
URAL MATHEMATICAL JOURNAL, Vol. 3, No. 2, 2017

EVALUATION OF THE NON-ELEMENTARY INTEGRAL
∫

e
λx

α

dx, α ≥ 2, AND OTHER RELATED INTEGRALS

Victor Nijimbere

School of Mathematics and Statistics, Carleton University,
Ottawa, Ontario, Canada
victornijimbere@gmail.com

Abstract: A formula for the non-elementary integral
∫
eλx

α

dx where α is real and greater or equal two, is
obtained in terms of the confluent hypergeometric function 1F1 by expanding the integrand as a Taylor series.
This result is verified by directly evaluating the area under the Gaussian Bell curve, corresponding to α = 2, using
the asymptotic expression for the confluent hypergeometric function and the Fundamental Theorem of Calculus
(FTC). Two different but equivalent expressions, one in terms of the confluent hypergeometric function 1F1 and
another one in terms of the hypergeometric function 1F2, are obtained for each of these integrals,

∫
cosh(λxα)dx,∫

sinh(λxα)dx,
∫
cos(λxα)dx and

∫
sin(λxα)dx, λ ∈ C, α ≥ 2. And the hypergeometric function 1F2 is expressed

in terms of the confluent hypergeometric function 1F1. Some of the applications of the non-elementary integral∫
eλx

α

dx, α ≥ 2 such as the Gaussian distribution and the Maxwell-Bortsman distribution are given.
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1. Introduction

Definition 1. An elementary function is a function of one variable built up using that variable
and constants, together with a finite number of repeated algebraic operations and the taking of
exponentials and logarithms [6].

In 1835, Joseph Liouville established conditions in his theorem, known as Liouville 1835’s
Theorem [4, 6], which can be used to determine whether an indefinite integral is elementary or non-
elementary. Using Liouville 1835’s Theorem, one can show that the indefinite integral

∫

eλx
α

dx,
α ≥ 2, is non-elementary [4], and to my knowledge, no one has evaluated this non-elementary
integral before.

For instance, if α = 2, λ = −β2 < 0, where β is a real constant, the area under the Gaussian
Bell curve can be calculated using double integration and then polar coordinates to obtain

+∞
∫

−∞

e−β2x2

dx =

√
π

β
. (1.1)

Is that possible to evaluate (1.1) by directly using the Fundamental Theorem of Calculus (FTC)
as in equation (1.2)?

+∞
∫

−∞

e−β2x2

dx = lim
t→−∞

0
∫

t

e−β2x2

dx+ lim
t→+∞

t
∫

0

e−β2x2

dx. (1.2)
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The Central limit Theorem (CLT) in Probability theory [2] states that the probability that a
random variable x does not exceed some observed value z is

P (X < z) =
1√
2π

z
∫

−∞

e−
x
2

2 dx. (1.3)

So if we know the antiderivative of the function g(x) = eλx
2

, we may choose to use the FTC to
calculate the cumulative probability P (X < z) in (1.3) when the value of z is given or is known,
rather than using numerical integration.

The Maxwell-Boltsman distribution in gas dynamics,

F (v) = θ

v
∫

0

x2e−γx2

dx, (1.4)

where θ and γ are some positive constants that depend on the properties of the gas and v is the
gas speed, is another application.

There are many other examples where the antiderivative of g(x) = eλx
α

, α ≥ 2 can be useful.
For example, using the FTC, formulas for integrals such as

∞
∫

x

et
2n+1

dt, x < ∞;

∞
∫

x

e−t2n+1

dt, x > −∞;

∞
∫

x

t2ne−t2dt, x ≤ ∞, (1.5)

where n is a positive integer, can be obtained if the antiderivative of g(x) = eλx
α

, α ≥ 2 is known.
In this paper, the antiderivative of g(x) = eλx

α

, α ≥ 2, is expressed in terms of a special
function, the confluent hypergeometric 1F1 [1]. And the confluent hypergeometric 1F1 is an entire
function [3], and its properties are well known [1, 5]. The main goal here is to consider the most
general case with λ complex (λ ∈ C), evaluate the non-elementary integral

∫

eλx
α

, α ≥ 2 and thus
make possible the use of the FTC to compute the definite integral

B
∫

A

eλx
α

dx, (1.6)

for any A and B. And once (1.6) is evaluated, then integrals such as (1.1), (1.2), (1.3), (1.4) and
(1.5) can also be evaluated using the FTC.

