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Abstract: Let ϕ be a positive definite and continuous function on R, and let µ be the corresponding Bochner
measure. For fixed ε, τ ∈ R, ε 6= 0, we consider a linear operator Aε,τ generated by the function ϕ:

Aε,τ (f)(t) :=

∫
R

e−iuτf(t + εu)dµ(u), t ∈ R, f ∈ C(T).

Let J be a convex and nondecreasing function on [0,+∞). In this paper, we prove the inequalities

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p ,

∫
T

J (|Aε,τ (f)(t)|) dt ≤

∫
T

J (ϕ(0)|f(t)|) dt

for p ∈ [1,∞] and f ∈ C(T) and obtain criteria of extremal function. We study in more detail the case in which
ε = 1/n, n ∈ N, τ = 1, and ϕ(x) ≡ eiβxψ(x), where β ∈ R and the function ψ is 2-periodic and positive definite.
In turn, we consider in more detail the case where the 2-periodic function ψ is constructed by means of a finite
positive definite function g. As a particular case, we obtain the Bernstein–Szegő inequality for the derivative in
the Weyl–Nagy sense of trigonometric polynomials. In one of our results, we consider the case of the family of
functions g1/n,h(x) := hg(x) + (1− 1/n− h)g(nx), where n ∈ N, n ≥ 2, −1/n ≤ h ≤ 1− 1/n, and the function
g ∈ C(R) is even, nonnegative, decreasing, and convex on (0,+∞) with supp g ⊂ [−1, 1]. This case is related to
the positive definiteness of piecewise linear functions. We also obtain some general interpolation formulas for
periodic functions and trigonometric polynomials which include the known interpolation formulas of M. Riesz,
of G. Szegő, and of A.I. Kozko for trigonometric polynomials.

Key words: Positive definite function, Trigonometric polynomial, Weyl–Nagy derivative, Bernstein–Szegő
inequality, Interpolation formula.

1. Introduction

The role of positive definite functions in obtaining sharp inequalities for trigonometric polyno-
mials and entire functions is well known (see, for instance, Boas [6, Ch. 11], Timan [22, Sect. 4.8],
Lizorkin [13], Gorin [9], and Trigub and Belinsky [23]). For instance, the classical Bernstein in-
equality max |f ′(x)| ≤ nmax |f(x)| for trigonometric polynomials of degree at most n is related to
the positive definiteness of the function (1− |x|)+. A historical survey of such inequalities and the
methods of their proof are given in the works by Gorin [9], Arestov and Glazyrina [5], Gashkov [8],
and Vinogradov [25]. In the present paper, we obtain sharp inequalities for continuous periodic
functions and, in particular, for trigonometric polynomials. These inequalities are related to posi-
tive definite functions. As consequences, we obtain generalizations of Bernstein–Szegő inequalities.
We give criteria and descriptions of extremal functions in these inequalities.

A complex-valued function f : R → C is called positive definite on R (f ∈ Φ(R)) if, for any
m ∈ N, any set of points {xk}

m
k=1 ⊂ R, and any complex numbers {ck}

m
k=1 ⊂ C, the following

inequality holds:
m∑

k,j=1

ckcjf(xk − xj) > 0.

It is easy to verify that, for any β ∈ R, the function f(x) = eiβx is positive definite. For a function in
Φ(R), the continuity at zero is equivalent to the continuity on R. If f, g ∈ Φ(R), then |f(x)| ≤ f(0),



Positive definite functions and sharp inequalities 83

f(−x) = f(x), |f(x+y)−f(x)|2 ≤ 2f(0)(f(0)−Ref(y)), x, y ∈ R, and f̄ , Re f , fg ∈ Φ(R). In 1932,
S. Bochner and, independently, A. Khinchin proved the following criterion of positive definiteness.

Theorem 1 (Bochner–Khinchin). The inclusion f ∈ Φ(R) ∩ C(R) holds if and only if there

exists a finite nonnegative Borel measure µ on R such that

f(x) =

∫

R

eixtdµ(t), x ∈ R.

The proof of this theorem can be found, for instance, in [2, 7, 19, 23, 24]. As a direct consequence,
we obtain the following criterion of positive definiteness in terms of nonnegativity of the Fourier
transform: if f ∈ C(R) ∩ L1(R), then f ∈ Φ(R) ⇐⇒ f̂(t) ≥ 0, t ∈ R, where

f̂(t) :=

∫

R

e−itxf(x)dx, t ∈ R.

Using this criterion, it is not difficult to see that the functions (1−|x|)+, e
−|x|, and e−x

2

are positive
definite.

We denote by C(T), T := [−π, π], the class of 2π-periodic continuous functions f : R → C. For
f ∈ C(T), we define

‖f‖∞ := sup{|f(t)| : t ∈ T} and ‖f‖p :=

(∫

T

|f(t)|pdt

)1/p

, 1 ≤ p <∞.

Let ϕ ∈ Φ(R) ∩ C(R), and let µ be the corresponding finite nonnegative Borel measure on R

such that

ϕ(x) =

∫

R

eixudµ(u), x ∈ R.

For fixed ε, τ ∈ R, ε 6= 0, we consider the linear operator Aε,τ generated by the function ϕ:

Aε,τ (f)(t) :=

∫

R

e−iuτf(t+ εu)dµ(u), t ∈ R, f ∈ C(T). (1.1)

The function Aε,τ (f)(t) is continuous on R and 2π-periodic. Therefore, Aε,τ : C(T) → C(T). In
this paper, we prove the inequalities

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p,

∫

T

J (|Aε,τ (f)(t)|) dt ≤

∫

T

J (ϕ(0)|f(t)|) dt,

where 1 6 p 6 ∞, f ∈ C(T), and J is a convex nondecreasing function on [0,+∞). In addition, we
obtain some criteria of extremal function in these inequalities (see Theorems 2 and 4 and Remark 2).
We study in more detail the case in which ε = 1/n, n ∈ N, τ = 1, and ϕ(x) ≡ eiβxψ(x), where β ∈ R

and ψ is a 2-periodic function of the class Φ(R) ∩C(R) (see Theorem 5 and Remarks 4 and 5). In
turn, we consider in more detail the case where a 2-periodic function ψ is constructed by means of
a finite function g ∈ Φ(R)∩C(R) (Theorem 6). As a particular case, we obtain the Berstein–Szegő
inequality for the Weyl–Nagy derivative of trigonometric polynomials (Remark 7). In Theorem 8,
we consider the case of the family of functions g1/n,h(x) := hg(x) + (1 − 1/n − h)g(nx), where
n ∈ N, n ≥ 2, −1/n ≤ h ≤ 1 − 1/n, and the function g ∈ C(R) is even, nonnegative, decreasing,
and convex on (0,+∞) with supp g ⊂ [−1, 1]. This case is related to the positive definiteness of
piecewise linear functions [15]. In Theorem 9 and Corollary 3, we obtain general interpolation
formulas for periodic functions which include the known interpolation formulas of M. Riesz, of
G. Szegő, and of A.I. Kozko [11] for trigonometric polynomials (see Remark 8).
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2. Auxiliary facts of measure and integration theory

We recall some well-known facts which are used in the paper to describe extremal functions. In
this section, a measure µ is a nonnegative countably additive function defined on a σ-algebra γ with
identity element Ω. For p ∈ (0,+∞), the class Lp(Ω, γ, µ) is the set of all γ-measurable functions
f : Ω → C such that

‖f‖p :=

( ∫

Ω

|f(u)|p dµ(u)

)1/p

< +∞.

