CARLEMAN'S FORMULA OF A SOLUTIONS OF THE POISSON EQUATION IN BOUNDED DOMAIN
Abstract
We suggest an explicit continuation formula for a solution to the Cauchy problem for the Poisson equation in a domain from its values and values of its normal derivative on a part of the boundary. We construct the continuation formula of this problem based on the Carleman--Yarmuhamedov function method.
Keywords
Poisson equations, Ill-posed problem, Regular solution, Carleman--Yarmuhamedov function, Green's formula, Carleman formula, Mittag-Leffler entire function.
Full Text:
PDFReferences
- Aizenberg L.A., Tarkhanov N.N. An abstract Carleman formula. Dokl. Math., 1988. Vol. 37, No. 1. P. 235–238.
- Aizenberg L.A. Carleman’s Formulas in Complex Analysis. Theory and Applications. Math. Applications, vol. 244. Dordrecht: Springer, 1993. 299 p. DOI: 10.1007/978-94-011-1596-4
- Alessandrini G., Rondi L., Rosset E., and Vessella S. The stability for the Cauchy problem for elliptic equations. Inverse problems, 2009. Vol. 25, No. 12. Art. no. 123004. DOI: 10.1088/0266-5611/25/12/123004
- Arbuzov E.V., Bukhgeim A.L. The Carleman’s formula for the Maxwell’s equations on a plane. Sib. Elektron. Mat. Izv., 2008. No. 5. P. 448–455. (in Russian)
- Belgacem F.B. Why is the Cauchy problem severely ill-posed? Inverse problems, 2007. Vol. 23, No. 2. P. 823–836. DOI: 10.1088/0266-5611/23/2/020
- Bers L., John F., Schechter M. Partial Differential Equations. NY: Interscience, 1964. 343 p.
- Blum J. Numerical Simulation and Optimal Control in Plasma Physics. With Applications to Tokamaks. NY: John Wiley and Sons Inc., 1989. 363 p.
- Carleman T. Les Founctions Quasi Analitiques. Gauthier-Villars, Paris, 1926. 115 p. (in French)
- Chen G., Zhou J. Boundary Element Methods. London etc.: Academic Press, 1992. 646 p.
- Colli-Franzone P., Guerri L., Tentoni S., Viganotti C., Baruffi S., Spaggiari S., Taccardi B. A mathematical procedure for solving the inverse potential problem of electrocardiography. analysis of the time-space accuracy from in vitro experimental data. Math. Biosci., 1985. Vol. 77, No. 1–2. P. 353–396. DOI: 10.1016/0025-5564(85)90106-3
- Dzhrbashyan M.M. Integral’nye preobrazovaniya i predstavleniya funkcij v kompleksnoj oblasti [Integral Transformations and Representations of Functions in a Compkjoplex Domain.] M.: Nauka, 1966. 670 p. (in Russian)
- Ermamatova Z.E. Carleman’s formula of a solution of the Poisson equation. Int. J. Integrated Education, 2021. Vol. 4, No. 7. P. 112–117.
- Fasino D., Inglese G. An inverse Robin problem for Laplace’s equation: theoretical results and numerical methods. Inverse problems, 1999. Vol. 15, No. 1. P. 41–48. DOI: 10.1088/0266-5611/15/1/008
- Fok V.A., Kuni F.M. On the introduction of a ’suppressing’ function in dispersion relations. Dokl. Akad. Nauk SSSR, 1959. Vol. 127, No. 6. P. 1195–1198. (in Russian)
- Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Berlin-Heidelberg-NY-Tokyo: Springer–Verlag, 1983. 513 p.
- Goluzin G.M., Krylov V.I. A generalized Carleman formula and its application to analytic continuation of functions. Mat. Sb., 1933. Vol. 40, No. 2. P. 144–149. (in Russian)
- Hadamard J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven: Yale University Press, 1923. 334 p.
- Hu X., Mu L., Ye X. A simple finite element method of the Cauchy problem for Poisson equation. Int. J. Numer. Anal. Model., 2017. Vol. 14, No. 4–5. P. 591–603.
- Inglese G. An inverse problem in corrosion detection. Inverse problems, 1997. Vol. 13, No. 4. P. 977–994. DOI: 10.1088/0266-5611/13/4/006
- Ivanov V.K. Cauchy problem for the Laplace equation in an infinite strip. Differ. Uravn., 1965. Vol. 1, No. 1. P. 131–136. (in Russian)
- Kabanikhin S.I. Inverse and Ill-Posed Problems: Theory and Applications. Berlin: De Gruyter, 2011. 459 p. DOI: 10.1515/9783110224016
- Lattès R., Lions J.-L. The Method of Quasi-Reversibility: Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics, vol. 18. NY: American Elsevier Pub. Co., 1969. 388 p.
- Lavrentiev M.M. Some Improperly Posed Problems of Mathematical Physics. Springer, Berlin, 1967. 76 p. DOI: 10.1007/978-3-642-88210-4
- Lavrentiev M.M. On Cauchy problem for linear elliptical equations of the second order. Dokl. Akad. Nauk SSSR, 1957. Vol. 112, No. 2. P. 195–197. (in Russian)
- Makhmudov O.I. The Cauchy problem for a system of equations of the theory of elasticity and thermoelasticity in space. Russian Math. (Iz. VUZ), 2004. Vol. 48, No. 2. P. 40–50.