Using the hyperbolic and Euler identities,

cosh(λxα) = (eλx
α

+ e−λxα

)/2, sinh(λxα) = (eλx
α − e−λxα

)/2,

cos(λxα) = (eiλx
α

+ e−iλxα

)/2, sin(λxα) = (eiλx
α − e−iλxα

)/(2i),

the integrals
∫

cosh(λxα)dx,

∫

sinh(λxα)dx,

∫

cos(λxα)dx and

∫

sin(λxα)dx, α ≥ 2, (1.7)

are evaluated in terms of 1F1 for any constant λ. They are also expressed in terms of the hyper-
geometric 1F2. And some expressions of the hypergeometric function 1F2 in terms of the confluent
hypergeometric function 1F1 are therefore obtained.

For reference, we shall first define the confluent confluent hypergeometric function 1F1 and
the hypergeometric function 1F2 before we proceed to the main aims of this paper (see sections 2
and 3).
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Definition 2. The confluent hypergeometric function, denoted as 1F1, is a special function
given by the series [1, 5]

1F1(a; b;x) =

∞
∑

n=0

(a)n
(b)n

xn

n!
, (1.8)

where a and b are arbitrary constants, (ϑ)n = Γ(ϑ+ n)/Γ(ϑ) (Pochhammer’s notation [1]) for any
complex ϑ, with (ϑ)0 = 1, and Γ is the standard gamma function [1].

Definition 3. The hypergeometric function 1F2 is a special function given by the series [1, 5]

1F2(a; b, c;x) =

∞
∑

n=0

(a)n
(b)n(c)n

xn

n!
, (1.9)

where a, b and c are arbitrary constants, and (ϑ)n = Γ(ϑ + n)/Γ(ϑ) (Pochhammer’s notation [1])
as in Definition 2.

2. Evaluation of
∫

B

A
e
λxα

dx

Proposition 1. The function G(x) = x 1F1

(

1
α ;

1
α + 1;λxα

)

, where 1F1 is a confluent hyper-
geometric function [1], λ is an arbitrarily constant and α ≥ 2, is the antiderivative of the function
g(x) = eλx

α

. Thus,
∫

eλx
α

dx = x 1F1

(

1

α
;
1

α
+ 1;λxα

)

+ C. (2.1)

P r o o f. We expand g(x) = eλx
α

as a Taylor series and integrate the series term by term.
We also use the Pochhammer’s notation [1] for the gamma function, Γ(a + n) = Γ(a)(a)n, where
(a)n = a(a+ 1) · · · (a+ n − 1), and the property of the gamma function Γ(a+ 1) = aΓ(a) [1]. For
example, Γ(n+ a+ 1) = (n+ a)Γ(n + a). We then obtain

∫

g(x)dx =

∫

eλx
α

dx =

∞
∑

n=0

λn

n!

∫

xαndx

=
∞
∑

n=0

λn

n!

xαn+1

αn+ 1
+ C =

x

α

∞
∑

n=0

(λxα)n
(

n+ 1
α

)

n!
+ C

=
x

α

∞
∑

n=0

Γ
(

n+ 1
α

)

Γ
(

n+ 1
α + 1

)

(λxα)n

n!
+ C

= x

∞
∑

n=0

(

1
α

)

n
(

1
α + 1

)

n

(λxα)n

n!
+ C

= x 1F1

(

1

α
;
1

α
+ 1;λxα

)

+ C = G(x) + C. �

(2.2)

Example 1. We can now evaluate
∫

x2neλx
2

dx in terms of the confluent hypergeometric function.
Using integration by parts,

