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Abstract: The notion of f -statistical convergence in topological space, which is actually a statistical con-
vergence’s generalization under the influence of unbounded modulus function is presented and explored in this
paper. This provides as an intermediate between statistical and typical convergence. We also present many
counterexamples to highlight the distinctions among several related topological features. Lastly, this paper is
concerned with the notions of sf -limit point and sf -cluster point for a unbounded modulus function f .
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1. Introduction

Statistical density was initially introduced in Zygmund’s 1935 monograph [18]. Extending on
the concept using statistical density, Fast [12] (along with Schohenberg [17]) in 1951 broadened
the definition of convergence to include statistical convergence. Let N denote the set of natural
numbers, and A ⊆ N. The notation δ(A) signifies the natural density or asymptotic density of
set A [12], defined as

δ(A) = lim
n→∞

|{k ≤ n : k ∈ A}|

n
.

A real sequence {xn : n ∈ N} is considered statistically convergent to a point l (see [17]) if, for
every ǫ > 0

δ({n ∈ N : |xn − l| ≥ ǫ}) = 0.

Subsequent to the contributions of Fridy [13] and Connor [9] in the realm of statistical convergence,
other mathematicians have displayed considerable interest in this domain. In 2008, Maio and
Kočinac [15] extended the notion to statistical convergence in topological spaces. In a topological
space (X, τ), a sequence {xn : n ∈ N} is deemed statistically convergent to a point l if, for every
neighborhood U of l,

δ({n ∈ N : xn 6∈ U}) = 0.

This form of convergence has proven to be highly valuable across various fields, particularly in the
examination of open cover classes and selection principles [1–4, 10, 14, 16].

To establish a notion of convergence that sits between the ordinary convergence and statistical
convergence many authors produced several approches. In 2012, Bhunia et al. [6] (see also Çolak
et al. [7, 8]) enhanced the idea of s-convergence for real sequences by imposing a limitation on
asymptotic density up to order α, where 0 < α ≤ 1. Through the utilization of asymptotic density
of order α, a more stringent convergence criterion is introduced, surpassing statistical convergence
but remaining less stringent than the conventional convergence in a topological space. As a direct
outcome of this exploration, a novel class of open covers, denoted as sα − Γ, emerges. With the
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same purpose the unbounded modulus function is used in this paper and the concept of f -statistical
convergence has been extended to the topological point of view. The class of modulus functions,
as described by the given conditions, is a set of functions from the positive real numbers to the
positive real numbers. Let’s break down the key properties:

1. Zero at Zero. The function f(x) is equal to zero if and only if x is equal to zero. This implies
that the function is zero only at the origin.

2. Subadditivity. For any positive real numbers x and y, the function satisfies the property
f(x + y) ≤ f(x) + f(y). This condition is known as subadditivity, indicating that the
function’s values do not grow faster than the sum of its individual parts. It’s a form of the
triangle inequality.

3. Monotonicity. The function is increasing, meaning that as the input increases, the function
values also increase. Mathematically, if a < b, then f(a) ≤ f(b).

4. Right-Continuous at Zero. The function f(x) is continuous from the right at x = 0. This
implies that as the input approaches zero from the positive side, the function values approach
the limit without any sudden jumps or discontinuities.

This class of modulus functions appears to capture functions that exhibit properties similar to those
of the absolute value function. The conditions ensure a certain level of behavior for the function,
making it well-behaved and suitable for various mathematical applications.

Function f is unbounded if

lim
x→∞

f(x) = ∞.

For an unbounded modulus function f , f -density of a set A ⊆ N is denoted by δf (A) and is defined
as [5]

δf (A) = lim
n→∞

f(|{k ≤ n : k ∈ A}|)

f(n)
.

In this paper we have explored that the function f is very useful to control the rate at which
statistical convergence occurs. We extend the concept of s-convergence to sf -convergence in topo-
logical environment and explore several attributes of this convergence criteria. In last section we
investigate some properties of sf -limit points and sf -cluster points.

