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Abstract: We consider one type of convergence of multiple trigonometric Fourier series intermediate between
the convergence over cubes and the λ-convergence for λ > 1. The well-known result on the almost everywhere
convergence over cubes of Fourier series of functions from the class L(ln+ L)d ln+ ln+ ln+ L([0, 2π)d) has been
generalized to the case of the Λ-convergence for some sequences Λ.
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Suppose that d is a natural number, Td = [−π, π)d is a d-dimensional torus, and ϕ : [0, +∞) →
[0, +∞) is a nondecreasing function. Let ϕ(L)(Td) be the set of all Lebesgue measurable real-valued
functions f on the torus Td such that

∫

Td

ϕ(|f(t)|)dt < ∞.

Let f ∈ L(Td), k = (k1, k2, . . . , kd) ∈ Zd, x = (x1, x2, . . . , xd) ∈ Rd, and kx = k1x1 + k2x2 + . . . +
kdxd. Denote by

ck =
1

(2π)d

∫

Td

f(t)e−ikt dt

the kth Fourier coefficient of the function f and by

∑

k∈Zd

ckeikx (1)

the multiple trigonometric Fourier series of the function f .
Let n = (n1, n2, . . . , nd) be a vector with nonnegative integer coordinates, and let Sn(f,x) be

the nth rectangular partial sum of series (1):

Sn(f,x) =
∑

k=(k1,...,kd) : |kj |≤nj , 1≤j≤d

ckeikx.

Denote by mesE the Lebesgue measure of a set E and let ln+ u = ln(u + e), u ≥ 0.
In 1915, in the case d = 1, N.N. Luzin (see [1]) suggested that the trigonometric Fourier series of

any function from L2(T) converges almost everywhere. A.N. Kolmogorov [2] constructed an example
of a function F ∈ L(T) whose trigonometric series diverges almost everywhere and, later on [3], of a
function from L(T) with the Fourier series divergent everywhere on T. L. Carleson [4] proved that
Luzin’s conjecture is true: if f ∈ L2(T), then the Fourier series of the function f converges almost
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everywhere. R. Hunt [5] generalized the statement about the almost everywhere convergence of
the Fourier series to the class L(ln+ L)2(T), particularly, to Lp(T) with p > 1. P. Sjölin [6]
generalized it to the wider class L(ln+ L)(ln+ ln+ L)(T). In [7], the author showed that the condition
f ∈ L(ln+ L)(ln+ ln+ ln+ L)(T) is also sufficient for the almost everywhere convergence of the
Fourier series of the function f . At present, the best negative result in this direction belongs to
S.V. Konyagin [8]: if a function ϕ(u) satisfies the condition ϕ(u) = o(u

√
lnu/ ln lnu) as u → +∞,

then, in the class ϕ(L)(T), there exists a function with the Fourier series divergent everywhere
on T.

Let us now consider the case d ≥ 2, i.e., the case of multiple Fourier series. Let λ ≥ 1. A
multiple Fourier series of a function f is called λ-convergent at a point x ∈ Td if there exists a limit

lim
min{nj :1≤j≤d}→+∞

Sn(f,x)

considered only for vectors n = (n1, n2, . . . , nd) such that 1/λ ≤ ni/nj ≤ λ, 1 ≤ i, j ≤ d. The
λ-convergence is called the convergence over cubes (the convergence over squares for d = 2) in the
case λ = 1 and the Pringsheim convergence in the case λ = +∞, i. e., in the case without any
restrictions on the relation between coordinates of vectors n.

N.R. Tevzadze [9] proved that, if f ∈ L2(T2), then the Fourier series of the function f converges
over cubes almost everywhere. Ch. Fefferman [10] generalized this result to functions from Lp(Td),
p > 1, d ≥ 2. P. Sjölin [11] showed that, if a function f is from the class L(ln+ L)d(ln+ ln+ L)(Td),
d ≥ 2, then its Fourier series converges over cubes almost everywhere. The author [12] (see also
[13]) proved the almost everywhere convergence over cubes of Fourier series of functions from the
class L(ln+ L)d(ln+ ln+ ln+ L)(Td). The best current result concerning the divergence over cubes
on a set of positive measure of multiple Fourier series of functions from ϕ(L)(Td), d ≥ 2, belongs
to S.V. Konyagin [14]: for any function ϕ(u) = o(u(lnu)d−1 ln lnu) as u → +∞, there exists a
function F ∈ ϕ(L)(Td) with the Fourier series divergent over cubes everywhere.

