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Abstract: Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than
1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and
with λ = µ. They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs
of diameter 3 with λ = µ, in which neighborhoods of vertices are strongly regular. In this paper we consider
neighborhoods of vertices with parameters (25, 8, 3, 2).
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Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph
Γ, we denote by Γi(a) the subgraph induced by Γ on the set of all vertices, that are at the distance
i from a. The subgraph [a] = Γ1(a) is called the neighborhood of the vertex a. Let Γ(a) = Γ1(a),
a⊥ = {a} ∪ Γ(a). If graph Γ is fixed, then instead of Γ(a) we write [a]. For the set of vertices X of
graph Γ through X⊥ denote ∩x∈Xx⊥.

Let Γ be an antipodal distance-regular graph of diameter 3 and λ = µ, in which neighborhoods
of vertices are strongly-regular graphs. Then Γ has intersection array {k, µ(r − 1), 1; 1, µ, k}, and
spectrum k1,

√
k

f
,−1k,−

√
k

f
, where f = (k + 1)(r − 1)/2. In the case r = 2 we obtain Taylor’s

graph, in which k′ = 2µ′. Conversely, for any strongly regular graph with parameters (v′, 2µ′, λ′, µ′)
there exists a Taylor’s graph, in which neighborhoods of vertices are strongly regular with relevant
parameters.

In [1]there were chosen strongly-regular graphs with no more than 1000 vertices, which may be
neighborhoods of vertices of antipodal distance-regular graph of diameter 3 and λ = µ. There is
provided a research program of the study of vertex-symmetric antipodal distance-regular graphs
of diameter 3 with λ = µ, in which neighborhoods of vertices are strongly regular with parameters
from Proposition 1.

Proposition 1. Let ∆ be a strongly-regular graph with parameters (v, k, λ, µ). If (r − 1)k =
v−k−1, v ≤ 1000 and number (v+1)(r−1) is even, then either r = 2, or parameters (v, k, λ, µ, r)
belong to the following list:

1This work is partially supported by RSF, project 14-11-00061-P (Theorem 1) and by the program of the
government support of leading universities of Russian Federation, agreement 02.A03.21.0006 from 27.08.2013
(Corollary 1).
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(1) (16, 5, 0, 2, 3), (25, 8, 3, 2, 3), (49, 12, 5, 2, 4), (64, 21, 8, 6, 3), (81, 16, 7, 2, 5),
(81, 20, 1, 6, 4), (85, 14, 3, 2, 6), (99, 14, 1, 2, 7), (100, 33, 8, 12, 3), (121, 20, 9, 2, 6),
(121, 30, 11, 6, 4), (121, 40, 15, 12, 3), (126, 25, 8, 4, 5), (133, 44, 15, 14, 3), (169, 24, 11, 2, 7),
(169, 42, 5, 12, 4), (169, 56, 15, 20, 3), (176, 25, 0, 4, 7), (196, 39, 14, 6, 5), (196, 65, 24, 20, 3);

(2) (225, 28, 13, 2, 8), (225, 56, 19, 12, 4), (243, 22, 1, 2, 11), (256, 51, 2, 12, 5), (256, 85, 24, 30, 3),
(261, 52, 11, 10, 5), (288, 41, 4, 6, 7), (289, 32, 15, 2, 9), (289, 48, 17, 6, 6), (289, 72, 11, 20, 4),
(289, 96, 35, 30, 3), (305, 76, 27, 16, 4), (325, 54, 3, 10, 6), (351, 50, 13, 6, 7), (351, 70, 13, 14, 5),
(352, 39, 6, 4, 9), (361, 36, 17, 2, 10), (361, 72, 23, 12, 5), (361, 90, 29, 20, 4), (361, 120, 35, 42, 3);

(3) (400, 57, 20, 6, 7), (400, 133, 48, 42, 3), (441, 40, 19, 2, 11), (441, 88, 7, 20, 5), (441, 110, 19, 30, 4),
(484, 161, 48, 56, 3), (495, 38, 1, 3, 13), (505, 84, 3, 16, 6), (507, 46, 5, 4, 11), (512, 73, 12, 10, 7),
(529, 44, 21, 2, 12), (529, 66, 23, 6, 8), (529, 88, 27, 12, 6), (529, 132, 41, 30, 4), (529, 176, 63, 56, 3),
(540, 49, 8, 4, 11), (576, 115, 18, 24, 5);