The class L∞(Ω, γ, µ) is the set of all γ-measurable functions f : Ω → C for which there exists
K = K(f) < +∞ such that |f(u)| ≤ K for µ-almost every u ∈ Ω. For f ∈ L∞(Ω, γ, µ), the norm
is defined by the formula

‖f‖∞ := inf{K : |f(u)| ≤ K for µ-almost all u ∈ Ω}.

For convenience, we assume that Lp(Ω, γ, µ) = Lp(Ω, µ) = Lp(Ω).

Proposition 1. Let (Ω, γ, µ) be a measurable space with measure. If f ∈ L1(Ω, µ), then
∣∣∣∣
∫

Ω

f(u) dµ(u)

∣∣∣∣ ≤
∫

Ω

|f(u)| dµ(u)

and the inequality turns into an equality if and only if the equality f(u) = eiθ|f(u)| holds for some

θ ∈ R and for µ-almost all u ∈ Ω.

P r o o f. See, for instance, [18, Theorems 1.33 and 1.39]. Obviously, for some β ∈ R, we have
∣∣∣∣
∫

Ω

f(u) dµ(u)

∣∣∣∣ = eiβ
∫

Ω

f(u) dµ(u) =

∫

Ω

eiβf(u) dµ(u) =

∫

Ω

Re(eiβf(u)) dµ(u) ≤

∫

Ω

|f(u)| dµ(u)

and the inequality turns into an equality if and only if Re(eiβf(u)) = |f(u)| for µ-almost all u ∈ Ω
or if and only if eiβf(u) = |f(u)| for µ-almost all u ∈ Ω. �

Proposition 2. Assume that J is a convex function on R, (Ω, γ, µ) is a measurable space with

finite measure, µ(Ω) > 0, and f is a real-valued function in L1(Ω, µ). Then

J

(
1

µ(Ω)

∫

Ω

f(u) dµ(u)

)
≤

1

µ(Ω)

∫

Ω

J(f(u)) dµ(u). (2.1)

If the function J is strictly convex at the point α =
∫
Ω f(u) dµ(u)/µ(Ω), then equality in (2.1) is

attained if and only if f(u) = α for µ-almost all u ∈ Ω.

For a proof of this result, see, for instance, [12, Sect. 2.2].
The next proposition will be needed only in Remark 3.

Proposition 3. Let (Ω, γ, µ) be a measurable space with measure. Then:
(i) if, for some q > 0, we have f ∈ Lp(Ω) for all p ∈ [q,+∞) and lim inf

p→+∞
‖f‖p < +∞, then

f ∈ L∞(Ω) and ‖f‖∞ ≤ lim inf
p→+∞

‖f‖p;

(ii) if, for some q > 0, we have f ∈ L∞(Ω) ∩ Lq(Ω), then f ∈ Lp(Ω) for all p ∈ [q,+∞) and

‖f‖∞ = lim
p→+∞

‖f‖p.
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P r o o f. (i) We take a sequence {pn}, n ∈ N, such that pn > 0, pn → +∞, and ‖f‖pn →
c := lim inf

p→+∞
‖f‖p ≥ 0. For an arbitrary σ > c, we define ε := (σ − c)/2 > 0. Then there exists

a number n(σ) such that the inequality ‖f‖pn ≤ c+ ε = (σ + c)/2 < σ holds for all n > n(σ). The
Chebyshev inequality implies that

µ({x ∈ Ω : |f(x)| ≥ σ}) ≤

(
‖f‖pn
σ

)pn
→ 0, n→ +∞.

Therefore, |f(x)| < σ for µ-almost all x ∈ Ω and, hence, ‖f‖∞ ≤ c.
(ii) If ‖f‖q = 0, the required assertion is obvious. Let ‖f‖q > 0. Then, for any p > q, the

inequality ‖f‖p ≤ ‖f‖
(p−q)/p
∞ ‖f‖

q/p
q holds. This inequality and assertion (i) yield

lim sup
p→+∞

‖f‖p ≤ ‖f‖∞ ≤ lim inf
p→+∞

‖f‖p ≤ lim sup
p→+∞

‖f‖p .

�

3. Sharp Lp-inequalities for periodic functions

Equality (1.1) implies the inequality

|Aε,τ (f)(t)| ≤

∫

R

|f(t+ εu)|dµ(u), f ∈ C(T), t ∈ R. (3.1)

Obviously, ‖Aε,τ (f)‖∞ 6 ϕ(0)‖f‖∞.
If 1 6 p < ∞, then inequality (3.1) along with the Minkowski inequality [12, Theorem 2.4]

yields

‖Aε,τ (f)‖p =

(∫

T

|Aε,τ (f)|
p dt

) 1

p

6

(∫

T

(∫

R

|f(t+ εu)|dµ(u)

)p

dt

) 1

p

6

∫

R

(∫

T

|f(t+ εu)|pdt

) 1

p

dµ(u) = ϕ(0)‖f‖p.

It follows from the Fubini theorem that the Fourier series of the function Aε,τ (f)(t) has the form

Aε,τ (f)(t) ∼
∑

k∈Z

ϕ(εk − τ)ck(f)e
ikt, f ∈ C(T), (3.2)

where ck(f) are the Fourier coefficients of the function f :

ck(f) =
1

2π

π∫

−π

f(t)e−ikt dt, k ∈ Z .

Let us find sufficient conditions for the equality

‖Aε,τ (f)‖p = ϕ(0)‖f‖p. (3.3)

If |ϕ(εs − τ)| = ϕ(0) for some s ∈ Z, then equality (3.3) holds for the polynomial f(t) = ceist,
c ∈ C, since, in this case, Aε,τ (f)(t) = ϕ(εs − τ)ceist. If τ/ε ∈ Z, this condition is satisfied
for s = τ/ε.
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If, for some s,m ∈ Z, s 6= m, we have

|ϕ(εs − τ)| = |ϕ(εm− τ)| = ϕ(0), (3.4)

then equality (3.3) holds for the polynomial f(t) = ceist + νeimt, c, ν ∈ C, since, in this case,

Aε,τ (f)(t) = ϕ(εs − τ)ceist + ϕ(εm− τ)νeimt.

We only need to take into account that, for any δ, α ∈ R, the following equalities hold:
∥∥∥ceist + eiδνeimt

∥∥∥
p
=

∥∥∥ceis(t+α) + eiδνeim(t+α)
∥∥∥
p
=

∥∥∥ceist + ei(δ+mα−sα)νeimt
∥∥∥
p
.

In particular, the latter equality holds for α = δ/(s −m).
If τ 6= 0, |ϕ(−2τ)| = ϕ(0), ε = τ/n, and n ∈ N, then condition (3.4) is satisfied for s = n and

m = −n. Hence, ‖Aτ/n,τ (f)‖p = ϕ(0)‖f‖p for the polynomial f(t) = ceint + νe−int with c, ν ∈ C.
Thus, we have proved the following theorem.

Theorem 2. Assume that ϕ ∈ Φ(R) ∩ C(R), τ, ε ∈ R, and ε 6= 0. Then:
1) the operator Aε,τ acts from C(T) to C(T), is a multiplier, and satisfies the inequality

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p, 1 6 p 6 ∞, f ∈ C(T); (3.5)

2) if, for some s ∈ Z, the condition |ϕ(εs − τ)| = ϕ(0) is satisfied, then equality in (3.5) is

attained at the polynomials f(t) = ceist, c ∈ C. If τ/ε ∈ Z, this condition is satisfied for s = τ/ε.

If, for some s,m ∈ Z, s 6= m, condition (3.4) is satisfied, then equality in (3.5) is attained at

the polynomials f(t) = ceist + νeimt, c, ν ∈ C.

If τ 6= 0 and |ϕ(−2τ)| = ϕ(0), then equality in (3.5) for ε = τ/n, n ∈ N, is attained at the

polynomials f(t) = ceint + νe−int, c, ν ∈ C.