On the other hand, Ch. Fefferman [15] constructed an example of a continuous function of
two variables, i. e., a function from C(T2) whose Fourier series diverges in the Pringsheim sense
everywhere on T2. M. Bakhbukh and E.M. Nikishin [16] proved that there exists F ∈ C(T2) such
that its modulus of continuity satisfies the condition ω(F, δ) = O

(
ln−1(1/δ)

)
as δ → +0 and its

Fourier series diverges in the Pringsheim sense almost everywhere. A.N. Bakhvalov [17] established
that, for m ∈ N and any λ > 1, there is a function F ∈ C(T2m) such that the Fourier series of F is
λ-divergent everywhere and the modulus of continuity of F satisfies the condition

ω(F, δ) = O
(
ln−m(1/δ)

)
, δ → +0. (2)

Later on, Bakhvalov [18] proved the existence of a function F ∈ C(T2m) satisfying condition (2)
and such that its Fourier series is λ-divergent for all λ > 1 simultaneously.

Let Λ = {λν}∞ν=1 be a nonincreasing sequence of positive numbers. Assume that

ΩΛ =
{
n = (n1, n2, . . . , nd) ∈ Nd :

1
1 + λni

≤ ni

nj
≤ 1 + λnj , 1 ≤ i, j ≤ d

}
.

We will say that a multiple Fourier series of a function f ∈ L(Td) is Λ-convergent at a point x ∈ Td

if there exists a limit
lim

n∈ΩΛ, min{nj :1≤j≤d}→∞
Sn(f,x).

Let us note that, if λν ≡ λ − 1 for some λ > 1, then the condition of Λ-convergence turns into
the condition of λ-convergence defined above. And if λν → 0 as ν → ∞, then the condition of
Λ-convergence is weaker than the condition of λ-convergence for any λ > 1.
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The author proved [19] that, if a sequence Λ = {λν}∞ν=1 satisfies the condition ln2 λν = o(ln ν)
as ν →∞, then there exists a function F ∈ C(T2) such that its Fourier series is Λ-divergent almost
everywhere on T2.

In the present paper, we obtain the following statement that strengthens the result of [12].

Theorem 1. Assume that a nonincreasing sequence of positive numbers Λ = {λν}∞ν=1 satisfies
the condition

λν = O

(
1
ν

)
(3)

and a function ϕ : [0, +∞) → [0, +∞) is convex on [0, +∞) and such that ϕ(0) = 0, ϕ(u)u−1

increases on [u0, +∞), and ϕ(u)u−1−δ decreases on [u0, +∞) for some u0 ≥ 0 and any δ > 0. As-
sume that the trigonometric Fourier series of any function g ∈ ϕ(L)(T) converges almost everywhere
on T. Then, for any d ≥ 2, the Fourier series of any function f from the class ϕ(L)(ln+ L)d−1(Td)
is Λ-convergent almost everywhere on Td.

Theorem 1 and the result of paper [7] imply the following statement.

Theorem 2. Let a nonincreasing sequence of positive numbers Λ = {λν}∞ν=1 satisfy condi-
tion (3), d ≥ 2. Then the Fourier series of any function f from the class

L(ln+ L)d(ln+ ln+ ln+ L)(Td)

is Λ-convergent almost everywhere on Td.

P r o o f of Theorem 1. Let a sequence Λ = {λν}∞ν=1 and a function ϕ satisfy the conditions
of the theorem. Let ϕd(u) = ϕ(u)(ln+ u)d−1 for short. Without loss of generality, we can consider
only functions ϕd such that the functions ϕd(

√
u) are concave on [0, +∞). Otherwise, we can

consider the functions ϕd(u + ad) − bd (with appropriate constants ad and bd) instead of ϕd. The
corresponding class ϕd(L)(Td) will be the same in this case.