(4) (625, 48, 23, 2, 13), (625, 156, 29, 42, 4), (625, 208, 63, 72, 3), (640, 71, 6, 8, 9), (649, 72, 15, 7, 9),
(649, 216, 63, 76, 3), (676, 75, 26, 6, 9), (676, 135, 14, 30, 5), (704, 37, 0, 2, 19),
(729, 52, 25, 2, 14), (729, 104, 31, 12, 7), (729, 182, 55, 42, 4), (736, 105, 20, 14, 7),
(768, 59, 10, 4, 13), (784, 261, 80, 90, 3);

(5) (837, 76, 15, 6, 11), (841, 56, 27, 2, 15), (841, 84, 29, 6, 10), (841, 140, 39, 20, 6),
(841, 168, 47, 30, 5), (841, 210, 41, 56, 4), (841, 280, 99, 90, 3), (847, 94, 21, 9, 9),
(848, 121, 24, 16, 7), (901, 60, 3, 4, 15), (961, 60, 29, 2, 16), (961, 120, 35, 12, 8),
(961, 160, 9, 30, 6), (961, 192, 23, 42, 5), (961, 240, 71, 56, 4), (961, 320, 99, 100, 3),
(1000, 111, 14, 12, 9).

Graphs with local subgraphs having parameters (64, 21, 8, 6), (81, 16, 7, 2), (85, 14, 3, 2) and
(99, 14, 1, 2) were investigated in [2], [3], [4] and [5]. In this article we investigate parameters
(25, 8, 3, 2, 3), i.e. this graph is locally 5 × 5-grid. In [6] it is proved that distance-regular locally
5× 5-grid of diameter more then 2 is either isomorphic to the Johnson’s graph J(10, 5) or has an
intersection array {25, 16, 1; 1, 8, 25}.

Theorem 1. Let Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25}, G =
Aut(Γ), g is an element of prime order p in G and Ω = Fix(g) contains exactly s vertices in t
antipodal classes. Then π(G) ⊆ {2, 3, 5, 13} and one of the following assertions holds:

(1) Ω is empty graph and p ∈ {2, 3, 13};
(2) p = 5, t = 1, α3(g) = 0, α1(g) = 50l + 25 and α2(g) = 50− 50l;
(3) p = 3, s = 3, t = 2, 5, 8, α3(g) = 0, α1(g) = 30l + 16− 11t and α2(g) = 62− 30l + 8t;
(4) p = 2, and either s = 1, Ω is t-clique, t = 2, 4, 6, α3(g) = 2t, α1(g) = 20l − t + 6

and α2(g) = 72 − 20l − 2t, or s = 3, t ≤ 8, t is even, α3(g) = 0, α1(g) = 20l − 11t + 6 and
α2(g) = 72− 20l + 8t.

Corollary 1. Let Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25} and a
group G = Aut(Γ) acts transitively on the set of vertices of Γ. Then one of the following assertions
holds:

(1) Γ is a Cayley graph, G is the a Frobenius group with the kernel of order 13 and with the
complement of order 6;

(2) Γ is a arc-transitive Maton’s graph and the socle of G is isomorphic to L2(25);
(3) G is an extension of a group Q of order 212 by the group T = L3(3), |Q : Q{F}| = 2, T{F}

is an extension of group E9 by SL2(3), T acts irreducibly on Q and for an element f of order 13
in G we have CQ(f) = 1.



Automorphisms of distance-regular graph 29

1. Proof of the Theorem

Note that there is Delsarte boundary (proposition 4.4.6 from [7]) of maximum order of clique in
distance-regular graph with intersection array {25, 16, 1; 1, 8, 25} and spectrum 251, 526,−125,−526

no more than 1− k/θd = 1 + 25/5 = 6. If C is 6-clique in Γ, then each vertex not in C is adjacent
to 0 or to b1/(θd + 1) + 1− k/θd = 2 vertices in C.

Lemma 1. Let Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25}, G =
Aut(Γ) and g ∈ G. If ψ is the monomial representation of a group G in GL(78,C), χ1 is the
character of the representation ψ on subspace of eigenvectors of dimension 26, corresponding to
the eigenvalue 5, χ2 is the character of the representation ψ on subspace of dimension 25, then
χ1(g) = (10α0(g)+2α1(g)−α2(g)−5α3(g))/30, χ2(g) = (α0(g)+α3(g))/3−1. If |g| = p is prime,
then χ1(g)− 26 and χ2(g)− 25 are divided by p.

P r o o f. We have

Q =




1 1 1 1
26 26/5 −13/5 −13
25 −1 −1 25
26 −26/5 13/5 −13


 .

