SHILLA GRAPHS WITH \(b=5\) AND \(b=6\)
Abstract
A \(Q\)-polynomial Shilla graph with \(b = 5\) has intersection arrays \(\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\}\), \(t\in\{3,4,19\}\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \(Q\)-polynomial Shilla graphs with \(b = 6\) are found.
Keywords
Shilla graph, Distance-regular graph, Q-polynomial graph.
Full Text:
PDFReferences
- Belousov I.N. Shilla distance-regular graphs with \(b_2 = sc_2\). Trudy Inst. Mat. i Mekh. UrO RAN, 2018. Vol. 24, No. 3. P. 16–26. (in Russian) DOI: 10.21538/0134-4889-2018-24-3-16-26
- Brouwer A.E., Cohen A.M., Neumaier A. Distance-Regular Graphs. Berlin, Heidelberg: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
- Coolsaet K., Jurišić A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs. J. Combin. Theory Ser. A, 2008. Vol. 115, No. 6. P. 1086–1095. DOI: 10.1016/j.jcta.2007.12.001
- Gavrilyuk A.L., Koolen J.H. A characterization of the graphs of bilinear \(d\times d\)-forms over \(\mathbb{F}_2\). Combinatorica, 2019. Vol. 39, No. 2. P. 289–321. DOI: 10.1007/s00493-017-3573-4
- Jurišić A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012. Vol. 65, No. 1. P. 29–47. DOI: 10.1007/s10623-012-9651-0
- Koolen J.H., Park J. Shilla distance-regular graphs. European J. Combin., 2010. Vol. 31, No. 8. P. 2064–2073. DOI: 10.1016/j.ejc.2010.05.012
- Makhnev A.A., Belousov I.N. To the theory of Shilla graphs with \(b_2 = c_2\). Sib. Electr. Math. Reports, 2017. Vol. 14. P. 1135–1146. (in Russian) DOI: 10.17377/semi.2017.14.097
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.