A ROBUST ITERATIVE APPROACH FOR SOLVING NONLINEAR VOLTERRA DELAY INTEGRO–DIFFERENTIAL EQUATIONS
Abstract
This paper presents a new iterative algorithm for approximating the fixed points of multivalued generalized \(\alpha\)–nonexpansive mappings. We study the stability result of our new iterative algorithm for a larger concept of stability known as weak \(w^2\)–stability. Weak and strong convergence results of the proposed iterative algorithm are also established. Furthermore, we show numerically that our new iterative algorithm outperforms several known iterative algorithms for multivalued generalized \(\alpha\)–nonexpansive mappings. Again, as an application, we use our proposed iterative algorithm to find the solution of nonlinear Volterra delay integro-differential equations. Finally, we provide an illustrative example to validate the mild conditions used in the result of the application part of this study. Our results improve, generalize and unify several results in the existing literature.
Keywords
Full Text:
PDFReferences
- Abbas M., Nazir T. A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesnik, 2014. Vol. 66, No. 2. P. 223–234. URL: http://hdl.handle.net/2263/43663
- Abkar A., Eslamian M. A fixed point theorem for generalized nonexpansive multivalued mappings. Fixed Point Theory, 2011. Vol. 12, No. 2. P. 241–246.
- Agarwal R.P., O’Regan D., Sahu D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 2007. Vol. 8, No. 1. P. 61–79.
- Ali F., Ali J, Nieto J.J. Some observations on generalized non-expansive mappings with an application. Comp. Appl. Math., 2020. Vol. 39. Art. no. 74. P. 1–20. DOI: 10.1007/s40314-020-1101-4
- Aoyama K., Kohsaka F. Fixed point theorem for α-nonexpansive mappings in Banach spaces. Nonlinear Anal., 2011. Vol. 74, No. 13. P. 4387–4391. DOI: 10.1016/j.na.2011.03.057
- Berinde V. Iterative Approximation of Fixed Points. Berlin, Heidelberg: Springer, 2007. 326 p. DOI: 10.1007/978-3-540-72234-2
- Browder F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA., 1965. Vol. 54, No. 4. P. 1041–1044. DOI: 10.1073/pnas.54.4.1041
- Cardinali T., Rubbioni P. A generalization of the Caristi fixed point theorem in metric spaces. Fixed Point Theory, 2010. Vol. 11, No. 1. P. 3–10.
- Garodia C., Uddin I. A new fixed point algorithm for finding the solution of a delay differential equation. AIMS Mathematics, 2020. Vol. 5, No. 4. P. 3182–3200. DOI: 10.3934/math.2020205
- Göhde D. Zum Prinzip der kontraktiven Abbildung. Math. Nachr., 1965. Vol. 30, No. 3–4. P. 251–258. (in German) DOI: 10.1002/mana.19650300312
- Gunduz B., Alagoz O., Akbulut S. Convergence theorems of a faster iteration process including multi-valued mappings with analytical and numerical examples. Filomat, 2018. Vol. 32, No. 16. P. 5665–5677. DOI: 10.2298/FIL1816665G
- Gürsoy F., Karakaya V. A Picard–S Hybrid Type Iteration Method for Solving a Differential Equation with Retarded Argument. 2014. 16 p. arXiv:1403.2546v2 [math.FA]
- Harder A.M. Fixed Point Theory and Stability Results for Fixed Point Iteration Procedures. Ph.D. thesis. Missouri: University of Missouri-Rolla, 1987. 70 p.
- Harder A.M., Hicks T.L. A stable iteration procedure for nonexpansive mappings. Math. Japonica, 1988. Vol. 33, No. 5. P. 687–692.