2. Preliminaries

In this paper, a space X is defined as a topological space X with topology τ . No separation
axioms have been granted, unless otherwise stated. For standard ideas, symbols, and terminology,
we refer to [11]. For the convenience of the readers, this section includes certain required concepts.

The unbounded modulus functions defined on the set N of all natural numbers are the modulus
functions taken into consideration in this study. Therefore, right continuous at zero and zero to
zero property are disregarded. The modulus function f : N → R

+, defined as f(n) = log(1 + n), is
regarded as such in the majority of the cases. It is obvious to note that this modulus function is
unbounded.

Definition 1 [5]. For an unbounded modulus function f , f -density of a set A ⊆ N is denoted
by δf (A) and is defined as

δf (A) = lim
n→∞

f(|{k ≤ n : k ∈ A}|)

f(n)
.
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Using the concept Bhardwaj et al. [5] extended the concept of statistical convergence of a real
sequence upto sf -convergence.

Definition 2 [5]. A real sequence {xn : n ∈ N} is considered sf -convergent to a point l if, for
every ǫ > 0,

δf ({n ∈ N : |xn − l| ≥ ǫ}) = 0,

where f is an unbounded modulus function.

In [15], the concept of statistical dense sub-sequence, s-limit point of a sequence and s-cluster point
of a sequence are discussed.

Definition 3 [15]. A subsequence V = {xnk
: k ∈ N} of the sequence {xn : n ∈ N} is called a

statistically dense if
δ({nk : xnk

∈ V}) = 1.

Definition 4 [15]. A point x is said to be a statistical limit point of a sequence {xn : n ∈ N}
in a space X, if there is a set {n1 < n2 < ... < nk < ...} ⊂ N whose asymptotic density is not zero
(which means that it is greater than zero or does not exist) such that

lim
k→∞

xnk
= x.

Definition 5 [15]. A point x is called a statistical cluster point of a sequence {xn : n ∈ N} if
for each neighborhood U of x the asymptotic density of the set {n ∈ N : xn ∈ U} is positive.

3. On f-statistical convergence

Definition 6. Let f : N → R be an unbounded modulus function and (X, τ) be a topological
space. A sequence {xn : n ∈ N} in X will be called f-statistical convergent (in short sf -convergent)
to x ∈ X, if for every neighborhood U of x,

δf ({n ∈ N : xn /∈ U}) = 0,

i.e., lim
n→∞

f(|{k ≤ n : xn /∈ U}|)

{f(n)}
= 0.

From the study of Maio and Kočinac [15], we know that every convergent sequence is statistical
convergent but converse is not true. Since for a finite set F , δf (F ) = 0, therefore usual convergence
implies the sf -convergence. For any unbounded modulus function f and A ⊆ N, if δf (A) = 0,
then δ(A) = 0. Thus every sf -convergent sequence is statistical convergent. Moreover, concept
of statistical convergence coincides with the concept of sf -convergence if the unbounded modulus
function under consideration is f(n) = n.

Example 1. There is a sequence in topological space which is statistical convergent but not
sf -convergent and a sequence which is sf -convergent but not convergent.

Let (X, τ) be a topological space where X = {1, 2} and τ = P(X). Consider the sequence
{xn : n ∈ N} where

xn =

{

1, if n = m2 for some m ∈ N.

2, otherwise.

Let the function f(n) = log(1 + n) be the unbounded modulus function under consideration.
Neighborhoods of 2 are U1 = {2} and U2 = X. Here,

δ({n ∈ N : xn 6∈ U1}) = δ({m2 : m ∈ N}) = 0



52 Parthiba Das, Susmita Sarkar, Prasenjit Bal

and
δ({n ∈ N : xn 6∈ U2}) = δ(∅) = 0.

Therefore,

xn
s−lim
−→ 2.