Remark 1. In connection with the conditions in Theorem 2, the following simple property
of positive definite functions is useful: if ϕ ∈ Φ(R) and, for some y, δ ∈ R, y 6= 0, we have
ϕ(y) = ϕ(0)eiδy , then ϕ(x) ≡ f(x)eiδx, where f ∈ Φ(R) and f is periodic with period |y| > 0.
Indeed, the function f(x) ≡ ϕ(x)e−iδx is the product of two positive definite functions. Therefore,
f ∈ Φ(R) and, hence, for any x ∈ R, we have

|f(x+ y)− f(x)|2 ≤ 2f(0)(f(0) −Ref(y)).

Since f(y) = ϕ(y)e−iδy = ϕ(0) = f(0) ≥ 0, we have f(x + y) − f(x) = 0 for all x ∈ R.
If, in addition, ϕ ∈ C(R), then the Bochner measure of the function ϕ is discrete and concen-
trated at the points tk = 2πk/|y|+δ, k ∈ Z, and µ({tk}) = ck(f) ≥ 0, k ∈ Z (see Theorem 3 below).

Remark 2. When p = ∞, inequality (3.5) turns into an equality at some function f ∈ C(T)
(see inequality (3.1) and Proposition 1) if and only if the equality f(ξ + εu) = ei(uτ+β)‖f‖∞ holds
for some ξ, β ∈ R and µ-almost all u ∈ R.

When p = 1, inequality (3.5) turns into an equality at some function f ∈ C(T) (see inequa-
lity (3.1) and Proposition 1) if and only if, for any t ∈ R, there exists a number β(t) ∈ R such
that the equality f(t+ εu) = ei(uτ+β(t))|f(t+ εu)| holds for µ-almost all u ∈ R. This implies that
if a function f ∈ C(T) is extremal in inequality (3.5) with p = 1, then any function of the form
cf(t)g(t), where c ∈ C, g ∈ C(T), and g(t) ≥ 0 for all t ∈ R, is also extremal.

When p ∈ (1,∞), inequality (3.5) turns into an equality at some function f ∈ C(T) if and
only if, for any t ∈ R and µ-almost all u ∈ R, the equality f(t + εu) = eiuτ c(t) holds, where
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c(t) = Aε,τ (f)(t)/ϕ(0) ∈ C(T) (for such p, see Theorem 4 below for J(t) = tp).

Remark 3. If 1 ≤ p <∞, the class C(T) is everywhere dense in Lp(T) (the Lebesgue measure
is taken as a measure). Therefore, inequality (3.5) implies that the multiplier Aε,τ : C(T) → C(T)
defined by formula (3.2) is extended to the multiplier Aε,τ : Lp(T) → Lp(T), 1 ≤ p <∞, and

‖Aε,τ (f)‖p 6 ϕ(0)‖f‖p, 1 6 p <∞, f ∈ Lp(T). (3.6)

Hence, Aε,τ : L∞(T) → L∞(T) and inequality (3.6) holds with p = ∞. We only need to use the
well-known facts from measure and integration theory (see Proposition 3).

4. Periodic positive definite functions

The following description of periodic functions of the class Φ(R)∩C(R) is well known (see, for
instance, [7, Theorem 1.7.5] and [10, Sect. II.1]).

Theorem 3. If ψ ∈ C(R) and ψ is 2T -periodic with T > 0, then ψ ∈ Φ(R) if and only if

ck(ψ) ≥ 0, k ∈ Z, where

ck(ψ) :=
1

2T

T∫

−T

ψ(x)e−iπkx/T dx, k ∈ Z.

In this case, the function ψ is expanded into the absolutely convergent Fourier series

ψ(x) =
∑

k∈Z

ck(ψ)e
iπkx/T , x ∈ R.

Corollary 1. Assume that f ∈ Φ(R) ∩ C(R), supp f ⊂ [−1, 1], and a 2-periodic function

ψ(x) coincides with the function f(x) for x ∈ [−1, 1]. Then ψ ∈ Φ(R) ∩ C(R) and ψ(x − 1) =
f(x− 1) + f(x+ 1) for x ∈ [−2, 2].

P r o o f. Since ψ(±1) = f(±1) = 0, we have ψ ∈ C(R) and

2ck(ψ) =

1∫

−1

f(x)e−iπkxdx = f̂(πk) ≥ 0, k ∈ Z.

Therefore, ψ ∈ Φ(R) ∩ C(R). Since supp f ⊂ [−1, 1], we obviously have

ψ(x− 1) =
∑

k∈Z

f(x− 1 + 2k), x ∈ R.

Only terms with k = 0 and k = 1 remain in this sum for x ∈ [−2, 2]. �

5. Sharp integral inequalities for periodic functions

Let ϕ ∈ Φ(R) ∩ C(R) and ϕ(0) > 0. Assume that J is a convex nondecreasing function
on [0,+∞). Then J is continuous on [0,+∞) and can be extended to R with preservation of
convexity (for instance, by defining J(t) := J(0) for t < 0 or by means of the even extension).
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Successively using the monotonicity and the Jensen inequality (see, for instance, [12, Sect. 2.2] or
Proposition 2), for f ∈ C(T), we derive from inequality (3.1) that

J

(
1

ϕ(0)
|Aε,τ (f)(t)|

)
≤ J

(
1

ϕ(0)

∫

R

|f(t+ εu)|dµ(u)

)

≤
1

ϕ(0)

∫

R

J (|f(t+ εu)|) dµ(u), t ∈ R.

(5.1)

We integrate the left-hand and right-hand sides of inequality (5.1) with respect to t ∈ T. Applying
the Fubini theorem and taking into account the periodicity of f , we obtain

∫

T

J

(
1

ϕ(0)
|Aε,τ (f)(t)|

)
dt ≤

∫

T

J (|f(t)|) dt.

In view of the arbitrariness of f , it is convenient to write the latter inequality in the form
∫

T

J (|Aε,τ (f)(t)|) dt ≤

∫

T

J (ϕ(0)|f(t)|) dt. (5.2)

Inequality (5.2) also holds if ϕ(0) = 0, since, in this case, ϕ(x) ≡ 0 and, hence, Aε,τ (f)(t) ≡ 0 for
any f ∈ C(T). Thus, we obtain the following theorem.

Theorem 4. Assume that ϕ ∈ Φ(R) ∩C(R), τ, ε ∈ R, ε 6= 0, and J is a convex nondecreasing

function on [0,+∞). Then:

1) The operator Aε,τ generated by the function ϕ by formula (1.1) satisfies inequality (5.2) for

any function f ∈ C(T).

2) If the condition |ϕ(εs− τ)| = ϕ(0) holds for some s ∈ Z, then equality in (5.2) is attained at

the polynomials f(t) = ceist, c ∈ C. If τ/ε ∈ Z, then this condition holds for s = τ/ε.
If condition (3.4) holds for some s,m ∈ Z, s 6= m, then equality in (5.2) is attained at the

polynomials f(t) = ceist + νeimt, c, ν ∈ C.

If τ 6= 0, |ϕ(−2τ)| = ϕ(0), ε = τ/n, and n ∈ N, then equality in (5.2) is attained at the

polynomials f(t) = ceint + νe−int, c, ν ∈ C.

3) If the function J is strictly convex at any point of the interval (0,+∞) and ϕ(0) > 0, then
inequality (5.2) turns into an equality at some function f ∈ C(T) if and only if, for any t ∈ R and

µ-almost all u ∈ R, the equality e−iuτf(t+ εu) = c(t) holds, where c(t) = Aε,τ (f)(t)/ϕ(0) ∈ C(T).

