are lots of
primes q = 1 mod ℓr such that p mod q has order divisible by ℓr”, (e.g., lots of q = 1 mod 9 such
that 5 mod q has order divisible by 9). Since (Z/qZ)⋆ is cyclic with size divisible by ℓr, a sufficient
condition for an element to have order divisible by ℓr is that it “not” be an ℓ-th power. So one way
to ensure that p mod q has order divisible by ℓr is to make sure that p mod q is not an ℓ-th power.

So consider the non-abelian Galois extension K = Q(ζrℓ , p
1/ℓ) of Q. We have gal (K/Q) →

gal (Q(ζℓr)/Q) = (Z/ℓrZ)⋆ carrying a Frobenius element Frobq onto q mod ℓr, hence C̆hebotarev
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provides many q such that Frobq is nontrivial but q = 1 mod ℓr. For any such q, not only is q
totally split in Q(ζℓr ) but the extension give by adjoining an ℓ-th root of p is “non-trivial ” over
Fq = (Z/qZ)⋆. Hence, Xℓ − p has no root in Fq (since if it has one root then it completely splits,
as Fq contains a primitive ℓ -th root of 1 by design).

Applying this with a fixed p but several ℓrs (for different ℓs) and considering pairwise distinct q s
thereby obtained, it follows that every finite extension of Fp is contained in an extension generated
by prime-order roots of unity, that is exactly what we wish. �

Also, we have the following result:

Proposition 4. Let K be any complete discrete-valued field of residue characteristic p > 0
with no more assumption on the residue field, then K(p′) = K(p′′), namely the (unramified) pro-
cyclic extension of K generated by all the ℓ-th roots of unity for ℓ describing all natural integers
not divisible by p equals the last one generated by all the q-th roots of unity for q describing all the
primes different from p .

P r o o f. The proposition follows from Lemma 2 immediately. �

Remark that if K is finite then Kunr = K(p′) (see [13, ch. II, § 7]). So, we have:

Corollary 6. Let K be any complete discrete-valued field with a finite residue field of charac-
teristic p > 0, then the maximal unramified extension of K is the extension generated over K by
all the q-th roots of unity for all prime q different from p.

Notice that Corollary 6 above is no more true if K is not finite, indeed:
Example 3. If k = Fp(u) with u transcendent on Fp (the field of p elements) and K = k((x)),

then K(v) with vn = u is an unramified extension of K (in the sense that e = 1 , and in the strict
sense if p does not divide n). Obviously, K(v) cannot be generated by a root of unity.

3. On Abhyankar’s Lemma

The aim of this section, is the proof of Theorem 9 that is “some” generalization of Abhyankar’s
Lemma in local case, by use of the following EPP’s Theorem 8 (see [6]).

First, let us recall both the Abhyankar Lemma [7] and EPP Theorem1.

Lemma 3 (Abhyankar, [7]). Let L = L1L2 be the compositum of two finite algebraic extension
fields of K, let P be prime divisor of L, which is ramified in Li/K of order ei (i = 1, 2); then if
e2|e1 and P is tame in L2/K, then P is unramified in L/L1.

Theorem 8. (EPP2) Let L/K be any non-trivial finite extension of discretely valued fields,
it is possible to eliminate wild ramification, that is to ensure that ek′L/k′K = 1 for some finite
extension k′/k, where k is a “constant3 subfield”.

Now, our generalization of Abhyankar’s Lemma in local case can be announced as follows.

Theorem 9. Given any finite Galois extension L/K of complete discrete-valued fields with
a non necessarily perfect residue field of characteristic p > 0. Then there exist two separable
overextensions K ′ and M of K such that:

1EPP Theorem is an existence theorem of a reduced extension but non-constructive.
2Worthy to note that in [10] F.V. Kuhlmann has corrected an error in the proof of Theorem 8 of EPP’s

article [6]. Happily the error does not hurt any of the wording of all results in the said article.
3A subfield k of K is said to be constant, if it is a maximal subfield of K having a perfect residue field.

Note that, such k is canonical in the mixed characteristic case).
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• K ⊂ K ′  M ⊆ LK ′,

• LK ′/K ′ is weakly unramified, so a uniformizer in K ′ remains uniformizer in LK ′.

• M/K ′ is unramified.

• LK ′/M is ferociously ramified, then the Galois group gal (LK ′/M) is a p-group.

P r o o f. First, according to Theorem 8, there exists a finite extension K ′/K such that LK ′/K ′

is weakly unramified, therefore [LK ′ : K ′] = [LK ′ : K ′], i.e. e = 1 and f = [LK ′ : K ′] (where
K ′ is the residue field of K ′). This condition implies that a uniformizer of K ′ remains uniformizer
in LK ′, but the residue extension can be inseparable, furthermore it is not evident that Epp’s
extension K ′/K is separable.

Let M be the maximal unramified (i.e. etale) extension of K ′ that is contained in LK ′.
Characterization of M : The ramification index e(M/K ′) = 1, the residue extension of M/K ′ is
separable so that M/K ′ is unramified, but the residue extension of LK ′/M is purely inseparable
(if LK ′/K ′ is not unramified, see Remark 8).

Note that, if K has characteristic zero, then we can certainly take K ′/K Galois, because if
K ′/K is not Galois, then we can always use its Galois closure instead.

Let T be the maximal tamely ramified subextension of LK ′/K ′. Characterization of T
(see § 5.3): e(T/K ′) is prime to p, e(LK ′/T ) is a power of p, the residue extension of T/K ′ is
separable, and the residue extension of LK ′/T is purely inseparable. Hence if e(LK ′/K ′) = 1, we
have T =M and [LK ′ :M ] is a power of p.

Indeed, more precisely, in case of K ′/K is separable LK ′/M is then weakly unramified and the
residue field extension is purely inseparable i.e. LK ′/M is ferociously ramified (if it is not trivial).
[LK ′ : M ] = [LK ′ : M ]insep. In such case the inertia group of LK ′/M is the full Galois group of
LK ′/M , and this group is a p-group.
In case of K ′/K is purely inseparable, LK ′/K ′ being weakly unramified, then it cannot be the case
that the inertia group of L/K has a prime-to-p part, as tame ramification cannot be eliminated
by an inseparable extension, in other words if the tame ramification index etame > 1, and if K ′/K
is a purely inseparable extension, then LK ′/K has the same tame ramification index, so it cannot
be weakly unramified, this follows from the multiplicativity of the tame ramification index. So,
assuming LK ′/K ′ is weakly unramified, then it is true that LK ′/M is ferociously ramified. The
proposition follows. �

Remark 8. When considering the particular case of perfect residue fields with L/K tamely
ramified we get M = LK ′, that is the Abhyankar’s Lemma.

Remark 9. [26, § 1] If furthermore, we assume the hypothesis [K : K
p
] = p (i.e. K has a p basis

of length 1), we get that LK ′/K ′ is well ramified and then monogenic.

Remark 10. The usefulness of Theorem 9 is alluded to in the construction of a translated weakly
unramified extension that is decomposable in an unramified and a ferociously ramified extensions.
Worthy to note that such extensions arise in some situations in algebraic geometry. They are
almost as important as selected in algebraic setting. For example, the book [4] which considers
local extensions of discrete-valued rings having e = 1 in the more general case, such situations are
called there as with “ramification index 1”.

In a similar question of ours, Abbes and Saito proved the following different Corollary, see
[1, Corollary A.2, p. 31]. However, in their result they eliminate the fierce extension and allow to
get an unfiercely ramified extension. They use the term unfiercely ramified for the case of finite
separable extensions with separable residue extensions.
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Corollary 7 (A.2)(Abbes–Saito). Given any finite separable extension of complete discrete-
valued fields L/K, there exists a tower K ⊆ K ′ ⊆ LK ′, K ′/K finite separable such that
• a uniformizing element of K remains uniformizing element in K ′;
• LK ′/K ′ is unfiercely ramified.

4. Questions in the limelight in the general case

In this section some important and still open questions, that can make a fruitful subject of
research, are given:

• How to completely specify the extensions having ewild > 1 and finsep > 1 for which there
exists a normal subgroup that can ”separate” ferocious from wild ramification? Note that
some steps have been already done by L. Spriano, but the question is still very far from being
entirely solved.

• In his paper [17, Corollary 1.3.4, p. 790] (in the equal characteristic case) and also in [16,
Theorem 2, p. 568] (in the mixed characteristic case), Saito considered the following natural
injective map the refined Swan conductor homomorphism (”rsw” initially defined by Kato)
from the graded quotients piece of the Abbes–Saito filtration into the differentials. To be
more precise, in the general case we have

rsw : Hom(GrK,log/G
r+
K,log,Fp)→ Ω1

OK
(log) ⊗OK

π−rK K
sep
, (4.1)

where K is a complete field with respect to a discrete-valuation, the residue field K being not
necessarily perfect, K

sep
a separable closure of it, GK is the absolute Galois group, r ∈ Q>0,

OK is the ring of integers of K, πK is uniformizer and Ω1
K(log) is the logarithmic differential.

It is likely that the said map is also surjective, if the residue field is perfect. Of course, when
the residue field K is perfect, the right hand side (target) is just a one-dimensional vector
space over the separable closure K

sep
. But there is no canonical basis. So, (4.1) reduces to

rsw : Hom(GrK,log/G
r+
K,log,Fp)→ π−rK ⊗K

sep
.

We cannot say that, the right hand side π−rK ⊗K
sep

is exactly the residual ringMr
Ksep/Mr+1

Ksep

whereMr
Ksep = {x ∈ Ksep, vKsep(x) ≥ r}, andM(r+1)

Ksep = {x ∈ Ksep, vKsep(x) ≥ r + 1} with
vKsep the extension of the normalized valuation vK to Ksep) since Ksep is not discretely
valued. It is more correct to write π−rK ⊗ K

sep
differently as Mr

Ksep/
⋃
ǫ>0Mr+ǫ

Ksep . For a
proof of this result in perfect residue field case and for r ∈ Z>0, it is used to make working
some means of local class field theory, then the case r ∈ Q>0 follows from certain base change
result. The p-adic differential modules being out of the frame of this study, this question will
appear in a next work.

I think we can conjecture that this map remains surjective, even when dropping the hypothesis
of the perfectness of the residue field. I have been told that some experts have pinned down
the exact image of the abelian part. I think if we can run a base change argument to reach
the rest of differential forms on the target, as in the case of perfect residue field, the problem
will be solved. Probably, one needs to avoid the case when p is absolutely unramified in a
mixed characteristic field.
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5. Annexe on Hilbert’s theory in the general case

The transition from the classical to the general case, requires a recall of special notions. So, let
us consult our notes on Zariski–Samuel filtration as well as on Abbes–Saito ramification filtration,
where some subtle and essential differences between the general and the classical cases appear.
Furthermore, some important remarks and some original examples and counterexamples are given.

5.1. Hilbert–Zariski–Samuel filtration

Let L/K be any finite Galois extension of local fields with no special assumption on the residual
extension and G is its Galois group.

Indeed, following Hilbert’s way, in [25, ch. V] Zariski and Samuel define their lower ramification
subgroups filtration as follows.

Then for any positive integer n ≥ 1, they define the n-th ramification group Gn as the subset of
G consisting of all automorphisms σ ∈ G such that σ(x) ≡ x modulo Mn+1

L for every x ∈ OL. Gn
is the kernel of the action on OL/Mn

L. They establish that Gn are invariant subgroups of G, and the
quotients Gn/Gn+1 are abelian for n ≥ 1 [25, Lemma 1, p. 295]. Meanwhile, G0/G1(= GT /GV2 in
Zariski–Samuel notation) need not be abelian in general case [25, ch. V, § 10, p. 297]. Indeed, there
are extensions where finsep > 1 and ewild > 1, for which there does not exist a normal subgroup
which can “separate” ferocious from wild ramification [20, § 1,page 1273]. So a second filtration
Hn was necessary. By use of the homomorphism, we have

λ : G0 → L
⋆
,

σ 7→ λ(σ) = (σ(π)/π) = uσ,

H1 is defined as the kernel of λ, that is the subgroup of all automorphisms σ in G0 such that
uσ ≡ 1 modulo ML; that is such that σ(π) − π ∈ M2

L.
Likewise, Hi (for i > 1) is defined to be the kernel of the homomorphism

λi : Gi → (L,+),

σ 7→ λi(σ) = yσ,

that is the subgroup of all automorphisms σ in Gi such that yσ ≡ 0 modulo ML, where yσ is the
integer yσ ∈ OL satisfying σ(π)− π = yσπ

i (i.e. σ(π) − π ∈ Mi
L).

We have Gi ⊇ Hi for every i ≥ 1 (the equality occurs when the residue fields extension is
separable, see [25, ch. V, § 10, p. 296]). So, σ ∈ Hi implies that σ(x) ≡ x mod Mi+1

L for every
x ∈ OL. Hi is then the kernel of the action onML/Mi

L for i ≥ 1.
Intertwining both two filtrations of the Galois group with ramification groups, they used to

define a unique filtration G(n,i) such that Gn = G(n+1,0) and Hn = G(n,1), as follows: for n, i ∈ N
the (n, i)-ramification group G(n,i) of G = gal (L/K) is the subgroup of those K-automorphisms of

L that induce the identity onMi
L/Mn+i

L , i.e.

G(n,i) = {σ ∈ G; vL(σ(x)− x) ≥ i+ n∀x ∈ Mi
L} = {σ ∈ G;∀x ∈Mi

L;x− σ(x) ∈ Mn+i
L }.

Since G(n,i) is the kernel of the homomorphismG −→ Aut(Mi
L/Mn+i

L ) it is then a normal subgroup
of G. Then we get, in the Zariski-Samuel filtration,

Gn = G(n+1,0) and Hn = G(n,1).

The G(n,i) with i > 0 makes sense, in the non-classical case only. Now, in the classical sense, the Gn
meet the usual ramification groups, see [18]. Explicitly, for n ≥ −1 the n-th (“lower”) ramification
subgroup is defined as Gn = {σ ∈ G; iG(σ) ≥ n+ 1}.
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Consequences for the classical case:

The usual ramification subgroups in the classical case, are (Hn = Gn)n≥1, and G1 is called
ramification group. From this Serre in [18] obtained the upper filtration by use of the Hasse-
Herbrand functions φ defined by:

φL/K(x) =

∫ x

0

dt

|G0 : Gt|
,

and its inverse ψ (remember that ϕ and φ are only defined in case when the residue extension is
separable). The upper (Gn)n≥1 is related to the lower filtration by the formula (Gn = Gφ(n))n≥1

and (Gn = Gψ(n))n≥1. Note that the upper one behaves well under quotient subgroups; meanwhile,
the lower one behaves well when taking subgroups.

The i such that Gi 6= Gi+1 (resp. Gi 6= Gi+1) are called lower (resp. upper) breaks.

5.2. Outline of Abbes–Saito ramification filtration

Let L/K be a finite Galois extension of local fields, then respectively we will write GK and GL
for the absolute Galois groups of K and L. It is worthy to note that a separable closure is not
complete as valued field in general.Nevertheless, a filtration on the absolute Galois group can be
defined by taking inverse limit, as well as breaks.

Indeed, using techniques of rigid geometry, A. Abbes and T. Saito in [1] defined two decreasing
filtrations, the first (GaK)a∈Q≥0

and the second by logarithmic ramification groups (Galog,K)a∈Q>0

(closed normal subgroups of GK). The filtration coincides with the classical upper numbering ram-
ification filtration shifted by one, if the residue field of K is perfect in the sense that Ga−1

K = Galog,K
agrees with the upper numbered ramification filtration labeled by a. It is noteworthy that the
filtration is left continuous and their jumps are rational.

For a real number a > 0, they define Ga+ to be the topological closure of Ga+K = ∪b>aGbK and
Ga−K = ∩b<aGbK , where b denotes a rational number. Then the following holds,

• Ga−K = GaK if a ∈ Q , and Ga−K = Ga+K if a not in Q. It holds for the logarithmic too.

• The two filtrations by ramification groups are related as follows:

Let j > 0 be a rational number, then we have the following inclusions GjK ⊃ GjK,log ⊃ Gj+1
K ,

see [1, Proposition 3.15]

• G1
K is the absolute inertia subgroup of GK ; and G1+

K the absolute wild inertia group of GK .

• From the filtration above they define for any Galois extension L over K, the ramification
filtration of the Galois group gal (L/K) by GaK/(G

a
K ∩ GL). As a consequence, in the more

general case, we have:

• G1
K/(G

1
K ∩GL) is the inertia subgroup of gal (L/K).

• G1+
K /(G1+

K ∩GL) is the wild inertia subgroup of gal (L/K).

• #(G1+
K /(G1+

K ∩GL)) = ewildfinsep.

• If L/K finite unramified extension then GaK = GaL.

• If L/K finite tamely ramified extension with ramification index m then Gmalog,L = Galog,K .