∫

x2neλx
2

dx =
x2n−1

2λ
eλx

2 − 2n− 1

2λ

∫

x2n−2eλx
2

dx. (2.3)
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1. For instance, for n = 1,

∫

x2eλx
2

dx =
x

2λ
eλx

2 − 1

2λ

∫

eλx
2

dx =
x

2λ
eλx

2 − x

2λ
1F1

(

1

2
;
3

2
;λx2

)

+ C. (2.4)

2. For n = 2,

∫

x4eλx
2

dx =
x3

2λ
eλx

2− 3

2λ

∫

x2eλx
2

dx =
x3

2λ
eλx

2− 3x

4λ2
eλx

2

+
3x

4λ2 1F1

(

1

2
;
3

2
;λx2

)

+C. (2.5)

Example 2. Using the method of integrating factor, the first-order ordinary differential equation

y′ + 2xy = 1 (2.6)

has solution

y(x) = e−x2

(
∫

ex
2

dx+ C

)

= xe−x2

1F1

(

1

2
;
3

2
;x2
)

+ Ce−x2

. (2.7)

Assuming that the function G(x) (see Proposition 1) is unknown, in the following lemma, we
use the properties of function g(x) to establish the properties of G(x) such as the inflection points
and the behavior as x → ±∞.

Lemma 1. Let the function G(x) be an antiderivative of g(x) = eλx
α

, λ ∈ C with α ≥ 2.

1. If the real part of λ is negative (< 0) and α is even, then the limits limx→−∞G(x) and
limx→+∞G(x) are finite (constants). And thus the Lebesgue integral

∫∞
−∞ |eλxα |dx < ∞.

2. If λ is real (λ ∈ R), then the point (0, G(0)) = (0, 0) is an inflection point of the curve
Y = G(x), x ∈ R.

3. And if λ ∈ R and λ < 0, and α is even, then the limits limx→−∞G(x) and limx→+∞G(x)
are finite. And there exists real constant θ > 0 such that limits limx→−∞G(x) = −θ and
limx→+∞G(x) = θ.

P r o o f.

1. For complex λ = λr + iλi, where the subscript r and i stand for real and imaginary parts
respectively, the function g(x) = g(z) = ez

α

where z = (λr + iλi)
1/αx, α ≥ 2, is an entire

function on C. And if λr < 0 and α is even implies Re(zα) is always negative regardless of
the values of x. And so, if |z| → ∞ (or x → ±∞), then g(z) = 0 (g(z) → 0) (or g(x) = 0 as
x → ±∞). Therefore by Liouville theorem, G(z) has to be constant as |z| → ∞, and so is
G(x) as x → ±∞. Hence, the Lebesgue integral

∫ ∞

−∞
|eλxα |dx =

∫ ∞

−∞
eλrxα |eλixα |dx =

∫ ∞

−∞
eλrxα

dx < ∞

since G(x) is constant as x → ±∞. For λr < 0 and α odd, the limit limx→−∞ eλrxα

diverges
and so does the integral

∫∞
−∞ eλrxα

dx. Therefore, the Lebesgue integral
∫∞
−∞ |eλxα |dx has

to diverge too. On the other hand, for λr > 0, the limit limx→+∞ eλrxα

diverges, and so
does the integral

∫∞
−∞ eλrxα

dx regardless of the value of α. Therefore, the Lebesgue integral
∫∞
−∞ |eλxα |dx has to diverge too.
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Figure 1. G(x) is the antiderivative of e−x
2

given by (2.8).

2. At x = 0, g(0) = 1. And so, around x = 0, the antiderivative G(x) ∼ x because G′(0) =
g(0) = 1. And so (0, G(0)) = (0, 0). Moreover, G′′(x) = g′(x) = λαxα−1eλx

α

, α ≥ 2,
gives G′′(0) = 0. Hence, by the second derivative test, if λ is real (λ = λr), the point
(0, G(0)) = (0, 0) is an inflection point of the curve Y = G(x), x ∈ R.