P r o o f. Only the latter statement needs to be proved. The sufficiency is obvious. Let us
prove the necessity. Let inequality (5.2) turn into an equality for some function f ∈ C(T). Then
inequalities (5.1) turn into equalities for all t ∈ R. Let

α(t) :=
1

ϕ(0)

∫

R

|f(t+ εu)|dµ(u), t ∈ R.

Obviously, α(t) ≥ 0 for all t ∈ R. If α(t) = 0, then f(t+ εu) = 0 for µ-almost all u ∈ R and, in this
case, c(t) = 0. If α(t) > 0, then |f(t+ εu)| = α(t) for µ-almost all u ∈ R (see Proposition 2). Since
the function J strictly increases on [0,+∞), inequality (3.1) also turns into an equality for all t ∈ R.
Therefore, for some β(t) ∈ R and µ-almost all u ∈ R, we have the equality (see Proposition 1)

e−iuτf(t+ εu) = eiβ(t)|e−iuτf(t+ εu)| = eiβ(t)α(t) = c(t).
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This implies that Aε,τ (f)(t) = ϕ(0)c(t), t ∈ R. �

For ε = 1/n, n ∈ N, and τ = 1, we can distinguish the case where the condition on the extremal
function in Theorem 4 is more clear.

Theorem 5. Let ϕ(x) ≡ eiβxψ(x), where β ∈ R, and let ψ be a 2-periodic function in Φ(R) ∩
C(R). Let J be a convex nondecreasing function on [0,+∞). Then the operator A1/n,1, n ∈ N,

generated by the function ϕ by formula (1.1) for ε = 1/n and τ = 1 satisfies the inequality
∫

T

J
(
|A1/n,1(f)(t)|

)
dt ≤

∫

T

J (ψ(0)|f(t)|) dt, f ∈ C(T). (5.3)

Inequality (5.3) turns into an equality, in particular, at every function f ∈ C(T) whose Fourier

series has the form

f(t) ∼
∑

m∈Z

dme
in(2m+1)t. (5.4)

If the function J is strictly convex at any point of the interval (0,+∞) and ψ(0) > 0, then

inequality (5.3) turns into an equality at some function f ∈ C(T) if and only if the functions

(−1)sf
(
t+ πs

n

)
are identical on R for all s = 0, . . . , 2n − 1 such that µs(n,ψ) > 0, where

µk(n,ψ) =
∑

m∈Z

ck+2nm(ψ), k ∈ Z, (5.5)

and ck(ψ) ≥ 0, k ∈ Z, are the Fourier coefficients of the function ψ. If, in addition, the inequalities

µs(n,ψ) > 0 and µs+1(n,ψ) > 0 hold for some s ∈ Z, then inequality (5.3) turns into an equality

only at functions f ∈ C(T) whose Fourier series has the form (5.4).

P r o o f. In our case, ϕ ∈ Φ(R) ∩ C(R) and ϕ(0) = ψ(0). Therefore, inequality (5.3) follows
immediately from inequality (5.2).

Since the function ψ belongs to Φ(R) ∩ C(R) and is 2-periodic, its Fourier coefficients ck(ψ),
k ∈ Z, are nonnegative and ψ is expanded into an absolutely convergent Fourier series. Then the
function ϕ is also expanded into an absolutely convergent series:

ϕ(x) =
∑

k∈Z

ck(ψ)e
i(πk+β)x, x ∈ R.

It follows from this representation that the Bochner measure µ of the function ϕ is concentrated at
the points tk = πk + β, k ∈ Z, and µ({tk}) = ck(ψ), k ∈ Z. Therefore, for any f ∈ C(T), we have

A1/n,1(f)(t) = e−iβ
∑

k∈Z

(−1)kf

(
t+

tk
n

)
ck(ψ), t ∈ R.

Taking into account the periodicity of f , it is convenient to divide the terms in this sum into disjoint
groups in which the summation index has the form k + 2nm with m ∈ Z and k = 0, . . . , 2n − 1.
Then

A1/n,1(f)(t) = e−iβ
2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n,ψ), t ∈ R, (5.6)

where the numbers µk(n,ψ) are defined by formula (5.5). For these numbers, the following equalities
hold:

2n−1∑

k=0

µk(n,ψ) =
∑

k∈Z

ck(ψ) = ψ(0); µk(n,ψ) = µk+2n(n,ψ), k ∈ Z. (5.7)
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If a function f belongs to C(T) and its Fourier series has the form (5.4), then, obviously,
(−1)sf (t+ πs/n) ≡ f(t) for all s ∈ Z. Therefore, for such functions, we have A1/n,1(f)(t) ≡

e−iβψ(0)f (t+ β/n) and inequality (5.3) turns into an equality.
If the function J is strictly convex at any point of the interval (0,+∞) and ψ(0) > 0, then

Theorem 4 implies that inequality (5.3) turns into an equality at some function f ∈ C(T) ⇐⇒ the
functions (−1)sf (t+ (πs+ β)/n) are identical on R for all s ∈ Z such that µ({ts}) = cs(ψ) > 0
⇐⇒ the functions (−1)sf (t+ πs/n) are identical on R for all s = 0, . . . , 2n − 1 such that
µs(n,ψ) > 0. The latter equivalence is a consequence of the following properties: (1) the functions
of this family with numbers s ∈ Z and s+ 2nm, m ∈ Z, are identical; (2) ck(ψ) ≥ 0, µk(n,ψ) ≥ 0,
k ∈ Z, and µk(n,ψ) > 0 ⇐⇒ ck+2nm(ψ) > 0 for some m ∈ Z.

Assume that inequality (5.3) turns into an equality at some function f ∈ C(T). If, in addition,
the inequalities µs(n,ψ) > 0 and µs+1(n,ψ) > 0 hold for some s ∈ Z, then, by what has been
proved,

(−1)sf
(
t+

πs

n

)
≡ (−1)s+1f

(
t+

π(s+ 1)

n

)
.

Then, for the Fourier coefficients of the function f , we have the equalities ck(f) = −eikπ/nck(f),
k ∈ Z. If ck(f) 6= 0 for some k ∈ Z, then k = n(2m + 1) for some m ∈ Z. This means that the
Fourier series of the function f has the form (5.4). The theorem is proved. �

Remark 4. Let ϕ(x) ≡ eiβxψ(x), where β ∈ R, and assume that a 2-periodic function ψ
belongs to Φ(R) ∩ C(R) and satisfies the inequality ψ(0) > 0. Then the operator A1/n,1, n ∈ N,
satisfies the inequality (see (5.3) for J(t) = tp, 1 ≤ p <∞, or (3.5) for ε = 1/n, τ = 1)

‖A1/n,1(f)‖p 6 ψ(0)‖f‖p, 1 6 p 6 ∞, f ∈ C(T). (5.8)

This inequality turns into an equality, for instance, at every function f ∈ C(T) whose Fourier series
has the form (5.4), since, for such functions, A1/n,1(f)(t) ≡ e−iβψ(0)f (t+ β/n). When 1 < p <∞,
only functions of the form (5.4) are extremal in inequality (5.8) if the inequalities µs(n,ψ) > 0 and
µs+1(n,ψ) > 0 hold for some s ∈ Z (see Theorem 5 for J(t) = tp). We state criteria for a function
to be extremal when p = ∞ and p = 1. Taking into account Remark 2 and the fact that the
Bochner measure µ of the function ϕ is concentrated at the points tk = πk + β, k ∈ Z, and
µ({tk}) = ck(ψ) ≥ 0, k ∈ Z (see the proof of Theorem 5), we obtain:

1) When p = ∞, inequality (5.8) turns into an equality at some function f ∈ C(T) if and only
if, for some η, δ ∈ R, the equality

(−1)sf(η + πs/n) = eiδ‖f‖∞ (5.9)

holds for all s = 0, . . . , 2n − 1 such that µs(n,ψ) > 0. This condition is satisfied not only for
functions of the form (5.4). For instance, for s = 0, . . . , 2n, we set f(πs/n) := (−1)sM and, at the
remaining points t ∈ [0, 2π], we define f so that it is continuous on [0, 2π] with the only condition
|f(t)| ≤ |M |. For such a function f , inequality (5.8) with p = ∞ turns into an equality.