Denote by Sn(f,x) the nth cubic partial sum of the Fourier series of the function f :

Sn(f,x) = Sn(f,x), where n = (n, . . . , n).

Suppose that
M(f,x) = sup

n∈N
|Sn(f,x)|,

MΛ(f,x) = sup
n∈ΩΛ

|Sn(f,x)|.

Under the conditions of the theorem (see [12, formula (3.1) and Lemma 3]), there are constants
Kd > 0 and yd ≥ 0 such that

mes
{
x ∈ Td : M(f,x) > y

}
≤ Kd

y

( ∫

Td

ϕd(|f(x)|) dx + 1
)

, y > yd, f ∈ ϕd(L)(Td). (4)

Using (4), we will prove that, for every y > yd and f ∈ ϕd(L)(Td),

mes
{
x ∈ Td : MΛ(f,x) > y

}
≤ Ad

y

( ∫

Td

ϕd(|f(x)|) dx + 1
)

(5)
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and, for every f ∈ ϕd+1(L)(Td),

∫

Td

MΛ(f,x)dx ≤ Bd

( ∫

Td

ϕd+1(|f(x)|) dx + 1
)

, (6)

where Ad is independent of f and y; Bd is independent of f .

The proof is by induction on d. Consider the base case, i. e., d = 1: statement (5) immediately
follows from (4) because M(f,x) = MΛ(f,x) in the one-dimensional case. Similarly, (6) is a
consequence of [5, Theorem 2].

Let d ≥ 2. Suppose that statements (5) and (6) hold for d − 1 and let us show that the same
is true for d.

First, let us prove the validity of (5). Let n = (n1, n2, . . . , nd) ∈ ΩΛ. According to (3), there is
an absolute constant C > 0 such that λνν ≤ C for all natural numbers ν. Combining this with the
definition of ΩΛ, we obtain that, for all i, j ∈ {1, 2, . . . , d},

|ni − nj | ≤ C. (7)

Recall that, if n = (n1, n2, . . . , nd), then the following representation holds for the nth rectan-
gular partial sum of the Fourier series of the function f :

Sn(f,x) =
1
πd

∫

Td

d∏

j=1

Dnj (tj)f(x1 + t1, . . . , xd + td) dt1 . . . dtd, (8)

where Dn(t) = sin((n + 1/2)t)/(2 sin(t/2)) is the one-dimensional Dirichlet kernel of order n. Let

us add to and subtract from the d-dimensional Dirichlet kernel
d∏

j=1
Dnj (tj) of order n the sum

d∑

k=2

( k∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)
)

(here and in what follows, we suppose that all products
∏

with an upper index less than a lower
one are equal to 1). Rearranging the terms, we obtain

d∏

j=1

Dnj (tj) =
d−1∑

k=1

( k∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)−
k+1∏

j=1

Dn1(tj)
d∏

j=k+2

Dnj (tj)
)

+
d∏

j=1

Dn1(tj) =

=
d∑

k=2

( k−1∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)
(
Dnk(tk)−Dn1(tk)

) )
+

d∏

j=1

Dn1(tj).
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From this and (8), it follows that

Sn(f,x) =
d∑

k=2

1
πd

∫

Td

( k−1∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)
(
Dnk(tk)−Dn1(tk)

) )
×

×f(x1 + t1, . . . , xd + td) dt1 . . . dtd +
1
πd

∫

Td

d∏

j=1

Dn1(tj)f(x1 + t1, . . . , xd + td) dt1 . . . dtd =

=
d∑

k=2

1
πd

∫

T

(
Dnk(tk)−Dn1(tk)

)
×

×
( ∫

Td−1

k−1∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)f(x1+t1, . . . , xd+td) dt1 . . . dtk−1dtk+1 . . . dtd
)

dtk+Sn1(f,x).

(9)

Note that the latter term on the right hand side of (9) is the n1th cubic partial sum of the Fourier
series of the function f . By (7), for all k ∈ {2, 3, . . . , d} and t ∈ T, we have |Dnk(t)−Dn1(t)| ≤ C.
Combining this with (9), we obtain

|Sn(f,x)| ≤
d∑

k=2

C

πd

∫

T

∣∣∣∣
∫

Td−1

k−1∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)×

×f(x1 + t1, . . . , xk−1 + tk−1, tk, xk+1 + tk+1, . . . , xd + td) dt1 . . . dtk−1dtk+1 . . . dtd
∣∣∣∣ dtk + |Sn1(f,x)|.