3. For λ = λr (λ ∈ R), both g(x) and G(x) are analytic on R. Using this fact and the fact that
for even α and λr < 0,

∫∞
−∞ |eλxα |dx < ∞ implies that for even α and λr < 0, G(x) has to be

constant as x → ±∞. In addition, the fact that G′′(x) < 0 if x < 0 and G′′(x) > 0 if x > 0
implies that, G(x) is concave upward on the interval (∞, 0) while is concave downward on
the interval (0,+∞). Moreover, the fact that g(x) = G′(x) is symmetric about the y-axis
(even) implies that G(x) has to be antisymmetric about the y-axis (odd). Hence there exists
a real positive constant θ > 0 such that limits limx→−∞G(x)= − θ and limx→+∞G(x)=θ.�

Example 3. If λ = −1 and α = 2, then

∫

e−x2

dx = x 1F1

(

1

2
;
3

2
;−x2

)

+ C. (2.8)

According to (2.8), the antiderivative of g(x) = e−x2

is G(x) = x 1F1

(

1
2 ;

3
2 ;−x2

)

. Its graph as a
function of x, sketched using MATLAB, is shown in Figure 1. It is in agreement with Lemma 1. It
is actually seen in Figure 1 that (0, 0) is an inflection point and that G(x) reaches some constants
as x → ±∞ as predicted by Lemma 1.

In the following lemma, we obtain the values of G(x), the antiderivative of the function g(x) =
eλx

α

, as x → ±∞ using the asymptotic expansion of the confluent hypergeometric function 1F1.

Lemma 2. Consider G(x) in Proposition 1.

1. Then for |x| ≫ 1,

G(x) = x1F1

(

1

α
;
1

α
+ 1;λxα

)

∼















Γ
(

1
α + 1

) ei
π

α

λ
1

α

x

|x| +
eλx

α

αλxα−1
, if α is even,

Γ
(

1
α + 1

) ei
π

α

λ
1

α

+
eλx

α

αλxα−1
, if α is odd.

(2.9)
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2. Let α ≥ 2 and be even, and let λ = −β2, where β is a real number, preferably positive. Then

G(−∞) = lim
x→−∞

G(x) = lim
x→−∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

= − 1

β
2

α

Γ

(

1

α
+ 1

)

(2.10)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→+∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

=
1

β
2

α

Γ

(

1

α
+ 1

)

. (2.11)

3. And by the FTC,

∞
∫

−∞

e−β2xα

dx = G(+∞)−G(−∞)

=
1

β
2

α

Γ

(

1

α
+ 1

)

−
(

− 1

β
2

α

Γ

(

1

α
+ 1

)

)

=
2

β
2

α

Γ

(

1

α
+ 1

)

. (2.12)

P r o o f.

1. To prove (2.9), we use the asymptotic series for the confluent hypergeometric function that
is valid for |z| ≫ 1 ([1], formula 13.5.1),

1F1 (a; b; z)

Γ(b)
=

e±iπaz−a

Γ(b− a)

{

R−1
∑

n=0

(a)n(1 + a− b)n
n!

(−z)−n +O(|z|−R)

}

+
ezza−b

Γ(a)

{

S−1
∑

n=0

(b− a)n(1− a)n
n!

(z)−n +O(|z|−S)

}

, (2.13)

where a and b are constants, and the upper sign being taken if −π/2 < arg(z) < 3π/2 and
the lower sign if −3π/2 < arg(z) ≤ −π/2. We set z = λxα, a = 1

α and b = 1
α + 1, and obtain

1F1

(

1
α ;

1
α + 1;λxα

)

Γ
(

1
α + 1

) =
ei

π

α

(λxα)
1

α

{

R−1
∑

n=0

(

1
α

)

n

n!
(λxα)−n +O {λxα)−R

}

+
eλx

α

(λxα)−1

Γ
(

1
α

)

{

S−1
∑

n=0

(

1− 1

α

)

n

(λxα)−n +O (λxα)−S

}

. (2.14)

