ON TWO-SIDED UNIDIRECTIONAL MEAN VALUE INEQUALITY IN A FRÉCHET SMOOTH SPACE
Abstract
The paper is devoted to a new unidirectional mean value inequality for the Fréchet subdifferential of a continuous function. This mean value inequality finds an intermediate point and localizes its value both from above and from below; for this reason, the inequality is called two-sided. The inequality is considered for a continuous function defined on a Fréchet smooth space. This class of Banach spaces includes the case of a reflexive space and the case of a separable Asplund space. As some application of these inequalities, we give an upper estimate for the Fréchet subdifferential of the upper limit of continuous functions defined on a reflexive space.
Keywords
Smooth Banach space, Fréchet subdifferential, Unidirectional mean value inequality, Upper limit of continuous functions
Full Text:
PDFReferences
- Aussel D., Corvellec J.-N., Lassonde M. Nonsmooth constrained optimization and multidirectional mean value inequalities. SIAM J. Optim., 1999. Vol. 9, No. 3. P. 690–706. DOI: 10.1137/S105262349732339X
- Borwein J.M., Fitzpatrick S.P., Giles J.R. The differentiability of real functions on normed linear space using generalized subgradients. J. Math. Anal. Appl., 1987. Vol. 128, No. 2. P. 512–534. DOI: 10.1016/0022-247X(87)90203-4
- Borwein J.M., Vanderwerff J.D. Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge: Cambridge University Press, 2010. x+521 p.
- Borwein J.M., Zhu Q.J. Techniques of Variational Analysis. Springer-Verlag: New York, 2005. vi+362 p. DOI: 10.1007/0-387-28271-8
- Clarke F., Ledyaev Yu.S. New formulas for finite increments. Dokl. Math., 1994. Vol. 48, No 1. P. 75–79.
- Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R. Nonsmooth Analysis and Control Theory. New York: Springer-Verlag, 1998. xiv+276 p. DOI: 10.1007/b97650
- Fabian M., Mordukhovich B.S. Nonsmooth characterizations of Asplund spaces and smooth variational principles. Set-Valued Anal., 1998. Vol. 6. P. 381–406. DOI: 10.1023/A:1008799412427
- Gomoyunov M.I., Plaksin A.R. Equivalence of minimax and viscosity solutions of path dependent Hamilton–Jacobi equations. J. Funct. Anal., 2023. Vol. 285, No. 11. Art. no. 110155. DOI: 10.1016/j.jfa.2023.110155
- Ioffe A.D. Variational Analysis of Regular Mappings: Theory and Applications. Ser. Springer Monogr. Cham: Math. Springer, 2017. xxi+495 p. DOI: 10.1007/978-3-319-64277-2
- Kipka R., Ledyaev Yu.S. A generalized multidirectional mean value inequality and dynamic optimization. Optimization, 2019. Vol. 68, No 7. P. 1365–1389. DOI: 10.1080/02331934.2019.1638388
- Khlopin D. Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions. Set-Valued Var. Anal., 2023. Vol. 31, No. 1. Art. no. 8. DOI: 10.1007/s11228-023-00672-5
- Ledyaev Yu.S., Treiman J.S. Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Russian Math. Surveys, 2012. Vol. 67, No. 2. P. 345–373. DOI: 10.1070/RM2012v067n02ABEH004789
- Mordukhovich B.S. Variational Analysis and Generalized Differentiation I: Basic Theory. Berlin: Springer-Verlag, 2006. xxii+579 p. DOI: 10.1007/3-540-31247-1
- Mordukhovich B.S. Variational Analysis and Applications. Ser. Springer Monogr. Math. Cham: Springer, 2018. xix+622 p. DOI: 10.1007/978-3-319-92775-6
- Rockafellar R.T., Wets R.J.B. Variational Analysis. Berlin: Springer-Verlag, 2009. vii+735 p. DOI: 10.1007/978-3-642-02431-3
- Subbotin A.I. On a property of the subdifferential. Math. USSR-Sb., 1993. Vol. 74, No. 1. P. 63–78. DOI: 10.1070/SM1993v074n01ABEH003335
- Trang N.T.Q. A note on an approximate mean value theorem for Fréchet subgradients. Nonlinear Anal., 2012. Vol. 75, No. 1. P. 380–383. DOI: 10.1016/j.na.2011.08.041
- Zhu Q.J. The equivalence of several basic theorems for subdifferentials. Set-Valued Anal., 1998. Vol. 6. P. 171–185. DOI: 10.1023/A:1008656207314
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.