If µs(n,ψ) > 0 for s = 0, . . . , 2n − 1, then only polynomials of the form f(t) = ceint + νe−int,
c, ν ∈ C, are extremal among trigonometric polynomials of degree at most n for which inequal-
ity (5.8) with p = ∞ turns into an equality. Indeed, if f is an extremal polynomial of degree at
most n, then condition (5.9) is satisfied for s = 0, . . . , 2n − 1 and, hence, for all s ∈ Z. Then one
can use the arguments of [1, Sect. 84, p. 189] for entire functions in the class Bσ with σ = n.

2) When p = 1, inequality (5.8) turns into an equality at some function f ∈ C(T) if and only
if, for any t ∈ R, there exists a number δ(t) ∈ R such that the identity

(−1)sf
(
t+

πs

n

)
≡ eiδ(t)

∣∣∣f
(
t+

πs

n

)∣∣∣ (5.10)
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holds for all s = 0, . . . , 2n − 1 such that µs(n,ψ) > 0. This implies that if a function f ∈ C(T)
is extremal in inequality (5.8) with p = 1, then any function of the form cf(t)g(t), where c ∈ C,
g ∈ C(T), and g(t) ≥ 0 for all t ∈ R, is also extremal. In particular, functions of the form h(t)g(t)
are extremal if the function h ∈ C(T) has the form (5.4), g ∈ C(T), and g(t) ≥ 0 for all t ∈ R.
In some sense, the converse statement holds: if the inequalities µs(n,ψ) > 0 and µs+1(n,ψ) > 0
hold for some s ∈ Z, a function f ∈ C(T) is extremal in inequality (5.8) with p = 1, and f(t) 6= 0
for almost all t ∈ R (with respect to the Lebesgue measure), then the function h(t) := f(t)/|f(t)|
belongs to L∞(T) and has the form (5.4) (see the proof of Theorem 5).

We note the following well-known fact. If a function f ∈ C(T) is extremal in inequality (5.8)
with p = 1, then condition (5.10) implies that the function

g(u) :=

∫

T

f(t+ u)e−iδ(t) dt ∈ C(T)

is extremal in inequality (5.8) with p = ∞. Indeed, for all s = 0, . . . , 2n− 1 such that µs(n,ψ) > 0,
we have ‖f‖1 = (−1)sg(πs/n) ≤ ‖g‖∞ ≤ ‖f‖1 and, hence, (−1)sg(πs/n) = ‖g‖∞.

If µs(n,ψ) > 0 for s = 0, . . . , 2n − 1, then only polynomials of the form f(t) = ceint + νe−int,
c, ν ∈ C, are extremal among trigonometric polynomials of degree at most n for which inequal-
ity (5.8) with p = 1 turns into an equality. Indeed, if f is an extremal trigonometric polynomial
of degree at most n, then condition (5.10) is satisfied for s = 0, . . . , 2n − 1. Then one can use the
Riesz interpolation formula [16, 17] (see also [28, Ch. X, Sect. 3, (3.11)])

f ′
(
t+

π

2n

)
≡

2n∑

s=1

(−1)s−1f
(
t+

πs

n

)
as, where all as > 0 and

2n∑

s=1

as = n,

which implies the equality ‖f ′‖1 = n‖f‖1. Therefore, f(t) = ceint + νe−int, c, ν ∈ C (see [3, Corol-
lary 6]).

Remark 5. If, in Theorem 5, the function J is convex and strictly increasing on [0,+∞) and
µs(n,ψ) > 0 for all s = 0, . . . , 2n − 1 (this implies that ψ(0) > 0), then only polynomials of the
form f(t) = ceint + νe−int, c, ν ∈ C, are extremal among trigonometric polynomials of degree at
most n for which inequality (5.3) turns into an equality. Indeed, if inequality (5.3) turns into an
equality at some function f ∈ C(T), then the corresponding inequalities (5.1) and (3.1) turn into
equalities for any t ∈ R and, hence, inequality (5.8) with p = 1 turns into an equality at f . Then
we need to use the last statement in Remark 4.

In conclusion of this section, we note that the integral inequalities (5.2) for the class of trigono-
metric polynomials and for different differential operators and Szegő compositions were studied
by many authors, in particular, by A. Zygmund, V.V. Arestov, V.I. Ivanov, E.A. Storozhenko,
V.G. Krotov, P. Oswald, and A.I. Kozko. In this case, not only convex functions J were considered.
A history of this question was described in great detail in the paper by Arestov [4].

6. Generalization of Bernstein–Szegő inequalities

We denote by Fn, n ∈ N, the set of trigonometric polynomials

f(t) :=
∑

|k|≤n

cke
ikt =

a0
2

+

n∑

k=1

(ak cos kt+ bk sin kt), ck = ck(f) ∈ C,
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of degree at most n with coefficients in C, where ak := ck+ c−k and bk := i(ck− c−k), k ≥ 0. There
are several different definitions of fractional derivative. The following operator for r > 0 and β ∈ R

presumably first appeared in the paper by Sz.-Nagy [21, equality (2) for m = 1, λ(k) = kr]. For
f ∈ Fn, we define

f (r,β)(t) :=
∑

|k|≤n

|k|reiβ signkcke
ikt =

n∑

k=1

kr (ak cos (kt+ β) + bk sin (kt+ β)) .

For β = rπ/2, we obtain the Weyl derivative which, for r ∈ N, coincides with the usual derivative
of order r. Often, this operator is called the Weyl–Nagy derivative.

Let J be a convex and nondecreasing function on [0,+∞). Kozko proved (see [11, Theorem 1,
Corollary 1]) that if 1 ≤ p ≤ ∞, then, for any n ∈ N, r ≥ 1, and β ∈ R, the following inequalities
hold: ∫

T

J
(
|f (r,β)(f)(t)|

)
dt ≤

∫

T

J (nr|f(t)|) dt, f ∈ Fn, (6.1)

‖f (r,β)‖p ≤ nr‖f‖p, f ∈ Fn. (6.2)

For the usual derivative, i.e., when r = 1 and β = π/2, inequality (6.2) was proved by Bernstein
in the case p = ∞. For r = 1 and β ∈ R, inequality (6.2) was obtained by Szegő [20] in the case
p = ∞ and inequality (6.1) was proved by Zygmund [28, Ch. X, Sect. 3, (3.25)] (his proof for real
polynomials is also true for polynomials in Fn). This and the identity

f (r+1,β)(t) ≡
(
f (r,β)(t)

)(1,0)
, r > 0, β ∈ R,

imply the validity of inequality (6.2) for any r ∈ N. Inequality (6.2) for p = ∞, r ≥ 1, β = −rπ/2,
and β = 0 (the case of the Riesz derivative) was proved by Lizorkin [13, Theorems 2, 2′].

