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Abstract: A graph G is splittable if its set of vertices can be represented as the union of a clique and a
coclique. We will call a graph H a splittable ancestor of a graph G if the graph G is reducible to the graph H
using some sequential lifting rotations of edges and H is a splittable graph. A splittable r-ancestor of G we will
call its splittable ancestor whose Durfey rank is r. Let us set s = (1/2)(sum tl(λ) − sumhd(λ)), where hd(λ)
and tl(λ) are the head and the tail of a partition λ. The main goal of this work is to prove that any graph
G of Durfey rank r is reducible by s successive lifting rotations of edges to a splittable r-ancestor H and s is
the smallest non-negative integer with this property. Note that the degree partition dpt(G) of the graph G can
be obtained from the degree partition dpt(H) of the splittable r-ancestor H using a sequence of s elementary
transformations of the first type. The obtained results provide new opportunities for investigating the set of all
realizations of a given graphical partition using splittable graphs.
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1. Introduction

Everywhere we mean by a graph a simple graph, i. e., a graph without any loops and multiple
edges. We will adhere to the terminology and notation from [1, 2, 6].

An integer partition, or simply, a partition is a non-increasing sequence λ = (λ1, λ2, . . . ) of
non-negative integers that contains only a finite number of non-zero components (see [1]).

Let sumλ denote the sum of all components of a partition λ and called it the weight of the
partition λ. It is often said that a partition λ is a partition of the non-negative integer n = sumλ.
The length ℓ(λ) of a partition λ is the number of its non-zero components. For convenience, a
partition λ will often be written as λ = (λ1, . . . , λt), where t ≥ ℓ(λ), i. e., we will omit zeros,
starting from some zero component without forgetting that the sequence is infinite.

We will say that the partition (λ1, . . . , λi − 1, . . . , λj + 1, . . . ) is obtained from the partition
(λ1, . . . , λi, . . . , λj , . . . ) by an elementary transformation of the first type. An elementary transfor-
mation of the second type is a reduction of some partition component by 1.

A partition can conveniently be depicted as a Ferrers diagram, which can be thought of as a set
of square boxes of the same size (see the example below in Fig. 1). We will use Cartesian notation
for Ferrers diagrams.

For each partition λ, we will consider a conjugate partition λ∗ whose components are equal to
the number of boxes in the corresponding rows of the Ferrers diagram of the partition λ.

We determine the rank r(λ) of the partition λ by setting r(λ) = max{i|λi ≥ i}. Obviously, the
rank r = r(λ) of a partition λ is equal to the number of boxes on the main diagonal of the Ferrers
diagram of this partition.

As the head hd(λ) we take the partition that is obtained from the partition λ by reducing the
first r components by the same number r − 1 and zeroing all components with numbers r + 1,
r + 2, . . . (for an example, see the diagram in Fig. 2).
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Figure 1. The Ferrers diagram of the partition (6, 5, 4, 4, 3, 2, 1, 1).

As the tail tl(λ) we take a partition for which the Ferrers diagram of the conjugate partition
is obtained from the Ferrers diagram of the partition λ by deleting the first r columns, i. e. the
Ferrers diagram of the partition tl(λ)∗ is located to the right of the Durfey square (see Fig. 2).

Figure 2. The head hd(λ) = (3, 2, 1, 1) and the tail tl(λ) = (4, 2, 1) of the partition (6, 5, 4, 4, 3, 2, 1, 1).

The theory of partitions is one of the classical areas of combinatorics. Its foundations were laid
by L. Euler. Information about the achievements of the theory of partitions can be found in [1].

This work continues the cycle of researches by V.A. Baransky, T.A. Koroleva, T.A. Senchonok
and V.V. Zuev, which uses the method of elementary transformations for partitions and the as-
sociated method of rotating edges in graphs. Using these methods, new results were obtained on
some details of the structure of the lattice of partitions and the properties of graphical partitions,
including maximal graphical partitions. Results were also obtained on the connection of graphs
with threshold graphs, and an important class of bipartite-threshold graphs was considered (a brief
overview of the results obtained is contained in [2]).

