### GROWTH OF \(\varphi\)–ORDER SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS ON THE COMPLEX PLANE

#### Abstract

In this paper, we study the growth of solutions of higher order linear differential equations with meromorphic coefficients of \(\varphi\)-order on the complex plane. By considering the concepts of \(\varphi\)-order and \(\varphi \)-type, we will extend and improve many previous results due to Chyzhykov–Semochko, Belaïdi, Cao–Xu–Chen, Kinnunen.

#### Keywords

#### Full Text:

PDF#### References

Belaïdi B. Fast growing solutions to linear differential equations with entire coefficients having the same \(\rho_{\varphi }\)-order. * J. Math. Appl.*, 2019. Vol. 42. P. 63–77. DOI: 10.7862/rf.2019.4

Belaïdi B. Growth of \(\rho_{\varphi }\)-order solutions of linear differential equations with entire coefficients. * Pan-American Math. J.*, 2017. Vol. 27, No. 4. P. 26–42. URL: http://www.internationalpubls.com

Belaïdi B. Growth and oscillation of solutions to linear differential equations with entire coefficients having the same order. * Electron. J. Differential Equations*, 2009. No. 70. P. 1–10. URL: https://ejde.math.txstate.edu

Bernal L.G. On growth k-order of solutions of a complex homogeneous linear differential equation. *Proc. Amer. Math. Soc.*, 1987. Vol. 101, No. 2. P. 317–322. DOI: 10.1090/S0002-9939-1987-0902549-5

Cao T.-B., Xu J.F., Chen Z.X. On the meromorphic solutions of linear differential equations on the complex plane. *J. Math. Anal. Appl.*, 2010. Vol. 364, No. 1. P. 130–142. DOI: 10.1016/j.jmaa.2009.11.018

Chiang Y.-M., Hayman W.K. Estimates on the growth of meromorphic solutions of linear differential equations. *Comment. Math. Helv.*, 2004. Vol. 79, No. 3. P. 451–470. DOI: 10.1007/s00014-003-0792-7

Chyzhykov I., Semochko N. Fast growing entire solutions of linear differential equations. *Math. Bull. Shevchenko Sci. Soc.*, 2016. Vol. 13. P. 68–83.

Frank G., Hellerstein S. On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients. *Proc. London Math. Soc.*, 1986. Vol. s3–53, No. 3. P. 407–428. DOI: 10.1112/plms/s3-53.3.407

Gundersen G.G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. *J. London Math. Soc.*, 1988. Vol. s2–37, No. 1. P. 88–104. DOI: 10.1112/jlms/s2-37.121.88

Hayman W.K. *Meromorphic Functions. *Oxford: Oxford Mathematical Monographs Clarendon Press, 1964. 191 p.

Juneja O.P., Kapoor G.P., Bajpai S. K. On the \((p,q)\)-order and lower \((p,q)\)-order of an entire function. *J. Reine Angew. Math.*, 1976. Vol. 282. P. 53–67. DOI: 10.1515/crll.1976.282.53

Kara M.A., Belaïdi B. Some estimates of the \(\varphi \)-order and the \(\varphi \)-type of entire and meromorphic functions. *Int. J. Open Problems Complex Analysis*, 2019. Vol. 10, No. 3. P. 42–58. URL: http://www.i-csrs.org

Kinnunen L. Linear differential equations with solutions of finite iterated order. *Southeast Asian Bull. Math.* 1998. Vol. 22, No. 4. P. 385–405.

Laine I. *Nevanlinna Theory and Complex Differential Equations.* De Gruyter Studies in Mathematics, Vol. 15. Berlin: Walter de Gruyter & Co., 1993. 341 p. DOI: 10.1515/9783110863147

Li L.M., Cao T.B. Solutions for linear differential equations with meromorphic coefficients of \([p,q]\)-order in the plane. *Electron. J. Differential Equations*, 2012. No. 195. P. 1–15. URL: https://ejde.math.txstate.edu

Liu J., Tu J., Shi L.Z. Linear differential equations with entire coefficients of \([p,q]\)-order in the complex plane. J. Math. Anal. Appl., 2010. Vol. 372. P. 55–67. DOI: 10.1016/j.jmaa.2010.05.014

Mulyava O.M., Sheremeta M.M., Trukhan Yu.S. Properties of solutions of a heterogeneous differential equation of the second order. *Carpathian Math. Publ.*, 2019. Vol. 11, No. 2. P. 379–398. DOI: 10.15330/cmp.11.2.379-398

Nevanlinna R. Zur theorie der meromorphen funktionen. *Acta Math.*, 1925. Vol. 46, No. 1–2. P. 1–99. (in German). DOI: 10.1007/BF02543858

Seneta E. *Regularly Varying Functions. * Lecture Notes in Math., Vol. 508. Berlin, Heidelberg: Springer-Verlag, 1976. 116 p. DOI: 10.1007/BFb0079658

Sheremeta M. N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion. *Izv. Vyssh. Uchebn. Zaved. Mat.*, 1967. Vol. 2, P. 100–108. (in Russian)

Tu J., Chen Z.-X. Growth of solutions of complex differential equations with meromorphic coefficients of finite iterated order. *Southeast Asian Bull. Math.*, 2009. Vol. 33, No. 1. P. 153–164.

Yang L., Value Distribution Theory. Berlin, Heidelberg: Springer-Verlag, 1993. 269 p. DOI: 10.1007/978-3-662-02915-2

#### Article Metrics

### Refbacks

- There are currently no refbacks.