Then, for |x| ≫ 1,

ei
π

α

(λxα)
1

α

{

R−1
∑

n=0

(

1
α

)

n

n!
(λxα)−n +O {λxα)−R

}

∼















ei
π

α

λ
1

α

1

|x| , if α is even,

ei
π

α

λ
1

α

1

x
, if α is odd,

(2.15)

while

eλx
α

(λxα)−1

Γ
(

1
α

)

{

S−1
∑

n=0

(

1− 1

α

)

n

(λxα)−n +O (λxα)−S

}

∼ eλx
α

Γ
(

1
α

)

λxα
. (2.16)
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And so, for |x| ≫ 1,

1F1

(

1
α ;

1
α + 1;λxα

)

Γ
(

1
α + 1

) ∼



















ei
π

α

λ
1

α

1

|x| +
eλx

α

Γ
(

1
α

)

λxα
, if α is even,

ei
π

α

λ
1

α

1

x
+

eλx
α

Γ
(

1
α

)

λxα
, if α is odd.

(2.17)

Hence,

G(x) = x1F1

(

1

α
;
1

α
+ 1;λxα

)

∼















Γ
(

1
α + 1

) ei
π

α

λ
1

α

x

|x| +
eλx

α

αλxα−1
, if α is even,

Γ
(

1
α + 1

) ei
π

α

λ
1

α

+
eλx

α

αλxα−1
, if α is odd.

(2.18)

2. Setting λ = −β2, where β is real and positive and using (2.9), then for α even,

G(x) = x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

∼ 1

β
2

α

Γ

(

1

α
+ 1

)

x

|x| −
e−β2xα

αβ2xα−1
. (2.19)

Therefore,

G(−∞) = lim
x→−∞

G(x) = lim
x→−∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

= − 1

β
2

α

Γ

(

1

α
+ 1

)

(2.20)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→+∞

x1F1

(

1

α
;
1

α
+ 1;−β2xα

)

=
1

β
2

α

Γ

(

1

α
+ 1

)

. (2.21)

3. By the Fundamental Theorem of Calculus, we have

+∞
∫

−∞

e−β2xα

dx = lim
y→−∞

0
∫

y

e−β2xα

dx+ lim
y→+∞

y
∫

0

e−β2xα

dx

= lim
y→+∞

y 1F1

(

1

α
;
1

α
+ 1;−β2yα

)

− lim
y→−∞

y 1F1

(

1

α
;
1

α
+ 1;−β2yα

)

= G(+∞)−G(−∞)

=
1

β
2

α

Γ

(

1

α
+ 1

)

−
(

− 1

β
2

α

Γ

(

1

α
+ 1

)

)

=
2

β
2

α

Γ

(

1

α
+ 1

)

.

(2.22)

We now verify whether (2.22) is correct or not by double integration. We first observe that
(2.22) is valid for all even α ≥ 2. And so, if (2.22) is verified for α = 2, we are done since (2.22) is
valid for all even α ≥ 2. For α = 2, we have

+∞
∫

−∞

e−β2x2

dx = lim
y→−∞

0
∫

y

e−β2x2

dx+ lim
y→+∞

y
∫

0

e−β2x2

dx

= lim
y→+∞

y 1F1

(

1

2
;
3

2
;−β2y2

)

− lim
y→−∞

y 1F1

(

1

2
;
3

2
;−β2y2

)

= G(+∞)−G(−∞) =
2

β
Γ

(

3

2

)

=
2

β

√
π

2
=

√
π

β
.

(2.23)
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On the other hand,





∞
∫

−∞

e−β2x2

dx





2

=





∞
∫

−∞

e−β2x2

dx









∞
∫

−∞

e−β2y2dy



 (2.24)

=

∞
∫

−∞

∞
∫

−∞

e−β2(x2+y2)dydx. (2.25)

In polar coordinate,

∞
∫

−∞

∞
∫

−∞

e−β2(x2+y2)dydx =

2π
∫

0

∞
∫

0

e−β2r2rdrdθ =
1

2β2

2π
∫

0

dθ =
π

β2
. (2.26)

This gives
∞
∫

−∞

e−β2x2

dx =

√

√

√

√

√

∞
∫

−∞

∞
∫

−∞

e−(x2+y2)dydx =

√
π

β
(2.27)

as before. �

Example 4. Setting λ = −β2 = −1, β = 1 and α = 2 in Lemma 2 gives

G(−∞) = lim
x→−∞

G(x) = lim
x→−∞

x 1F1

(

1

2
;
3

2
;−x2

)

= −
√
π

2
(2.28)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→+∞

x 1F1

(

1

2
;
3

2
;−x2

)

=

√
π

2
. (2.29)

This implies θ =
√
π/2 in Lemma 1. And this is exactly the value of G(x) as x → ∞ in Figure 1.

