A MARKOVIAN TWO COMMODITY QUEUEING–INVENTORY SYSTEM WITH COMPLIMENT ITEM AND CLASSICAL RETRIAL FACILITY

M. Nithya     (Department of Mathematics, Queen Mary’s College, Tamil Nadu, Chennai – 600004, India)
C. Sugapriya     (Department of Mathematics, Queen Mary’s College, Tamil Nadu, Chennai – 600004, India)
S. Selvakumar     (Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai – 600005, Tamilnadu, India)
K. Jeganathan     (Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai – 600005, Tamilnadu, India)
T. Harikrishnan     (Department of Mathematics, Guru Nanak College (Autonomous), Tamil Nadu, Chennai – 600042, India)

Abstract


This paper explores the two-commodity (TC) inventory system in which commodities are classified as major and complementary items. The system allows a customer who has purchased a free product to conduct Bernoulli trials at will. Under the Bernoulli schedule, any entering customer will quickly enter an orbit of infinite capability during the stock-out time of the major item. The arrival of a retrial customer in the system follows a classical retrial policy. These two products' re-ordering process occurs under the \((s, Q)\) and instantaneous ordering policies for the major and complimentary items, respectively. A comprehensive analysis of the retrial queue, including the system's stability and the steady-state distribution of the retrial queue with the stock levels of two commodities, is carried out. The various system operations are measured under the stability condition. Finally, numerical evidence has shown the benefits of the proposed model under different random situations.


Keywords


Markov process, Compliment item, Infinite orbit, Waiting time

Full Text:

PDF

References


  1. Abate J., Whitt W. Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput., 1995. Vol. 7, No. 1. P. 36–43. DOI: 10.1287/ijoc.7.1.36
  2. Anbazhagan N., Arivarignan G. Two commodity continuous review inventory system with coordinated reorder policy. Int. J. Inf. Manag. Sci., 2000. Vol. 11, No. 3. P. 19–30.
  3. Anbazhagan N., Arivarignan G. Two commodity inventory system with individual and joint ordering policies. Int. J. Manag. Syst., 2003. Vol. 19, No. 2. P. 129–144.
  4. Anbazhagan N., Arivarignan G. Analysis of two commodity Markovian inventory system with lead time. Korean J. Comput. & Appl. Math., 2001. Vol. 8, No. 2. Art. no. 427. P. 427–438. DOI: 10.1007/BF02941976
  5. Anbazhagan N., Jeganathan K. Two-commodity Markovian inventory system with compliment and retrial demand. J. Adv. Math. Comput. Sci., 2013. Vol. 3, No. 2. P. 115–134. DOI: 10.9734/BJMCS/2013/1862
  6. Arivarignan G., Keerthana M., Sivakumar B. A production inventory system with renewal and retrial demands. In: Applied Probability and Stochastic Processes. Joshua V., Varadhan S., Vishnevsky V. (eds). Infosys Sci. Found. Ser. Singapor: Springer, 2020. P. 129–142. DOI: 10.1007/978-981-15-5951-8_9
  7. Artalejo J.R., Krishnamoorthy A., Lopez-Herrero M.J. Numerical analysis of \((s,S)\) inventory systems with repeated attempts. Ann. Oper. Res., 2006. Vol. 141. P. 67–83. DOI: 10.1007/s10479-006-5294-8
  8. Benny B., Chakravarthy S.R., Krishnamoorthy A. Queueing-inventorysystem with two commodities. J. Indian Soc. Probab. Stat., 2018. Vol. 19, No. 1. P. 437–454. DOI: 10.1007/s41096-018-0052-1
  9. Chakravarthy S.R., Krishnamoorthy A., Joshua V.C. Analysis of a multi-server retrial queue with search of customers from the orbit. Perform. Eval., 2006. Vol. 63, No. 8. P. 776–798. DOI: 10.1016/j.peva.2005.09.002
  10. Goyal S.K., Satir A.T. Joint replenishment inventory control: deterministic and stochastic models. European J. Oper. Res., 1989. Vol. 38, No. 1. P. 2–13. DOI: 10.1016/0377-2217(89)90463-3
  11. Jeganathan K., Reiyas M.A., Padmasekaran S., Lakshmanan K. An \(M/E_K/1/N\) queueing-inventory system with two service rates based on queue lengths. Int. J. Appl. Comput. Math., 2017. Vol. 3, No. 1. P. 357–386. DOI: 10.1007/s40819-017-0360-2
  12. Jeganathan K., Melikov A.Z., Padmasekaran S. et al. A stochastic inventory model with two queues and a flexible server. Int. J. Appl. Comput. Math., 2019. Vol. 5, No. 1. Art. no. 21. P. 1–27. DOI: 10.1007/s40819-019-0605-3
  13. Jeganathan K., Reiyas M.A. Two parallel heterogeneous servers Markovian inventory system with modified and delayed working vacations. Math. Comput. Simulation, 2020. Vol. 172. P. 273–304. DOI: 10.1016/j.matcom.2019.12.002
  14. Jeganathan K., Harikrishnan T., Selvakumar S. et al. Analysis of interconnected arrivals on queueing-inventory system with two multi-server service channels and one retrial facility. Electronics, 2021. Vol. 10, No. 5. P. 1–35. DOI: 10.3390/electronics10050576
  15. Jose K.P., Reshmi P.S. A production inventory model with deteriorating items and retrial demands. OPSEARCH, 2021. Vol. 58. P. 71–82. DOI: 10.1007/s12597-020-00471-8
  16. Kalpakam S., Arivarignan G. A coordinated multicommodity \((s,S)\) inventory system. Math. Comput. Model., 1993. Vol. 18, No. 11. P. 69–73. DOI: 10.1016/0895-7177(93)90206-E
  17. Keerthana M., Saranya N., Sivakumar B. A stochastic queueing - inventory system with renewal demands and positive lead time. Eur. J. Ind. Eng., 2020. Vol. 14, No. 4. P. 443–484. DOI: 10.1504/ejie.2020.10029435
  18. Krishnamoorthy A., Iqbal Basha R., Lakshmy B. Analysis of two commodity inventory problem. Int. J. Inf. Manag. Sci., 1994. Vol. 5, No. 1. P. 127–136.
  19. Krishnamoorthy A., Merlymol J., Ravindranathan. Analysis of a bulk demand two commodity inventory problem. Calcutta Stat. Assoc. Bull., 1999. Vol. 49, No. 1–2. P. 193–194. DOI: 10.1177/0008068319990108
  20. Krishnamoorthy A., Manikandan R., Lakshmy B. A revisit to queueing-inventory system with positive service time. Ann. Oper. Res., 2015. Vol. 233. P. 221–236. DOI: 10.1007/s10479-013-1437-x
  21. Krishnamoorthy A., Shajin D., Lakshmy B. \(GI/M/1\) type queueing-inventory systems with postponed work, reservation, cancellation and common life time. Indian J. Pure Appl. Math., 2016. Vol. 47, No. 2. P. 357–388. DOI: 10.1007/s13226-016-0192-5
  22. Krishnamoorthy A., Shajin D. \(MAP/PH/1\) retrial queueing-inventory system with orbital search and reneging of customers. In: Analytical and Computational Methods in Probability Theory (ACMPT 2017). Rykov V., Singpurwalla N., Zubkov A. (eds). Lecture Notes in Comput. Sci., vol. 10684. Cham: Springer, 2017. P. 158–171. DOI: 10.1007/978-3-319-71504-9_15  
  23. Lakshmanan K., Padmasekaran S., Jeganathan K. Mathematical analysis of queueing-inventory model with compliment and multiple working vacations. Int. J. Eng. Adv. Technol., 2019. Vol. 8, No. 6. P. 4239–4240. DOI: 10.35940/ijeat.F9003.088619
  24. Neuts M.F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. New York: Dover Publication Inc., 1994. 332 p.
  25. Senthil Kumar P. A discrete time two commodity inventory system. Int. J. Engrg. Res. Technol., 2016. Vol. 5, No. 1. P. 708–719. DOI: 10.17577/IJERTV5IS010602
  26. Shajin D., Krishnamoorthy A., Dudin A.N. et al. On a queueing-inventory system with advanced reservation and cancellation for the next \(K\) time frames ahead: the case of overbooking. Queueing Syst., 2020. Vol. 94. P. 3–37. DOI: 10.1007/s11134-019-09631-0
  27. Sivazlian B.D. Stationary analysis of a multicommodity inventory system with interacting set-up costs. SIAM J. App. Math., 1971. Vol. 20. Vol. 2. P. 264–278. https://www.jstor.org/stable/2099925?seq=1
  28. Sivakumar B., Anbazhagan N., Arivarignan G. A two-commodity perishable inventory system. ORiON, 2005. Vol. 21, No. 2. P. 157–172. DOI: 10.5784/21-2-27
  29. Sivakumar B., Anbazhagan N., Arivarignan G. Two commodity continuous review perishable inventory system. Int. J. Inf. Manag. Sci., 2006. Vol. 17, No. 3. P. 47–64.
  30. Sivakumar B., Anbazhagan N., Arivarignan G. Two-commodity inventory system with individual and joint ordering policies and renewal demands. Stoch. Anal. Appl., 2007. Vol. 25, No. 6. P. 1217–1241. DOI: 10.1080/07362990701567314
  31. Sivakumar B. Two-commodity inventory system with retrial demand. Eur. J. Oper. Res., 2008. Vol. 187, No. 1. P. 70–83. DOI: 10.1016/j.ejor.2007.02.036
  32. Ushakumari P. V. On \((s,S)\) inventory system with random lead time and repeated demands. J. Appl. Math. Stochastic Anal., 2006. Vol. 2006. Art. no. 81508. P. 1–22. DOI: 10.1155/JAMSA/2006/81508
  33. Yadavalli V.S.S., Anbazhagan N., Arivarignan G. A two-commodity stochastic inventory system with lost sales. Stoch. Anal. Appl., 2004. Vol. 22, No. 2. P. 479–497. DOI: 10.1081/SAP-120028606
  34. Yadavalli V.S.S., Arivarignan G., Anbazhagan N. Two commodity coordinated inventory system with Markovian demand. Asia-Pac. J. Oper. Res., 2006. Vol. 23, No. 4. P. 497–508. DOI: 10.1142/S0217595906001005
  35. Yadavalli V.S.S., Sivakumar B., Arivarignan G., Olufemi Adetunji. A finite source multi-server inventory system with service facility. Comput. Ind. Eng., 2012. Vol. 63. P. 739–753. DOI: 10.1016/j.cie.2012.04.014
  36. Yadavalli V.S.S., Adetunji O., Sivakumar B., Arivarignan G. Two-commodity perishable inventory system with bulk demand for one commodity. S. Afr. J. Ind. Eng., 2012. Vol. 21, No. 1. P. 137–155. DOI: 10.7166/21-1-73




DOI: http://dx.doi.org/10.15826/umj.2022.1.009

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.