Furthermore, the logarithmic ramification filtration groups satisfy the following theorem [24, The-
orem 3.7.3].
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Theorem 10 [24]. Assume that the residue field is of characteristic p > 0. Then the sub-
quotients groups of the logarithmic ramification filtration Galog,K/G

a+
log,K are abelian and annulated

by p if a ∈ Q>0 and are trivial if a is irrational.

Remark 11. It is worthy to note that we cannot make the filtration of Hilbert–Zariski–Samuel
type and the last one of Abbes–Saito corresponding to each other, in a satisfactory way for example
by use of some means like the well-known Hasse–Herbrand ϕ,ψ functions. Furthermore, the basic
ramification degrees do not seem to work well as when the residue field fails to be perfect. Of
course, the unramified part and the tame part are still okay, but it is not practical to separate the
wild part from the residually inseparable part. Some attempts have been done, trying to describe
ramification using more complex objects as ramification invariants. E.g. I.B. Zhukov used the
“cutting-by-curves” method by considering the Abbes–Saito Swan conductor which is defined by
looking at the generic points of the divisors. For details see [27] and [28], especially the results
Theorems 2.2 and Theorems 2.4 in [27], and Remark 2.5.3 in [28]. But these notions are very far
from our study.

5.3. Ramification cases

Consider a finite Galois extension L/K of local fields with Galois group G = gal (L/K), the
residue extension L/K being of characteristic p > 0 and not necessarily separable.

Write Kunr,L = L∩Kunr (for the maximal unramified extension of K in L i.e. the inertia field
of L/K), and G0 = gal (L/Kunr,L) for the inertia group of L/K; so

G/G0 = gal (L/K)/gal (L/Kunr,L) ≃ gal (Ksep,L/K),

where Ksep,L = L ∩Ksep
, K

sep
being a separable closure of the residue field K.

Consider the ramification index e of the extension L/K, and f as its residue degree. Then we
can write e = etame.ewild and f = fsep.finsep. So, we have

fsep = #(G/G0) = [Ksep,L : K] = [L : K]sep; finsep = [L : Ksep,L] = [L : K]insep.

L/K is unramified if fsep is arbitrary and finsep = e = 1.
L/K is tamely ramified if fsep is arbitrary, e prime to p and finsep = 1.
L/K is completely ramified if fsep = 1, finsep is arbitrary and e is a power of p.
L/K is totally ramified if fsep = finsep = 1 and e is arbitrary; in such case L = K.
L/K is totally and wildly ramified if fsep = finsep = 1 and e is a power of p.
L/K is weakly unramified if fsep, finsep are arbitrary and e = 1.
L/K is ferociously ramified or fierce extension if finsep > 1 is arbitrary and e = fsep = 1.

Note 2. “If L/K is fierce extension then it is weakly unramified, so that K contains a prime
element of L.”

5.4. Some well-known formulas and theorems (classical case)

L = K(α)/K being a finite Galois extension with Galois group G, the residue extension L/K
being separable of characteristic p > 0, we write f for the minimal polynomial of α.

Then we have the following useful summary of formulas and theorems, see for example [18,
Ch. IV]. Meanwhile, for the general case, in [20, Examples 3.3, 3.4 and 8.1] beautiful counterex-
amples are given.
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1. Hilbert’s formula

vL(DL/K) =
∑

σ 6=I iG(σ) =
∑

i≥0(|Gi| − 1) = vL(f
′(α)),

where DL/K is the different, |Gi| the order of the i-th lower ramification group, and iG the function:

iG : G→ Z ∪ {∞},
σ 7→ iG(σ) = inf

x∈O∗
L

vL(σ(x) − x) for σ 6= 1.

2. Herbrand’s theorem

Let L/K be a finite Galois extension and L′/K a Galois subextension. Write G = gal (L/K)
and H = gal (L′/K), H is then a normal subgroup of G naturally.

Theorem 11 (Herbrand). For any i ≥ −1 we have,

(G/H)i = GiH/H, i.e. (G/H)i = GψL/L′ (i)H/H,

see [18, Proposition IV.3.14 and Lemma IV.3.5]. Then we straightforwardly can deduce the follow-
ing result

Corollary 8. If H is itself a ramification subgroup of G, i.e. H = Gj for some j. Then

(G/H)i =

{
Gi/H, if i ≤ j,
{1}, if i ≥ j.

An important consequence of Herbrand’s Theorem is that we can define upper ramification filtration
{gal (L/K)i}i for an infinite Galois extension L/K as inverse limit as follows,

gal (L/K)i = lim←−L′/K finiteL′⊂Lgal (L
′/K)i.

In particular, we can define an upper ramification filtration on the whole absolute Galois group as
it is done in § 1.2.

3. Congruence formula The integers i such that

Gi 6= Gi+1, i.e. the breaks = lower ramification numbers, (5.1)

are congruent modulo p, see [18, Proposition IV.2.11]. This formula is no more true in every
well-ramified extension, see § 1.5 that comes.

4. Hasse–Arf theorem

Theorem 12 (Hasse–Arf). Let L/K be a finite abelian residually separable extension of any
local fields. If i is such that Gi 6= Gi+1 then φ(i) is an integer.

5.5. On the monogenic case (a step in the generalization)

L/K is said to be monogenic if OL is generated by only one element as OK -algebra, the
generator being not necessarily uniformizer, in general.

The Hasse–Arf theorem, Herbrand’s Theorem, more generally Sen’s theorem, and Hilbert’s
formula which are true under the strong hypothesis “L/K separable” (see for example [18]); however
remain true in the more general case when “L/K is assumed to be monogenic” see [3, 20, 23, 24]
for Hasse–Arf theorem.

Except the Congruence formula (5.1) that requires necessarily the separability of L/K see § 5
in [20].

Furthermore, from [20, Theorem 5.1] we have:
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Definition 1. A well-ramified extension L/K is defined as a finite Galois and completely ram-
ified extension satisfying one of the three equivalent conditions:

• L/K is monogenic,

• Hilbert’s formula holds,

• Herbrand’s theorem holds for any normal subgroup.

Remark 12. Note here the following important facts due to the monogenity.

• If L/K is monogenic then L/K is too, but the converse is not true, see Counter-example 1.

• If L/K is separable then L/K is monogenic, the converse is not true for a counter-example
take a Galois extension of degree p such that the residue fields extension is purely inseparable,
see Counter-example 1.

• In monogenic case, even by assuming that the residue extension is separable, the generator of
the respective DVR need not be a uniformizer unless we are the setting of a totally ramified
extension. If L/K is not totally ramified, it’s very easy to give counter-examples.

• If L is the compositum of two linearly disjoint extensions L1 and L2 such that the residue
extensions L1/K and L2/K are separable the compositum L/K need neither be separable
nor monogenic. A main example arises as follows, see Counterexample 1.

Counterexample 1. Let K be any complete discretely valued field of characteristic 0, containing a
primitive p-th root of unity with residue field K of characteristic p > 0. Write π for a uniformizer
of K and consider L1 = K( p

√
πu), where u has a valuation zero, u is not a p-th power in K

and does not reduce to a p-th power in K, and L2 = K( p
√
π). Then each is totally ramified of

degree p; L1/K and L2/K are both trivial (so separable). Also p
√
πu and p

√
π are both roots of

f (X) = X2p − π(1 + u)Xp + π2u which is irreducible over K according to Schönmann criterion,
so p
√
πu and p

√
π are linearly independent over OK . The compositum L = L1.L2, is an elementary

abelian extension of degree p2 since its ramification index is p and the residue field is L = K( p
√
u),

which is inseparable of degree p over K. Then we get L/K monogenic since it is of prime degree.
Prove that L/K is not monogenic.

We know that if Herbrand Theorem does not hold then the extension is not well ramified and
then it is not monogenic, see [20, Lemma 5.2]. That is if there exists a normal subgroup H of G,
such that iG/H(τ) 6= 1/e(L/LH )

∑
σ>τ iG(σ), where iG(.) is the Artin ramification number.

Let H =< σ > be the cyclic group of order p such that σ(u1/p) = ζ.u1/p, where ζ is a primitive
p-th root of unity. So LH = K(π1/p) with L/LH is ferociously ramified meanwhile LH/K is wildly
ramified both of prime degree and has each a single Artin ramification number. Also char (K) = 0,
L/LH is ferociously ramified and v(u) = 0 implies that iG(σ) = sG(σ) where sG(.) is the Swan
ramification number.

So iG(σ) = sG(σ) = vL(ζ − 1) = eL/(p − 1) for every σ. Since LH/K is wildly ramified and
v(a) = 1 hence iG(τ) = sG(τ) + 1; if τ is not the identity. That is

iG(τ) = eLH/(p − 1) + 1, eLH = pe, e = vK(p)

the absolute ramification index and eL/LH = 1. In this case we have

1/e(L/LH )

∑

σ>τ

iG(σ) = 1/e(L/LH )

∑

σ∈H

iG(σ),

so, Herbrand does not hold. Then OL is not monogenic over OK .
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• The separability of a finite extension does not imply the separability of the residue extension.
Indeed, it easy to construct a Counterexample 2.

Counterexample 2. Let K be CDVF with K imperfect. Regardless of the characteristic of K,
consider a ∈ K \Kp

, thus Xp − a is irreducible in K[X]. Take

f(X)=Xp−bX−a

with b ∈ MK (MK is the maximal ideal of OK) requiring that

b 6= pp(a/(1 − p))(p−1).

Here f is separable and has reduction Xp − a ∈ k[X]. Here L = K[X]/(f) is a degree p separable
extension of K and its subring O0 = OK [X]/(f) is a domain that is OK-finite and O0/πO0 =
k[X]/(Xp − a), is a field where an uniformiser π ∈ OK . To prove that O0 is a DVR see the proof
of Lemma 4. We get O0=OL and O0/M0=l, is the residue field of L and eL/K=1 because the
chosen uniformiser of OK is an uniformiser of OL too. L/K is a degree p separable extension with
ramification index eL/K=1 and the residual extension l/k is purely inseparable of degree p so L/K
is not unramified. �

Assume K being CDVF with imperfect residue field K. Regardless of the characteristic of K,
consider any irreducible and separable polynomial f of K[X] lying above Xp− a with a ∈ K \Kp

.
Then we have,

Lemma 4. For θ a root of f , L = K(θ)/K is separable extension, meanwhile, its residue
extension K( p

√
a)/K is inseparable.

P r o o f. Xp − a is separable, since it is irreducible, adjoining a root of f (which is separable
since irreducible) to get L = K(θ) = K[X]/(f) gives a degree p separable extension with K( p

√
a)/K

inside the residue field. Now, its subring O0 = OK [X]/(f), is a domain that is OK -finite and
O0/πO0 = K[X]/(Xp − a), is a field where π ∈ OK denotes an uniformiser. Now prove that O0

is a DVR or equivalently that O0 is the integral closure of OK in L. (That is true, indeed, if
O is a DVR and f in O[X] has an irreducible reduction, then O[X]/f is again a DVR). More
precisely, M0 = πO0, is a principal maximal ideal in O0. This is the only maximal ideal of O0

because any nonzero prime ideal of O0 intersects OK in its unique nonzero prime ideal πOK and
so contains πO0. It follows that O0 must be DVR. Then the fundamental inequality implies the
residue field is exactly K( p

√
a)/K and the ramification index is 1. So, you have a separable L/K

with purely inseparable residue extension. �

Note 3. The hypothesis “f irreducible and separable polynomial” is necessary if char (K) > p.
Of course in such case irreducible doesn’t mean separable.

Remark 13. Much more, the solvability of a finite extension does not imply the separability of
the residue extension. Indeed, see the following example.

Example 4. Consider k = Fp((T1)), and K = k((T2)), and α to be a root of the Artin–Schreier

equation f(X) = Xp−T p−1
2 X−T1 (f is obviously separable since f ′ 6= 0) and write L = K(α). The

roots of f are α + nT2, with 0 ≤ n ≤ p − 1, thus the Galois group of L/K is solvable. Therefore,
α ∈ OL (the ring of integers of L) hence is integer over k[[T2]] (the ring of integers of K), so
modulo the maximal ideal we have αp = T1, the residue extension is then k( p

√
T1)/k, which is

purely inseparable. �



Local extensions with imperfect residue field 53

REFERENCES

1. Abbes A., Saito T. Ramification of local fields with imperfect residue fields. Amer. J. Math., 2002.
Vol. 124, No. 5, P. 879–920.

2. Abrashkin V.A. Towards Explicit Description of Ramification Filtration in the 2-dimensional Case.
Prepint of Nottingham Univ., 2000. No. 00-01.

3. Borger J. A monogenic Hasse–Arf theorem. In: Proc. of the Conf. on Ramification Theory for Arithmetic
Schemes, Luminy, 1999.
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Abstract: For a connected graph G of order at least two, a double monophonic set S of a graph G is a
restrained double monophonic set if either S = V or the subgraph induced by V − S has no isolated vertices.
The minimum cardinality of a restrained double monophonic set of G is the restrained double monophonic

number of G and is denoted by dmr(G). The restrained double monophonic number of certain classes graphs
are determined. It is shown that for any integers a, b, c with 3 ≤ a ≤ b ≤ c, there is a connected graph G with
m(G) = a, mr(G) = b and dmr(G) = c, where m(G) is the monophonic number and mr(G) is the restrained
monophonic number of a graph G.

Keywords: Monophonic set, Restrained monophonic set, Restrained monophonic number, Restrained dou-
ble monophonic set, Restrained double monophonic number.
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Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or multiple
edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic
terminology we refer to Harary [5]. For vertices u and v in a connected graph G, the distance

d(u, v) is the length of a shortest u− v path in G. An u− v path of length d(u, v) is called an u− v

geodesic. It is known that d is a metric on the vertex set V of G [2]. The neighborhood of a vertex
v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme

vertex if the subgraph induced by its neighbors is complete.

The closed interval I[x, y] consists of all vertices lying on some x− y geodesic of G, while for
S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y]. A set S of vertices of G is a geodetic set if I[S] = V, and the minimum

cardinality of a geodetic set is the geodetic number g(G). The geodetic number of a graph was
introduced in [2, 6] and further studied in [3, 4]. It was shown in [6] that determining the geodetic
number of a graph is an NP-hard problem. A geodetic set S of a graph G is a restrained geodetic

set if the subgraph G[V − S] induced by V − S has no isolated vertex. The minimum cardinality
of a restrained geodetic set of G is the restrained geodetic number of G. The restrained geodetic

1The second author research work was supported by National Board for Higher Mathematics, INDIA
(Project No. NBHM/R.P.29/2015/Fresh/157).

2Former Professor
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number of a graph was introduced and studied in [1]. Let 2V denote the set of all subsets of V .
The mapping I : V × V → 2V defined by I[u, v] = {w ∈ V : w lies on a u− v geodesic in G} is the
interval function of G. One of the basic properties of I is that u, v ∈ I[u, v] for any pair u, v ∈ V .
Hence the interval function captures every pair of vertices and so the problem of double geodetic
sets is trivially well-defined while it is clear that this fails in many graphs already for triplets (for
example, complete graphs). This motivated us to introduce and study double geodetic sets in [7]
and further double monophonic sets in [9]. Also, double monophonic parameters like the upper
double monophonic number of a graph and the connected double monophonic number of a graph
were studied in [10, 11]. This is the basis behind the introduction and study of the restrained
double monophonic number of a graph. A set S of vertices is called a double geodetic set of G if
for each pair of vertices x, y in G there exist vertices u, v ∈ S such that x, y ∈ I[u, v]. The double

geodetic number dg(G) is the minimum cardinality of a double geodetic set. The double geodetic
number of a graph was introduced and studied in [7].

A chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a
monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each
vertex v of G lies on an x− y monophonic path for some x, y ∈ S. The minimum cardinality of a
monophonic set of G is the monophonic number of G and is denoted by m(G). The monophonic
number of a graph was studied and discussed in [8]. A set S of vertices of G is called a double

monophonic set of G if for each pair of vertices x, y in G there exist vertices u, v in S such that
x, y lie on a u− v monophonic path. The double monophonic number dm(G) of G is the minimum
cardinality of a double monophonic set of G. The concept of double monophonic number of a graph
was introduced and studied in [9].

The concept of distance in graphs is a major component in graph theory with its centrality and
convexity concepts having numerous applications to real life problems. There are several interesting
applications of these concepts to facility location in real life situations, routing of transport problems
and communication network designs. As the paths involved in the discussion of this paper are
monophonic, no intervention by hackers or enemies is possible to the respective facilities provided.
Further, as monophonic paths are secured and longer than geodesic paths, it is advantageous to
more customers in getting the service with protection.

The following theorems will be used in the sequel.

Theorem 1 [8]. Each extreme vertex of a connected graph G belongs to every monophonic set

of G.

Theorem 2 [8]. For the complete graph Kp(p ≥ 2), m(Kp) = p.