Let (x, v, y) be a triple of different vertices of a graph G = (V,E) such that xv ∈ E and vy /∈ E.
We call such a triple

1) lifting if deg(x) ≤ deg(y),
2) lowering if deg(x) ≥ 2 + deg(y),
3) preserving if deg(x) = 1 + deg(y).

A transformation ϕ of a graph G such that ϕ(G) = G − xv + vy, i. e., the edge xv is first
removed from G and then the edge vy is added, is called a rotation of the edge (in the graph G
around vertex v), corresponding to the triple (x, v, y).

The rotation of an edge in a graph G corresponding to the triple (x, v, y) is called

1) lifting if the triple (x, v, y) is lifting,
2) lowering if the triple (x, v, y) is lowering,
3) preserving if the triple (x, v, y) is preserving.

We will consider the cases where deg(x) = 1 or deg(y) = 0 are admissible, i. e., after the edge
is rotated, an isolated vertex may appear, or the edge will rotate in the graph G with the addition
of a new isolated vertex. Note that a rotation of an edge in a graph G is lifting if and only if its
inverse rotation is lowering.
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A graph G is called splittable (see, for example, [6]) if its set of vertices can be represented as
the union of a clique and a coclique.

These graphs were introduced in [3], where it was shown, that G is splittable if and only if it
does not have an induced subgraph isomorphic to one of the three forbidden graphs C4, C5, or 2K2.

R.I. Tyshkevich used splittable graphs to study unigraphic partitions, i.e., graphic partitions
that have a unique realization up to isomorphism and isolated vertices [9].

Many other characterizations and properties of splittable graphs have been discovered (see
[7, Ch. 8–9] and [8]). Among them is the fact that whether a graph G is splittable can be
determined from its degree sequence dpt(G) [5]. In our terminology, such a condition is equivalent
to the following equality sum(hd(λ)) = sum(tl(λ)), where λ = dpt(G) [2]. Note that the graph G
is threshold if and only if hd(λ)) = tl(λ).

We will call a graph H a splittable ancestor of a graph G if the graph G is reducible to the graph
H using some sequential lifting rotations of edges and H is a splittable graph. Note that the graph
G can be obtained from H by sequentially performing lowering rotations of edges. It is important
to note that therefore dpt(H) can be obtained from dpt(G) using elementary transformations of
the first type. This means that the partition dpt(H) lies above the partition dpt(G) in the lattice
of all partitions of the weight sum(dpt(G)).

A Durfey rank of a graph G is the rank (i. e., Durfey rank) of its degree partition, i. e., the
number of boxes on the main diagonal of the Ferrers diagram of dpt(G).

Let G be an arbitrary graph with vertex set V , r is the Durfey rank and n is the cardinality of
vertices of G. Let q be a natural number such that 1 ≤ q < n.

An ordered pair (V1, V2) of subsets of a set V will be called a 2-decomposition of rank q of the
set V if |V1| = q, |V2| = n− q and V = V1

⊔
V2, i. e., V is the disjoint union of the sets V1 and V2

(here the sets V1 and V2 do not intersect). We will sometimes omit the words “rank q” if we know
what rank we are talking about. The sets V1 and V2 will be called the first and second components
of the 2-decomposition, respectively.

In this work, we will consider 2-decompositions of rank r of the set V , where r is the Durfey
rank of G, i. e., at q = r.

Among 2-decompositions (V1, V2) of rank r of the set V we select special 2-decompositions,
which we will call principal 2-decompositions of the graph G, for which all vertices of the set V1

have degrees greater than or equal to r, and all vertices of the set V2 have degrees less than or
equal to r.

Let the degree partition of the graph G have the form

λ = dpt(G) = (λ1, . . . , λr, λr+1, . . . , λn),

r is the rank of the partition λ and n is the number of vertices. Let us order the set of vertices
V = {v1, . . . , vr, vr+1, . . . , vn} of the graph G in such a way that

λ1 = deg v1 ≥ · · · ≥ λr = deg vr ≥ r ≥ λr+1 = deg vr+1 ≥ · · · ≥ λn = deg vn.

We can obtain the principal 2-decomposition (V1, V2) of the graph G by setting

V1 = {v1, . . . , vr} and V2 = {vr+1, . . . , vn}.

