TOPOLOGIES ON THE FUNCTION SPACE \(Y^X\) WITH VALUES IN A TOPOLOGICAL GROUP

Kulchhum Khatun     (Department of Mathematics, University of Gour Banga, Malda 732103, India)
Shyamapada Modak     (Department of Mathematics, University of Gour Banga, Malda 732103, India)

Abstract


Let \(Y^X\) denote the set of all functions from \(X\) to \(Y\). When \(Y\) is a topological space, various topologies can be defined on \(Y^X\). In this paper, we study these topologies within the framework of function spaces. To characterize different topologies and their properties, we employ generalized open sets in the topological space \(Y\). This approach also applies to the set of all continuous functions from \(X\) to \(Y\), denoted by \(C(X,Y)\), particularly when \(Y\) is a topological group. In investigating various topologies on both \(Y^X\) and \(C(X,Y)\), the concept of limit points plays a crucial role. The notion of a topological ideal provides a useful tool for defining limit points in such spaces. Thus, we utilize topological ideals to study the properties and consequences for function spaces and topological groups.


Keywords


Topological group, Topological ideal, Function space \(Y^X\)

Full Text:

PDF

References


  1. Abbas F. \(h\)-open sets in topological spaces. Bol. Soc. Paran. Mat., 2023. Vol. 41. P. 1–9. DOI: 10.5269/bspm.51006
  2. Al-Omari A., Noiri T. Local closure functions in ideal topological spaces. Novi Sad J. Math., 2013. Vol. 12, No. 2. P. 139–149.
  3. Andrijević D. Semi-preopen sets. Mat. Vesnik, 1986. Vol. 38, No. 93. P. 24–32.
  4. Andrijević D. On \(b\)-open sets. Mat. Vesnik, 1996. Vol. 48, No. 3. P. 59–64.
  5. Arkhangel’skii A.V. Topological Function Spaces. Dordrecht: Springer, 1992. 205 p.
  6. Arhangel’skii A., Tkachenko M. Topological Groups and Related Structures, An Introduction to Topological Algebra. Paris: Atlantis Press, 2008. 781 p. DOI: 10.2991/978-94-91216-35-0
  7. Bandyopadhyay C., Modak S. A new topology via \(\psi\)-operator. Proc. Nat. Acad. Sci. India, 2006. Vol. 76(A), No. 4. P. 317–320.
  8. Dontchev J. Idealization of Ganster-Reilly Decomposition Theorems. 1999. 11 p. arXiv:math/9901017v1 [math.GN]
  9. Dontchev J., Ganster M., Rose D. Ideal resolvability. Topol. Appl., 1999. Vol. 93, No. 1. P. 1–16. DOI: 10.1016/S0166-8641(97)00257-5
  10. El-Monsef M.E.A., El-Deeb S.N., Mahmoud R.A. \(\beta\)-open sets and \(\beta\)-continuous mappings. Bull. Fac. Sci. Assiut Univ., 1983. Vol. 12. P. 77–90.
  11. Hamlett T.R., Janković  D. Ideals in topological spaces and the set operator \(\psi\). Boll. Unione Mat. Ital., VII. Ser. B, 1990. Vol. 7. No. 4. P. 863–874.
  12. Hashimoto H. On the ∗-topology and its applications. Fundam. Math., 1976. Vol. 91, No. 1. P. 5–10. http://eudml.org/doc/214934
  13. Jindal A., McCoy R.A., Kundu S. The open-point and bi-point-open topologies on \(C(X)\): Submetrizability and cardinal functions. Topol. Appl., 2015. Vol. 196. P. 229–240. DOI: 10.1016/j.topol.2015.09.042
  14. Kuratowski K. Topology I. Warszawa: Druk M. Garasiński, 1933. 285 p.
  15. Levine N. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 1963. Vol. 70, No. 1. P. 36–41. DOI: 10.2307/2312781
  16. Mashhour A.S., El-Monsef M.E.A., El-Deeb S.N. On pre-continuous and week precontinuous mappings. Proc. Math. Phys. Soc. Egypt., 1982. Vol. 53. P. 47–53.
  17. Modak S. Some new topologies on ideal topological spaces. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2012. Vol. 82. No. 3. P. 233–243. DOI: 10.1007/s40010-012-0039-3
  18. Modak S., Bandyopadhyay C. A note on \(\psi\)-operator. Bull. Malyas. Math. Sci. Soc., 2007. Vol. 30, No. 1. P. 43–48.
  19. Modak S., Das M. K. Structures, mapping and transformation with non-interior operator \(\psi\). Southeast Asian Bull. Math. Accepted.
  20. Modak S., Selim Sk. Set operator and associated functions. Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 2021. Vol. 70. No. 1. P. 456–467. DOI: 10.31801/cfsuasmas.644689
  21. Munkres J.R. Topology. 2nd ed. Prentice Hall, Inc., 2000. 537 p.
  22. Natkaniec T. On \(I\)-continuity and \(I\)-semicontinuity points. Math. Slovaca, 1986. Vol. 36. No. 3. P. 297–312.
  23. Newcomb R.L. Topologies which are Compact Modulo an Ideal. Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
  24. Njȧstad O. On some classes of nearly open sets. Pacific J. Math., 1965. Vol. 15, No. 3. P. 961–970.
  25. Shakhmatov D., Spěvák J. Group-valued continuous functions with the topology of pointwise convergence. Topol. Appl., 2010. Vol. 157, No. 8. P. 1518–1540. DOI: 10.1016/j.topol.2009.06.022
  26. Tyagi B.K., Luthra S. Open-point and bi-point open topologies on continuous functions between topological (spaces) groups. Mat. Vesnik, 2022. Vol. 74. No. 1. P. 56–70.




DOI: http://dx.doi.org/10.15826/umj.2025.1.005

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.