Theorem 3 [7]. Each extreme vertex of a connected graph G belongs to every double geodetic

set of G.

Throughout this paper G denotes a connected graph with at least two vertices.

1. Restrained double monophonic number

To study the main concepts of this paper, we introduce first the restrained monophonic number
of a graph and the restrained double geodetic number of a graph, and then prove some basic results
and proceed.

Definition 1. A restrained monophonic set S of a graph G is a monophonic set such

that either S = V or the subgraph induced by V − S has no isolated vertices. The minimum

cardinality of a restrained monophonic set of G is the restrained monophonic number of G and

is denoted by mr(G).
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Example 1. For the cycle C5 : u, v, w, x, y, u of order 5, it is easily verified that S = {u,w}
is a minimum monophonic set of C5 and so m(C5) = 2. Since the subgraph induced by V − S

has an isolated vertex v, S is not a restrained monophonic set of C5. It is clear that, S ∪ {v} is a
minimum restrained monophonic set of C5 so that mr(C5) = 3. Thus the monophonic number and
the restrained monophonic number of a graph are different.

It is clear that every restrained monophonic set of G is a monophonic set of G and so Theorem 1
gives the next result.

Theorem 4. Each extreme vertex of a connected graph G belongs to every restrained mono-

phonic set of G.

Corollary 1. For the complete graph Kp(p ≥ 2), mr(Kp) = p.

Definition 2. A double geodetic set S of a graph G is a restrained double geodetic set if

either S = V or the subgraph induced by V − S has no isolated vertices. The minimum cardinality

of a restrained double geodetic set of G is the restrained double geodetic number of G and is

denoted by dgr(G).

Example 2. For the cycle C4 of order 4, it is clear that any set S of two non-adjacent vertices
of C4 is a minimum double geodetic set of C4 and so dg(C4) = 2. Since the subgrph induced by
V − S has an isolated vertices, S is not a restrained double geodetic set of C4. Also, no 3-element
subset of V (C4) is a restrained double geodetic set of C4. Thus V (C4) is the unique minimum
restrained double geodetic set of C4 and so dgr(C4) = 4. Hence the double geodetic number and
the restrained double geodetic number of a graph are different.

It is clear that every restrained double geodetic set of G is a double geodetic set of G and so
Theorem 3 gives the next result.

Theorem 5. Each extreme vertex of a connected graph G belongs to every restrained double

geodetic set of G.

Now, we introduce the restrained double monophonic number of a graph and investigate.

Definition 3. A double monophonic set S of a graph G is a restrained double monophonic

set if either S = V or the subgraph induced by V − S has no isolated vertices. The minimum

cardinality of a restrained double monophonic set of G is the restrained double monophonic

number of G and is denoted by dmr(G).

Example 3. For the graph G given in Fig. 1, it is clear that no 2-element subset of vertices of
G is a monophonic set of G. Since S = {v, x, z} is a monophonic set of G, m(G) = 3. It is the only
minimum monophonic set of G. Since the subgraph induced by V −S has the isolated vertex v4, it
is not a restrained monophonic set of G. Now, the set S1 = {v, x, z, v4} is a restrained monophonic
set of G so that mr(G) = 4.

It is easily seen that no 4-element subset of vertices of G containing the vertex v is a double
monophonic set of G. Also, it is clear that the set S2 = {v, v1, v2, v3, v4} is the unique minimum
double monophonic set of G. Since the subgraph induced by V − S2 has no isolated vertices, S2

is a minimum restrained double monophonic set of G so that dmr(G) = 5. Thus the monophonic
number, the restrained monophonic number and the restrained double monophonic number of a
graph are different.
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Figure 1. Graph G.

Theorem 6. Every extreme vertex of a connected graph G belongs to every restrained double

monophonic set of G. In particular, if the set of all extreme vertices of G is a restrained double

monophonic set, then it is the unique minimum restrained double monophonic set of G.

P r o o f. Since every restrained double monophonic set is a monophonic set, the result follows
from Theorem 1. �

The following results are easy consequences of Theorem 6.

Result 1. For the complete graph Kp(p ≥ 2), dmr(G) = p.

Result 2. For a graph G of order p with k extreme vertices, max{2, k} ≤ dmr(G) ≤ p.

Result 3. If T is a tree of order p with k end-vertices and p− k ≥ 2, then dmr(T ) = k.

Theorem 7. For any graph G of order p,

2 ≤ m(G) ≤ mr(G) ≤ dmr(G) ≤ p, mr(G) 6= p− 1 6= dmr(G).

P r o o f. Any monophonic set needs at least two vertices and hence m(G) ≥ 2. Since every
restrained monophonic set is also a monophonic set of G, it follows that m(G) ≤ mr(G). It is
clear that every restrained double monophonic set of G is also a restrained monophonic set and so
mr(G) ≤ dmr(G). Since the set of all vertices of G is a restrained double monophonic set of G,
dmr(G) ≤ p. From the definitions of restrained monophonic number and the restrained double
monophonic number, it is clear that mr(G) 6= p− 1 6= dmr(G). �

Remark 1. The bounds in Theorem 7 are sharp. The two end-vertices of a nontrivial path
Pn on n vertices is its unique minimum monophonic set so that m(Pn) = 2 and for the complete
graph Kp(p ≥ 2), we have dmr(Kp) = p. Also, all the inequalities in Theorem 7 can be strict, for
the graph G of order 8 given in Fig. 1, m(G) = 3, mr(G) = 4 and dmr(G) = 5. Thus we have
2 < m(G) < mr(G) < dmr(G) < p.

Theorem 8. For any graph G of order p, 2 ≤ dmr(G) ≤ dgr(G) ≤ p, dmr(G) 6= p − 1 6=
dgr(G).

P r o o f. Any restrained double monophonic set needs at least two vertices and so dmr(G) ≥ 2.
It is clear that every restrained double geodetic set of G is also a restrained double monophonic set
and so dmr(G) ≤ dgr(G). Since the set of all vertices of G is a restrained double geodetic set of G,

dgr(G) ≤ p. From the definitions of restrained double monophonic number and the restrained
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double geodetic number, it is clear that dmr(G) 6= p− 1 6= dgr(G). �

Remark 2. The bounds in Theorem 8 are sharp. For the path Pn(n ≥ 4), dmr(G) = dgr(G) = 2
and for the complete graph Kp(p ≥ 3), dmr(Kp) = dgr(Kp) = p. All the inequalities in Theorem 8
can be strict. For the graph G of order 7 given in Fig. 2, no 2-element subset of V (G) forms a
minimum restrained double monophonic set of G. The minimum restrained double monophonic sets
of G are S1 = {v1, v2, v5} and S2 = {v1, v2, v6} so that dmr(G) = 3. Also, there is no 3-element or
4-element subset of V (G) forms a minimum restrained double geodetic set of G. It is easy to verify
that S3 = {v1, v2, v4, v5, v6} is a minimum restrained double geodetic set of G and so dgr(G) = 5.
Thus we have 2 < dmr(G) < dgr(G) < p.

b

b

b

b

b

b b
v1 v2

v3

v4

v5

v7

v6

Figure 2. Graph G.

The following results are easy to prove.

Result 4. For any cycle Cp, dmr(Cp) =











p, if p = 3, 4,

3, if p = 5,

2, if p ≥ 6.

Result 5. For any wheel Wp = K1 + Cp−1, (p ≥ 4), dmr(Wp) =

{

4, if p = 4,

2, if p ≥ 5.

Result 6. For the complete bipartite graph G = Km,n(2 ≤ m ≤ n),

dmr(G) =

{

n+ 2, if 2 = m ≤ n,

4, if 3 ≤ m ≤ n.

In view of Theorem 7, we have the following realization theorem.

Theorem 9. For any three integers a, b, c with 3 ≤ a ≤ b ≤ c, there is a connected graph G

with m(G) = a, mr(G) = b and dmr(G) = c.

P r o o f. This theorem is proved by considering four cases.
Case 1. a = b = c. Then, for the complete graph G = Ka, by Theorem 2, Corollary 1 and Result 1,
m(G) = mr(G) = dmr(G) = a.

Case 2. a = b < c. Let G be the graph in Fig. 3 is got by adding a − 1 new vertices
w1, w2, · · · , wa−2, x to the complete bipartite graph K2,c−a+1 with the partite sets U = {u1, u2} and
W = {v1, v2, · · · , vc−a+1}, joining each vertex wi(1 ≤ i ≤ a−2) to the vertex u1 and joining the ver-
tex x to the vertex v1. By Theorems 1, 4 and 6, every monophonic set, every restrained monophonic
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set and every restrained double monophonic set of G contain the set S = {w1, w2, · · · , wa−2, x}
of all extreme vertices of G. Clearly, S is not a monophonic set of G. It is easy to verify that
S1 = S ∪ {u2} is the unique minimum monophonic set of G and so m(G) = a. Since the subgraph
induced by V −S1 has no isolated vertices, S1 is the unique minimum restrained monophonic set of
G so that mr(G) = a = m(G). It is clear that the pair of vertices x, vi (i = 2, 3, · · · , c−a+1) do not
lie on any u−v monophonic path, for any u, v ∈ S1 and so S1 is not a restrained double monophonic
set of G. It is easy to verify that S2 = S ∪ {u2, v2, · · · , vc−a+1} is a minimum double monophonic
set of G and the subgraph induced by V − S2 has no isolated vertices so that dmr(G) = c.

b b

b b b

b b b b

b

w1 w2 wa−2

u1 u2

v1 v2 v3 vc−a+1

x

b b b

b b b

Figure 3. Graph G.

Case 3. a < b = c. Let G be the graph in Fig. 4 formed from the path P3 : v1, v2, v3 of
order 3, by adding b new vertices u1, u2, · · · , ua−2, w1, w2, ..., wb−a+2 to P3 and joining each vertex
ui(1 ≤ i ≤ a − 2) to v2; and joining each vertex wj(1 ≤ j ≤ b − a + 2) to v1 and v3. By
Theorems 1, 4 and 6, every monophonic set, every restrained monophonic set and every restrained
double monophonic set of G contain the set S = {u1, u2, · · · , ua−2} of all extreme vertices of G.
Clearly, S is not a monophonic set of G. Also, for any x ∈ V − S, S ∪ {x} is not a monophonic
set of G. It is easy to verify that S1 = S ∪ {v1, v3} is a minimum monophonic set of G and so
m(G) = a. Since the subgraph induced by V − S1 has the isolated vertices w1, w2, · · · , wb−a+2, v2,
S1 is not a restrained monophonic set of G. It is clear that, every restrained monophonic set and
every restrained double monophonic set of G contains {w1, w2, · · · , wb−a+2} and it follows that
S2 = S ∪{w1, w2, · · · , wb−a+2} is a minimum restrained monophonic set and a minimum restrained
double monophonic set of G so that mr(G) = dmr(G) = b.

b b b
u1u2 ua−2

bb b

bbb
v3

v2
v1

b

b

b

w1

w2

wb−a+2

b

b

b

Figure 4. Graph G.

Case 4. a < b < c. Let G be the graph in Fig. 5 formed from the path P3 : x, y, z of order 3
by adding c new vertices u1, u2, . . . , ua−2, w1, w2, . . . , wb−a, v1, v2, . . . , vc−b+2 to P3 and joining each
vertex vi(1 ≤ i ≤ c− b+ 2) to the vertices x, y and z; joining each vertex wj(1 ≤ j ≤ b− a) to the
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vertices x and z; joining each vertex ui(1 ≤ k ≤ a−2) to the vertex y. By Theorems 1, 4 and 6, every
monophonic set, every restrained monophonic set and every restrained double monophonic set of G
contain the set S = {u1, u2, · · · , ua−2} of all extreme vertices of G. Clearly, S is not a monophonic
set of G and also for any u ∈ V (G)− S, S ∪ {u} is not a monophonic set of G. It is easily verified
that S1 = S ∪ {x, z} is a minimum monophonic set of G and so m(G) = a. Since the subgraph
induced by V − S1 has the isolated vertices w2, w3, · · · , wb−a, S1 is not a restrained monophonic
set of G. It is clear that every restrained monophonic set of G contains {w2, w3, · · · , wb−a}. Then
S2 = S1 ∪ {w1, w2, . . . , wb−a} is a minimum restrained monophonic set of G and so mr(G) = b.

Now, any double monophonic set of G should contain the set S. It is easily verified that
the set S′ = {u1, u2, · · · , ua−2, w1, w2, . . . , wb−a, v1, v2, . . . , vc−b+2} is the unique minimum double
monophonic set of G. Since the subgraph induced by V − S′ has no isolated vertices, it follows
that S′ is a minimum restrained double monophonic set of G so that dmr(G) = c. �

b
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b

b b bb

b

b

u1

u2

ua−2

v2
v1vc−b+2 b

b
b

w1 w2
wb−abb b

y

x

z

bbb bb b

Figure 5. Graph G.

Theorem 10. For any integer p ≥ 4 with 2 ≤ k ≤ p, k 6= p − 1, there is a connected graph G

of order p such that dmr(G) = k.

P r o o f. Let G 6= K1,p−1 be any tree of order p with k end-vertices. Then clearly,
dmr(G) = k. �

In view of Theorem 8, we have the following realization theorem.

Theorem 11. For every pair a, b of integers with 3 ≤ a ≤ b, there is a connected graph G with

dmr(G) = a and dgr(G) = b.

P r o o f. For 3 ≤ a = b, by Theorem 5 and Result 1, the complete graph Ka of order a

has the desired properties. So, assume that 3 ≤ a < b. Let H be the graph obtained from the
complete graph Ka−1 and the path P4 : u, v, w, x of order 4 by joining all the vertices of Ka−1 to
the vertex u of P4. Let G be the graph in Fig. 6 obtained from H by taking ‘b− a− 1’ copies of
the path Pi : xi, yi, zi(1 ≤ i ≤ b − a − 1) of order 3 and joining each vertex xi(1 ≤ i ≤ b − a − 1)
in Pi and u in H; and also joining each vertex zi(1 ≤ i ≤ b − a − 1) in Pi and w in H. Let
S = V (Ka−1)∪ {x} be the set of all extreme vertices of G. By Theorems 5 and 6, every restrained
double geodetic set and every restrained double monophonic set of G contain S. Clearly, S is the
unique minimum restrained double monophonic set of G and so dmr(G) = a. Since the pair of
vertices v, yi (i = 1, 2, 3, · · · , b− a− 1), do not lie on any geodesic joining a pair of vertices from S,
S is not a restrained double geodetic set of G. Let S′ = S ∪ {v, y1, y2, · · · , yb−a−1}. It is easy to
verify that S′ is a minimum double geodetic set of G and the subgraph induced by V − S′ has no
isolated vertices. Thus S′ is a minimum restrained double geodetic set of G and so dgr(G)=b. �
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Figure 6. Graph G.

Theorem 12. If G
′

is a graph obtained by adding k pendant vertices to a connected graph G,
then dmr(G) ≤ dmr(G

′

) ≤ dmr(G) + k.

P r o o f. Let G
′

be the connected graph obtained from G by adding k pendant vertices
vi(1 ≤ i ≤ k) to the vertices ul(1 ≤ l ≤ k) where each ul is a vertex of G and each vi(1 ≤ i ≤ k) is
not a vertex of G. Note that u1, u2, · · · , uk need not be distinct. Let S be a minimum restrained
double monophonic set of G. Then S ∪ {v1, v2, ..., vk} is a restrained double monophonic set of G

′

and so dmr(G
′

) ≤ dmr(G) + k.

Now, we claim that dmr(G) ≤ dmr(G
′

). Suppose that dmr(G) > dmr(G
′

). Let S
′

be
a restrained double monophonic set of G

′

with |S
′

| < dmr(G). Since each vi (1 ≤ i ≤ k)
is an extreme vertex of G

′

, it follows from Theorem 6 that {v1, v2, ..., vk} ⊆ S
′

. Let
S = (S

′

− {v1, v2, ..., vk})
⋃

{u1, u2, ..., ul} (1 ≤ l ≤ k). Then S is a subset of V (G) and
|S| ≤ |S′| − k + l = |S′| − (k − l) ≤ |S

′

| < dmr(G). Now, we show that S is a restrained double
monophonic set of G. Let u, v ∈ V (G)−S. Then u, v ∈ V (G′) also. Since S

′

is a restrained double
monophonic set of G

′

, u and v lie on a x− y monophonic path P in G′ for some vertices x, y ∈ S
′

.
If neither x nor y is vi(1 ≤ i ≤ k), then x, y ∈ S. If exactly one of x, y is vi(1 ≤ i ≤ k), say x = vi,
then u and v lie on a x − y monophonic path in G, where y = uj and uj is adjacent to vj in G′

where i 6= j. If both x, y ∈ {v1, v2, ..., vk}, then let x = vi and y = vj where i 6= j. Hence u and
v lie on the us − ut monophonic path in G, where us is adjacent to vi and ut is adjacent to vj in
G′. Thus S is a restrained double monophonic set of G. Hence dmr(G)≤|S|<dmr(G), which is a
contradiction. �

Remark 3. The bounds for dmr(G
′

) in Theorem 12 are sharp. Consider a tree T with number
of end-vertices l ≥ 3 and at least two internal vertices. Let S = {v1, v2, ..., vl} be the set of all
end-vertices of T . Then by Result 3, dmr(T ) = l. If we add a pendant vertex to an end-vertex of T ,
then we obtain another tree T

′

with l end-vertices. Hence dmr(T ) = dmr(T
′

). On the other hand,
if we add k pendant vertices to a cut-vertex of T , then we obtain a tree T

′

with k+ l end-vertices.
Then by Result 3, dmr(T

′

) = dmr(T ) + k.