Let u ∈ V1, v ∈ V2 and vertices u and v have the same degrees equal to r. Let us move on to a
new principal 2-decomposition (V ′

1 , V
′
2) of the graph G by setting

V ′
1 = V1 − u+ v and V ′

2 = V2 − v + u.

This procedure we will called a procedure of exchanging vertices of degree r from the sets V1 and V2.
It transforms the principal 2-decomposition (V1, V2) to the principal 2-decomposition (V ′

1 , V
′
2) of
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the graph G. It is clear that using sequences of exchanges of vertices of degree r from any principal
2-decomposition (V1, V2) one can obtain all principal 2-decompositions of the graph G. It is easy
to see that the principal 2-decompositions of a graph G can differ from each other only by vertices
of degree r in the first and the second components.

Let (V1, V2) be an arbitrary 2-decomposition of the set V of vertices of a graph G. Then the
set E of all edges of the graph G connecting vertices from V1 with vertices from V2 will be called a
section of the graph G corresponding to the 2-decomposition (V1, V2). We will call a bipartite graph
(V1, E, V2) the sandwich subgraph of the graph G corresponding to the 2-decomposition (V1, V2).

We have hd(λ) ≤ tl(λ) by virtue of the ht-criterion [2], where hd(λ) and tl(λ) are the head and
the tail of the partition λ, and the integer sum tl(λ)− sumhd(λ) is even. Let us set

s =
1

2
(sum tl(λ)− sumhd(λ)).

Let r is the Durfey rank of a graph G. A splittable r-ancestor of G we will called its splittable
ancestor whose Durfey rank is r.

The main goal of this study is to prove the following theorem.

Theorem 1. Let G be an arbitrary graph whose Durfey rank is equal to r and λ = dptG.

1. Let (V1, V2) be a principal 2-decomposition of the graph G. Then the graph G is reduced to a
splittable r-ancestor H ′ = (K(V1), E

′, V2) by means of some sequential execution of s lifting
edge rotations, and s is the smallest non-negative integer with this property.

2. Let (V ′
1 , V

′
2) be a non-principal 2-decomposition of the set of vertices V of the graph G and

the graph G is reducible to some splittable r-ancestor of the form H ′ = (K(V ′
1), E

′, V ′
2) by

sequentially performing of t lifting rotations of edges. Then t > s.

We see that any graph of Durfey rank r is reducible by s successive lifting rotations of edges to
a splittable graph of Durfey rank r, and s is the smallest non-negative integer with this property.

Let a splittable graph H ′ = (K(V1), E
′, V2) be obtained from a graph G using some sequential

execution of s lifting edge rotations, where (V1, V2) is some 2-decomposition of the set of vertices
of the graph G. Then the graph G can be obtained from the splittable graph H ′ using an inverse
sequence consisting of s lowering edge rotations. Therefore, the degree partition dpt(G) of the
graph G can be obtained from the degree partition dpt(H ′) of the graph H ′ using a sequence of s
elementary transformations of the first type [2].

Let r is the Durfey rank of a graph G. Its closest splittable r-ancestor is a splittable graph H ′,
which has Durfey rank r and which can be obtained from the graph G by some sequential execution
of s lifting rotations of edges.

Next, we present an algorithm (see Algorithm 1 and Lemma 6) for finding all closest splittable
r-ancestors of a graph G.

Corollary 1. Let G be a graph of Durfey rank r. Then the graph G is obtainable from some
of its closest splittable r-ancestor using a sequence consisting of

s =
1

2
(sum tl(dpt(G)) − sumhd(dpt(G)))

lowering rotations of edges, and the degree partition dpt(G) of the graph G is obtainable from the
degree partition dpt(H ′) of the graph H ′ using a sequence of s elementary transformations of the
first type.
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Figure 3. The graph G with Durfey rank 2 and its two non-isomorphic closest splittable 2-ancestors.

Example 1. Figure 3 shows an example of a graph G of Durfey rank 2 and its two non-
isomorphic closest splittable 2-ancestors, each obtained from G by a single lifting rotation of an
edge. Note that here s = 1 and the clique V1 in the graphs H ′

1 and H ′
2 is two-element. It is easy to

check that for each i = 1, 2 the degree partition dpt(G) of the graph G is obtained from the degree
partition dpt(H ′

i) of the graph H ′
i using one elementary transformation of the first type.