Applying the definitions of MΛ(f,x) and M(f,x), from the latter estimate, we obtain

MΛ(f,x) ≤ M(f,x) +
C

π

d∑

k=2

∫

T

sup
n=(n1,n2,··· ,nd)∈ΩΛ

∣∣∣∣
1

πd−1

∫

Td−1

k−1∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)×

×f(x1 + t1, . . . , xk−1 + tk−1, tk, xk+1 + tk+1, . . . , xd + td) dt1 . . . dtk−1dtk+1 . . . dtd
∣∣∣∣ dtk =

= M(f,x) +
C

π

d∑

k=2

Mk(f,x),

(10)

where Mk(f,x) denotes the kth term of the sum on the left hand side of the equality in (10). Let
k ∈ {2, 3, . . . , d}. Consider Mk(f,x). Denote by gk,tk the function of d − 1 variables that can be
obtained from the function f by fixing the kth variable tk:

gk,tk(t1, . . . , tk−1, tk+1, . . . , td) = f(t1, . . . , tk−1, tk, tk+1, . . . , td), (t1, . . . , tk−1, tk+1, . . . , td) ∈ Td−1.

Define Ω′Λ as the set of mk = (m1, . . . ,mk−1,mk+1, . . . , md) ∈ Nd−1 such that m = (m1, . . . , md) ∈
ΩΛ. Note that, in view of the invariance of ΩΛ with respect to a rearrangement of variables, the
set Ω′Λ is independent of k. Suppose that n′k = (n1, . . . , n1, nk+1, . . . , nd) ∈ Nd−1. Then

1
πd−1

∫

Td−1

k−1∏

j=1

Dn1(tj)
d∏

j=k+1

Dnj (tj)×

×f(x1 + t1, . . . , xk−1 + tk−1, tk, xk+1 + tk+1, . . . , xd + td) dt1 . . . dtk−1dtk+1 . . . dtd =
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= Sn′k

(
gk,tk , (x1, . . . , xk−1, xk+1, . . . , xd)

)

and
Mk(f,x) =

∫

T

sup
n′k∈Ω′Λ

∣∣∣Sn′k

(
gk,xk , (x1, . . . , xk−1, xk+1, . . . , xd)

)∣∣∣ dxk.

Further,

mes
{
x ∈ Td : Mk(f,x) > y

}
= 2π mes

{
(x1, . . . , xk−1, xk+1, . . . , xd) ∈ Td−1 : Mk(f,x) > y

}
≤

≤ 2π

y

∫

Td−1

Mk(f,x) dx1 . . . dxk−1dxk+1 . . . dxd =

=
2π

y

∫

Td

sup
n′k∈Ω′Λ

∣∣∣Sn′k

(
gk,xk , (x1, . . . , xk−1, xk+1, . . . , xd)

)∣∣∣ dx =

=
2π

y

∫

T

( ∫

Td−1

sup
n′k∈Ω′Λ

∣∣∣∣Sn′k

(
gk,xk , (x1, . . . , xk−1, xk+1, . . . , xd)

)∣∣∣∣ dx1 . . . dxk−1dxk+1 . . . dxd

)
dxk.

(11)

From this, applying the induction hypothesis (more precisely, statement (6) for the dimension d−1)
to the inner integral on the right hand part of (11), we obtain

mes
{
x ∈ Td : Mk(f,x) > y

}
≤ 2π

y

∫

T

(
Bd−1

∫

Td−1

ϕd(|f(x)|) dx1 . . . dxk−1dxk+1 . . . dxd + 1
)

dxk ≤

≤ (2π)2Bd−1

y

( ∫

Td

ϕd(|f(x)|) dx + 1
)

. (12)

According to (10),

{
x ∈ Td : MΛ(f,x) > y

}
⊂

{
x ∈ Td : M(f,x) >

y

2

}⋃ ( d⋃

k=2

{
x ∈ Td : Mk(f,x) >

πy

2(d− 1)C

})
.