We also have limx→−∞G(x) = −θ = −√
π/2 as in Figure 1. Using the FTC, we readily obtain

0
∫

−∞

e−x2

dx = G(0) −G(−∞) = 0−
(

−
√
π

2

)

=

√
π

2
, (2.30)

+∞
∫

0

e−x2

dx = G(+∞)−G(0) =

√
π

2
− 0 =

√
π

2
(2.31)

and
+∞
∫

−∞

e−x2

dx = G(+∞)−G(−∞) =

√
π

2
−
(

−
√
π

2

)

=
√
π. (2.32)

Example 5. In this example, the integral

x
∫

−∞

et
2n+1

dt, x < ∞, (2.33)
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where n is a positive integer, is evaluated using Proposition 1 and the asymptotic expression (2.9).
Setting λ = 1 and α = 2n+ 1 in Proposition 1 , and using (2.9) gives

x
∫

−∞

et
2n+1

dt = lim
y→−∞

x
∫

y

et
2n+1

dt

= x 1F1

(

1

2n + 1
;
2n+ 2

2n+ 1
;x2n+1

)

− lim
y→−∞

y 1F1

(

1

2n+ 1
;
2n + 2

2n + 1
; y2n+1

)

= x 1F1

(

1

2n + 1
;
2n+ 2

2n+ 1
;x2n+1

)

− Γ

(

2n + 2

2n + 1

)

, x < ∞.

(2.34)

One can also obtain

+∞
∫

x

e−t2n+1

dt = lim
y→+∞

y
∫

x

e−t2n+1

dt

= lim
y→−∞

y 1F1

(

1

2n+ 1
;
2n + 2

2n + 1
;−y2n+1

)

− x 1F1

(

1

2n+ 1
;
2n+ 2

2n+ 1
;−x2n+1

)

= Γ

(

2n + 2

2n + 1

)

− x 1F1

(

1

2n+ 1
;
2n+ 2

2n+ 1
;−x2n+1

)

, x > −∞.

(2.35)

Theorem 1. For any A and B, the FTC gives

B
∫

A

eλx
α

dx = G(B)−G(A), (2.36)

where G is the antiderivative of the function g(x) = eλx
α

and is given in Proposition 1. And λ is
any complex or real constant, and α ≥ 2.

P r o o f. G(x) = x 1F1

(

1
α ;

1
α + 1;λxα

)

, where λ is any constant, is the antiderivative of
g(x) = eλx

α

, α ≥ 2 by Proposition 1, Lemma 1 and Lemma 2. And since the FTC works for
A = −∞ and B = 0 in (2.30), A = 0 and B = +∞ in (2.31) and A = −∞ and B = +∞ in (2.32)
by Lemma 2 if λ = 1 and α = 2, and for all λ < 0 and all even α ≥ 2, then it has to work for other
values of A,B ∈ R and for any λ ∈ C and α ≥ 2. This completes the proof. �

Example 6. In this example, we apply Theorem 1 to the Central Limit Theorem in Probability
theory [2]. The normal zero-one distribution of a random variable X is the measure µ(dx) =
gX(x)dx, where dx is the Lebesgue measure and the function gX(x) is the probability density
function (p.d.f) of the normal zero-one distribution [2], and is

gX(x) =
1√
2π

e−
x
2

2 ,−∞ < x < +∞. (2.37)