For a graphG of Durfey rank r, consider the family of all closest splittable r-ancestors, consisting
of pairwise non-isomorphic graphs without isolated vertices. Let us denote this family by CSrA(G).

Let λ = dpt(G). Let CSrA(λ) denote a family of graphs that is equal to the union of families
CSrA(G), when G runs through all realizations of the partition λ on the set V , i. e., this is the set
of all closest splittable r-ancestors of all realizations (up to isomorphism and isolated vertices) of
the partition λ.

It is useful to note that the operation swap of switching edges in alternating 4-cycles does not
change the set V of vertices of the graph [4], therefore all realizations of the partition λ can be
considered up to isomorphism and isolated vertices on some single set V .

Note that it would be interesting to find a fairly simple description of the family CSrA(λ), since
from the graphs of this family one can obtain, by Corollary 1, all realizations of the partition λ
using sequences consisting of s lowering rotations of edges. This fact makes it possible to study the
family of all realizations of the partition λ without using switching edges operation [4] in graphs.

2. Proof of the main results

We first present four auxiliary lemmas and one algorithm.

Lemma 1. Let H = (K(V1), E1, V2) be a splittable graph, µ = dpt(H), V1 be a clique of
cardinality r = r(µ), consisting of elements of degrees µ1, . . . , µr greater than or equal to r, and V2

be a coclique consisting of elements of degrees µr+1, . . . , µn less than or equal to r, where n is the
number of elements of the graph H. Then sumhd(µ) = sumtl(µ).

P r o o f. Let us remove all edges of the form e = uv from the graph H, where u, v ∈ V1. We
obtain a bipartite graph H1 = (V1, E1, V2), which is a sandwich subgraph of the graph H and for
which dptH1

(V1) = hd(µ) and dptH1
(V2) = tl∗(µ) (see [2]). Therefore, we have sumhd(µ) = |E1| =

sumtl∗(µ) = sumtl(µ). �

Lemma 2. Let (V1, V2) be an arbitrary principal 2-decomposition of a graph G whose Durfey
rank is r. Let e = vx be an edge of the graph G such that v, x ∈ V2. Then there is a vertex y ∈ V1

for which the triple (x, v, y) is lifting (see Fig. 4). Let us denote by H the graph that obtainable from
the graph G using the lifting rotation of edge corresponding to this triple. Then for the graph H we
have

• deg u ≥ r for any vertex u ∈ V1;
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• deg u ≤ r for any vertex u ∈ V2;
• the Durfey rank of the graph H is equal to r and the pair (V1, V2) remains a principal 2-

decomposition for graph H;
• sumhd(λ) + 1 = sumhd(η), sum tl(λ)− 1 = sum tl(η), where η = dpt(H).

P r o o f. Since v ∈ V2, we have deg v ≤ r. If v is adjacent to all vertices from V1, then, taking
into account the edge e = vx, we obtain deg v ≥ r+ 1 which is contradictory. Therefore, there is a
vertex y ∈ V1 that is not adjacent to v and for which obviously holds deg y ≥ r ≥ deg x (see Fig. 4).
Therefore, the triple (x, v, y) is lifting. It is clear that for a graph H obtained from a graph G using

v1 y vr vr+1 v x

e

vn

Figure 4. The lifting rotation of the edge e = vx in the graph G.

the lifting rotation corresponding to this triple, the conclusions of the lemma are satisfied in the
obvious way. �

Lemma 3. Let (V1, V2) be an arbitrary principal 2-decomposition of a graph G whose Durfey
rank is equal to r. Let the vertices y, v ∈ V1 of the graph G be distinct and not adjacent. Then
there is a vertex x ∈ V2 for which the triple (x, v, y) is lifting (see Fig. 5). Let us denote by H
the graph that obtainable from the graph G using the lifting rotation of edge corresponding to this
triple. Then for the graph H holds

• deg u ≥ r for any vertex u ∈ V1;
• deg u ≤ r for any vertex u ∈ V2;
• Durfey rank of the graph H is equal to r and the pair (V1, V2) remains a principal 2-

decomposition for graph H;
• hd(λ) + 1 = sumhd(η), sum tl(λ)− 1 = sumtl(η), where η = dpt(H).