2. Conclusions

In this paper, the concept of restrained double monophonic number of a graph is introduced and
certain general properties satisfied by this parameter are studied. This parameter is determined
for several standard graphs. Also, certain realisation results of this parameter are proved with
regard to certain other parameters like monophonic number, restrained monophonic number and
restrained double geodetic number of a graph. As a future work of this paper, new parameters like
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upper restrained double monophonic number of a graph, forcing restrained double monophonic
number of a graph can be developed and investigated.
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Abstract: In this article, we demonstrate through specific examples that the evolution of the size of the
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Introduction

Representations of the stability regions of Runge–Kutta methods are presented in several lit-
eratures [1–8, 11, 13]. It has been found that the stability region varies according to the order of
the method. However, it is not proven in the literature whether or not there is a relation between
the evolution of the size of the region of stability and the order of the method. In this article, we
demonstrate that the evolution of the size of the stability region does not depend on the order of the
methods. For that we exhibit methods whose regions of stability grow according to the order. Sub-
sequently, we give a counter-example where we introduce a new 8 order method [12]. We compare
the stability region of this new 8 order method with those of certain lower order methods. We show
that the stability regions of lower order methods are larger than that of the new 8 order method.
The study will be done in accordance with the following plan: in Section 2 we describe some gen-
eralities on the stability regions, in Section 3 we present some stability functions, in Section 4 we
present the new 8 order method and its stability regions, Section 5 we give a conclusion.

1. Generalities on the stability regions

Consider a general form of the first-order ODE given below:

y′ = f(x, y(x)), (1.1)

with the initial condition y(x0) = y0 for the interval x0 ≤ x ≤ xn. Here, x is the independent
variable, y is the dependent variable, n is the number of point values, and f is the function of the
derivation. The goal is to determine the unknown function y(x) whose derivative satisfies (1.1) and
the corresponding initial values. In doing so, let us discretize the interval x0 ≤ x ≤ xn to be

x0, x1 = x0 + h, x2 = x0 + 2h, ..., xn = x0 + nh,

1 We would like to express our deepest appreciation and gratitude to Professor Sergey Khashin of Ivanovo
State University who provided us the possibility to coordinate and complete this article.
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where h is the fixed step size. With the initial condition y(x0) = y0, the unknown grid function
y1, y2, y3, · · · , yn can be calculated by using the Runge–Kutta method of the order 8 (RK8 method).

The 8-th order method is thus obtained by the resolution of the 200 equations with 11 stages [12]
on Maple.

Lets consider the Butcher tableau of 8 order and 11 steps RK method (see Fig. 1):

0

c2 a2,1

c3 a3,1 a3,2

c4 a4,1 a4,2 a4,3

c5 a5,1 a5,2 a5,3 a5,4

c6 a6,1 a6,2 a6,3 a6,4 a6,5

c7 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6

c8 a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7

c9 a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8

c10 a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 a10,9

c11 a11,1 a11,2 a11,3 a11,4 a11,5 a11,6 a11,7 a11,8 a11,9 a11,10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Figure 1. Butcher tableau of RK8 method.

The numerical solution is given by the formula

yi+1 = yi + h
( 11∑

s=1

bsks

)

, (1.2)

with

ks = f
(

xi + csh, yi + h
s−1∑

j=1

as,jkj

)

, xi+1 = xi + h. (1.3)

The concept of absolute stability, in its simplest form, is based on the analysis of the behavior,
according to the values of the step h, of the numerical solutions of the model equation [9–12]:

u′(t) = λu(t). (1.4)

Using (1.3) and (1.4), we obtain:

for s ≥ 1, ks = λ
(

yi + h
s−1∑

j=1

as,jkj

)

;

which gives:

yi+1 = ζ (hλ) yi.

If z = hλ, then the absolute stability region is the set

{z ∈ C| |ζ(z)| ≤ 1} .
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2. Presentation of some stability functions

Consider the standard Runge-Kutta methods of orders 1 to 4. When (1.2) and (1.3) are applied
to the model problem (1.4), the resulting equations are

RK1: yi+1 = (1 + z) yi;

RK2: yi+1 =

(

1 + z +
z2

2

)

yi;

RK3: yi+1 =

(

1 + z +
z2

2
+

z3

6

)

yi;

RK4: yi+1 =

(

1 + z +
z2

2
+

z3

6
+

z4

24

)

yi.

The stability regions are shown at the next figure:

Figure 2. Evolution of the stability region according to the order.

We can see the evolution of the size of the region of stability as the order of the method increases.

Let’s now give a counterexample for which the stability region is very small.
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3. Presentation of the new 8 order method and its stability regions

The family of the 8th order method is thus obtained by the resolution of the 200 equations with
11 stages [12] on Maple. This method depends on free parameters b8 and a10,5 [12].

Some of related coefficients have fixed values, not depending on b8 and a10,5, these coefficients
are:

b1 =
1

20
; b2 = 0; b3 = 0; b4 = 0; b5 = 0; b6 = 0; b9 =

16

45
; b10 =

49

180
; b11 =

1

20
;

c2 =
1

2
; c3 =

1

2
; c4 =

7 +
√
21

14
; c5 =

7 +
√
21

14
; c6 =

1

2
;

c7 =
7−

√
21

14
; c8 =

7−
√
21

14
; c9 =

1

2
; c10 =

7 +
√
21

14
; c11 = 1;

a2,1 =
1

2
;

a3,1 =
1

4
; a3,2 =

1

4
;

a4,1 =
1

7
; a4,2 =

−7− 3
√
21

98
; a4,3 =

21 + 5
√
21

49
;

a5,1 =
11 +

√
21

84
; a5,2 = 0; a5,3 =

4
√
21

63
+

2

7
; a5,4 =

21−
√
21

252
;

a6,1 =
5 +

√
21

48
; a6,2 = 0; a6,3 =

9 +
√
21

36
; a6,4 =

−231 + 14
√
21

360
; a6,5 =

63 − 7
√
21

80
;

a7,1 =
10−

√
21

42
; a7,2 = 0;

a9,1 =
1

32
; a9,2 = 0;

a10,1 =
1

14
; a10,2 = 0; a10,9 =

4
√
21

35
+

132

245
;

a11,1 = 0; a11,2 = 0; a11,9 =
28 − 28

√
21

45
; a11,10 =

49− 7
√
21

18
.

And the others are expressed in terms of b8 and a10,5:

b7 = −b8 +
49

180
;

a7,3 = −(24/35)a10,5 − 136/105 − (12/245)a10,5
√
21 + (656/2205)

√
21;

a7,4 = 7− (3/10)a10,5
√
21− (71/45)

√
21 + (3/10)a10,5;

a7,5 = −(3/10)a10,5 + (3/10)a10,5
√
21− 43/6 + (169/105)

√
21;

a7,6 = −(277/735)
√
21 + 181/105 + (12/245)a10,5

√
21 + (24/35)a10,5 ;

a8,1 = −180b8
√
21 − 49

√
21− 1800b8 + 343

7560b8
; a8,2 = 0;

a8,5 = −441a10,5
√
21− 3240a7,5b8 − 28

√
21 + 882a7,5 − 2205a10,5 + 147

3240b8
;

a8,6 =
72a10,5

√
21 + 1620a7,6b8 − 29

√
21− 441a7,6 − 252a10,5 + 119

1620b8
;
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And also:

a8,3 = −900b8
√
21 + 11340a7,2b8 + 11340a8,6b8 − 98

√
21− 3087a7,2 − 4860b8 + 686

11340b8
;

a8,7 =
49

1620b8
;

a8,4 =
(c28/2) − a8,2c2 − a8,3c3 − a8,5c5 − a8,6c6 − a8,7c7

c4
;

a9,3 = (1/8)a10,5
√
21− (1/8)a10,5 − (1/72)

√
21 + 1/72;

a9,4 = −49/288 − (7/32)a10,5
√
21 + (7/288)

√
21 + (49/32)a10,5 ;

a9,5 = (7/32)a10,5
√
21− (35/576)

√
21− (49/32)a10,5 + 21/64;

a9,6 = −(1/8)a10,5
√
21 + (1/8)a10,5 + (1/72)

√
21 + 5/36;

a9,7 = 91/576 + (7/192)
√
21− (585/1568)b8

√
21− (405/224)b8 ;

a9,8 = (585/1568)b8
√
21 + (405/224)b8 ;

a10,3 = −(6/49)a10,5
√
21− (2/7)a10,5 + (2/147)

√
21 + 2/63;

a10,4 = 1/9 − a10,5;

a10,6 = (2/7)a10,5 − 803/2205 + (6/49)a10,5
√
21− (59/735)

√
21;

a10,7 = 1/9 + (1/42)
√
21 + (2295/686)b8 + (495/686)b8

√
21;

a10,8 = −(2295/686)b8 − (495/686)b8
√
21;

a11,3 = (2/3)a10,5
√
21− (2/3)a10,5 − (2/27)

√
21 + 2/27;

a11,4 = −(7/6)a10,5
√
21 + (7/54)

√
21 + (49/6)a10,5 − 49/54;

a11,5 = (7/27)
√
21− 77/54 − (49/6)a10,5 + (7/6)a10,5

√
21;

a11,6 = (2/3)a10,5 − 64/135 − (2/3)a10,5
√
21 + (94/135)

√
21;

a11,7 = 7/18 − (265/98)b8
√
21− (215/14)b8 ;

a11,8 = (265/98)b8
√
21 + (215/14)b8.

The numerical solution is given by the formula (1.2). The values of ks are given by the formula (1.3).
We can notice that if b8 = 49/180 and a10,5 = 1/9, then we find the method of Cooper–Verner [1, 12].

With the help of Maple, the stability function depends on a10,5 and is given by [12]:

ζ(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 +

1

5040
z7 +

1

40320
z8

+

(

− 797

50803200
+

1

25200
a10,5 +

37

4233600

√
21a10,5 −

499

152409600

√
21

)

z9

+

(
1

470400
+

1

2083725

√
21− 31

940800
a10,5 −

61

8467200

√
21a10,5

)

z10

+

(

− 1

29030400
− 13

4267468800

√
21 +

11

1612800
a10,5 +

353

237081600

√
21a10,5

)

z11.
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For a10,5 = 106 we find

ζ(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 +

1

720
z6 +

1

5040
z7

+
1

40320
z8 +

2015999203

50803200
z9 − 15499999

470400
z10 +

197999999

29030400
z11

+
190285643

21772800

√
21z9 − 60046871

8334900

√
21z10 +

6353999987

4267468800

√
21z11.

The stability region of the new RK8 method for a10,5 = 106 is given by Fig. 3.

Figure 3. Stability region of the new RK8 method for a10,5 = 106.

We can see that the stability region of the new method of order 8 is smaller than 2, 3, 4. There
is a decrease in the values of x and y.

For a10,5 = 1012 the stability region is the following (see Fig. 4):

Figure 4. Stability region of the new RK8 method for a10,5 = 1012.

We can see that the stability region of the new method of order 8 is smaller than those of
ordering regions 1, 2, 3, 4. There is a decrease in the values of x and y.
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For a10,5 = 9 . . . 9
︸ ︷︷ ︸

37 times

the stability region is is shown at the next figure:

Figure 5. Stability region of the new RK8 method.

We find that the values of x and y have very strongly diminished and the region of stability is
very small.

4. Conclusion

Presumably, by representing the domains of stability of methods of the order of 1, 2, 3, 4, one
could assume that the higher the order, the greater the area of stability. However, a new 8 order
method is discovered. The stability region of this 8 order method is smaller than that of the regions
of orders 2, 3, 4. We can therefore conclude that the evolution of the size of the stability regions of
Runge-Kutta methods does not depend on the order of the method.
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Abstract: For an abstract dynamic system, a game problem of retention of the motions in a given set
of the motion histories is considered. The case of an indecomposable set of disturbances is studied. The set
of successful solvability and a construction of a resolving quasistrategy based on the method of programmed
iterations is proposed.

Keywords: Indecomposable disturbances, Quasistrategy, Retention problem.

Introduction

The theory and methods of solving control problems are widely developed in the case when the
instantaneous (geometric) restrictions in couple with measurability are the only claim describing
the set of admissible disturbances. For these important problems, such a fundamental results as
the theorem on the alternative and the extreme aiming method are established (see [5] and the
references therein). This kind of restrictions imply the decomposability property [7] of the set of
admissible disturbances. In control problems, this property is known as the possibility to “glue”
any admissible disturbances at any time for composing a new admissible disturbance. On the other
hand, a notable family of control problems is characterized by the absence of this property: typical
cases are given by the systems with continuous or constant disturbances.

In the present paper we consider a dynamic control problem with an indecomposable set of
disturbances. The consideration is carried out on the example of a retention problem — a simple
case of the positional differential game. We search a solution of the problem in a set of quasistrate-
gies. The description of controlled system is given in an abstract form and, in general, follows the
scheme [9]. The proposed solution is based on the method of programmed iterations (see [1] and the
references therein; see also [9]). The formalization studied lies in direction of the problems that use
an additional information on the functional properties of the set of disturbances (see, e.g., [4, 6]).
The absence of topological requirements on the elements of the retention problem is compensated
by an increasing of the iterations “number” [8]. As usual in the abstract setting, the control time
“interval” is not assumed to be bounded or connected.

1The reported study was funded by RFBR, project number 19-01-00573.
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1. Problem statement

1.1. Dynamic system

Denote by P(T ) (by P
′(T )) all (all non-empty) subsets of the set T . For non-empty sets A and

B, let BA be the set of all mappings defined on the set A with values in the set B. If, in addition,
f ∈ BA and C ∈ P

′(A), then (f |C) ∈ BC denotes the restriction of the mapping f to the set C:
(f |C)(x) , f(x) ∀x ∈ C. In case when F ∈ P

′(BA), we denote (F |C) , {(f |C) : f ∈ F}.
Choose and fix a non-empty subset I of real numbers R as an analogue of a time interval.

Non-empty sets X and Y specify the ranges of the spatial variables and the disturbance values
respectively. If t ∈ I, then we denote It , {ξ ∈ I | ξ ≤ t} and It , {ξ ∈ I | ξ ≥ t}. Let
C ∈ P

′(XI) and Ω ∈ P
′(YI) be the sets of admissible trajectories and disturbances respectively.

Denote by D , I×C×Ω the state space of the controlled process. For any t ∈ I, x ∈ C, we denote
Z0(x | I

t) , {x′ ∈ C | (x′ | It) = (x | It)}.
As an analogue of the dynamic system, we fix a mapping S : D 7→ P

′(C) such that ∀t ∈ I,
∀τ ∈ It ∀x, x

′ ∈ C and ∀ω, ω′ ∈ Ω

S(t, x, ω) ∈ P
′(Z0(x | I

t)), (1.1)

((x | It) = (x′ | It)) ⇒
(

S(t, x, ω) = S(t, x′, ω)
)

, (1.2)

(h ∈ S(t, x, ω)) ⇒ (h ∈ S(τ, h, ω)), (1.3)
(

(S(t, x, ω) | Iτ) = (S(t, x, ω′) | Iτ)&(h ∈ S(t, x, ω))&(h′ ∈ S(τ, h, ω′))
)

⇒ (h′ ∈ S(t, x, ω′)). (1.4)

Thus, for every (t, x, ω) ∈ D, S(t, x, ω) denotes the set of all trajectories of the system (1.1)–(1.4)
corresponding to the history x up to the “moment” t and to the disturbance realization ω after t.

Choose and fix some initial history (t0, x0) ∈ I ×C. All further constructions are carried out
in order to formulate and solve the retention problem for this initial history. Let us define the set
SP(t0,x0) ∈ P

′(D) of all the states of the controlled process arising in the system from the initial
history (t0, x0) when all admissible disturbances are implemented:

SP(t0,x0) ,

{

(t, x, ω) ∈ D | t ∈ It0 (x | It) ∈ (S(t0, x0, ω) | It)
}

. (1.5)

For a state (t, x, ω) ∈ SP(t0,x0), we determine the set Ω(t, x, ω) of all disturbances that are com-
patible with this state:

Ω(t, x, ω) ,
{

ω′ ∈ Ω | (S(t0, x0, ω) | It) = (S(t0, x0, ω′) | It)
}

. (1.6)

So (see (1.2)), we have Ω(t0, x0, ω) = Ω for all ω ∈ Ω.