But for the neighborhood U1 = {2} of 2, we have

δf ({n ∈ N : xn 6∈ U1}) =
1

2
6= 0.

Also, for the neighborhood V = {1} of 1, we have

δf ({n ∈ N : xn 6∈ V }) = 1 6= 0.

So, {xn : n ∈ N} is neither sf -convergent to 1 nor sf -convergent to 2.
In the same space consider the sequence {yn : n ∈ N} where

yn =

{

1, if n = mm for some m ∈ N,

2, otherwise.

Then {yn : n ∈ N} is sf -convergent to 2 but not convergent.

Thus we have the following diagram (see Fig. 1).

convergence sf -convergence s-convergence

/ /

Figure 1. Types of convergence and the relationship between them.

Definition 7. A sequence {xn : n ∈ N} in a topological space X is said to sf∗ convergent to
x0 ∈ X if there exists A ⊆ N with δf (A) = 1 such that

lim
m→∞, m∈A

xn = x0.

Example 2. There exists a sequence {xn : n ∈ N} which is sf∗ -convergent but not s
f -convergent.

Let us assume a topological space (X, τ) where X = {a, b} and τ = {∅,X, {a}, {b}}. Again we
construct a sequence {xn : n ∈ N} where

xn =

{

a, if n ∈ 2N,

b, otherwise.

Let f(n) = log(1+n) be the modulus function under consideration then, for the neighbourhood
{a} of ‘a’, we have

δf ({n ∈ N : xn /∈ {a}}) = δf ({N \ 2N}) = lim
n→∞

f(n+ 1)

f(2n+ 1)
= lim

n→∞

log(n+ 2)

log(2n+ 2)
= 1.
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And for the neighbourhood {b} of ‘b’, we have

δf ({n ∈ N : xn /∈ {a}}) = δf ({2N}) = lim
n→∞

f(n)

f(2n)
= lim

n→∞

log(n + 1)

log(2n+ 1)
= 1.

Therefore {xn : n ∈ N} neither sf -convergent to a nor sf -convergent to ‘b’.
On the other hand 2N ⊆ N such that δf (2N) = 1 and {xn : n ∈ N} = {a, a, . . . }

lim
n→∞, n∈2N

xn = a, ⇒ xn
s
f
∗
−lim
→ a.

Although sf∗ -convergence does not imply the sf -convergence of a sequence, the sf -convergence
of a sequence implies its sf∗ -convergence in a first countable space.

Theorem 1. In a first countable space, if a sequence {xn : n ∈ N} in X sf -converges to x,

then this sequence sf∗-converges to x.

P r o o f. Let (X, τ) be a first countable topological space and {xn : n ∈ N} be a sequence
in X which sf -converges to x. Since X is first countable, there exists countable decreasing local
base U1,x ⊇ U2,x ⊇ U3,x ⊇ . . . at the point x. Now consider a set Ai = {n ∈ N : xn ∈ Ui,x} for
every i ∈ N. Then we have A1 ⊇ A2 ⊇ A3 ⊇ . . . .

Again we know that sequence {xn : n ∈ N} is sf -convergent then

δf ({n ∈ N : xn /∈ Ui,x}) = 0, ∀i ∈ N

=⇒ δf ({Ac
i}) = 0, ∀i ∈ N

=⇒ δf ({Ai}) = 1, ∀i ∈ N.

Let m1 ∈ A1 be arbitrary. Since δf (A2) = 1, we can find a m2 ∈ A2 such that m2 > m1 and such
that

f(|{A2(n)}|)

f(n)
=

f(|{k ∈ A2 : k ≤ n}|)

f(n)
>

1

2
= 1−

1

2
, for all n ≥ m2.

In similar way if we obtain m1 < m2 < ... < mi ∈ Ai, such that for every n ≥ mi then,

f(|{Ai(n)}|)

f(n)
=

f(|{k ∈ Ai : m ≤ n}|)

f(n)
> 1−

1

i
.