Therefore χ1(g) = (10α0(g) + 2α1(g)− α2(g)− 5α3(g))/30. Substituting α2(g) = 78− α0(g)−
α1(g)− α3(g), we obtain χ1(g) = (11α0(g) + 3α1(g)− 4α3(g))/30− 13/5.

Similarly, χ2(g) = (25α0(g) − α1(g) − α2(g) + 25α3(g))/78. Substituting α1(g) + α2(g) =
78− α0(g)− α3(g), we obtain χ2(g) = (α0(g) + α3(g))/3− 1.

The remaining assertions follow from Lemma 1 in [8]. The proof is complete. ¤

Let further in the paper Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25},
G = Aut(Γ), g is an element of prime order p in G and Ω = Fix(g).

Lemma 2. If Ω is an empty graph, then either p = 13, α1(g) = 26 and α2(g) = 52, or p = 3,
α3(g) = 9s+6, s < 8, α1(g) = 54+12s−30l and α2(g) = 18−21s+30l, l ≤ 5, or p = 2, α3(g) = 0,
α1(g) = 20l + 6 and α2(g) = 72− 20l, l ≤ 3.

P r o o f. Let Ω be an empty graph and αi(g) = pwi for i > 0. Since v = 78, we have
p ∈ {2, 3, 13}.

Let p = 13. Then α3(g) = 0, α1(g) + α2(g) = 78 and χ1(g) = (2α1(g) − α2(g))/30 = 13(w1 −
2)/10. This implies α1(g) = 26 and α2(g) = 52.

Let p = 3. Then χ2(g)−25 = α3(g)/3−26 is divided by 3, α3(g) = 9s+6, s ≤ 8 and α2(g) = 72−
9s−α1(g). Furthermore, the number χ1(g) = (2α1(g)−α2(g)−45s−30)/30 = (3w1−12s−34)/10
is congruent to 2 modulo 3. This implies α1(g) = 54 + 12s− 30l and α2(g) = 18− 21s + 30l, l ≤ 5.
In case s = 8 we have α3(g) = 78 and 〈g〉 acts regularly on each antipodal class. By lemma 4 in [9]
3 must divide k + 1 = 26, we have a contradiction.

Let p = 2. Then α3(g) = 0, α1(g) + α2(g) = 78, the number χ1(g) = (α1(g) − 26)/10 is even,
α1(g) = 20l + 6 and α2(g) = 72− 20l, l ≤ 3. ¤

In Lemmas 3–6 it is assumed that there are t antipodal classes intersecting the Ω on s vertices.
Then p divides 26 − t and 3 − s. Let F be an antipodal class, containing the vertex a ∈ Ω,
F ∩ Ω = {a, a2, ..., as}, b ∈ Ω(a). By F (x) we denote an antipodal class containing vertex x.
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Lemma 3. The following assertions hold:
(1) if t = 1, then p = 5, α3(g) = 0, α1(g) = 50l + 25 and α2(g) = 50− 50l;
(2) if p more than 3, then p = 5 and t = 1;
(3) if s = 1, then p = 2, t = 2, 4, 6, α3(g) = 2t, α1(g) = 20l − t + 6 and α2(g) = 72− 20l − 2t.

P r o o f. If s = 3, then each vertex from Γ− Ω is adjacent to t vertices in Ω, so t ≤ 8.
Let t = 1. As p divides 26 − t, then p = 5, s = 3, α2(g) = 75 − α1(g), the number χ1(g) =

(α1(g)− 15)/10 is congruent to 1 modulo 5. This implies α1(g) = 50l + 25.
Let p > 3, α1(g) = pw1. Then s = 3, |Ω| = 3t, Ω is a regular graph by degree t − 1 and p

divides 26− t.
If p > 7, then Ω is a distance-regular graph with intersection array {t− 1, 16, 1; 1, 8, t− 1}, we

come to a contradiction.
Let p = 7. As p divides 26 − t, then t = 5, the subgraph Ω(b) contains 2 vertices in a⊥

and a vertex from [a2] and from [a3], so Ω is a distance-regular graph with intersection array
{4, 1, 1; 1, 1, 4}, it is a contradiction with the fact that r = 3.

Let p = 5. As p divides 26− t, then t = 1, 6. If t = 6, then the subgraph Ω(b) contains a vertex
in a⊥, 3 vertices from [a2] and 3 vertices from [a3], we come to a contradiction.