A comparison with the function g(x) in Proposition 1 and Lemma 1 gives λ = β2 = −1/2 and
α = 2. By Theorem 1, the cumulative probability, P (X < z), is then given by
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P (X < z) = µ{(−∞, z)} =

z
∫

−∞

gX(x)dx =
1√
2π

z
∫

−∞

e−
x
2

2 dx =
1

2
+

z√
2π

1F1

(

1

2
;
3

2
;−z2

2

)

. (2.38)

For example, we can also use Theorem 1 to obtain P (−2 < X < 2) = µ(−2, 2) = 0.4772 −
(−0.4772) = 0.9544, P (−1 < X < 2) = µ(−1, 2) = 0.4772 − (−0.3413) = 0.8185 and so on.

Example 7. Using integration by parts and applying Theorem 1, the Maxwell-Bortsman distri-
bution is written in terms of the confluent hypergeometric 1F1 as

F (v) = θ

v
∫

0

x2e−γx2

dx = −θv

2γ
e−γv2 +

θv

2γ
1F1

(

1

2
;
3

2
;−γv2

)

=
θv

2γ

[

1F1

(

1

2
;
3

2
;−γv2

)

− e−γv2
]

.

(2.39)

3. Other related non-elementary integrals

Proposition 2. The function G(x) = x 1F2

(

1
2α ;

1
2 ,

1
2α + 1; λ

2x2α

4

)

, where 1F2 is a hypergeo-

metric function [1], λ is an arbitrarily constant and α ≥ 2, is the antiderivative of the function
g(x) = cosh (λxα). Thus,

∫

cosh (λxα)dx = x 1F2

(

1

2α
;
1

2
,
1

2α
+ 1;

λ2x2α

4

)

+C. (3.1)

P r o o f. We proceed as before. We expand g(x) = cosh (λxα) as a Taylor series and integrate
the series term by term, use the Pochhammers notation [1] for the gamma function, Γ(a + n) =
Γ(a)(a)n, where (a)n = a(a+1) · · · (a+n− 1), and the property of the gamma function Γ(a+1) =
aΓ(a) [1]. We also use the Gamma duplication formula [1]. We then obtain

∫

g(x)dx =

∫

cosh (λxα)dx =

∞
∑

n=0

λ2n

(2n)!

∫

x2αndx

=
∞
∑

n=0

λ2n

(2n)!

x2αn+1

2αn + 1
+ C

=
x

2α

∞
∑

n=0

(λ2x2α)n

(2n)!
(

n+ 1
2α

) + C

=
x

2α

∞
∑

n=0

Γ
(

n+ 1
2α

)

Γ(2n+ 1)Γ
(

n+ 1
2α + 1

)(λ2x2α)n + C

= x
∞
∑

n=0

(

1
2α

)

n
(

1
2

)

n

(

1
2α + 1

)

n

(λ2x2α)n

n!
+ C

= x 1F2

(

1

2α
;
1

2
,
1

2α
+ 1;

λ2x2α

4

)

+ C = G(x) +C. �

(3.2)

Proposition 3. The function

G(x) =
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;
λ2x2α

4

)

,
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where 1F2 is a hypergeometric function [1], λ is an arbitrarily constant and α ≥ 2, is the antideriva-
tive of the function g(x) = sinh (λxα). Thus,

∫

sinh (λxα)dx =
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;
λ2x2α

4

)

+ C. (3.3)

P r o o f. As above, we expand g(x) = sinh (λxα) as a Taylor series and integrate the series
term by term, use the Pochhammers notation [1] for the gamma function, Γ(a + n) = Γ(a)(a)n,
where (a)n = a(a + 1) · · · (a + n − 1), and the property of the gamma function Γ(a + 1) = aΓ(a)
[1]. We also use the Gamma duplication formula [1]. We then obtain

∫

g(x)dx =

∫

sinh (λxα)dx =

∞
∑

n=0

λ2n+1

(2n + 1)!