(13)
Combining (13), (4) and (12), we obtain (5) with the constant Ad = 2Kd + 8π(d− 1)2Bd−1C.

Now, we only need to prove the validity of statement (6). To this end, let us use statement (5)
proved above.

From (5), it follows that the majorant MΛ(f,x) is finite almost everywhere on Td for all f ∈
ϕd(L)(Td), in particular, for all f ∈ L2(T d). Applying Stein’s theorem on limits of sequences of
operators [20, Theorem 1], we see that the operator MΛ(f, · ) is of weak type (2, 2), i.e., there is a
constant A2

d > 0 such that, for all y > 0 and f ∈ L2(T d),

mes
{
x ∈ Td : MΛ(f,x) > y

}
≤ A2

d

y2

∫

Td

|f(x)|2 dx. (14)

Similarly, from [20, Theorem 3], we can obtain the following refinement of statement (5): there is
a constant Ād > 0 such that, for all y ≥ ȳd/2 = Ād and f ∈ ϕd(L)(Td),

mes
{
x ∈ Td : MΛ(f,x) > y

}
≤

∫

Td

ϕd

(
Ād|f(x)|

y

)
dx ≤ Ād

y

∫

Td

ϕd(|f(x)|) dx. (15)
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Further, let f ∈ ϕd(L)(Td) and y > 0. Suppose that

g(x) = gy(x) =

{
f(x), |f(x)| > y,

0, |f(x)| ≤ y;
h(x) = hy(x) = f(x)− g(x).

Define λf (y) = mes
{
x ∈ Td : MΛ(f,x) > y

}
. Then

λf (y) ≤ mes
{
x ∈ Td : MΛ(g,x) > y/2

}
+ mes

{
x ∈ Td : MΛ(h,x) > y/2

}
= λg(y/2) + λh(y/2).

From this, using the equality

∫

Td

MΛ(f,x) dx = −
∞∫

0

y dλf (y) =

∞∫

0

λf (y) dy

(see, for example, [21, Chapter 1, § 13, formula (13.6)]), we obtain

∫

Td

MΛ(f,x) dx ≤ ȳd(2π)d +

∞∫

ȳd

λf (y) dy ≤ ȳd(2π)d +

∞∫

ȳd

λg

(y

2

)
dy +

∞∫

ȳd

λh

(y

2

)
dy. (16)

Taking into account that g ∈ ϕd(L)(Td) and h ∈ L∞(Td) ⊂ L2(Td) and applying estimate (15) to
λg(y/2) and estimate (14) to λh(y/2), from (16), we obtain

∫

Td

MΛ(f,x) dx ≤ ȳd(2π)d + 2Ād

∞∫

ȳd

(
1
y

∫

Td

ϕd(|g(t)|) dt

)
dy + 4A2

d

∞∫

ȳd

(
1
y2

∫

Td

|h(t)|2 dt

)
dy =

= ȳd(2π)d + 2Ād

∞∫

ȳd

(
1
y

∫

{t∈Td: |f(t)|>y}

ϕd(|f(t)|) dt

)
dy + 4A2

d

∞∫

ȳd

(
1
y2

∫

{t∈Td: |f(t)|≤y}

|f(t)|2 dt

)
dy.

(17)
Applying Fubibi’s theorem to the integrals on the right hand side of (17), we conclude that

∫

Td

MΛ(f,x) dx ≤ 2Ād

∫

{t∈Td: |f(t)|>ȳd}

ϕd(|f(t)|)
( |f(t)|∫

ȳd

dy

y

)
dt+

+ 4A2
d

∫

Td

|f(t)|2
( ∞∫

|f(t)|

dy

y2

)
dt + ȳd(2π)d,

hence, statement (6) follows easily.
Finally, the Λ-convergence of the Fourier series of an arbitrary function from the class ϕd(L)(Td)

can be obtained from (5) by means of standard arguments (see, for example, [12, Lemma 3]). The-
orem 1 is proved. ¤



On Λ-convergence of Fourier series 21

REFERENCES

1. Luzin N.N. Integral and trigonometric series. Moscow – Leningrad: GITTL. 1951. 550 p. [in Russian]
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