P r o o f. If v is not adjacent to all vertices from V2, then by virtue of the equality |V1| = r
we have deg v < r, which is contradictory. Therefore, there is a vertex x ∈ V2 that is adjacent to v
and for which it obviously holds deg y ≥ r ≥ deg x (see Fig. 5).

v1 y v vr vr+1 x vn

Figure 5. The lifting rotation of edge e = vx in the graph G.

Therefore, the triple (x, v, y) is lifting. It is clear that for a graph H obtained from a graph G
using the lifting rotation corresponding to this triple, the conclusions of the lemma are satisfied in
the obvious way. �

Let (V1, V2) be an arbitrary 2-decomposition of rank r of the set V of vertices of a graph G.
Let by W1(G,V1, V2) we denote the set of all pairs of non-adjacent distinct vertices from V1,

and by W2(G,V1, V2) we denote the set of all pairs of adjacent vertices from V2, i. e., the number
of pairs of vertices from V2 that are connected by edges of the graph G.
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Through

w(G,V1, V2) = w1(G,V1, V2) + w2(G,V1, V2)

we will denote the weight of the 2-decomposition (V1, V2) of the graph G, where

w1 = |W1(G,V1, V2)| and w2 = |W2(G,V1, V2)|.

Let (V1, V2) be any principal 2-decomposition of a graph G. Based on Lemmas 2 and 3, the
following algorithm obviously leads to the construction of a splittable r-ancestors of the graph G
of the form H ′ = (K(V1), E

′, V2) using t = w(G,V1, V2) lifting rotations of edges.

Algorithm 1. Let G be an arbitrary graph of Durfey rank r, λ = degG and (V1, V2) be a
principal 2-decomposition.

1. Let H0 = G.
2. Let the graph Hi be constructed from the graph H0 using i lifting rotations of edges, where

0 ≤ i < w(G,V1, V2) and w(Hi, V1, V2) = w(G,V1, V2)− i.

Perform any of the following two actions (a) or (b).

(a) If there is an edge e = vx of the graph Hi such that v, x ∈ V2, then by Lemma 2 there is
a vertex y ∈ V1 for which the triple (x, v, y) is lifting. Let us denote by Hi+1 the graph
that is obtained from the graph Hi using the lifting rotation of edge corresponding to
this triple.

(b) If there are two distinct non-adjacent vertices y, v ∈ V1 of the graph Hi, then by
Lemma 3 there is a vertex x ∈ V2 for which the triple (x, v, y) is lifting. Let us denote
by Hi+1 the graph that is obtained from the graph Hi using the lifting rotation of edge
corresponding to this triple.

3. Step 2 perform t times, where t = w(G,V1, V2). As a result, a splittable r-ancestor Ht =
(K(V1), Et, V2) of the graph G will be constructed.

Proving Theorem 1, we will establish along the way that using Algorithm 1 we can find all the
closest splittable r-ancestors of the graph G.

Let (V1, V2) be an arbitrary 2-decomposition of rank r of the set V of vertices of a graph G.
Then |V1| = r and |V2| = n− r, where n is the number of vertices of the graph G.

Let u ∈ V1 and v ∈ V2. Let by w(G,u ∈ V1, v ∈ V2) we denote the sum of the number of
vertices from V1 that are not adjacent to u and distinct from u, as well as the number of vertices
from V2 adjacent to v. We will call this integer by a contribution of the pair of vertices u and v to
the weight w(G,V1, V2) of the 2-decomposition (V1, V2) of the graph G.

For an arbitrary vertex z of the graph G, let D1(z) and D2(z) denote, respectively, the number
of vertices from V1 and V2 adjacent to vertex z. Let us also put d1(z) = |D1(z)| and d2(z) = |D2(z)|.
Then obviously deg z = d1(z) + d2(z).