1.2. Control procedures and the retention problem

We assume that for the formation of the trajectories the controlling side uses non-empty-valued
and non-anticipatory multifunctions from P(C)Ω. So, for a state (t, x, ω) ∈ SP(t0,x0), we determine
the set M(t,x,ω) of all admissible control procedures — of quasistrategies — as follows:

M(t,x,ω) ,

{

α ∈
∏

ω′∈Ω(t,x,ω)

P
′(S(t, x, ω′)) | ∀ω1, ω2 ∈ Ω(t, x, ω) ∀τ ∈ I

(

(S(t0, x0, ω1) | I
τ) = (S(t0, x0, ω2) | I

τ)
)

⇒
(

(α(ω1) | I
τ) = (α(ω2) | I

τ)
)}

.

(1.7)
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Let the set D ∈ P
′(I ×C), which describes the phase constraints, satisfies the conditions

(t0, x0) ∈ D, ((t, x) ∈ D) ⇒ ({t} × Z0(x | I
t) ⊂ D). (1.8)

On the basis of D, we define the set N in the following way:

N , (D× Ω) ∩ SP(t0,x0) (1.9)

and consider the retention of states of the control process in the set N as the aim of control. Namely,
we say that the aim is attainable for the initial state (t, x, ω) if the inclusions

(τ, h, ν) ∈ N, ∀τ ∈ It, ∀h ∈ α(ν), ∀ν ∈ Ω(t, x, ω)

hold for some quasistrategy α ∈ M(t,x,ω). For the initial history (t0, x0), this definition means
that projections of current states of the control process on the set I × C remain in D for any
disturbance ν ∈ Ω.

2. The main results

2.1. The programmed absorption operator and its iterations

For H ∈ P(SP(t0,x0)), (t, x, ω) ∈ SP(t0,x0), and ν ∈ Ω(t, x, ω), define

Π(ν | (t, x, ω),H) , {h ∈ S(t, x, ν) | (τ, h, ν) ∈ H ∀τ ∈ It}. (2.1)

In terms of (2.1), we introduce the operator A, A ∈ P(SP(t0,x0))
P(SP(t0,x0)

), (the programmed
absorption operator) by setting

A(H) , {(t, x, ω) ∈ H | Π(ν | (t, x, ω),H) 6= ∅ ∀ν ∈ Ω(t, x, ω)} (2.2)

for any H ∈ P(SP(t0,x0)). The definition of A immediately implies that

A(H) ⊂ H. (2.3)

Then, following the transfinite induction method (see, for example, [3, sec. I.3]), let us introduce
α-iteration Aα, Aα ∈ P(SP(t0,x0))

P(SP(t0,x0)
), of the operator A for every ordinal α. For α = 0, we

assume A0(H) , H, ∀H ∈ P(SP(t0,x0)); if α has a predecessor (let it be an ordinal γ), we write

Aα , A ◦Aγ ; and, if α is a limit ordinal, let Aα(H) , ∩β≺αA
β(H), ∀H ∈ P(SP(t0,x0)). Here, by

≺, the strict order relation on the class of ordinals is denoted. Then, according to the transfinite
induction principle, α-iteration Aα of the operator A is correctly defined for every ordinal α. As
a consequence of the definitions and (2.3) (see [8, (4.4)]), we get the following embedding for any
ordinal α:

Aα(H) ⊂ H. (2.4)

2.2. Quasistrategies solving the retention problem

Let us study the issue of solvability of the retention problem in the chosen class of quasistrate-
gies. In the following, let the ordinal σ be strictly greater than the cardinality of the set N: |N| ≺ σ.

Lemma 1. The inclusions below hold:

Π(· | (t, x, ω),Aσ(N)) ∈ M(t,x,ω) ∀(t, x, ω) ∈ Aσ(N). (2.5)



On a game problem with indecomposable disturbances 75

It follows from lemma 1, (2.4), and definition (2.1), that for any (t, x, ω) ∈ Aσ(N),

(τ, h, ν) ∈ N ∀τ ∈ It ∀h ∈ Π(ν | (t, x, ω),Aσ(N)) ∀ν ∈ Ω(t, x, ω).

Thus, for any (t, x, ω) ∈ Aσ(N), we have obtained an explicit form of a quasistrategy solving the
retention problem in N.

Theorem 1. The following equality holds:

Aσ(N) = {(t, x, ω) ∈ N | ∃α ∈ M(t,x,ω) :

(τ, h, ν) ∈ N ∀τ ∈ It ∀h ∈ α(ν) ∀ν ∈ Ω(t, x, ω)}. (2.6)

Theorem 1 states that the set Aσ(N) is the greatest of the subsets of initial positions from N

that admit a solution of the retention problem in N in the class of quasistrategies. By Theorem 1,
the original retention problem is solvable if and only if (t0, x0, ω0) ∈ Aσ(N) for some ω0 ∈ Ω; as
already mentioned, when it is solvable, the quasi-strategy Π(· | (t0, x0, ω0),A

σ(N)) implements this
solution (see Lemma 1).

3. Proofs of the results

3.1. Preliminaries

We begin with some auxiliary results. Lemma 2 is based on the properties (1.2)–(1.4).

Lemma 2. For any (t, x, ω) ∈ D, τ ∈ It, and h ∈ S(t, x, ω), the equality below is true:

S(τ, h, ω) = S(t, x, ω) ∩ Z0(h | I
τ ). (3.1)

Lemma 3 follows from the definitions (1.5) and (1.6).

Lemma 3. For any (t, x, ω) ∈ SP(t0,x0), ν ∈ Ω(t, x, ω), and y ∈ Z0(x | I
t), the relations

(t, x, ν), (t, y, ν), (t, y, ω) ∈ SP(t0,x0), Ω(t, x, ν) = Ω(t, y, ν) = Ω(t, y, ω) = Ω(t, x, ω) are fulfilled.

Lemma 4 is some generalization of the results [1, 2, 9] on the fixed points of the programmed
absorption operator. Here, a lack of topological properties of the operator A and the set N is
compensated by increasing the countable “number” of iterations up to the ordinal σ. The proof of
Lemma 4 is based on property (2.3) and statement [8, Prop. 2].

Lemma 4. For any H ∈ P(SP(t0,x0)) and an ordinal α, |H| ≺ α, the following equality holds:

Aα(H) = A(Aα(H)). (3.2)

Lemma 5. Let (τ, h, ν), (τ, h′, ν ′) ∈ SP(t0,x0) and

(h | Iτ ) = (h′ | Iτ ), (3.3)

Ω(τ, h, ν) = Ω(τ, h′, ν ′). (3.4)

Then, ((τ, h, ν) ∈ Aη(N)) ⇔ ((τ, h′, ν ′) ∈ Aη(N)) holds for any ordinal η.
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P r o o f. We show the implication

((τ, h, ν) ∈ Aη(N)) ⇒ ((τ, h′, ν ′) ∈ Aη(N)). (3.5)

1. Let (τ, h, ν) ∈ A0(N) satisfy the conditions of Lemma 5. By definition, we have (see (1.9))
A0(N) = N = SP(t0,x0) ∩ (D× Ω). Then, (τ, h) ∈ D. Using (3.3) and (1.8), we derive (τ, h′) ∈ D.

Since (τ, h′, ν ′) ∈ SP(t0,x0), this implies (see (1.9)) (τ, h′, ν ′) ∈ N = A0(N). Suppose in general that
the ordinal α is such that for all ordinals β, β ≺ α, implication (3.5) holds.

2. If α is a limit ordinal, then by definition, Aα(N) =
⋂

β≺α A
β(N). If, in addition, (τ, h, ν) ∈

Aα(N), then (τ, h, ν) ∈ Aβ(N) for all β ≺ α. Hence, by the induction hypothesis from (3.5), we
obtain the inclusions (τ, h′, ν ′) ∈ Aβ(N) for all β ≺ α. And, therefore, by the definition of Aα, we
have the inclusion (τ, h′, ν ′) ∈ Aα(N).

3. If α has a predecessor (let it be an ordinal γ), then, by definition, Aα(N) = A(Aγ(N)).
It follows from the definition of A (see (2.2)), the inclusion (τ, h, ν) ∈ Aα(N), and induction
hypothesis (3.5) that

(τ, h′, ν ′) ∈ Aγ(N), (3.6)

∀η ∈ Ω(τ, h, ν) ∃g ∈ S(τ, h, η) : (ξ, g, η) ∈ Aγ(N) ∀ξ ∈ Iτ . (3.7)

From (3.3) (see (1.2)), we obtain S(τ, h, η) = S(τ, h′, η) for all η ∈ Ω. Then, in view of (3.4), we
can rewrite (3.7) in the following form:

∀η ∈ Ω(τ, h′, ν ′) ∃g ∈ S(τ, h′, η) : (ξ, g, η) ∈ Aγ(N) ∀ξ ∈ Iτ . (3.8)

By the definition of A (see (2.2)), relations (3.6), (3.8) mean that (τ, h′, ν ′) ∈ A(Aγ(N)). Hence,
we have again (τ, h′, ν ′) ∈ Aα(N).

4. Thus, by virtue of the principle of transfinite induction, implication (3.5) holds for any
ordinal η. Since the triples (τ, h, ν) and (τ, h′, ν ′) are included in the conditions of Lemma 5
symmetrically, the state of the lemma follows from (3.5). �

3.2. Proof of Lemma 1

1. Let (t, x, ω) ∈ Aσ(N). Then, (t, x, ω) ∈ SP(t0,x0). Denote α , Π(· | (t, x, ω),Aσ(N)). By the
definition (see (2.1)), we have

α ∈
∏

ν∈Ω(t,x,ω)

P(S(t, x, ν)), (3.9)

(τ, h, η) ∈ Aσ(N) ∀τ ∈ I ∀h ∈ α(η) ∀η ∈ Ω(t, x, ω). (3.10)

In view of (3.2), we have (t, x, ω) ∈ A(Aσ(N)). Then, Π(ν | (t, x, ω),Aσ(N)) 6= ∅ ∀ν ∈ Ω(t, x, ω).
So (see (3.9)), we get

α ∈
∏

ν∈Ω(t,x,ω)

P
′(S(t, x, ν)). (3.11)

2. Suppouse ν, ν ′ ∈ Ω(t, x, ω) and θ ∈ It satisfy the equality

(S(t0, x0, ν) | Iθ) = (S(t0, x0, ν ′) | Iθ). (3.12)

We show the embedding Γ ⊂ Γ′ for the sets Γ , (α(ν) | Iθ), Γ′ , (α(ν ′) | Iθ).
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Let γ ∈ Γ, then, the equality γ = (h | Iθ) is true for some h ∈ α(ν). Let us verify that

(θ, h, ν) ∈ SP(t0,x0), ν ′ ∈ Ω(θ, h, ν). (3.13)

By the choice of h, we have (see (3.11)) h ∈ S(t, x, ν). From this inclusion, taking into account the
relations x ∈ S(t0, x0, ω), ν ∈ Ω(t, x, ω) and property (1.4) of the system, we get h ∈ S(t0, x0, ν).
In particular (see (1.5)), we get the first inclusion in (3.13). Then, the second inclusion in (3.13)
is well defined and is fulfilled in virtue of (1.6) and (3.12). According to inclusions (3.10), we
have (θ, h, ν) ∈ Aσ(N). From the inclusion and the equality Aσ(N) = A(Aσ(N)) (Lemma 4), we
obtain (θ, h, ν) ∈ A(Aσ(N)). Hence (see (2.2)), the relation Π(η | (θ, h, ν),Aσ(N)) 6= ∅ is true
for all η ∈ Ω(θ, h, ν). In particular, taking into account the second inclusion in (3.13), we get the
relation Π(ν ′ | (θ, h, ν),Aσ(N)) 6= ∅. Let us choose some element h′ ∈ Π(ν ′ | (θ, h, ν),Aσ(N)). Then
(see (2.1)),

(τ, h′, ν ′) ∈ Aσ(N) ∀τ ∈ Iθ (3.14)

and

h′ ∈ S(θ, h, ν ′). (3.15)

It follows from (1.1) and (3.15) that

h′ ∈ Z0(h | I
θ). (3.16)

Let us verify the relations

(τ, h′, ν ′) ∈ Aσ(N) ∀τ ∈ Iθt . (3.17)

Fix any τ ∈ Iθt . Then, from (3.16), (3.12) and the choice of h, we get (τ, h, ν) ∈ Aσ(N),
(h | Iτ ) = (h′ | Iτ ), (τ, h, ν), (τ, h′, ν ′) ∈ SP(t0,x0), Ω(τ, h, ν) = Ω(τ, h′, ν ′) by Lemma 3. From these
relations, by Lemma 5, we get (τ, h′, ν ′) ∈ Aσ(N). Since the choice of τ was arbitrary, (3.17) holds.
Combining (3.14) and (3.17), we obtain

(τ, h′, ν ′) ∈ Aσ(N) ∀τ ∈ It. (3.18)

Using (t, x, ω) ∈ SP(t0,x0) and ν, ν ′ ∈ Ω(t, x, ω), by Lemma 3, we get inclusions (t, x, ν), (t, x, ν ′) ∈
SP(t0,x0). Then, there exist y, y′ ∈ Z0(x | I

t) such that y ∈ S(t0, x0, ν) and y′ ∈ S(t0, x0, ν
′).

From (3.12), using (1.2) and (3.1), we obtain

(S(t, x, ν) | Iθ) = (S(t, y, ν) | Iθ) = (S(t0, x0, ν) ∩ Z0(y | I
t) | Iθ)

= (S(t0, x0, ν ′) ∩ Z0(y
′ | It) | Iθ) = (S(t, y′, ν ′) | Iθ) = (S(t, x, ν ′) | Iθ).

(3.19)

From (3.15), (3.19), and h ∈ S(t, x, ν), using (1.4), we get h′ ∈ S(t, x, ν ′). The last inclusion and
relations (2.1), (3.18) imply the inclusion h′ ∈ α(ν ′). Combining it with (3.16), we get the relations
γ , (h | Iθ) = (h′ | Iθ) ∈ (α(ν ′) | Iθ). In other words, γ ∈ Γ′. Because of arbitrary choice of γ, the
embedding Γ ⊂ Γ′ holds. Due to symmetry considerations, we have Γ = Γ′. Since the choice of θ,
ν, ν ′ was arbitrary, we finally get that ∀ν, ν ′ ∈ Ω(t, x, ω) ∀τ ∈ I

(

(S(t0, x0, ν) | Iτ) = (S(t0, x0, ν ′) | Iτ)
)

⇒
(

(α(ν) | Iτ) = (α(ν ′) | Iτ)
)

. (3.20)

From (1.7), (3.11), and (3.20), we obtain α ∈ M(t,x,ω) and, hence, (2.5).
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3.3. Proof of Theorem 1

From the relation Aσ(N) ⊂ N (see (2.4)), in view of Lemma 1, we find that, under the inequality
|N| ≺ σ, the embedding below holds:

Aσ(N) ⊂ {(t, x, ω) ∈ N | ∃α ∈ M(t,x,ω) : (τ, h, ν) ∈ N ∀τ ∈ It ∀h ∈ α(ν) ∀ν ∈ Ω(t, x, ω)}. (3.21)

1. Denote the set from the right-hand side of (2.6) by Λ. In view of (3.21), to prove the theorem,
it is sufficient to establish the relation

Λ ⊂ Aσ(N). (3.22)

Since Λ ⊂ N, we have

Λ ⊂ A0(N). (3.23)

Let the ordinal ζ be such that, for all ξ ≺ ζ,

Λ ⊂ Aξ(N). (3.24)

We show that Λ ⊂ Aζ(N). If ζ is a limit ordinal, then we obtain

Λ ⊂
⋂

ξ≺ζ

Aξ(N) = Aζ(N). (3.25)

2. If ζ has a predecessor η, we shall verify that Λ ⊂ A(Aη(N)) = Aζ(N). Assume the contrary:
there is a state (t∗, x∗, ν∗) ∈ N ⊂ SP(t0,x0) such that

(t∗, x∗, ν∗) ∈ Λ \Aη+1(N). (3.26)

Then, it follows from (3.24) and (3.26) that (t∗, x∗, ν∗) ∈ Aη(N) \A(Aη(N)). Hence, there exists
ω∗ ∈ Ω(t∗, x∗, ν∗) such that Π(ω∗ | (t∗, x∗, ν∗),A

η(N)) = ∅. From this equality, in view of the
inclusion (t∗, x∗, ν∗) ∈ Aη(N) and definition (2.1), we obtain

∀s ∈ S(t∗, x∗, ω
∗) ∃t ∈ It∗ : (t, s, ω∗) 6∈ Aη(N). (3.27)

At the same time (see (3.26)), (t∗, x∗, ν∗) ∈ Λ, and, hence, there exists a quasistrategy α∗ ∈
M(t∗,x∗,ν∗) for which, by the definition of Λ,

(t, s, ω) ∈ N ∀t ∈ It∗ ∀s ∈ α∗(ω) ∀ω ∈ Ω(t∗, x∗, ν∗). (3.28)

In particular, as ω∗ ∈ Ω(t∗, x∗, ν∗), we have

(t, s, ω∗) ∈ N ∀t ∈ I ∀s ∈ α∗(ω
∗). (3.29)

Choose arbitrary s∗ ∈ α∗(ω
∗). Then (see (1.7)), we have s∗ ∈ S(t∗, x∗, ω

∗). According to (3.27),
we have (t∗, s∗, ω∗) 6∈ Aη(N) for some moment t∗ ∈ It∗ . Hence, by (3.24), we have (t∗, s∗, ω∗) 6∈ Λ.
In addition (see (3.29)), (t∗, s∗, ω∗) ∈ N (and, therefore, (t∗, s∗, ω∗) ∈ SP(t0,x0)). By the definition
of Λ,

∀α ∈ M(t∗,s∗,ω∗) ∃ω ∈ Ω(t∗, s∗, ω∗) ∃s ∈ α(ω) ∃t ∈ It∗ : (t, s, ω) 6∈ N. (3.30)

3. We define a multi-valued mapping β ∈ Z0(s
∗ | It

∗

)Ω(t∗,s∗,ω∗) by the rule

β(ω) , α∗(ω) ∩ Z0(s
∗ | It

∗

) ∀ω ∈ Ω(t∗, s∗, ω∗). (3.31)
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We verify that β is well defined: for any ω′ ∈ Ω(t∗, s∗, ω∗), (S((t0, x0), ω′) | It
∗) =

(S((t0, x0), ω∗) | It
∗) holds (see (1.6)). In view of ω∗ ∈ Ω(t∗, x∗, ν∗) and (1.6), we have

(S((t0, x0), ω′) | It∗) = (S((t0, x0), ω∗) | It∗) = (S((t0, x0), ν∗) | It∗).