Obviously, inequalities (6.1) and (6.2) turn into equalities for the polynomials f(t) = ceint +
νe−int, c, ν ∈ C. Szegő [20, p. 66] proved that, in inequality (6.2) with p = ∞, there are no
other extremal polynomials in the case r = 1 and β 6= qπ, q ∈ Z (see also arguments in [1,
Sect. 84, p. 189]). If, in addition, the function tJ ′(t) is strictly increasing on (0,+∞), then, in
inequalities (6.1) and (6.2) for 1 ≤ p < ∞, n ∈ N, r ≥ 1, and β ∈ R, there are no other extremal
polynomials at least in the following cases (see [3, Corollary 6], [5, Theorems 1,2]): (1) in the case of
the usual derivative of order r ∈ N; (2) n = 1, r ≥ 1, and β ∈ R or n ≥ 2, r ≥ ln(2n)/ ln(n/(n−1)),
and β ∈ R.

For r = 1 and β 6= qπ, q ∈ Z, in inequalities (6.2) and (6.1) (if, in addition, the function J(t)
is strictly increasing on (0,+∞)), only polynomials of the form f(t) = a cosnt+ b sinnt, a, b ∈ R,
are extremal in the class of real trigonometric polynomials. This result is due to Zygmund [28,
Ch. X, Sect 3, (3.24), (3.25)].

Other cases in which inequality (6.2) holds, when r < 1 or 0 ≤ p < 1, were considered in the
paper by Arestov and Glazyrina [5], where these inequalities are called Bernstein–Szegő inequalities
and a complete history of such inequalities is given.

Inequalities more general than (6.1) and (6.2) are obtained from Theorem 5 under an appro-
priate choice of the function ψ. The method of construction of the function ψ described below is
essentially contained in the paper by Lizorkin [13].

Assume that g ∈ Φ(R) ∩ C(R), supp g ⊂ [−1, 1], and β ∈ R. We consider the auxiliary
function F (x) := g(−x)e−iβx, x ∈ R. Obviously, F ∈ Φ(R)∩C(R) and suppF ⊂ [−1, 1]. Using the
function F , we construct the 2-periodic function ψ ∈ Φ(R)∩C(R) (see Corollary 1). For x ∈ [−2, 2],
we have

ψ(x− 1) = F (x− 1) + F (x+ 1) = g(1 − x)e−iβ(x−1) + g(−1 − x)e−iβ(x+1).



Positive definite functions and sharp inequalities 93

Then

ψ(x− 1) = e−iβx
{
g(1 − |x|)eiβ , 0 ≤ x ≤ 2;
g(|x| − 1)e−iβ , −2 ≤ x ≤ 0.

Taking into account that the real and imaginary parts of a positive definite function are even and
odd functions, respectively, we obtain the equality ψ(x− 1) = e−iβxeiβ signxg0(x), |x| ≤ 2, where

g0(x) = Re g(1− |x|) + i sign x Im g(1 − |x|), |x| ≤ 2.

Obviously, the function ϕ(x) := eiβxψ(x) belongs to Φ(R) ∩ C(R) and

ϕ(x− 1) =e−iβg0(x)e
iβ signx = e−iβ(Re g(1 − |x|) + i signx Im g(1 − |x|))eiβ signx, |x| ≤ 2. (6.3)

Consider the operator A1/n,1 generated by the function ϕ by formula (1.1) for ε = 1/n and τ = 1.
We can apply Theorem 5 and Remarks 4 and 5 to this operator. It should be taken into account
that ψ(0) = g(0) and ck(ψ) = ĝ(−β − kπ)/2, k ∈ Z. For polynomials f ∈ F2n, the operator A1/n,1

has the following form (see (3.2) and (6.3)):

A1/n,1(f)(t) ≡ e−iβ
∑

|k|≤2n

(
Re g

(
1−

|k|

n

)
+ i sign k Im g

(
1−

|k|

n

))
eiβ signkck(f)e

ikt.

We introduce one more parameter. Obviously, for any θ ∈ [−1, 1], the function

gθ(x) := ((1 + θ)g(x) + (1− θ)g(−x))/2 = Re g(x) + iθ Im g(x), x ∈ R,

also belongs to the class Φ(R)∩C(R) and supp gθ ⊂ [−1, 1]. Therefore, all the above arguments are
applicable to the function gθ as well. It should be taken into account that, for the corresponding
function ψθ, we have ψθ(0) = gθ(0) = g(0) and

ck(ψθ) = ((1 + θ)ĝ(−β − kπ) + (1− θ)ĝ(β + kπ))/4, k ∈ Z.

For the function ϕθ(x) := eiβxψθ(x) ∈ Φ(R)∩C(R), we consider the corresponding operator A1/n,1

with ε = 1/n and τ = 1 (see (1.1)). We state the results obtained in Theorem 5 and Remarks 4
and 5 for the following operator defined on polynomials f ∈ F2n:

Dg,β
n,θ(f)(t) := A1/n,1(f)(t) ≡

e−iβ
∑

|k|≤2n

(
Re g

(
1−

|k|

n

)
+ iθ sign k Im g

(
1−

|k|

n

))
eiβ sign kck(f)e

ikt.
(6.4)

Theorem 6. Assume that g ∈ Φ(R) ∩ C(R), supp g ⊂ [−1, 1], g(0) > 0, β ∈ R, θ ∈ [−1, 1],
and 1 ≤ p ≤ ∞. Let J be a convex nondecreasing function on [0,+∞). Then:

1) For any n ∈ N, we have

∫

T

J
(
|Dg,β

n,θ(f)(t)|
)
dt ≤

∫

T

J (g(0)|f(t)|) dt, f ∈ F2n, (6.5)

‖Dg,β
n,θ(f)‖p ≤ g(0)||f ||p, f ∈ F2n. (6.6)

Inequalities (6.5) and (6.6) turn into equalities, for instance, for polynomials of the form f(t) =
ceint + νe−int, c, ν ∈ C.

2) If the function J is strictly convex at any point of the interval (0,+∞), then inequality (6.5) or
inequality (6.6) with p ∈ (1,∞) turns into an equality at some polynomial f ∈ F2n if and only if the
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functions (−1)sf (t+ πs/n) are identical on R for all s = 0, . . . , 2n− 1 such that µs(n, g, β, θ) > 0,
where, for k ∈ Z,

4µk(n, g, β, θ) = (1 + θ)
∑

m∈Z

ĝ(−β − (k + 2nm)π) + (1− θ)
∑

m∈Z

ĝ(β + (k + 2nm)π). (6.7)

If, in addition, for some s ∈ Z, the inequalities µs(n, g, β, θ) > 0 and µs+1(n, g, β, θ) > 0 hold, then

inequality (6.5) or inequality (6.6) with p ∈ (1,∞) turns into an equality only at the polynomials

f(t) = ceint + νe−int, c, ν ∈ C.

3) When p = ∞, inequality (6.6) turns into an equality at some polynomial f ∈ F2n if and only

if, for some η, δ ∈ R, the equality (−1)sf(η + πs/n) = eiδ‖f‖∞ holds for all s = 0, . . . , 2n− 1 such

that µs(n, g, β, θ) > 0.

If µs(n, g, β, θ) > 0 for s = 0, . . . , 2n − 1, then only polynomials of the form f(t) = ceint +
νe−int, c, ν ∈ C, are extremal among trigonometric polynomials of degree at most n for which

inequality (6.6) with p = ∞ turns into an equality.

4) When p = 1, inequality (6.6) turns into an equality at some polynomial f ∈ F2n if and

only if, for any t ∈ R, there exists a number δ(t) ∈ R such that the identity (−1)sf (t+ πs/n) ≡
eiδ(t) |f (t+ πs/n)| holds for all s = 0, . . . , 2n − 1 such that µs(n, g, β, θ) > 0.