- Iqbal H., Abbas M., Husnine S.M. Existence and approximation of fixed points of multivalued generalized α-nonexpansive mappings in Banach spaces. Numer. Algor., 2020. Vol. 85. P. 1029–1049. DOI: 10.1007/s11075-019-00854-z
- Ishikawa S. Fixed points by a new iteration method. Proc. Amer. Math. Soc., 1994. Vol. 44. P. 147–150. DOI: 10.2307/2039245
- Kirk W.A. A fixed point theorem for mappings which do not increase distance. Amer. Math. Monthly, 1965. Vol. 72, No. 9. P. 1004–1006. DOI: 10.2307/2313345
- Kucche K.D., Shikhare P.U. Ulam Stabilities for nonlinear Volterra delay integro-differential equations. J. Contemp. Math. Anal., 2019. Vol. 54, No. 5. P. 276–287. DOI: 10.3103/S1068362319050042
- Mann W.R. Mean value methods in iteration. Proc. Amer. Math. Soc., 1953. Vol. 4. P. 506–510. DOI: 10.1090/S0002-9939-1953-0054846-3
- Markin J. A fixed point theorem for set valued mappings. Bull. Amer. Math. Soc., 1968. Vol. 74, No. 1. P. 639–640.
- Nadler S.B. Multi-valued contraction mappings. Pacific J. Math., 1969. Vol. 30, No. 2. P. 475–488. DOI: 10.2140/pjm.1969.30.475
- Noor M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 2000. Vol. 251, No. 1. P. 217–229. DOI: 10.1006/jmaa.2000.7042
- Ofem A.E., Igbokwe D.I. An efficient iterative method and its applications to a nonlinear integral equation and a delay differential equation in Banach spaces. Turkish J. Ineq., 2020. Vol. 4, No. 2. P. 79–107.
- Ofem A.E., Udofia U.E., Igbokwe D.I. New iterative algorithm for solving constrained convex minimization problem and split feasibility problem. Eur. J. Math. Anal., 2021. Vol. 1, No. 2. P. 106–132. DOI: 10.28924/ada/ma.1.106
- Ofem A.E., Udofia U.E. Iterative solutions for common fixed points of nonexpansive mappings and strongly pseudocontractive mappings with applications. Canad. J. Appl. Math., 2021. Vol. 3, No. 1. P. 18–36.
- Okeke G.A. Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications. Afr. Mat., 2019. Vol. 30, No. 5–6. P. 817–835. DOI: 10.1007/s13370-019-00686-z
- Okeke G.A., Abbas M.A. A solution of delay differential equations via Picard–Krasnoselskii hybrid iterative process. Arab. J. Math., 2017. Vol. 6. P. 21–29. DOI: 10.1007/s40065-017-0162-8
- Okeke G.A., Abbas M.A., de la Sen M. Approximation of the fixed point of multivalued quasinonexpansive mappings via a faster iterative. Process with applications. Discrete Dyn. Nat. Soc., 2020. Vol. 2020. Art. no. 8634050. P. 1–11. DOI: 10.1155/2020/8634050
- Pant D., Shukla R. Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Optim., 2017. Vol. 38, No. 2. P. 248–266. DOI: 10.1080/01630563.2016.1276075
- Schu J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc., 1991. Vol. 43, No. 1. P. 153–159. DOI: 10.1017/S0004972700028884
- Senter H.F., Dotson W.G. Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc., 1974. Vol. 44, No. 2. P. 375–380. DOI: 10.2307/2040440
- Song Y., Cho Y.J. Some notes on Ishikawa iteration for multivalued mappings. Bull. Korean Math. Soc., 2011. Vol. 48, No. 3. P. 575–584. DOI: 10.4134/BKMS.2011.48.3.575
- Suzuki T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl., 2008. Vol. 340, No. 2. P. 1088–10995. DOI: 10.1016/j.jmaa.2007.09.023
- Thakur B.S., Thakur D., Postolache M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat, 2016. Vol. 30, No. 10. P. 2711–2720. DOI: 10.2298/FIL1610711T
- Timis I. On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems. Int. J. Comput. Appl., 2012. Vol. 37, No. 4. P. 9–13.
- Ullah K., Arshad M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat, 2018. Vol. 32. P. 187–196. DOI: 10.2298/FIL1801187U
- Weng X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Amer. Math. Soc., 1991. Vol. 113. P. 727–731. DOI: 10.1090/S0002-9939-1991-1086345-8
Article Metrics
Refbacks
- There are currently no refbacks.