Wherefrom, we derive ω′ ∈ Ω(t∗, x∗, ν∗). As ω
′ was chosen arbitrary, the embedding Ω(t∗, s∗, ω∗) ⊂

Ω(t∗, x∗, ν∗) holds. So, the mapping β is well defined for all ω ∈ Ω(t∗, s∗, ω∗). Let us show the
inclusion β ∈ M(t∗,s∗,ω∗).

For any ν ∈ Ω(t∗, s∗, ω∗) and h ∈ β(ν), by definition (3.31), we have (h | It
∗

) = (s∗ | It
∗

),
h ∈ S(t∗, x∗, ν). These relations by using of (1.3) and (1.2) imply h ∈ S(t∗, s∗, ν). As h and ν were
chosen arbitrary, the inclusion β ∈

∏

χ∈Ω(t∗,s∗,ω∗) P(S(t
∗, s∗, χ)) holds.

Let ω ∈ Ω(t∗, s∗, ω∗). We have (see (1.6)) (S(t0, x0, ω) | It
∗) = (S(t0, x0, ω∗) | It

∗). Then,

taking into account that α∗ ∈ M(t∗,x∗,ν∗), ω, ω
∗ ∈ Ω(t∗, x∗, ν∗) and (1.7), we obtain (α∗(ω) | I

t∗) =

(α∗(ω
∗) | It

∗). By using the equality and the inclusion s∗ ∈ α∗(ω
∗) ∩ Z0(s

∗ | It
∗

), we derive the
relations

(s∗ | It
∗

) ∈ (α∗(ω
∗) ∩ Z0(s

∗ | It
∗

) | It
∗

) = (α∗(ω) ∩ Z0(s
∗ | It

∗

) | It
∗

) = (β(ω) | It
∗

).

So, the inequality (β(ω) | It∗) 6= ∅ holds. Hence, β(ω) 6= ∅. In virtue of arbitrary choice of ω, we
have β ∈

∏

χ∈Ω(t∗,s∗,ω∗) P
′(S(t∗, s∗, χ)).

Concerning the second property of quasistrategies in (1.7) (non-anticipatory), the mapping β

inherits it from the quasistrategy α∗. Indeed, by definition (see (3.31)), the mapping β is an
intersection of two non-anticipating mappings. So, β ∈ M(t∗,s∗,ω∗).

4. Then (see (3.30)),

∃ω̄ ∈ Ω(t∗, s∗, ω∗),∃s̄ ∈ β(ω̄),∃t̄ ∈ It∗ : (t̄, s̄, ω̄) 6∈ N. (3.32)

But, by definition, t̄ ∈ It∗ , ω̄ ∈ Ω(t∗, x∗, ν∗) and s̄ ∈ α∗(ω̄). In other words, (3.32) contradicts
to (3.28). Hence, assumption (3.26) was wrong, and Λ ⊂ A(Aη(N)). From the embedding, rela-
tions (3.23) and (3.25), on the basis of transfinite induction principle we get Λ ⊂ Aδ(N) for any
ordinal δ. When δ = σ, the embedding turns into desired relation (3.22).
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Abstract: We present a new proof for the main claim made in the author’s paper “On the identity bases
of Brandt semigroups” (Ural. Gos. Univ. Mat. Zap., 14, no.1 (1985), 38–42); this claim provides an identity
basis for an arbitrary Brandt semigroup over a group of finite exponent. We also show how to fill a gap in the
original proof of the claim in loc. cit.
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1. Introduction

We assume the reader’s acquaintance with the concepts of an identity and an identity basis as
well as other rudiments of the theory of varieties; they all may be found, e.g., in [3, Chapter II].
Our paper deals with identity bases of a certain species of semigroups which we introduce now.

Let G be a group, I a set with at least 2 elements, and 0 a “fresh” symbol that does not belong
to G ∪ I. We define a multiplication on the set B(G, I) = I ×G× I ∪ {0} as follows:

(i, g, j)(k, h, ℓ) =

{

(i, gh, ℓ) if j = k,

0 otherwise,
for all i, j, k, ℓ ∈ I and all g, h ∈ G,

0x = 0, x0 = 0 for all x ∈ B(G, I).

(1.1)

It is easy to verify that the multiplication (1.1) is associative so that B(G, I) becomes a semigroup.
The semigroup is called the Brandt semigroup over the group G, and the group G in this context
is referred to as the structure group of B(G, I) while I is called the index set.

Recall that an element a of a semigroup S is said to be regular if there exists an element b ∈ S
satisfying aba = a and bab = b; it is common to say that b is an inverse of a. A semigroup is called
regular [respectively, inverse] if every its element has an inverse [respectively, a unique inverse].
The semigroup B(G, I) is inverse: one can easily check that for all i, j ∈ I and all g ∈ G, the unique
inverse of (i, g, j) is (j, g−1, i) and the unique inverse of 0 is 0.

Brandt semigroups arose from a concept invented by Brandt [2] in his studies on composition
of quaternary quadratic forms; a distinguished role played by Brandt semigroups in the structure
theory of inverse semigroups was revealed by Clifford [4] and Munn [19]. From the varietal view-
point, Brandt semigroups are of importance as well (see, e.g., [26, Section 7]), and this justifies
the study of their identities. Since Brandt semigroups happen to be inverse, there is a bifurcation
in this study: along with plain identities u = v, in which the terms u and v are plain semigroup
words, that is, products of variables, one can consider also inverse identities whose terms involve

1This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00551, the
Ministry of Science and Higher Education of the Russian Federation, project no. 1.580.2016, and the Com-
petitiveness Program of Ural Federal University.
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both multiplication and the unary operation of taking the inverse. We notice that even though
plain identities form a special instance of inverse ones, this does not imply that the study of the
former fully reduces to the study of the latter; see Section 4 for a more detailed discussion.

Kleiman [13] comprehensively analyzed inverse identities of Brandt semigroups. In particular,
he showed how to derive a basis for such identities of B(G, I) from any given identity basis of the
group G. Mashevitzky [17] gave a characterization of the set of all plain identities holding in a given
Brandt semigroup modulo the plain identities of its structure group. Trahtman [27] found a basis
for plain identities of the 5-element Brandt semigroup B2 in which the construction B(G, I) results
provided that G is the trivial group E and |I| = 2; this basis consists of the following identities:

x2 = x3, xyx = xyxyx, x2y2 = y2x2. (1.2)

This fact was frequently cited and used in many applications, including quite important ones such
as the positive solution to the finite basis problem for 5-element semigroups [15, 28, 29].

In [30], the present author applied Kleiman’s result from [13] along with a generalization of
Trahtman’s argument from [27] in order to obtain a basis of plain identities for an arbitrary Brandt
semigroup over a group of finite exponent. Recall that a group G is said to be of finite exponent
if there exists a positive integer n such that gn = 1 for all g ∈ G. The least number n with this
property is called the exponent of G. Clearly, if G is a group of exponent n > 1, then g−1 = gn−1

for all g ∈ G, whence every terms, which is built from certain variables with the help of the
unary operation of taking the inverse along with the multiplication, is equal in G to a semigroup
word over the same variables. In particular, identities of G (both inverse and plain) admit a basis
{wλ = 1}λ∈Λ such that each wλ is a plain semigroup word; we refer to such a basis as a positive
identity basis of G. The following is the main result of [30]:

Theorem 1. Let G be a group of exponent n > 1, {wλ = 1}λ∈Λ a positive identity basis of G,
and I a set with at least 2 elements. The identities

w2
λ = wλ (λ ∈ Λ), (1.3)

x2 = xn+2, (1.4)

xyx = (xy)n+1x, (1.5)

xnyn = ynxn (1.6)

constitute a basis for plain identities of the Brandt semigroup B(G, I).

This result also has some important consequences, e.g., it implies a classification of finite inverse
semigroups whose plain identities admit a finite basis ([30, Corollary 3], see also Section 4).

For more than 25 years there was no doubt in the validity of Trahtman’s argument in [27]
until Reilly [24] observed that the argument in fact contained a lacuna. Nevertheless, the claim
made in [27] turned out to persist since Reilly managed to prove that the identities (1.2) do form
a basis for plain identities of the semigroup B2, see [24, Theorem 5.4]. A crucial step in Reilly’s
proof employs a solution to the word problem in the free objects of the variety generated by B2;
this solution (first provided by Mashevitsky in [17]) has quite a complicated formulation and a
somewhat bulky justification. Independently and simultaneously, Lee and the present author [16]
invented an alternative way to save Trahtman’s claim; their approach bypassed the word problem
and resulted in a proof which was short and rather straightforward modulo an elementary yet
powerful argument known as Kublanovskii’s Lemma, see [7, Lemma 3.2]. This technique stems
from the present author’s paper [32].

Since the proof of Theorem 1 in [30] uses a version of Trahtman’s argument, it suffers from the
same problem as the proof in [27], and therefore, cannot be considered as truly complete. In fact,
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the gap in the proof in [30] can be filled, and we show below how to rescue that proof. However,
the main aim of the present paper is to present a new proof of Theorem 1; this new proof follows
the approach in [16, 32] and relies on a suitable version of Kublanovskii’s Lemma. We have made
a fair effort to make our proof self-contained so that, in particular, it should be understandable
without any acquaintance with [30] as a whole nor with specific results therein.

2. Preliminaries

Here we collect a few auxiliary results that we need; they all either are known or constitute
minor variations of known facts. Some of these results and/or their proofs involve certain concepts
of semigroup theory, which all can be found in the early chapters of any general semigroup theory
text such as, e.g., [5, 8].

Lemma 1. Let G be an arbitrary group, I a set with at least 2 elements. An identity u = v
holds in the Brandt semigroup B(G, I) if and only if u = v holds in both G and the 5-element
Brandt semigroup B2.

P r o o f. This was established in [13, Lemma 5] for inverse identities. As plain identities are
special instances of inverse ones, the claim holds for plain identities as well. �

Lemma 2. Let G be a group and I a set such that |G|, |I| ≥ 2. If G satisfies the identity w = 1
where w is a semigroup word, then the Brandt semigroup B(G, I) satisfies the identity w2 = w.

P r o o f. This fact was also mentioned in [13, p. 214] for inverse identities, and we could have
specialized it to plain identities as we did in the proof of Lemma 1. However, the proof in [13] is
only briefly outlined, and the outline involves several advanced notions and results from the theory
of inverse semigroups. For the sake of completeness, we provide here a direct and elementary proof.

Clearly, G satisfies the identity w2 = w. In view of Lemma 1 it remains to verify that the
identity holds in the semigroup B2. Let P(G) stand for the set of all non-empty subsets of G. We
define a multiplication · on the set P(G) ×G by the following rule: for A,B ⊆ G, g, h ∈ G,

(A, g) · (B,h) = (A ∪ gB, gh) where gB = {gb : b ∈ B}. (2.1)

It is routine to verify that · is associative so that (P(G) × G, ·) becomes a semigroup which, for
brevity, we denote by S.

Let alph(w) denote the set of variables that occur in the word w. If we evaluate the variables
x1, x2, · · · ∈ alph(w) at some elements (A1, g1), (A2, g2), . . . of S and calculate the corresponding
value of w, then, according to (2.1), we get an element of the form (A,w(g1, g2, . . . )) for a certain
set A ∈ P(G). Since the identity w = 1 holds in G, we have w(g1, g2, . . . ) = 1, so that the value is
actually of the form (A, 1). Clearly, (A, 1) · (A, 1) = (A∪A, 1) = (A, 1) for every A ∈ P(G), whence
S satisfies the identity w2 = w.

Consider the Brandt semigroup B(E,G) over the trivial group E = {1}; observe that here we
make the set G play the role of the index set! Let J = {(A, g) ∈ S : |A| ≥ 2} and define a map
ϕ : S → B(E,G), letting sϕ = 0 for all s ∈ J and ({a}, g)ϕ = (a, 1, g−1a) for all ({a}, g) ∈ S \J . It
is easy to see that ϕ is onto: indeed, an arbitrary triple (k, 1, ℓ) ∈ B(E,G)\{0}, where k, ℓ ∈ G, has
a unique preimage in S\J , namely, the pair ({k}, kℓ−1), and for 0, every element of J is a preimage.
Let us verify that ϕ is a semigroup homomorphism. Clearly, (s · t)ϕ = 0 = sϕ tϕ whenever at least
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one of the elements s and t lies in J . For ({a}, g), ({b}, h) ∈ S \ J , we have

(

({a}, g) · ({b}, h)
)

ϕ =
(

({a, gb}, gh)
)

ϕ =

{

[if a = gb] (a, 1, (gh)−1a) =
[if a 6= gb] 0 =

(a, 1, h−1b) [if g−1a = b]
0 [if g−1a 6= b]

}

= (a, 1, g−1a)(b, 1, h−1b) = ({a}, g)ϕ ({b}, h)ϕ.

Summing up the established properties of ϕ, we conclude that the Brandt semigroup B(E,G) is a
homomorphic image of the semigroup S, and therefore, B(E,G) also satisfies the identity w2 = w.

Since |G| ≥ 2, we can fix any 2-element subset K in G and “restrict” B(E,G) to K, that is,
consider the subsemigroup {(k, 1, ℓ) ∈ B(E,G) : k, ℓ ∈ K} ∪ {0} of B(E,G). Then the identity
w2 = w holds in this subsemigroup, which clearly is isomorphic to B2. �

Remark 1. The reader may wonder why Lemma 2 could not have been proved by a direct
evaluation of the word w in the Brandt semigroup B(G, I). The difficulty is that on this way one
should have verified that w and w2 take value 0 under the same evaluations of the variables from
alph(w) in B(G, I). Of course, not every word w enjoys this property so that one should have
analyzed the structure of w, relying entirely on the fact that the identity w = 1 holds in some non-
trivial group. Such an analysis is possible but is rather cumbersome (it amounts to characterizing
words w such that the normal closure of w in the free group on the set alph(w) coincides with the
whole group).

Lemma 3. Let G be a group and I a set with at least 2 elements. If the Brandt semigroup
B(G, I) satisfies an identity u = v such that u = u′yu′′ where y is a variable with y /∈ alph(u′u′′)
and alph(u′) ∩ alph(u′′) = ∅, then v can be decomposed as v = v′yv′′ with alph(v′) = alph(u′),
alph(v′′) = alph(u′′), and the identities u′ = v′ and u′′ = v′′ hold in B(G, I).

P r o o f. One could have deduced Lemma 3 by combining Proposition 3.2(ii) of [16] with its
left-right dual. However, since the proof of Proposition 3.2(ii) is omitted in [16], we prefer to prove
the lemma from scratch by a straightforward argument.