If a polynomial f ∈ Fq, 1 ≤ q < 2n, is extremal in inequality (6.6) with p = 1, then any

polynomial of the form cf(t)g(t), where c ∈ C, g ∈ F2n−q, and g(t) ≥ 0 for all t ∈ R, is also

extremal. In particular, polynomials of the form (ceint + νe−int)g(t), where c, ν ∈ C and g is an

arbitrary nonnegative trigonometric polynomial of degree at most n, are extremal in inequality (6.6)
with p = 1.

5) If µs(n, g, β, θ) > 0 for all s = 0, . . . , 2n − 1 and the function J is strictly increasing

on (0,+∞), then only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are extremal

among trigonometric polynomials of degree at most n for which inequality (6.5) or inequality (6.6)
with p = 1 turns into an equality.

Remark 6. If q ∈ Z and q = 2nl + r, where l, r ∈ Z and 0 ≤ r ≤ 2n− 1, then

µk(n, g, β + πq, θ) =

{
µk+r(n, g, β, θ), 0 ≤ k ≤ 2n− 1− r,
µk+r−2n(n, g, β, θ), 2n− r ≤ k ≤ 2n − 1, r ≥ 1.

Remark 7. Inequalities (6.1) and (6.2) follow from inequalities (6.5) and (6.6) if, for g, we
take the function gr(x) = (1− |x|)r+ which is positive definite for r ≥ 1 (the Pólya property). Since

gr(1 − |x|) = |x|r for |x| ≤ 1, we have Dgr,β
n,θ (f)(t) ≡ e−iβf (r,β)(t)/nr for any polynomial f ∈ Fn,

n ∈ N. In our case, the values (6.7) are independent of θ and such that

µk(n, gr, β) =
∑

m∈Z

ĝr(β + (k + 2nm)π))/2, k ∈ Z .

It is well known that, for r > 1, the Fourier transform ĝr(t) is positive for all t ∈ R (see, for
instance, [27, Lemma 7, n = λ = δ = 1]). Therefore, µs(n, gr, β) > 0 for all r > 1, β ∈ R, n ∈ N,
and s ∈ Z.

For r = 1, the Fourier transform of the function g1 is easily calculated and is equal to ĝ1(t) =
2(1 − cos t)/t2. Obviously, ĝ1(t) = 0 only for t = 2qπ with q ∈ Z, q 6= 0. Therefore, if β 6= qπ,
q ∈ Z, then µs(n, g1, β) > 0 for all n ∈ N and s ∈ Z.

If β = 0 and n ∈ N, then: (1) µs(n, g1, 0) > 0 for s = 0 and for all odd s ∈ [1, 2n − 1];
(2) µs(n, g1, 0) = 0 for all even s ∈ [2, 2n − 1] if n ≥ 2. In this case, the number of positive values
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among µs(n, g1, 0), s = 0, . . . , 2n− 1, is n+1 and the remaining are zero. The latter property also
holds for any β = πq with q ∈ Z (see Remark 6).

Thus, only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are extremal in inequali-
ties (6.1) and (6.2) under conditions (A1) and (B1) or (A2) and (B2), where

(A1) r > 1 and β ∈ R; or r = 1, β ∈ R, and n = 1; or r = 1, β 6= πq, q ∈ Z, and n ≥ 2;

(B1) the function J is strictly increasing on (0,+∞) for (6.1) or 1 ≤ p ≤ ∞ for (6.2);

(A2) r = 1, β = πq with q ∈ Z, and n ≥ 2;

(B2) the function J is strictly convex on (0,+∞) for (6.1) or 1 < p <∞ for (6.2).

The case where r = 1, β = πq with q ∈ Z, n ≥ 2, and p = 1 or p = ∞ has not been studied.

7. Case of piecewise linear functions

In [15], the following R.M. Trigub problem on the positive definiteness of piecewise linear func-
tions was solved. For given α ∈ (0, 1) and h ∈ R, the function fα,h : R → C is defined as follows:
(1) the function fα,h is even; (2) fα,h(x) = 0 for x > 1, the function fα,h is linear on each of the
intervals [0, α] and [α, 1], fα,h(0) = 1, fα,h(α) = h, and fα,h(1) = 0. For any fixed α ∈ (0, 1), it is re-
quired to find the set of all h ∈ R such that the piecewise linear function fα,h is positive definite on R.
If 0 ≤ h ≤ 1 − α, then the continuous even function fα,h(x) is convex on (0,+∞), fα,h(+∞) = 0,
and, hence, it is positive definite by the Pólya theorem (see, for instance, [14, Theorem 4.3.1]).
A complete description of such h ∈ R is given in the following theorem.

Theorem 7 [15]. Let α ∈ (0, 1) and h ∈ R. Then fα,h ∈ Φ(R) if and only if m(α) ≤ h ≤ 1−α,
where m(α) = 0 if 1/α 6∈ N and m(α) = −α if 1/α ∈ N.

From Theorem 7, we obtain the following sufficient condition for the positive definiteness.

Corollary 2. If a function g ∈ C(R) is even, nonnegative, decreasing, and convex on (0,+∞),
then, for α ∈ (0, 1), 1/α ∈ N, and −α ≤ h ≤ 1−α, the function gα,h(x) := hg(x)+(1−α−h)g(x/α)
belongs to the class Φ(R).

The nontrivial case here is when −α ≤ h < 0.

P r o o f. The function g is represented in the form (see, for instance, [26])

g(x) =

+∞∫

0

(1− |sx|)+ dµ(s), x ∈ R,

where µ is a nonnegative finite Borel measure on [0,+∞). Obviously,

gα,h(x) = (1− α)

+∞∫

0

fα,h(sx) dµ(s), x ∈ R.

For the specified α and h, we have fα,h ∈ Φ(R). Hence, gα,h ∈ Φ(R) (see, for instance,
[27, Lemma 1]). �

One can use the positive definite function gα,h given in Corollary 2 to obtain new sharp in-
equalities for trigonometric polynomials.
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Let a function g ∈ C(R) be even, nonnegative, decreasing, and convex on (0,+∞), and let
supp g ⊂ [−1, 1]. Assume that n ∈ N, n ≥ 2, and −1/n ≤ h ≤ 1 − 1/n. Let g1/n,h(x) :=
hg(x)+ (1 − 1/n − h)g(nx), x ∈ R. It follows from Corollary 2 that g1/n,h ∈ Φ(R) ∩ C(R). Since
supp g ⊂ [−1, 1], we have supp g1/n,h ⊂ [−1, 1]. Therefore, for the function g1/n,h, we can construct
operator (6.4) which does not depend on the parameter θ, since Im(g1/n,h) ≡ 0. It is not difficult
to verify that, for polynomials f ∈ F2n, the following equality holds:

D
g1/n,h,β

n,0 (f)(t) = hDg,β
n,0(f)(t) + (1− 1/n − h)g(0)Rβn(f)(t), (7.1)

where

Rβn(f)(t) := e−iβ
∑

|k|=n

eiβ sign kck(f)e
ikt =

e−iβ

π

π∫

−π

cos(nx− β)f(t+ x) dx. (7.2)

We note that g1/n,h(0) = (1− 1/n)g(0). In addition, if g(x) = (1− |x|)r+, r ≥ 1, then Dgr,β
n,θ (f)(t) ≡

e−iβf (r,β)(t)/nr for any polynomial f ∈ Fn. We write Theorem 6 for the operator (7.1) and restrict
ourselves only to inequality (6.6).