Let s = 1. Then p = 2, t ≤ 6, α3(g) = 2t, α2(g) = 78−α1(g)−3t, and χ1(g) = (α1(g)+t−26)/10
is even. This implies that α1(g) = 20l − t + 6. ¤

Lemma 4. If p = 3, then s = 3, t = 2, 5, 8, α3(g) = 0, α1(g) = 30l + 16 − 11t and α2(g) =
62− 30l + 8t.

P r o o f. Let p = 3. Then s = 3, t = 2, 5, 8, α2(g) = 78 − α1(g) − 3t, and the number
χ1(g) = (11t+α1(g)−26)/10 is congruent to 2 modulo 3. This implies that α1(g) = 30l+16−11t.
In the case t = 2 graph Ω is a union of 3 isolated edges. ¤

Lemma 5. If p = 2, s = 3, then t is even, t ≤ 8, α3(g) = 0, α1(g) = 20l − 11t + 6 and
α2(g) = 72− 20l + 8t.

P r o o f. Let p = 2, s = 3. Then t is even, t ≤ 8, α3(g) = 0, α2(g) = 78− 3t− α1(g).
The number χ1(g) = (11t + α1(g)− 26)/10 is even, so α1(g) = 20l − 11t + 6. ¤
Lemmas 2–5 imply the proof of the Theorem.

2. Proof of Corollary

Let the group G acts transitively on the set of vertices of the graph Γ. Then for a vertex a ∈ Γ
subgroup H = Ga has index 78 in G. By Theorem we have {2, 3, 13} ⊆ π(G) ⊆ {2, 3, 5, 13}.

Lemma 6. Let f be an element of order 13 in G. Then Fix(f) is an empty graph, α1(f) = 26
and the following assertions hold:

(1) if g is an element of prime order p 6= 13 in CG(f), then p = 2, Ω is an empty graph,
α1(g) = 26 and |CG(f)| is not divided by 4;

(2) either |G| = 78 or F (G) = O2(G);
(3) if G is nonsolvable group, then the socle T̄ of the group Ḡ = G/F (G) is isomorphic to

L2(25), L3(3), U3(4), L4(3) or 2F4(2)′.
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P r o o f. By Lemma 2 Fix(f) is an empty graph and α1(f) = 26.
Suppose that g is an element of prime order p 6= 13 in CG(f). As f acts without fixed points

on Ω then by Theorem Ω is an empty graph, p = 2 and α1(g) = 20l +6 divided by 13. This implies
that α1(g) = 26 and |CG(f)| is not divided by 4.

Let Q = Op(G) 6= 1. If p = 13, then |G| divides 26 · 12. In this case CG(f) = 〈f〉, otherwise for
an involution g of CG(f) we obtain a contradiction with the action of element of order 3 of G on
{u | d(u, ug) = 1}. Let the involution g inverts f , h is an element of order 3 in CG(g). From action
h on {u | d(u, ug) = 1} it follows that α1(g) = 20l + 6 is divided by 3. In each case α1(g) is not
divided by 4 and |G| = 78.

If p = 3, then Q fixes some antipodal class. This implies that Q fixes each antipodal class. By
Lemma 3 in [9] G does not contain subgroups of order 3, which are regular on each antipodal class,
we come to a contradiction. So, if |G| 6= 78 we have F (G) = O2(G).

Let T̄ be the socle of the group Ḡ = G/F (G). Note that 13 divides |T̄ | and by Theorem 1 in
[10] group T̄ is isomorphic to L2(25), L3(3), U3(4), L4(3), 2F4(2)′. ¤

Let us to prove the Corollary. As T̄ contains a subgroup of index dividing 26, then the group
T̄ is isomorphic to L2(25) (and T̄{F} is the extension of a group of order 25 by group of order 12)
or L3(3) (and T̄{F} is the extension of a group of order 9 by SL(2, 3)).

In the first case F (G) fixes each antipodal class and F (G) = 1. This implies that Γ is the
arc-transitiv Maton’s graph.

In the second case for Q = F (G) we have |Q : Q{F}| = 2 and T̄ acts irreducibly on Q. Further,
for the element f of order 13 of G by Lemma 6 the number |CQ(f)| divides 2. As Q is either
12-dimensional module over F2, or 16-dimensional module over F16, or 26-dimensional module over
F2, then |Q| = 212 and CQ(f) = 1. The Corollary is proved.

3. Conclusion

We found possible automorphisms of a distance regular graph with intersection array {25, 16, 1; 1,
8, 25}. This completes the research program of vertex-symmetric antipodal distance-regular graphs
of diameter 3 with λ = µ, in which neighborhoods of vertices are strongly regular with parameters
from Proposition 1.
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