Fix two elements k, ℓ ∈ I. Suppose that there exists a variable that occurs in only one of the
words u and v. Evaluating this variable at 0 and other variables at (k, 1, k), we get that one of
the words u and v takes value 0 while the value of the other is (k, 1, k), a contradiction. Hence,
alph(u) = alph(v). Define an evaluation ζ : alph(u)→ B(G, I) as follows:

xζ =











(k, 1, k) if x ∈ alph(u′),

(k, 1, ℓ) if x = y,

(ℓ, 1, ℓ) if x ∈ alph(u′′).

Using the multiplication rules (1.1), one readily calculates that the value of the word u under ζ
is (k, 1, ℓ). Since B(G, I) satisfies the identity u = v, the value of v under ζ is (k, 1, ℓ) as well.
This value is a product of the triples (k, 1, k), (k, 1, ℓ), and (ℓ, 1, ℓ) in the same order in which the
variables from alph(u′), the variable y, and the variables from alph(u′′), respectively, occur in the
word v. Fix an occurrence of y in v and let v′y be the prefix of v ending with this occurrence and
yv′′ the suffix of v starting with this occurrence. Then v = v′yv′′. Since

(k, 1, ℓ)(k, 1, ℓ) = (k, 1, ℓ)(k, 1, k) = (k, 1, k)(ℓ, 1, ℓ) = (ℓ, 1, ℓ)(k, 1, ℓ) = (ℓ, 1, ℓ)(k, 1, k) = 0,

none of the factors y2, yx, xz, zy, zx with x ∈ alph(u′) and z ∈ alph(u′′) may occur in v. Therefore,
every variable that appears in v′ must come from alph(u′) while every variable that appears in
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v′′ must belong to alph(u′′). We see that alph(v′) ⊆ alph(u′), alph(v′′) ⊆ alph(u′′), and from the
equality alph(u) = alph(v) shown above, we conclude that alph(v′) = alph(u′), alph(v′′) = alph(u′′).

It remains to verify that the identities u′ = v′ and u′′ = v′′ hold in B(G, I). The semigroup
B(G, I) is inverse, and every inverse semigroup is isomorphic to its left-right dual via the bijection
that maps each element to its unique inverse. Therefore B(G, I) satisfies an identity p = q if and
only if it satisfies its mirror image←−p =←−q , where←−w denotes the word w read backwards. In view of
this symmetry, it suffices to verify that u′ = v′ holds in B(G, I). Arguing by contradiction, consider
an evaluation ϕ : alph(u′)→ B(G, I) such that the values of u′ and v′ under ϕ are different. Then
one of these values is not equal to 0; assume, for certainty, that the value of u′ is some triple
(i, g, j) ∈ B(G, I) \ {0}. We extend ϕ to an evaluation ψ : alph(u) → B(G, I), letting xψ = xϕ
for all x ∈ alph(u′) and yψ = zψ = (j, 1, j) for all z ∈ alph(u′′). The value of u under ψ is
(i, g, j)(j, 1, j) = (i, g, j); we aim to show that the value of v under ψ is different from (i, g, j).
Indeed, if the value of v′ under ϕ is 0, so is the value of v under ψ. If the value of v′ under ϕ is a
triple (i′, g′, j′) 6= (i, g, j), then the value of v under ψ is

(i′, g′, j′)(j, 1, j) =

{

(i′, g′, j) if j′ = j,

0 if j′ 6= j,
6= (i, g, j).

This contradicts the premise of u = v holding in B(G, I). �

A [0]-minimal ideal of a semigroup S is its minimal (with respect to the set inclusion) non-zero
ideal if S has a zero and its least ideal otherwise. A non-trivial semigroup S is [0]-simple if S = S2

and S is a [0]-minimal ideal of itself. A [0]-simple semigroup is completely [0]-simple if it contains
an idempotent e such that every idempotent f satisfying ef = fe = f is equal to either e or 0.

Lemma 4. If a semigroup satisfies the identities (1.5) and (1.6) for some n ≥ 1, then every
its [0]-minimal ideal that contains a regular element is an inverse completely [0]-simple semigroup.

P r o o f. It suffices to combine a few standard facts of semigroup theory. First, in any semi-
group, a [0]-minimal ideal with a regular element is a [0]-simple semigroup, see [5, Theorem 2.29]
or [8, Proposition 3.1.3]. Second, every [0]-simple semigroup that satisfies (1.5) is completely [0]-
simple; this is a special case of Munn’s theorem, see [5, Theorem 2.55] or [8, Theorem 3.2.11]. Each
completely [0]-simple semigroup is regular, and a regular semigroup with commuting idempotents
is inverse, see [5, Theorem 1.17] or [8, Theorem 5.1.1]. It remains to observe that idempotents
commute in every semigroup satisfying (1.6). �

We say that a map ϕ : S → T separates elements a, b ∈ S if aϕ 6= bϕ.

Lemma 5. If a semigroup S satisfies the identities (1.5) and (1.6) for some n ≥ 1, then any
distinct regular elements a, b ∈ S are separated by a homomorphism of S onto an inverse completely
[0]-simple semigroup.

P r o o f. This is a version of Kublanovskii’s Lemma [7, Lemma 3.2] adapted for the purposes
of the present paper. For the reader’s convenience, we provide a complete proof, even though it
quite closely follows the proof of Kublanovskii’s Lemma in [7].

For each regular element z ∈ S, we let Iz = {u ∈ S : z /∈ SuS}. Observe that z /∈ Iz: indeed, if
z′ is an inverse of z, we have z = zz′zz′z ∈ SzS. The set Iz may be empty but if it is not empty,
it forms an ideal of S. Indeed, SutS ⊆ SuS and StuS ⊆ SuS for any u, t ∈ S, and hence, if u lies
in Iz, so do ut and tu for every t ∈ S. Define the following equivalence relation on S:

x ≡ y (mod Iz) if and only if either x = y or x, y ∈ Iz.
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Clearly, it is just the equality relation if Iz is empty; otherwise it is nothing but the Rees congruence
ιz corresponding to the ideal Iz. Now define a further equivalence relation ρz on S as follows:

ρz = {(x, y) ∈ S × S : xt ≡ yt (mod Iz) for every t ∈ SzS} .

It can be easily verified that ρz is a congruence on S; in fact, as observed in [7], ρz is the kernel of
the so-called Schützenberger representation for S, see [5, Section 3.5].

Clearly, ρz = S × S if z = 0. Now we aim to prove the following claim: if z 6= 0, then the
quotient semigroup S/ρz is an inverse completely [0]-simple semigroup.

If Iz 6= ∅, the congruence ρz contains the Rees congruence ιz. Then we may substitute S by
its quotient S/ιz as the quotient also satisfies the identities (1.5) and (1.6); in other words, we may
(and will) assume that either Iz = ∅ or Iz = {0}. Then by the definition of the set Iz, every non-
zero element u ∈ SzS must fulfil z ∈ SuS whence SuS = SzS. We see that SzS is a [0]-minimal
ideal of S; as SzS contains z which is a regular element, Lemma 4 applies showing that SzS is an
inverse completely [0]-simple semigroup. So is any homomorphic image of SzS; in particular, so is
the image of SzS in the quotient semigroup S/ρz. Therefore, it remains to show that the image of
S in S/ρz coincides with that of SzS, which means that for each x ∈ S, there exists y ∈ SzS such
that (x, y) ∈ ρz.

If x ∈ SzS, there is nothing to prove. If x /∈ SzS, then in particular, x /∈ Iz whence z = pxq for
some p, q ∈ S. We have z = pxqz′pxq, where, as above, z′ stands for an inverse of z. Put w = qz′p;
then w ∈ SzS because z′ = z′zz′ ∈ SzS and xwx 6= 0 because z = pxwxq 6= 0. Now take an
arbitrary element t ∈ SzS. We have already noticed (in the preceding paragraph) that SuS = SzS
for every non-zero element u ∈ SzS. Applying this to u = xwx, we conclude that t = rxwxs for
some r, s ∈ S. Now we have the following chain of equalities:

xt = xrxwxs = (xr)n+1(xw)n+1xs by applying (1.5) to xrx and xwx

= xr(xr)n(xw)nxwxs

= xr(xw)n(xr)nxwxs by applying (1.6)

= xr(xw)n(xr)n−1xrxwxs

= xr(xw)n(xr)n−1xt.

We see that
(

x, xr(xw)n(xr)n−1x
)

∈ ρz, and the element xr(xw)n(xr)n−1x lies in the ideal SzS
because so does w. Thus, xr(xw)n(xr)n−1x can play the role of y, and our claim is proved.

Now we are ready to complete the proof of the lemma. Given an arbitrary pair (a, b) of distinct
regular elements is S, we will show that at least one of the congruences ρa and ρb excludes (a, b).
Then the natural homomorphism of S onto the quotient over this congruence separates a and b,
and the quotient is an inverse completely [0]-simple semigroup by the claim just proved. (One has
to take into account that if a congruence of the form ρz excludes some pair, then z 6= 0 and the
claim applies.)

If a /∈ SbS, then b ∈ Ia. Let a
′ be an inverse of a. We have then a′a ∈ SaS and a(a′a) = a /∈ Ia

while b(a′a) ∈ Ia since Ia is an ideal. Hence (a, b) /∈ ρa. Similarly, if b /∈ SaS, we have (a, b) /∈ ρb.
Now suppose that a ∈ SbS and b ∈ SaS. In this case, SaS = SbS and a, b /∈ Ia = Ib. If we assume
that (a, b) ∈ ρa, then for every element t ∈ SaS such that either at /∈ Ia or bt /∈ Ia, we must have
at = bt. In particular, the latter equality must hold for t = a′a since a(a′a) = a /∈ Ia and for
t = b′b, where b′ is an inverse of b, since b(b′b) = b /∈ Ia. Taking into account that both a′a and b′b
are idempotents and that idempotents commute in every semigroup satisfying the identity (1.6),
we have

a = a(a′a) = b(a′a) = b(b′b)(a′a) = a(b′b)(a′a) = a(a′a)(b′b) = a(b′b) = b(b′b) = b,
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a contradiction. �

Remark 2. One can call our Lemma 5 “Kublanovskii’s Lemma with commuting idempotents”.
The presence of the identity (1.6) ensures that idempotents commute, and this streamlines the
proof. The most important simplification in comparison with the proof of Kublanovskii’s Lemma
in [7] is that we manage to avoid invoking, along with the congruences ρa and ρb, their dual versions,
that is, the kernels of the corresponding Schützenberger anti-representations.

If S is an arbitrary semigroup and 0 is a “fresh” symbol that does not belong to S, we let S0

stand for the semigroup on the set S ∪{0} with multiplication that extends the multiplication of S
and makes all products involving 0 be equal to 0. If G is a group, G0 is known under the (standard
though somewhat oxymoronic) name “group with zero”. The following fact is a classical result of
semigroup theory, see [5, Theorem 3.9] or [8, Theorem 5.1.8].

Lemma 6. An inverse completely [0]-simple semigroup is either a group, or a group with zero,
or a Brandt semigroup.

3. Proof of Theorem 1

Recall that we aim to prove that for every group G of exponent n > 1 and every set I with at
least 2 elements, the identities (1.3)–(1.6) constitute a basis of the plain identities of the Brandt
semigroup B(G, I), provided that the set {wλ = 1}λ∈Λ is a positive identity basis of G.

To start with, observe that the identities (1.3)–(1.6) hold in B(G, I). For (1.3) this follows from
Lemma 2. As for the identities (1.4)–(1.6), it is obvious that they hold in each group of exponent n.
On the other hand, comparing these identities with the identity basis (1.2) of the semigroup B2,
one readily sees that they hold in B2 as well. Now the “if” part of Lemma 1 ensures that (1.4)–(1.6)
hold in B(G, I).

Let A be the semigroup variety defined by the identities (1.3)–(1.6) and B the variety generated
by the Brandt semigroup B(G, I). The fact established in the preceding paragraph is equivalent
to the inclusion B ⊆ A and the theorem being proved means the equality B = A. Arguing by
contradiction, assume that the inclusion is strict. Then there exists an identity that holds in the
semigroup B(G, I) but fails in the variety A. We choose an identity u = v with this property and
with the least value of | alph(u)|. We first check that the words u and v are repeated, where a word
w is called repeated if each variable from alph(w) occurs in a factor of w of the form ypy where
y is a variable and p is a (possibly empty) word2. It is convenient to have a short name for such
factors; let us refer to them as to cells.

Assume for a moment that, say, u is not repeated. This means that there exists a variable y
that occurs in u but does not occur in any cell of u. In particular, y occurs in u exactly once, and
moreover, u = u′yu′′ with alph(u′) ∩ alph(u′′) = ∅. We are in a position to employ Lemma 3 to
conclude that v decomposes as v = v′yv′′ where alph(v′) = alph(u′), alph(v′′) = alph(u′′) and both
the identities u′ = v′ and u′′ = v′′ hold in B(G, I). Since | alph(u′)|, | alph(u′′)| < | alph(u)|, our
choice of the identity u = v ensures that the identities u′ = v′ and u′′ = v′′ hold in the variety A.
However, together they imply the identity u = v that cannot hold in A, a contradiction.

Let F stand for the free semigroup of countable rank and let α denote the fully invariant
congruence on F that corresponds to the variety A. Then the quotient semigroup F/α satisfies
the identities (1.3)–(1.6) and the α-classes uα = {w : (w, u) ∈ α} and vα = {w : (w, v) ∈ α} are
different in F/α. For the next step of our proof we need the following fact:

2The term “repeated” comes from [27, 30]; in [16] words with this property were called “semiconnected”.
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Lemma 7. Every α-class that contains a repeated word is a regular element of F/α.

We proceed with proving Theorem 1 modulo Lemma 7 and prove the lemma afterwards.

By Lemma 7, the α-classes uα and vα are regular elements of F/α. Applying Lemma 5, we
conclude that uα and vα are separated by an onto homomorphism χ : F/α → T , where T is an
inverse completely [0]-simple semigroup. Lemma 6 implies the existence of a group Q such that
either 1) T = Q, or 2) T = Q0, or 3) T = B(Q,J) for some set J with |J | ≥ 2. In any case, Q is
a subgroup of a homomorphic image of F/α, whence the identities (1.3) hold in Q. Clearly, if for
some word w, a group satisfies the identity w2 = w, then the group satisfies the identity w = 1 as
well. Therefore the group Q satisfies the identities wλ = 1 for all λ ∈ Λ. Since these identities form
a basis for the identities of the structure group G of our semigroup B(G, I), the group Q belongs
to the semigroup variety generated by G, and hence, to the variety B generated by B(G, I). The
5-element Brandt semigroup B2 also belongs to B; this follows, for instance from the “only if” part
of Lemma 1. Applying the “if” part of Lemma 1, we conclude that the Brandt semigroup B(Q,J)
lies in B. From this, we have T ∈ B as T is isomorphic to a subsemigroup in B(Q,J) in the cases
1) or 2) and T = B(Q,J) in the case 3). In particular, T satisfies the identity u = v. However, the
composition of the natural homomorphism F → F/α with the homomorphism χ : F/α → T gives
rise to an evaluation under which the values of the words u and v are different. This contradiction
completes the proof of Theorem 1 modulo Lemma 7.

P r o o f of Lemma 7. Take any α-class h that contains a repeated word, say, w. If some
variable y occurs in w only once, then by the definition of a repeated word, y occurs in some cell
zpz of w, where p is non-empty. Using the identity (1.5), we substitute the factor zpz by the factor
(zp)n+1z and get a new word in the same α-class h in which y occurs at least twice. If this new
word still contains some variable x with a single occurrence, we apply the same transformation
again, etc. Thus, we may assume that h contains a word q in which every variable occurs at least
twice. Now we prove that h contains also a word which is a product of cells, that is, has the form

y1p1y1 · y2p2y2 · . . . · ykpkyk, (3.1)

where y1, y2, . . . , yk are variables and p1, p2, . . . , pk are (possibly empty) words. For this, we employ
a sort of greedy algorithm. Let y1 be the leftmost variable of the word q. If q ends with y1, the
word q itself is a cell. Otherwise we find the rightmost occurrence of y1 in q so that q = y1p1y1 · q1
where q1 is a non-empty word in which y1 does not occur, and so | alph(q1)| < | alph(q)|. Let y2 be
the leftmost variable of q1. There are two cases to consider, depending on whether y2 occurs in q1
at least twice or only once. In the former case, we find the rightmost occurrence of y2 in q1 and
represent q as q = y1p1y1 ·y2p2y2 ·q2, where y1, y2 do not occur in q2, and so | alph(q2)| < | alph(q1)|.
Let us show that h contains a word with a similar structure also in the latter case. Indeed, the
variable y2 occurs in q at least twice and if it occurs in q1 only once, then it must occur in p1.
Hence, p1 = ry2s for some (possibly empty) words r and s. Then q contains the word y2sy1y2 as
a factor. Using the identity (1.5), we substitute this factor by (y2sy1)

n+1y2 and transform q into a
new word q′ in the same α-class h; this new word can be represented as q′ = y1p

′

1y1 ·y2p
′

2y2 ·q
′

2, where
p′1 = r(y2sy1)

n−1y2s, p
′

2 = sy1, and q
′

2 is obtained from q1 by removing its leftmost variable. Then
y1, y2 do not occur in q′2, whence | alph(q

′

2)| < | alph(q1)|. Now we can apply the same procedure to
the leftmost variable of q2 or q′2, and so on. On the i-th step of the procedure we create a new cell
yipiyi while the yet unprocessed “remainder” omits the variables y1, . . . , yi. Clearly, the procedure
terminates after a finite number of steps and yields a word of the form (3.1) in the α-class h.

