LINEARIZATION OF POISSON–LIE STRUCTURES ON THE 2D EUCLIDEAN AND (1 + 1) POINCARÉ GROUPS
Abstract
The paper deals with linearization problem of Poisson-Lie structures on the \((1+1)\) Poincaré and \(2D\) Euclidean groups. We construct the explicit form of linearizing coordinates of all these Poisson-Lie structures. For this, we calculate all Poisson-Lie structures on these two groups mentioned above, through the correspondence with Lie Bialgebra structures on their Lie algebras which we first determine.
Keywords
Poisson-Lie groups, Lie bialgebras, Linearization.
Full Text:
PDFReferences
- 1. Alekseev A., Meinrenken E. Linearization of Poisson Lie group structures. J. Symplectic Geom., 2016. Vol. 14, No. 1. P. 227–267. DOI: 10.4310/JSG.2016.v14.n1.a9
- Chloup-Arnould V. Linearization of some Poisson–Lie tensor. J. Geom. Phys., 1997. Vol. 24, No. 1. P. 46–52. DOI: 10.1016/S0393-0440(97)00004-1
- Conn J.F. Normal forms for analytic Poisson structures. Ann. of Math. (2), 1984. Vol. 119, No. 3. P. 577–601. DOI: 10.2307/2007086
- Conn J.F. Normal forms for smooth Poisson structures. Ann. of Math. (2), 1985. Vol. 121, No. 3. P. 565–593. DOI: 10.2307/1971210
- Drinfel’d V.G. Quantum groups. J. Math. Sci., 1988. Vol. 41. P. 898–915. DOI: 10.1007/BF01247086
- Drinfel’d V.G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equations. Dokl. Akad. Nauk SSSR, 1983. Vol. 268, No. 2. P. 285–287. (in Russian)
- Dufour J.-P. Linéarisation de certaines structures de Poisson. J. Differential Geom., 1990. Vol. 32, No. 2. P. 415–428. (in French) DOI: 10.4310/jdg/1214445313
- Enriquez B., Etingof P., Marshall I. Comparison of Poisson structures and Poisson–Lie dynamical \(r\)-matrices. Int. Math. Res. Not., 2005. No. 36. P. 2183–2198. DOI: 10.1155/IMRN.2005.2183
- Gomez X. Classification of three-dimensional Lie bialgebras. J. Math. Phys., 2000. Vol. 41. Art. no. 4939. DOI: 10.1063/1.533385
- Lu J.-H., Weinstein A. Poisson Lie group, dressing transformations, and Bruhat decomposition. J. Differential Geom., 1990. Vol. 31, No. 2. P. 501–526. DOI: 10.4310/jdg/1214444324
- Weinstein A. The local structure of Poisson manifolds. J. Differential Geom., 1983. Vol. 18, No. 3. P. 523–557. DOI: 10.4310/jdg/1214437787
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.