Theorem 8. Let a function g ∈ C(R) be even, nonnegative, decreasing, and convex on

(0,+∞), and let supp g ⊂ [−1, 1]. Assume that n > 2, −1/n ≤ h ≤ 1 − 1/n, β ∈ R, and

1 6 p 6 ∞. Then, for any polynomial f ∈ F2n, we have
∥∥∥hDg,β

n,0(f) + (1− 1/n− h)g(0)Rβn(f)
∥∥∥
p
6 (1− 1/n)g(0)‖f‖p. (7.3)

If r ≥ 1, then, for any polynomial f ∈ Fn, we have
∥∥∥hf (r,β)/nr + (1− 1/n− h)eiβRβn(f)

∥∥∥
p
6 (1− 1/n)‖f‖p. (7.4)

Inequalities (7.3) and (7.4) turn into equalities for polynomials of the form f(t) = ceint + νe−int,
c, ν ∈ C.

Without proof, we note that if the function g in Theorem 8 is not piecewise linear on [0,+∞)
with equidistant nodes, then only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are
extremal in inequality (7.3) with p ∈ (1,∞). When p = 1 or p = ∞, a similar conclusion holds,
but for the class of trigonometric polynomials of degree at most n. If r > 1, then only polynomials
of the form f(t) = ceint + νe−int, c, ν ∈ C, are extremal in inequality (7.4).

8. Interpolation formulas for periodic functions

If the trigonometric series on the right-hand side of relation (3.2) converges uniformly on T,
then one can put the sign of equality in this relation and the obtained equality can be regarded as
some interpolation formula. We explain this with the example of the following theorem.

Theorem 9. Assume that n ∈ N, a 2-periodic function ψ belongs to Φ(R)∩C(R), β ∈ R, and

the numbers µk(n,ψ) are defined by formula (5.5). Then the identity

∑

k∈Z

eiβk/nψ

(
k

n
− 1

)
ck(f)e

ikt ≡

2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n,ψ) (8.1)

holds for any function f ∈ C(T) such that the series on the left converges uniformly on T. Moreover,

µ0(n,ψ) + . . . + µ2n−1(n,ψ) = ψ(0), ck(ψ) ≥ 0, k ∈ Z, µk(n,ψ) ≥ 0, k = 0, . . . , 2n − 1, and

µk(n,ψ) = 0 for some k = 0, . . . , 2n− 1 if and only if ck+2nm(ψ) = 0 for all m ∈ Z.
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P r o o f. Consider operator (1.1) for the function ϕ(x) ≡ eiβxψ(x). Under the conditions of
the theorem, we can put the sign of equality in relation (3.2) for ε = 1/n and τ = 1. Therefore,
the left-hand side of equality (5.6) can be replaced by the sum of the series in (3.2). We obtain
identity (8.1) with accuracy up to the factor e−iβ. The specified properties of the numbers µk(n,ψ)
follow from (5.5) and (5.7). �

Corollary 3. Assume that g ∈ Φ(R) ∩ C(R), supp g ⊂ [−1, 1], β ∈ R, and n ∈ N. Then, for

any polynomial f ∈ F2n, the following equality holds:

∑

|k|≤2n

(
Re g

(
1−

|k|

n

)
+ i sign k Im g

(
1−

|k|

n

))
eiβ sign kck(f)e

ikt

=
2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n, g, β), t ∈ R,

(8.2)

where µk(n, g, β) =
∑
m∈Z

ĝ(−β − (k + 2nm)π)/2, k ∈ Z, and
2n−1∑
k=0

µk(n, g, β) = g(0).

P r o o f. Let ψ be a 2-periodic function, and let ψ(x) = g(−x)e−iβx for x ∈ [−1, 1]. Then
ψ ∈ Φ(R) ∩ C(R) and

ψ(x− 1) = e−iβxeiβ signx(Re g(1 − |x|) + i sign x Im g(1 − |x|)), |x| ≤ 2.

It remains to take into account that ck(ψ) = ĝ(−β − kπ)/2, k ∈ Z. �

Remark 8. We note that if, for g, we take the function gr(x) = (1−|x|)r+, r ≥ 1, then, in (8.2),
we obtain the interpolation formula of A.I. Kozko [11] (and of M. Riesz and of G. Szegő for r = 1)
for the Weyl–Nagy derivative:

f (r,β)(t) = nr
2n−1∑

k=0

(−1)kf

(
t+

πk + β

n

)
µk(n, gr, β), t ∈ R, f ∈ Fn;

2n−1∑

k=0

µk(n, gr, β) = 1,

where µk(n, gr, β) > 0 for all n ∈ N, k = 0, . . . , 2n−1, β ∈ R, and r > 1. These coefficients are also
positive for r = 1 if n = 1 and β ∈ R or if n ≥ 2 and β 6= qπ, q ∈ Z. If r = 1, n ≥ 2, and β = πq
with q ∈ Z, then, the number of positive coefficients among µk(n, g1, β), k = 0, . . . , 2n− 1, is n+1
and the remaining are zero (see Remark 7). For r = 1, these coefficients are easily calculated. Since
ĝ1(t) = 2(1− cos t)/t2, we have

µk(n, g1, β) =
1−(−1)k cos β

4n2

∑

m∈Z

1
(
β + kπ

2n
+mπ

)2=
1−(−1)k cos β

2n2
(
1− cos

β+kπ

n

) > 0, β 6= qπ, q ∈ Z,

For β = qπ with q ∈ Z, we can restrict ourselves to the case β = 0 (see Remark 6): µ2k(n, g1, 0) = 0
for k = 1, . . . , n− 1 (if n ≥ 2), µ0(n, g1, 0) = 1/2, and

µ2k−1(n, g1, 0) =
1

n2
(
1− cos

(2k − 1)π

n

) > 0, k = 1, . . . , n.
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Remark 9. It is not difficult to see that all the arguments in the proof of Theorem 9 remain
in force also in the case where the 2-periodic continuous function ψ is expanded in an absolutely
convergent Fourier series (without the assumption of nonnegativity of the Fourier coefficients ck(ψ)).
Therefore, the following statement holds: Assume that a 2-periodic function ψ ∈ C(R) is expanded
into an absolutely convergent Fourier series and β ∈ R. Then equality (8.1) holds for any function

f ∈ C(T) such that the series on the left in (8.1) converges uniformly on T.

9. Conclusion

In conclusion, we point out some problems which, in our opinion, have not been solved yet.

1) To prove or disprove that only polynomials of the form f(t) = ceint + νe−int, c, ν ∈ C, are
extremal in the Berstein–Szegő inequality (6.2) for r = 1 and β = 0 (the case of the derivative
of the adjoint polynomial) when p = ∞ or p = 1. When p = ∞, this case was distinguished in
the paper by Szegő [20, p. 66]. We note that the arguments in the monographs by Zygmund [28,
Ch. X, Sect. 3, (3.24)] and Akhiezer [1, Sect. 84, p. 189] corresponding to this case are not correct,
since some coefficients in the interpolation formulas are zero (see [28, Ch. X, Sect. 3, (3.22)] for
α = π/2 and [1, Sect. 84, p. 188, (II)] for α = 0).

2) Let n ∈ N, and let, for a trigonometric polynomial f ∈ Fn, condition (5.9) or (5.10) be
satisfied for all integers s = 0, . . . , 2n − 1. Then f(t) = ceint + νe−int, c, ν ∈ C (see Remark 4).
The question is, which values of s can be left to have the same conclusion? This is a more general
problem than the previous one.

3) To prove or disprove that if, for some s ∈ Z, inequalities µs(n,ψ) > 0 and µs+1(n,ψ) > 0
hold and a function f ∈ C(T) is extremal in inequality (5.8) with p = 1, then f(t) = h(t)g(t),
where the function h belongs to L∞(T) and has the form (5.4), g ∈ C(T), and g(t) ≥ 0 for t ∈ R.
This is true if, in addition, f(t) 6= 0 for almost all t ∈ R with respect to the Lebesgue measure (see
Remark 4 for the case p = 1).
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