Now let h∗ be the α-class that contains the word

(pkyk)
2n−2pk · (pk−1yk−1)

2n−2pk−1 · . . . · (p1y1)
2n−2p1.
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We show that h∗ is an inverse of h by induction on k. If k = 1, that is, h = (y1p1y1)
α, the α-class

hh∗h contains the word

y1p1y1 · (p1y1)
2n−2p1 · y1p1y1 = (y1p1)

2n+1y1.

Applying the identity (1.4) if the word p1 is empty and the identity (1.5) otherwise, we can transform
this word to the word y1p1y1 ∈ h. Thus, hh

∗h = h. Similarly, the α-class h∗hh∗ contains the word

(p1y1)
2n−2p1 · y1p1y1 · (p1y1)

2n−2p1 = (p1y1)
4n−2p1

that can be transformed to (p1y1)
2n−2p1 ∈ h

∗. Hence, h∗hh∗ = h∗ and thus, h∗ is an inverse of h.

For the induction step, suppose that k > 1 and let f and g be the α-classes containing the
words y1p1y1 and y2p2y2 · . . . · ykpkyk respectively. Then h = fg, h∗ = g∗f∗ and, by the induction
assumption, f∗ and g∗ are inverses of f and g, respectively. The equalities ff∗f = f and gg∗g = g
imply that the α-classes f∗f and gg∗ are idempotents. Taking into account that the idempotents
of F/α commute due to the identity (1.6), we obtain

hh∗h = fg · g∗f∗ · fg

= f(gg∗)(f∗f)g

= f(f∗f)(gg∗)

= ff∗f · gg∗g

= fg = h,

h∗hh∗ = g∗f∗ · fg · g∗f∗

= g∗(f∗f)(gg∗)f∗

= g∗(gg∗)(f∗f)f∗

= g∗gg∗ · f∗ff∗

= g∗f∗ = h∗.

We see that h∗ is an inverse of h, and the lemma is proved. �

Now we are in a position to discuss a gap in the original proof of Theorem 1 in [30] and to
explain how the gap can be filled.

The proof of Theorem 1 in [30] develops as follows. As above, it works with F , the free
semigroup of countable rank, and α, the fully invariant congruence on F that corresponds to the
variety A defined by the identities (1.3)–(1.6). In the quotient semigroup F/α, one considers the
set H of all α-classes containing a repeated word. Obviously, the product of two repeated words is
a repeated word whence H is a subsemigroup of F/α. The idempotents of H commute because H,
being a subsemigroup of F/α, satisfies the identity(1.6). By Lemma 7 (which appears in [30] as a
part of the proof of Theorem 1), H is regular. Now one can apply the textbook fact that a regular
semigroup with commuting idempotents is inverse, see [5, Theorem 1.17] or [8, Theorem 5.1.1].
Thus, H is an inverse subsemigroup of F/α. At this point, the proof under discussion invokes the
main result from Kleiman’s paper [13], which implies that the identities (1.3)–(1.6) form a basis
for the inverse identities of the Brandt semigroup B(G, I). In particular, these identities hold in
B(G, I) whence A ⊇ B, where as above, B stands for the variety generated by B(G, I). In the
language of fully invariant congruences this means that α ⊆ β, where β denotes the fully invariant
congruence on F that corresponds to the variety B. Let β/α be the induced congruence on F/α so
that (F/α) / (β/α) ∼= F/β. The rest of the proof relies on the following claim: the congruence β/α
separates the elements of the subsemigroup H, that is, β/α restricted to H is the equality relation.
In [30] this claim is justified by observing that H lies in the variety B—this follows from the
fact that H is inverse and satisfies the identities (1.3)–(1.6) which, according to the quoted result
from [13], define the variety of inverse semigroups generated by B(G, I). However, the justification
is not sufficient. The membership H ∈ B only guarantees that the least element in the set Γ
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of all congruences γ on H with H/γ ∈ B is the equality relation; while β/α restricted to H is a
congruence in Γ, it is not immediately clear that the restriction is indeed the least element in Γ.

Let us show that the italicized claim does hold. Arguing by contradiction, assume that some
distinct elements a, b ∈ H satisfy (a, b) ∈ β/α. Since a and b are distinct regular elements of the
semigroup F/α, which satisfies the identities (1.5) and (1.6), Lemma 5 applies. Thus, a and b are
separated by an onto homomorphism χ : F/α → T , where T is an inverse completely [0]-simple
semigroup. Arguing as in the last paragraph of the above proof of Theorem 1 modulo Lemma 7,
one can show that T lies in the variety B. Then the homomorphism χ must factor through the
natural homomorphism η : F/α → F/β because F/β is the B-free semigroup of countable rank.
However, aη = bη since (a, b) ∈ β/α while aχ 6= bχ, a contradiction.

4. Corollaries and discussions

For the reader’s convenience, we reproduce the main corollaries of Theorem 1, following [30].
The first of them specializes Theorem 1, providing an explicit identity basis for Brandt semigroups
over abelian groups of finite exponent.

Corollary 1 [30, Corollary 1]. Let G be an abelian group of exponent n > 1 and I a set with
at least 2 elements. The identities (1.4), (1.5), and

x2y2 = y2x2, (4.1)

xyxzx = xzxyx (4.2)

constitute a basis for plain identities of the Brandt semigroup B(G, I).

This is in fact a consequence of the proof of Theorem 1 rather than the theorem itself. The
corresponding arguments were omitted in [30]; therefore, we provide a proof outline here.

P r o o f (outline). First, we show that the identities (1.4), (1.5), (4.1), (4.2) hold in B(G, I).
By the “if” part of Lemma 1, it suffices to verify that they hold in both G and the 5-element
Brandt semigroup B2. Obviously, the identities (1.4) and (1.5) hold in every group of exponent n
while the identities (4.1) and (4.2) hold in every abelian group. Thus, (1.4), (1.5), (4.1), (4.2) hold
in G. Inspecting the identity basis (1.2), one readily sees that (1.4), (1.5), (4.1) hold in B2. The
identity (4.2) also holds in B2 as the following calculation shows:

xyxzx = (xy)2(xz)2x in view of xyx = xyxyx

= (xz)2(xy)2x in view of x2y2 = y2x2

= xzxyx in view of xyx = xyxyx.

Now we proceed exactly as in the proof of Theorem 1. Denote by A the semigroup variety
defined by the identities (1.4), (1.5), (4.1), (4.2) and let B be the variety generated by the semigroup
B(G, I). The fact that B(G, I) satisfies (1.4), (1.5), (4.1), (4.2) implies that B ⊆ A. Assuming
that the inclusion is strict, choose an identity u = v with the least value of | alph(u)| such that
u = v holds in B(G, I) but fails in A. Then the words u and v are repeated due to the argument
in the 4th paragraph of Section 3.

Let F be the free semigroup of countable rank and α its fully invariant congruence correspond-
ing to the variety A. The α-classes uα and vα are distinct elements of F/α and, by Lemma 7, they
are regular. Then Lemmas 5 and 6 imply that uα and vα are separated by an onto homomorphism
χ : F/α→ T , where T is either a group, or a group with zero, or a Brandt semigroup. Let Q stand
for the structure group of T in the latter case and for T or T \ {0} in the two former cases. Then
Q is a subgroup of a homomorphic image of F/α, whence the identities (1.4) and (4.2) hold in Q.
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Clearly, the exponent of every group satisfying (1.4) divides n and every group satisfying (4.2) is
abelian. Thus, Q is an abelian group of exponent dividing n. A well known classification of abelian
group varieties (cf. [20, Theorem 19.5] or [21, Item 13.51]) ensures that the variety of all abelian
groups of exponent dividing n is generated by any abelian group of exponent n, in particular, by
the structure group G of B(G, I). Thus, Q belongs to the variety generated by G, and hence, to
the variety B. As the 5-element Brandt semigroup B2 also belongs to B, the “if” part of Lemma 1
implies that every Brandt semigroup over Q lies in B. From this, we have T ∈ B whence T must
satisfy u = v. On the other hand, the composition of the natural homomorphism F → F/α with
the homomorphism χ : F/α→ T separates u and v in T , a contradiction. �

Remark 3. We do not know any basis for plain identities of the Brandt semigroup over the
infinite cyclic group Z (or any other abelian group of infinite exponent); moreover, it is not known
whether or not the plain identities of this semigroup admit a finite basis. A finite basis for in-
verse identities of the Brandt semigroup over Z can be found in [13, Corollary 6] or [23, Theo-
rem XII.5.4(iii)].

In connection with Remark 3, it appears appropriate to discuss in more detail how the finite
basis property, i.e., the property of a Brandt semigroup B(G, I) to have a finite identity basis,
may depend on the type of identities—inverse or plain—under consideration. It turns out that
the picture is rather non-trivial here. On the one hand, the additional operation increases the
expressivity of the equational language so that the inverse identities of B(G, I) are “richer” than
the plain ones. This indicates that B(G, I) may have more chances to possess no finite basis for
its inverse identities. On the other hand, the inference power of the language increases too. Hence
one can encounter the situation when some identity of B(G, I) does not follow from an identity
system Σ as a “plain” identity but follows from Σ as an “inverse” identity. This indicates that
the inverse identities of B(G, I) may admit a finite basis even if its plain identities do not. The
cumulative effect of the trade-off between increased expressivity and increased inference power is
hard to predict in general, as the following examples demonstrate3.

Example 1. Let G be the wreath product of the countably generated free group of exponent 4
with the countably generated free abelian group and I a set with at least 2 elements. The Brandt
semigroup B(G, I) satisfies only trivial plain identities but its inverse identities have no finite basis.

P r o o f. The fact that B(G, I) satisfies only trivial plain identities follows from the observa-
tion that G contains the countably generated free semigroup as a subsemigroup, see, e.g., [1]. If
we assume that the inverse identities of B(G, I) admit a finite basis, then appending the identity
xx−1 = yy−1 to the basis would yield a finite basis of group identities of the group G. However,
by [20, Corollary 22.22] G generates the varietal product of the variety of all groups of exponent
dividing 4 with the variety of all abelian groups, and by [14, Remark 2] this product possesses no
finite identity basis, a contradiction. �

In Example 1, an increase in the expressivity of the equational language dominates; now we
exhibit an “opposite” example in which one sees the effect of an increase in the inference power.

Example 2. Let G be the direct product of the infinite cyclic group Z with the group S3 of
all permutations of a 3-element set and I a set with at least 2 elements. The Brandt semigroup
B(G, I) admits a finite basis of inverse identities but its plain identities have no finite basis.

3Our examples are adaptations of known ones (see, e.g., [31, Section 2]) to the case of Brandt semigroups.
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P r o o f. Since the group S3 is metabelian, so is G = Z × S3. It is known [6] that the group
identities of any metabelian group possess a finite basis. By [13, Corollary 2], the inverse identities
of a Brandt semigroup admit a finite basis whenever so do the group identities of its structure
group. Thus, we may conclude that B(G, I) has a finite basis of inverse identities.

Now consider the following series of identities:

Ln : x2y1 · · · ynyn · · · y1 = y1 · · · ynyn · · · y1x
2, n = 1, 2, . . . .

We aim to show that all identities Ln hold in B(G, I). Due to the “if” part of Lemma 1, it amounts
to verifying that they hold in both G and the 5-element Brandt semigroup B2. Since the group S3

satisfies the identity (4.1), this identity, which is equivalent to L1, holds in G = Z × S3. Now it
easy to verify that G satisfies the identity Ln by induction on n. Indeed, for n > 1 we have

x2y1y2 · · · ynyn · · · y2y1 = y1(y
−1
1 xy1)

2y2 · · · ynyn · · · y2y1

= y1y2 · · · ynyn · · · y2(y
−1
1 xy1)

2y1 by the inductive assumption

= y1y2 · · · ynyn · · · y2y
−1
1 x2y21

= y1y2 · · · ynyn · · · y2y
−1
1 y21x

2 by using (4.1)

= y1y2 · · · ynyn · · · y2y1x
2.

In order to show that each of the identities Ln holds in B2 = B(E, {1, 2}), it suffices to ob-
serve that the values of the words x2y1 · · · ynyn · · · y1 and y1 · · · ynyn · · · y1x

2 under every evaluation
ϕ : {x, y1, . . . , yn} → B2 are equal to 0 unless xϕ = ykϕ = (1, 1, 1) or xϕ = ykϕ = (2, 1, 2) for all
k = 1, . . . , n, in which case the values of these words are equal to (1, 1, 1) or (2, 1, 2) respectively.

Isbell [9] proved that no finite set of plain semigroup identities true in the groups Z and S3

implies all identities Ln. Hence, the plain identities of B(G, I) admit no finite basis. �

Our next result also deals with the finite basis property. It immediately follows from Theorem 1.

Corollary 2 [30, Corollary 2]. If a group G of finite exponent admits a finite identity basis,
then so does every Brandt semigroup over G.

In particular, since every finite group possesses a finite identity basis ([22], see also [21, Sec-
tion 5.2]), we conclude that the plain identities of each finite Brandt semigroup have a finite basis.

Two algebraic structures of the same type are said to be equationally equivalent if they satisfy
the same identities. Results in [13], see also [23, Proposition XII.4.13], imply that the following
dichotomy holds for an arbitrary inverse semigroup S: either

(1) S is equationally equivalent to an inverse semigroup that is either a group, or a group with
zero, or a Brandt semigroup and that can be chosen to be finite whenever S is finite, or

(2) the inverse semigroup variety generated by S contains the 6-element Brandt monoid B1
2

obtained by adjoining a “fresh” symbol 1 to the 5-element Brandt semigroup B2 and extending the
multiplication of B2 so that 1 becomes the identity element.

If S and T are inverse semigroups and S satisfies all inverse identities of T , then the same holds
for the plain identities of T since the latter are special instances of the former. (In the language of
varieties, this means that S lies in the semigroup variety generated by T whenever it belongs to the
inverse semigroup variety generated by T .) In particular, if S and T are equationally equivalent as
inverse semigroups, they are equationally equivalent as plain semigroups as well. In view of these
observations, we see that the above dichotomy persists if one considers plain semigroup identities
and varieties. Thus, if S is an arbitrary inverse semigroup, then either
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(1’) S is equationally equivalent as a plain semigroup to either a group, or a group with zero,
or a Brandt semigroup, each of which can be chosen to be finite whenever S is finite, or

(2’) the plain semigroup variety generated by S contains the 6-element Brandt monoid B1
2 .

This dichotomy, combined with a powerful result by Sapir [25], allows us to give the following
classification of finite inverse semigroups with respect to the finite basis property.

Corollary 3 [30, Corollary 3]. A finite inverse semigroup S admits a finite basis of plain iden-
tities if and only if the plain semigroup variety generated by S excludes the monoid B1

2 .

P r o o f. The “only if” part follows from [25, Corollary 6.1], according to which every (not
necessarily inverse) finite semigroup that generates a variety containing B1

2 has no finite identity
basis. For the proof of the “if” part, we invoke the above dichotomy that allows us to assume that
S is either a finite group, or a finite group with zero, or a finite Brandt semigroup. We have already
mentioned that every finite group possesses a finite identity basis, and so does every finite Brandt
semigroup by Corollary 2. The remaining case of finite groups with zero easily follows from a gen-
eral result by Melnik [18, Theorem 4] ensuring that if a (not necessarily finite) semigroup T has a
finite identity basis, then so does the semigroup T 0. (See [31, Section 3] for a detailed explanation
of how [18, Theorem 4] implies this claim.) �

Remark 4. As it has been observed by Kalicki [12], there exists an algorithm to decide, given two
finite algebraic structures of the same type, whether one of them belongs to the variety generated
by the other. Hence, Corollary 3 provides an algorithm to decide whether or not a given finite
inverse semigroup admits a finite basis of plain identities. Recall that the existence of such an
algorithm remains open for each of the following two situations: when one wants to decide whether
or not a given finite plain semigroup admits a finite basis of plain identities (see [31, Section 2] for
a discussion) and when one wants to decide whether or not a given finite inverse semigroup admits
a finite basis of inverse identities. In particular, it is not known if for a finite inverse semigroup
S, the plain and the inverse versions of the finite basis property are equivalent. Kad’ourek [10] has
proved that they are equivalent provided that all subgroups of S are solvable.
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