Lemma 4. Let (V ′
1 , V

′
2) be an arbitrary 2-decomposition of rank r of the set V of vertices

of a graph G, where r is the Durfey rank of this graph. Let u ∈ V ′
1 and v ∈ V ′

2 . Let us put
V ′′
1 = V ′

1 − u + v and V ′′
2 = V ′

2 − v + u. (This procedure we will call, as before, the exchanging
vertices in 2-decomposition.) Then the 2-decomposition (V ′′

1 , V
′′
2 ) has rank r and it holds

1) if deg u < deg v in graph G, then w(G,V ′′
1 , V

′′
2 ) < w(G,V ′

1 , V
′
2);

2) if deg u = deg v in graph G, then w(G,V ′′
1 , V

′′
2 ) = w(G,V ′

1 , V
′
2).
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V ′
1

D1(u)
u

D2(u)

V ′
2

D1(v) v
D2(v)

Figure 6. Sets D1(u) and D1(v), as well as sets D2(u) and D2(v) may intersect.

V ′′
1

D1(u)
u

D2(u)−v

V ′′
2

D1(v)−u
v

D2(v)

Figure 7. Sets D1(u) and D1(v)− u, as well as sets D2(u)− v and D2(v) may intersect.

P r o o f. Let us first consider two cases.
1 case. Let vertices u and v be not adjacent in the graph G. Then (see Fig. 6)

w(G,u ∈ V ′
1 , v ∈ V ′

2) = r − 1− d1(u) + d2(v) = r − 1− d1(u) + deg v − d1(v),

w(G, v ∈ V ′′
1 , u ∈ V ′′

2 ) = r − 1− d1(v) + d2(u) = r − 1− d1(v) + deg u− d1(u).

2 case. Let vertices u and v be adjacent in the graph G. Then (see Fig. 7)

w(G,u ∈ V ′
1 , v ∈ V ′

2) = r − 1− d1(u) + d2(v) = r − 1− d1(u) + deg v − d1(v),

w(G, v ∈ V ′′
1 , u ∈ V ′′

2 ) = r − 1− (d1(v)− 1) + (d2(u)− 1)

= r − 1− d1(v) + 1 + deg u− d1(u)− 1 = r − 1− d1(v) + deg u− d1(u).

Thus, in each of the two cases considered, following equalities are satisfied

w(G,u ∈ V ′
1 , v ∈ V ′

2) = r − 1− d1(u) + deg v − d1(v),

w(G, v ∈ V ′′
1 , u ∈ V ′′

2 ) = r − 1− d1(v) + deg u− d1(u).

Finally, let’s look at two cases.

1. Let deg u < deg v in the graph G. Then, by virtue of the two equalities obtained, we have

w(G,u ∈ V ′
1 , v ∈ V ′

2) > w(G, v ∈ V ′′
1 , u ∈ V ′′

2 ),

i. e., the contribution of vertices u and v decreased when moving from the 2-decomposition
(V ′

1 , V
′
2) to the 2-decomposition (V ′′

1 , V
′′
2 ). This implies w(G,V ′′

1 , V
′′
2 ) < w(G,V ′

1 , V
′
2).

2. Let deg u = deg v in graph G. Then we have

w(G,u ∈ V ′
1 , v ∈ V ′

2) = w(G, v ∈ V ′′
1 , u ∈ V ′′

2 ).

This implies w(G,V ′′
1 , V

′′
2 ) = w(G,V ′

1 , V
′
2). �
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Lemma 4 has a simple meaning: if you exchange a vertex of a lower degree from V ′
1 in a

2-decomposition (V ′
1 , V

′
2) with a vertex of a higher degree from another component of this 2-

decomposition, then the weight will decrease when moving from a 2-decomposition (V ′
1 , V

′
2) to

a new 2-decomposition (V ′′
1 , V

′′
2 ).

Lemma 4 implies

Corollary 2. 1. Non-negative integers w(G,V1, V2) are the same for all principal 2-
decompositions (V1, V2) of the graph G.

2. Non-negative integer w(G,V1, V2) for principal 2-decomposition (V1, V2) of the graph G is less
than the same form integer for any non-principal 2-decomposition of rank r.

