INEQUALITIES FOR ALGEBRAIC POLYNOMIALS ON AN ELLIPSE
Abstract
The paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci \(\pm 1\) of the derivative of an algebraic polynomial with real coefficients normalized on the segment \([- 1,1]\).
Keywords
Full Text:
PDFReferences
Smirnov V.I., Lebedev N.A. Konstruktivnaya teoriya funkcij kompleksnogo peremennogo [The Constructive Theory of Functions of a Complex Variable]. Leningrad: Nauka Publ., 1964. 438 p. (in Russian)
Kolmogorov A.N. A remark on the polynomials of P.L. Chebyshev deviating the least from a given function. Uspehi Mat. Nauk, 1948. Vol. 3, No. 1. P. 216–221. (in Russian)
Kemperman J.H.B. Markov type inequalities for the derivatives of a polynomial. Aspects of Mathematics and its Applications, 1986. Vol. 34. P. 465–476. DOI: 10.1016/S0924-6509(09)70275-2
Duffin R., Schaeffer A.C. Some properties of functions of exponential type. Bull. Amer. Math. Soc., 1938. Vol. 4, No. 4. P. 236–240. DOI: 10.1090/S0002-9904-1938-06725-0
Erdös P. Some remark on polynomials. Bull. Amer. Math. Soc., 1947. Vol. 53, No. 12. P. 1169–1176. DOI: 10.1090/S0002-9904-1947-08938-2
Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NY: Dover Publications, 1965. 1046 p.
Bernstein S.N. O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni [On the Best Approximation of Continuous Functions by Polynomials of a Given Degree]. Comm. Soc. Math. Kharkov, 1912. 2 Series. Vol. XIII (13), No. 2–5. P. 49–194. (in Russian) https://www.math.technion.ac.il/hat/fpapers/bernstein1913.pdf
Dzyadyk V.K. Vvedenie v teoriyu ravnomernogo priblizheniya funkcij polinomami [Introduction to the Theory of Uniform Approximation of Functions by Polynomials]. Moscow: Nauka, 1977. 508 p. (in Russian)
Markov A.A. Ob odnom voproce D.I. Mendeleeva [On a Question by D.I. Mendeleev]. Zap. Imp. Akad. Nauk., St. Petersburg, 1890. Vol. 62. P. 1–24. (in Russian)
Schaeffer A.C., Szegö G. Inequalities for harmonic polynomials in two and three dimensions. Trans. Amer. Math. Soc., 1941. Vol. 50. P. 187–225. DOI: 10.1090/S0002-9947-1941-0005164-7
Article Metrics
Refbacks
- There are currently no refbacks.