ON \(A^{\mathcal{I^{K}}}\)–SUMMABILITY
Abstract
In this paper, we introduce and investigate the concept of \(A^{\mathcal{I^{K}}}\)-summability as an extension of \(A^{\mathcal{I^{*}}}\)-summability which was recently (2021) introduced by O.H.H.~Edely, where \(A=(a_{nk})_{n,k=1}^{\infty}\) is a non-negative regular matrix and \(\mathcal{I}\) and \(\mathcal{K}\) represent two non-trivial admissible ideals in \(\mathbb{N}\). We study some of its fundamental properties as well as a few inclusion relationships with some other known summability methods. We prove that \(A^{\mathcal{K}}\)-summability always implies \(A^{\mathcal{I^{K}}}\)-summability whereas \(A^{\mathcal{I}}\)-summability not necessarily implies \(A^{\mathcal{I^{K}}}\)-summability. Finally, we give a condition namely \(AP(\mathcal{I},\mathcal{K})\) (which is a natural generalization of the condition \(AP\)) under which \(A^{\mathcal{I}}\)-summability implies \(A^{\mathcal{I^{K}}}\)-summability.
Keywords
Full Text:
PDFReferences
- Altinok M., Küçükaslan M. Ideal limit superior-inferior. Gazi Univ. J. Sci., 2017. Vol. 30, No. 1. P. 401–411.
- Banerjee A.K., Paul M. Weak and Weak* \({I^K}\)-convergence in Normed Spaces. 2018. 10 p. arXiv:1811.06707 [math.GN]
- Banerjee A.K., Paul M. Note on \(I^K\) and \(I^{K^{*}}\)-convergence in Topological Spaces. 2018. 10 p. arXiv:1807.11772v1 [math.GN]
- Das P., Sleziak M., Toma V. \(I^K\)-Cauchy functions. Topology Appl., 2014. Vol. 173, P. 9–27. DOI: 10.1016/j.topol.2014.05.008
- Das P., Sengupta S., Supina J. \(I^K\)-convergence of sequence of functions. Math. Slovaca., 2019. Vol. 69, No. 5. P. 1137–1148. DOI: 10.1515/ms-2017-0296
- Edely O.H.H. On some properties of \(A^{I}\)-summability and \(A^{I^*}\)-summability. Azerb. J. Math., 2021. Vol. 11, No. 1. P. 189–200.
- Edely O.H.H., Mursaleen M. On statistical \(A\)-summability. Math. Comput. Model, 2009. Vol. 49, No. 3. P. 672–680. DOI: 10.1016/j.mcm.2008.05.053
- Freedman A.R., Sember J.J. Densities and summability. Pacific J. Math., 1981. Vol. 95, No. 2. P. 293–305.
- Gogola J., Mačaj M., Visnyai T. On \(\mathcal{I}^{(q)}_{c}\)-convergence. Ann. Math. Inform., 2011. Vol. 38, P. 27–36.
- Jarrah A.M., Malkowsky E. Ordinary, absolute and strong summability and matrix transformations. Filomat, 2003. No. 17. P. 59–78. DOI: 10.2298/FIL0317059J
- Kostyrko P., Mačaj M., Šalát T., Sleziak M. \(\mathcal{I}\)-convergence and extremal \(\mathcal{I}\)-limit points. Math. Slovaca, 2005. Vol. 55, No. 4. P. 443–464.
- Kostyrko P., Šalát T., Wilczyński W. \(I\)-convergence. Real Anal. Exch., 2000–2001. Vol. 26, No. 2. P. 669–686.
- Mačaj M., Sleziak M. \(\mathcal{I}^K\)-convergence. Real Anal. Exch., 2010–2011. Vol. 36, No. 1. P. 177–194.
- Mursaleen M. On some new invariant matrix methods of summability. Q. J. Math., 1983. Vol. 34, No. 1. P. 77–86. DOI: 10.1093/qmath/34.1.77
- Mursaleen M., Alotaibi A. On \(\mathcal{I}\)-convergence in random 2-normed spaces. Math. Slovaca, 2011. Vol. 61, No. 6. P. 933–940. DOI: 10.2478/s12175-011-0059-5
- Mursaleen M., Mohiuddine S.A. On ideal convergence in probabilistic normed spaces. Math. Slovaca, 2012. Vol. 62, No. 1. P. 49–62. DOI: 10.2478/s12175-011-0071-9
- Nabiev A., Pehlivan S., Gürdal M. On \(\mathcal{I}\)-Cauchy sequences. Taiwanese J. Math., 2007. Vol. 11, No. 2. P. 569–576.
- Šalát T., Tripathy B.C., Ziman M. On some properties of \(\mathcal{I}\)-convergence. Tatra Mt. Math. Publ., 2004. Vol. 28, No. 2. P. 274–286.
- Savaş E. Generalized asymptotically \(\mathcal{I}\)-lacunary statistical equivalent of order \(\alpha\) for sequences of sets. Filomat, 2017. Vol. 31, No. 6. P. 1507–1514. DOI: 10.2298/FIL1706507S
- Savaş E. General inclusion relations for absolute summability. Math. Inequal. Appl., 2005. Vol. 8, No. 3. P. 521–527.
- Savaş E., Gürdal M. Ideal convergent function sequences in random 2-normed spaces. Filomat, 2016. Vol. 30, No. 3. P. 557–567. DOI: 10.2298/FIL1603557S
- Tripathy B. C., Hazarika B. Paranorm \(I\)-convergent sequence spaces. Math. Slovaca, 2009. Vol. 59, No. 4. P. 485–494. DOI: 10.2478/s12175-009-0141-4
Article Metrics
Refbacks
- There are currently no refbacks.