- Makhmudov O., Niyozov I., Tarkhanov N. The Cauchy problem of couple-stress elasticity. Contemporary Math., 2008. Vol. 455. P. 297–310.
- Makhmudov K.O., Makhmudov O.I., Tarkhanov N. Equations of Maxwell type. J. Math. Anal. App., 2011. Vol. 378, No. 1. P. 64–75. DOI: 10.1016/j.jmaa.2011.01.012
- Mergelyan S.N. Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation. Uspekhi Mat. Nauk, 1956. Vol 11, No. 5. P. 3–26.
- Miranda C. Partial Differential Equations of Elliptic Type. Berlin, Heidelberg, NY: Springer, 1970. 370 p. DOI: 10.1007/978-3-642-87773-5
- Peicheva A.S. Regularization of the Cauchy problem for elliptic operators. J. Sibirian Federal University. Math. Phy., 2018. Vol. 2. P. 191–193. DOI: 10.17516/1997-1397-2018-18-2-191-193
- Sattorov E.N. Regularization of the solution of the Cauchy problem for the generalized Moisil-Theodoresco system. Diff. Equat., 2008. Vol. 44. P. 1136–1146. DOI: 10.1134/S0012266108080119
- Sattorov E.N. Continuation of a solution to a homogeneous system of Maxwell equations. Russian Math. (Iz. VUZ), 2008. Vol. 52, No. 8. P. 65–69. DOI: 10.3103/S1066369X08080094
- Sattorov E.N. On the continuation of the solutions of a generalized Cauchy-Riemann system in space. Math. Notes, 2009. Vol. 85, No. 5. P. 733–745. DOI: 10.1134/S0001434609050149
- Sattorov E.N. Regularization of the solution of the Cauchy problem for the system of Maxwell equations in an unbounded domain. Math. Notes, 2009. Vol. 86, No. 6. P. 422–431. DOI: 10.1134/S0001434609090156
- Sattorov E.N. Reconstruction of solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the boundary. Russian Math., 2011. Vol. 55, No. 1. P. 62–73. DOI: 10.3103/S1066369X11010075
- Sattorov E.N., Ermamatova Z.E. Recovery of solutions to homogeneous system of Maxwell’s equations with prescribed values on a part of the boundary of domain. Russian Math., 2019. Vol. 63, No. 2. P. 35–43. DOI: 10.3103/S1066369X19020051
- Sattorov E.N., Ermamatova F.E. Carleman’s formula for solutions of the generalized Cauchy–Riemann system in multidimensional spatial domain. Contem. Problems Math. Phys., 2019. Vol. 65, No. 1. P. 95–108. DOI: 10.22363/2413-3639-2019-65-1-95-108
- Sattorov E.N., Ermamatova F.E. On continuation of solutions of generalized Cauchy–Riemann system in an unbounded subdomain of multidimensional space. Russian Math., 2021. Vol. 65, No. 2. P. 22–38. DOI: 10.3103/S1066369X21020031
- Sattorov E.N., Ermamatova F.E. Cauchy problem for a generalized Cauchy–Riemann system in a multidimensional bounded spatial domain. Diff. Equat., 2021. Vol. 57, No. 1. P. 86–99. DOI: 10.1134/S0012266121010079
- Sattorov E.N., Mardanov D.A. The Cauchy problem for the system of Maxwell equations. Siberian Math. J., 2003. Vol. 44, No. 4. P. 671–679. DOI: 10.1023/A:1024788607969
- Tarkhanov N.N. The Carleman matrix for elliptic systems. Dokl. Akad. Nauk SSSR, 1985. Vol. 284, No. 2. P. 294–297. (in Russian)
- Tarkhanov N.N. The Cauchy Problem for Solutions of Elliptic Equations. Berlin: Akad. Verl., 1995. 479 p.
- Tikhonov A.N. On the solution of ill-posed problems and the method of regularization. Dokl. Akad. Nauk SSSR, 1963. Vol. 151, No. 3. P. 501–504. (in Russian)
- Tikhonov A.N., Arsenin V.Y. Solutions of Ill-Posed Problems. NY: John Wiley & Sons, 1977.
- Yarmukhamedov Sh. On the Cauchy problem for Laplace’s equation. Dokl. Akad. Nauk SSSR, 1977. Vol. 235, No. 2. P. 281–283. (in Russian)
- Yarmukhamedov Sh. Continuing solutions to the Helmholtz equation. Doklady Math., (1997). Vol. 56, No. 3. P. 887–890.
- Yarmukhamedov Sh. A Carleman function and the Cauchy problem for the Laplace equation. Sib. Math. J., 2004. Vol. 45, No. 3. P. 580–595 DOI: 10.1023/B:SIMJ.0000028622.69605.c0
- Yarmukhamedov Sh. Representation of Harmonic Functions as Potentials and the Cauchy Problem. Math. Notes, 2008. Vol. 83, No. 5. P. 693–706. DOI: 10.1134/S0001434608050131
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.