CONTROL PROBLEM FOR A PARABOLIC SYSTEM WITH UNCERTAINTIES AND A NON-CONVEX GOAL

Igor’ V. Izmest’ev     (South Ural State University, 76 Lenina ave., Chelyabinsk, 454080; Chelyabinsk State University, 129 Brat’ev Kashirinykh str., Chelyabinsk, 454001, Russian Federation)
Viktor I. Ukhobotov     (South Ural State University, pr. Lenina, 76, Chelyabinsk, 454080, Russian Federation)

Abstract


We consider the control problem for a parabolic system that describes the heating of a given number of rods. Control is carried out through heat sources that are located at the ends of the rods (only at one end or at both). The density functions of the internal heat sources and exact values of the temperature at the right ends of some rods are unknown, and only the segments of their change are given. The goal of choosing control is to ensure that at a fixed time moment the weighted sum of the average temperatures of the rods belongs to a non-convex terminal set for any admissible unknown functions. After a change of variables, this problem reduces to a one-dimensional differential game. Necessary and sufficient conditions for the game termination are found.

Keywords


Control, Uncertainty, Parabolic system

Full Text:

PDF

References


  1. Barseghyan V., Solodusha S. The problem of boundary control of the thermal process in a rod. Mathematics, 2023. Vol. 11, No. 13. Art. no. 2881. DOI: 10.3390/math11132881
  2. Casas E., Yong J. Optimal control of a parabolic equation with memory. ESAIM Control Optim. Calc. Var., 2023. Vol. 29. Art. no. 23. DOI: 10.1051/cocv/2023013
  3. Dai J., Ren B. UDE-based robust boundary control of heat equation with unknown input disturbance. IFAC-PapersOnLine, 2017. Vol. 50, No. 1. P. 11403–11408. DOI: 10.1016/j.ifacol.2017.08.1801
  4. Egorov A.I. Optimal’noe upravlenie teplovymi i diffuzionnymi protsessami [Optimal Control of Thermal and Diffusion Processes]. Moscow: Nauka, 1978. 464 p. (in Russian)
  5. Feng H., Xu Ch.-Z., Yao P.-F. Observers and disturbance rejection control for a heat equation. IEEE Trans. Automat. Control, 2020. Vol. 65, No. 11. P. 4957–4964. DOI: 10.1109/TAC.2020.3022849
  6. Izmest’ev I.V., Ukhobotov V.I. On one problem of controlling the heating of a rod system under uncertainty. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022. Vol. 32, Iss. 4. P. 546–556. DOI: 10.35634/vm220404 (in Russian)
  7. Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional’nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moscow: Nauka, 1972. 496 p. (in Russian)
  8. Korotkii A.I., Osipov Iu.S. Approximation in problems of position control of parabolic systems. J. Appl. Math. Mech., 1978. Vol. 42, No. 4. P. 631–637. DOI: 10.1016/0021-8928(78)90004-7
  9. Krasovskii N.N. Upravlenie dinamicheskoi sistemoi [Control of a Dynamical System]. Moscow: Nauka, 1985. 520 p. (in Russian)
  10. Lohéac J. Nonnegative boundary control of 1D linear heat equations. Vietnam J. Math., 2021. Vol. 49, No. 3. P. 845–870. DOI: 10.1007/s10013-021-00497-5
  11.  Maksimov V.I. On the reconstruction of an input disturbance in a reaction-diffusion system. Comput. Math. Math. Phys., 2023. Vol. 63, No. 6. P. 990–1000. DOI: 10.1134/S0965542523060143
  12. Okhezin S.P. Differential encounter-evasion game for a parabolic system under integral constraints on the player’s controls. J. Appl. Math. Mech., 1977. Vol. 41, No. 2. P. 194–201. DOI: 10.1016/0021-8928(77)90002-8
  13.  Osipov Iu.S. Position control in parabolic systems. J. Appl. Math. Mech., 1977. Vol. 41, No. 2. P. 187–193. DOI: 10.1016/0021-8928(77)90001-6
  14. Osipov Yu.S., Okhezin S.P. On the theory of differential games in parabolic systems. Dokl. Akad. Nauk SSSR, 1976. Vol. 226, No. 6. P. 1267–1270.
  15. Ukhobotov V.I., Izmest’ev I.V. A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source. Trudy Inst. Mat. Mekh. UrO RAN, 2019. Vol. 25, No. 1. P. 297–305. DOI: 10.21538/0134-4889-2019-25-1-297-305 (in Russian)
  16. Ukhobotov V.I. Metod odnomernogo proektirovaniya v lineinykh differentsial’nykh igrakh s integral’nymi ogranicheniyami [Method of One-Dimensional Projecting in Linear Differential Games with Integral Constraints]. Chelyabinsk: Chelyabinsk State University, 2005. 124 p. (in Russian)
  17. Ukhobotov V.I. One type differential games with convex goal. Trudy Inst. Mat. Mekh. UrO RAN, 2010. Vol. 16, No. 5. P. 196–204. (in Russian)
  18. Wang S., Qi J., Diagne M. Adaptive boundary control of reaction-diffusion PDEs with unknown input delay. Automatica, 2021. Vol. 134. Art. no. 109909. DOI: 10.1016/j.automatica.2021.109909
  19. Zheng G., Li J. Stabilization for the multi-dimensional heat equation with disturbance on the controller. Automatica, 2017. Vol. 82. P. 319–323. DOI: 10.1016/j.automatica.2017.04.011




DOI: http://dx.doi.org/10.15826/umj.2023.2.010

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.