UNIT AND UNITARY CAYLEY GRAPHS FOR THE RING OF EISENSTEIN INTEGERS MODULO \(n\)

Reza Jahani-Nezhad     (Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran, Islamic Republic of)
Ali Bahrami     (Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran, Islamic Republic of)

Abstract


Let \({E}_{n}\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_{n})\) and \(G_{{E}_{n}}\), the unit graph and the unitary Cayley graph of \({E}_{n}\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \(n>1\), the graphs \(G(E_{n})\) and \(G_{E_{n}}\) are Hamiltonian.


Keywords


Unit graph, Unitary Cayley graph, Eisenstein integers, Hamiltonian graph

Full Text:

PDF

References


  1. Aalipour G., Akbari S. On the Cayley graph of a commutative ring with respect to its zero-divisors. Comm. Algebra, 2016. Vol. 44, No. 4. P. 1443–1459.
  2. Akbari S., Estaji E., Khorsandi M.R. On the unit graph of a non-commutative ring. Algebra Colloq., 2015. Vol. 22. P. 817–822. DOI: 10.1142/S100538671500070X
  3. Akhtar R., Jackson-Henderson T., Karpman R., Boggess M., Jiménez I., Kinzel A., Pritikin D. On the unitary Cayley graph of a finite ring. Electron. J. Combin., 2009. Vol. 16, No. 1. Art. no. R117. DOI: 10.37236/206
  4. Alkam O., Abu Osba E. On Eisenstein integers modulo \(n\). Int. Math. Forum., 2010. Vol. 5, No. 22. P. 1075–1082. 
  5. Anderson D.F., Badawi A. The total graph of a commutative ring. J. Algebra, 2008. Vol. 320. No. 7. P. 2706–2719. DOI: 10.1016/j.jalgebra.2008.06.028 
  6. Anderson D.F., Livingston P.S. The zero-divisor graph of a commutative ring. J. Algebra, 1999. Vol. 217, No. 2. P. 434–447. DOI: 10.1006/jabr.1998.7840
  7. Ashrafi N., Maimani H.R., Pournaki M.R., Yassemi S. Unit graphs associated with rings. Comm. Algebra, 2010 Vol. 38. P. 2851–2871. DOI: 10.1080/00927870903095574
  8. Atiyah M.F., MacDonald I.G. Introduction to Commutative Algebra. Menlo Park, California, London, Don Mills, Ontario: Addison-Wesley Publishing Co., 1969. 128 p.
  9. Bahrami A., Jahani-Nezhad R. Unit and unitary Cayley graphs for the ring of Gaussian integers modulo \(n\). Quasigroups Related Systems, 2017. Vol. 25, No. 2. P. 189–200.
  10. Beck I. Coloring of commutative rings. J. Algebra, 1988 Vol. 116. No. 1. P. 208–226. DOI: 10.1016/0021-8693(88)90202-5
  11. Bondy J.A., Murty U.S.R. Graph Theory with Applications. New York, Amsterdam, Oxford: North-Holland, 1976. 264 p. 
  12. Cayley A. Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. Amer. J. Math., 1878. Vol. 1, No. 2. P. 174–176.
  13. Chung F.R.K. Diameters and eigenvalues. J. Amer. Math. Soc., 1989. Vol. 2, No. 2. P. 187–196. DOI: 10.2307/1990973
  14. Dejter I.J., Giudici R.E. On unitary Cayley graphs. J. Combin. Math. Comput., 1995. Vol. 18. P. 121–124. 
  15. Diestel R. Graph Theory. Berlin, Heidelberg: Springer-Verlag, 2001. 428 p. DOI: 10.1007/978-3-662-53622-3 
  16. Grimaldi R.P. Graphs from rings. Congr. Numer., 1990. Vol. 17. P. 95–103. 
  17. Ireland K., Rosen M. A Classical Introduction to Modern Number Theory. NY: Springer-Verlag, 1990. 394 p. DOI: 10.1007/978-1-4757-2103-4 
  18. Khashyarmanesh K., Khorsandi M.R. A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar., 2012. Vol. 137. P. 242–253. DOI: 10.1007/s10474-012-0224-5 
  19. Kiani D., Aghaei M.M.H. On the unitary Cayley graph of a ring. Electron. J. Combin., 2012. Vol. 19, No. 2. Art. no. P10. DOI: 10.37236/2214 
  20. Lanski C., Maróti A. Ring elements as sums of units. Cent. Eur. J. Math., 2009. Vol. 7. P. 395–399. DOI: 10.2478/s11533-009-0024-5 
  21. Maimani H.R., Pournaki M.R., Yassemi S. Weakly perfect graphs arising from rings. Glasg. Math. J., 2010. Vol. 52, No. 3. P. 417–425. DOI: 10.1017/S0017089510000108 
  22. Maimani H.R., Pournaki M.R., Yassemi S. Necessary and sufficient conditions for unit graphs to be Hamiltonian. Pacific J. Math., 2011. Vol. 249, No. 2. P. 419–429.




DOI: http://dx.doi.org/10.15826/umj.2021.2.003

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.