∫

x2αn+αdx

=
∞
∑

n=0

λ2n+1

(2n + 1)!

x2αn+α+1

2αn + α+ 1
+ C

=
λxα+1

2α

∞
∑

n=0

(λ2x2α)n

(2n + 1)!
(

n+ 1
2α + 1

2

) + C

=
λxα+1

2α

∞
∑

n=0

Γ
(

n+ 1
2α + 1

2

)

Γ(2n + 2)Γ
(

n+ 1
2α + 3

2

)(λ2x2α)n + Cr

=
λxα+1

α+ 1

∞
∑

n=0

(

1
2α + 1

2

)

n
(

3
2

)

n

(

1
2α + 3

2

)

n

(λ2x2α)n

n!
+ C

=
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;
λ2x2α

4

)

+ C = G(x) + C. �

(3.4)

We also can show as above that
∫

cos (λxα)dx = x 1F2

(

1

2α
;
1

2
,
1

2α
+ 1;−λ2x2α

4

)

+ C (3.5)

and
∫

sin (λxα)dx =
λxα+1

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;−λ2x2α

4

)

+ C. (3.6)

Theorem 2. For any constants α and λ,

1F2

(

1

2α
;
1

2
,
1

2α
+ 1;

λ2x2α

4

)

=
1

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

(3.7)

and

1F2

(

1

2α
;
1

2
,
1

2α
+ 1;−λ2x2α

4

)

=
1

2

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

. (3.8)

P r o o f. Using Proposition 1, we obtain

∫

cosh (λxα)dx =

∫

eλx
α

+ e−λxα

2
dx

=
x

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

+ C. (3.9)
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Hence, comparing (3.1) with (3.9) gives (3.7). Using Proposition 1, on the other hand, we obtain

∫

cos (λxα)dx =

∫

eiλx
α

+ e−iλxα

2
dx

=
x

2

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

+ 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

+ C. (3.10)

Hence, comparing (3.5) with (3.10) gives (3.8). �

Theorem 3. For any constants α and λ,

λxα

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;−λ2x2α

4

)

=
1

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

− 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

(3.11)

and

λxα

α+ 1
1F2

(

1

2α
+

1

2
;
3

2
,
1

2α
+

3

2
;−λ2x2α

4

)

=
1

2i

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

− 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

. (3.12)

P r o o f. Using Proposition 1, we obtain

∫

sinh (λxα)dx =

∫

eλx
α

+ e−λxα

2
dx

=
x

2

[

1F1

(

1

α
;
1

α
+ 1;λxα

)

− 1F1

(

1

α
;
1

α
+ 1;−λxα

)]

+ C. (3.13)

Hence, comparing (3.3) with (3.13) gives (3.11). Using Proposition 1, on the other hand, we obtain

∫

sin (λxα)dx =

∫

eiλx
α

+ e−iλxα

2i
dx

=
x

2i

[

1F1

(

1

α
;
1

α
+ 1; iλxα

)

− 1F1

(

1

α
;
1

α
+ 1;−iλxα

)]

+ C. (3.14)

Hence, comparing (3.6) with (3.14) gives (3.12). �

4. Conclusion

The non-elementary integral
∫

eλx
α

dx, where λ is an arbitrary constant and α ≥ 2, was ex-
pressed in term of the confluent hypergeometric function 1F1. And using the properties of the
confluent hypergeometric function 1F1, the asymptotic expression for |x| ≫ 1 of this integral was
derived too. As established in Theorem 1, the definite integral (1.6) can now be computed using the
FTC. For example, one can evaluate the area under the Gaussian Bell curve using the FTC rather
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than using double integration and then polar coordinates. One can also choose to use Theorem 1 to
compute the cumulative probability for the normal distribution or that for the Maxwell-Bortsman
distribution as shown in examples 6 and 7.

On one hand, the integrals
∫

cosh(λxα)dx,
∫

sinh(λxα)dx,
∫

cos(λxα)dx and
∫

sin(λxα)dx,
α ≥ 2, were evaluated in terms of the confluent hypergeometric function 1F1, while on another
hand, they were expressed in terms of the hypergeometric 1F2. This allowed to express the hyper-
geometric function1F2 in terms of the confluent hypergeometric function 1F1 (Theorems 2 and 3).
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