A NEW CHARACTERIZATION OF SYMMETRIC DUNKL AND \(q\)-DUNKL-CLASSICAL ORTHOGONAL POLYNOMIALS
Abstract
In this paper, we consider the following \(\mathcal{L}\)-difference equation
$$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$where \(\Phi\) is a monic polynomial (even), \(\deg\Phi\leq2\), \(\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0\), are complex numbers and \(\mathcal{L}\) is either the Dunkl operator \(T_\mu\) or the the \(q\)-Dunkl operator \(T_{(\theta,q)}\). We show that if \(\mathcal{L}=T_\mu\), then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if \(\mathcal{L}=T_{(\theta,q)}\), then the \(q^2\)-analogue of generalized Hermite and the \(q^2\)-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the \(\mathcal{L}\)-difference equation.
Keywords
Full Text:
PDFReferences
- Al-Salam W.A., Chihara T.S. Another characterization of the classical orthogonal polynomials. SIAM J. Math. Anal., 1972. Vol. 3, No. 1. P. 65–70. DOI: 10.1137/0503007
- Aloui B., Souissi J. Characterization of \(q\)-Dunkl-classical symmetric orthogonal \(q\)-polynomials. Ramanujan J., 2022. Vol. 57, No. 2. P. 1355–1365. DOI: 10.1007/s11139-021-00425-8
- Belmehdi S. Generalized Gegenbauer orthogonal polynomials. J. Comput. Appl. Math., 2001. Vol. 133, No. 1–2. P. 195–205. DOI: 10.1016/S0377-0427(00)00643-9
- Bochner S. Über Sturm–Liouvillesche polynomsysteme. Math. Z., 1929. Vol. 29. P. 730–736. DOI: 10.1007/BF01180560 (in German)
- Bouanani A., Khéeriji L., Ihsen Tounsi M. Characterization of \(q\)-Dunkl Appell symmetric orthogonal \(q\)-polynomials. Expo. Math., 2010. Vol. 28, No. 4. P. 325–336. DOI: 10.1016/j.exmath.2010.03.003
- Bouras B. Some characterizations of Dunkl-classical orthogonal polynomials. J. Difference Equ. Appl., 2014. Vol. 20, No. 8. P. 1240–1257. DOI: 10.1080/10236198.2014.906590
- Bouras B., Habbachi Y., Marcellán F. Characterizations of the symmetric \(T_{(\theta,q)}\)-classical orthogonal \(q\)-polynomials. Mediterr. J. Math., 2022. Vol. 19, No. 2. Art. no. 66. 18 p. DOI: 10.1007/s00009-022-01986-8
- Chihara T.S. An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, Sci. Publ., Inc., 1978. 249 p.
- Datta S., Griffin J. A characterization of some \(q\)-orthogonal polynomials. Ramanujan J., 2006. Vol. 12. P. 425–437. DOI: 10.1007/s11139-006-0152-5
- Dunkl C.F. Integral kernels reflection group invariance. Canad. J. Math., 1991. Vol. 43, No. 6. P. 1213–1227. DOI: 10.4153/CJM-1991-069-8
- Geronimus J.L. On polynomials orthogonal with respect to numerical sequences and on Hahn’s theorem. Izv. Akad. Nauk., 1940. Vol. 250. P. 215–228. (in Russian)
- Ghressi A., Khériji L. The symmetrical \(H_q\)-semiclassical orthogonal polynomials of class one. SIGMA Symmetry Integrability Geom. Methods Appl., 2009. Vol. 5. Art. no. 076. 22 p. DOI: 10.3842/SIGMA.2009.076
- Hildebrandt E.H. Systems of polynomials connected with the Charlier expansions and the Pearson differential and difference equation. Ann. Math. Statist., 1931. Vol. 2, No. 4. P. 379–439. DOI: 10.1214/aoms/1177732950
- Marcellán F., Branquinho A., Petronilho J. Classical orthogonal polynomials: a functional approach. Acta. Appl. Math., 1994. Vol. 34. P. 283–303. DOI: 10.1007/BF00998681
- Maroni P. Fonctions eulériennes. Polynômes orthogonaux classiques. Techniques de l’ingénieur, 1994. Vol. 154. P. 1–30. DOI: 10.51257/a-v1-a154 (in French)
- Maroni P. Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. IMACS Ann. Comput. Appl. Math., 1991. Vol. 9. P. 95–130. (in French)
- Maroni P. Variations around classical orthogonal polynomials. Connected problems. J. Comput. Appl. Math., 1993. Vol. 48, No. 1–2. P. 133–155. DOI: 10.1016/0377-0427(93)90319-7
- Sghaier M. A note on Dunkl-classical orthogonal polynomials. Integral Transforms Spec. Funct., 2012. Vol. 23, No. 10. P. 753–760. DOI: 10.1080/10652469.2011.631186
Article Metrics
Refbacks
- There are currently no refbacks.