P r o o f. It is enough to note that principal 2-decompositions can differ only in the location
of vertices of degree r in their components. In addition, any non-principal 2-decomposition of
rank r comes to a principal 2-decomposition of rank r using a certain sequence of operations of
exchanging vertices. �

Lemma 5. Let (V1, V2) be an arbitrary 2-decomposition of rank q of the set V of vertices of
a graph G, where 1 ≤ q < n and n is the cardinality of V . Then any rotation of an edge in the
graph G can change the weight w(G,V1, V2) of the 2-decomposition (V1, V2) by no more than 1 when
moving to a new graph.

P r o o f. Let the rotation of the edge e = xv correspond to a triple (x, v, y). Vertices v and
y are different and not adjacent. The old edge e = xv and the new edge f = vy cannot lie in
different sets V1 and V2, since they have a common vertex v incident to them. This obviously
implies the statement of the lemma. �

P r o o f of Theorem 1. Let (V1, V2) be a principal 2-decomposition of a graph G. Let w1 =
w1(G,V1, V2) be the number of all pairs of distinct non-adjacent vertices from V1, w2 = w2(G,V1, V2)
be the number of all pairs of adjacent vertices from V2. Then

w = w(G,V1, V2) = w1(G,V1, V2) + w2(G,V1, V2) = w1 + w2.

Algorithm 1 reduce the graph G to a splittable r-ancestor of the form H ′ = (K(V1), E
′, V2) by

using w lifting rotations of edges.
By Lemmas 2 and 3 we have

sumhd(λ) + (w1 + w2) = sumhd(µ),

sum tl(λ)− (w1 + w2) = sumtl(µ),

where µ = dpt(H ′).
Since the splittable graph H ′ satisfies the conditions of Lemma 1, we obtain

sumhd(µ) = sumtl(µ),

which implies
sumhd(λ) + (w1 + w2) = sumtl(λ)− (w1 + w2).

Therefore,
2(w1 + w2) = sumtl(λ)− sumhd(λ) = 2s,

i. e., s = w1 + w2 = w.
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Let (V ′
1 , V

′
2) be an arbitrary 2-decomposition of the graph G. Suppose that the graph G is

reduced to a splittable graph H ′ = (K(V ′
1), E1, V

′
2) by t lifting rotations of edges, where V ′

1 is a
clique of cardinality r and V ′

2 is a coclique. Then obviously w(H ′, V ′
1 , V

′
2) = 0.

As t lifting rotations of the edges change the weight of 2-decomposition (V ′
1 , V

′
2) from

w(G,V ′
1 , V

′
2) to 0, by Lemma 5 the following holds:

t ≥ w(G,V ′
1 , V

′
2).

Let’s look at two cases.

1 case. If (V ′
1 , V

′
2) is the principal 2-decomposition of the graph G, then the resulting inequality,

due to the fact that w = s, gives t ≥ s and the proof of statement 1) of the theorem is completed.

2 case. Let (V ′
1 , V

′
2) be a non-principal 2-decomposition of the graph G. Then, taking into

account Corollary 2, we obtain

t ≥ w(G,V ′
1 , V

′
2) > w(G,V1, V2) = s,

where (V1, V2) is an arbitrary of the principal 2-decompositions of the set V of vertices of the
graph G. The proof of statement 2) is also completed. �

Lemma 6. Any closest splittable r-ancestor of a graph G can be obtained by some application
of Algorithm 1.

P r o o f. Let H ′ = (K(V ′
1), E

′, V ′
2) be some closest splittable r-ancestor of the graph G, i. e.,

it can be obtained from the graph G using a sequence of s lifting rotations of edges.

Then, by virtue of what was established in the proof of the theorem, the 2-decomposition
(V ′

1 , V
′
2) is the principal 2-decomposition of the graph G (here t = s). It is clear that in a sequence

of s lifting rotations of edges transforming G to H ′, each lifting rotation must decrease the weight
of the 2-decomposition (V ′

1 , V
′
2) by exactly 1, i. e., it must be performed in accordance with step 2

of Algorithm 1. �

Algorithm 1 we will call the algorithm for reducing a graph G to a closest splittable r-ancestor.

Of course, different implementations of this algorithm may produce different closest splittable
r-ancestors of the original graph G (see, for example, Fig. 3).

3. Conclusion

In conclusion, we note that in connection with Corollary 2 the following two problems are of
interest.

Firstly, we give a necessary definition. Let µ and λ be graphical partitions of the same weight
2m such that µ dominates λ. Let height(µ, λ) denote the height of the partition µ over the partition
λ in the lattice of all partitions of weight 2m, which is equal to the length of the shortest sequence
of elementary transformations of the first type transforming µ into λ (see [2]).

Problem 1. Let λ be a graphical partition of rank r. Find all graphical partitions µ of rank r
that dominate partition λ such that sumµ = sumλ,

sumhd(µ) = sumtl(µ) and height(µ, λ) =
1

2
(sumtl(λ)− sumhd(λ)).
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Note that the condition sumhd(µ) = sum tl(µ) means that any realization of the partition µ is
a splittable graph (see, for example, [2]). The condition

height(µ, λ) =
1

2
(sum tl(λ)− sumhd(λ))

means that using some s lowering rotations of edges for any realization of the partition µ leads to
a realization of the partition λ, where

s =
1

2
(sum tl(λ)− sumhd(λ)).

Problem 2. Let λ be a graphical partition of rank r.

1. For a given graph G of Durfey rank r, find the family CSrA(G) of all its closest splittable
r-ancestors.

2. Find the family CSrA(λ) of all splittable graphs, each of which is the closest splittable r-
ancestor for some realization of the partition λ.

3. Find a family of closest splittable r-ancestors of some realizations of the partition λ such that

• every realization of the partition λ can be obtain (up to isomorphism and isolated ver-
tices) from element of this family by sequentially applying s lowering rotations of edges
where s = (1/2)(sum tl(λ)− sumhd(λ)),

• this family has the smallest possible number of elements.

The work [2] gives an example of a partition λ = (4, 3, 2, 2, 2, 1), for which r = 2 and s = 1 such
that each of its realizations can be obtained from a common splittable 2-ancestor using a single
lowering rotation of an edge.

In conclusion, let us give another example that shows that one splittable r-ancestor may not
be sufficient to obtain all realizations of a given partition λ of rank r by sequentially applying s
lowering rotations of edges.

Example 2. Let λ = (3, 3, 2, 2, 1, 1). Then r = 2, hd(λ) = (2, 2), tl(λ) = (4, 2), s = 1.

It is easy to check that the partition λ has 5 pairwise non-isomorphic realizations G1, G2,
G3, G4, G5 without isolated vertices and these realizations have exactly 2 non-isomorphic closest
splittable 2-ancestors H ′

1 and H ′
2 (see Fig. 8 and Fig. 9). Here V1 consists of two vertices of the

highest degree, and V2 consists of four remaining vertices (note that for the graph H ′
1 in V2 there

is one vertex of zero degree).
In G2 we have t1 = 1 and t2 = 0, and in G1, G3, G4, G5 we have t1 = 0 and t2 = 1.
It is easy to check that with respect to the principal 2-decomposition (V1, V2)

• graph G1 has H ′
1 as exactly one closest splittable 2-ancestor;

• graphs G2 and G3 have exactly 2 closest splittable 2-ancestors H ′
1 and H ′

2;
• graphs G4 and G5 have H ′

2 as exactly one closest splittable 2-ancestor.

Note also that graph H ′
1 can be obtained from graph H ′

2 using a single lifting rotation of an
edge, and degH ′

2 = (4, 3, 2, 1, 1, 1) can be obtained from degH ′
1 = (4, 3, 2, 2, 1) using one elementary

transformation of the first type.
Note that the graph H ′

1 is a threshold graph [6], since the partition (4, 3, 2, 2, 1) has the same
tail and head [2], and the graph H ′

2 is not a threshold graph, since its degree partition (4, 3, 2, 1, 1, 1)
is not a maximum graphical partition.

It is clear that to obtain all realizations of the partition λ = (3, 3, 2, 2, 1, 1) by applying a single
lowering rotation of an edge, we need to use both graphs H ′

1 and H ′
2. Here H ′

1 and H ′
2 are not

common closest splittable 2-ancestors of graphs G1 and G5.
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Figure 8. The common closest splittable 2-ancestor of graphs G1, G2 and G3.
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Figure 9. The common closest splittable 2-ancestor of graphs G2, G3, G4 and G5.
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