Now we define a set A ⊆ N as for each m ≤ m1 and m ∈ A; if i ≥ 1 and for mi < m ≤ mi+1,
m ∈ A if and only if m ∈ Ai. Let A = {n1 < n2 < ...}. For all n ∈ N such that mi ≤ n ≤ mi+1, we
have

f(|{A(n)}|)

f(n)
≥

f(|{Ai(n)}|)

f(n)
≥ 1−

1

i
,

i.e., lim
n→∞

f(|{A(n)}|)

f(n)
≥ lim

n→∞

f(|{Ai(n)}|)

f(n)
≥ lim

n→∞
1−

1

i
,

i.e., lim
n→∞

f(|{A(n)}|)

f(n)
= 1, ⇒ δf (A) = 1.

Now, let V be a neighbourhood of x and Ui ⊆ V . If we take n ∈ A, n ≥ mi then there exists j ≥ i
such that we get mj ≤ n ≤ mj+1. So by the construction of A, n ∈ Aj . Therefore, for each n ∈ A,
n ≥ mi we get xn ∈ Uj and xn ∈ Uj ⊆ Ui ⊆ V ,

i.e., lim
n→∞, n∈A

xn = x.
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Thus {xn : n ∈ N} sf∗ -converges to x. �

Example 3. sf -limit of an sf -convergent sequence may not be unique.
Let us assume a topological space (X, τ) where X = {a, b, c}, τ = {∅,X, {b, c},

{a}} and f(n) = log(1 + n) be the unbounded modulus function under consideration. We
construct a sequence {xn : n ∈ N} where

xn =

{

a, if n = mm for some m ∈ N,

b, otherwise.

Open neighbourhoods of b are U1 = X and U2 = {b, c}.
For the neighbourhood U1, {n ∈ N : xn /∈ U1} = ∅. So, δf ({n ∈ N : xn /∈ U1}) = 0.
For the neighbourhood U2 we have {n ∈ N : xn /∈ U2} = δf ({nn : n ∈ N}).

Therefore

δf ({nn : n ∈ N}) = lim
n→∞

log(n+ 1)

log(nn + 1)

= lim
n→∞

nn + 1

(n+ 1)nn(1 + log(n))
= lim

n→∞

nn(1 + 1/nn)

nnn(1 + 1/n)(1 + log(n))
= 0.

Therefore, {xn : n ∈ N} is f -statistical convergent sequence and xn
sf−lim
→ b.

Since, neighbourhood of b is the only neighbourhood of c, we can say for every neighbourhood U
of c also

δf ({n ∈ N : xn /∈ U}) = 0.

Thus

xn
sf−lim
→ c.

Thus the limit of an sf -convergent sequence may not be unique.

Theorem 2. In a Hausdorff space any sf -convergent sequence has a unique limit.

P r o o f. Let {an : n ∈ N} be a sf -convergent sequence in a topological space (X, τ) and

an
sf−lim
→ a, an

sf−lim
→ b.

Since, X is Hausdorff space then there exist open sets G and H such that a ∈ G, b ∈ H and
G ∩ H = ∅. But {an : n ∈ N} is an sf -convergent sequence which sf -converges to both a and b.
Therefore

δf ({n ∈ N : an /∈ G}) = 0, δf ({n ∈ N : an /∈ H}) = 0.

Since, G ∩H = ∅ and H ⊆ X \G. Now,

δf ({n ∈ N : an ∈ H}) ≤ δf ({n ∈ N : an ∈ X \G}) = δf ({n ∈ N : an /∈ G}) = 0.

So,
δf ({n ∈ N : an ∈ H}) = 0

and hence
δf ({n ∈ N : an /∈ H}) = 1.

This contradicts the fact that
δf ({n ∈ N : an /∈ H}) = 0.

Hence in Hausdorff space any sf -convergent sequence has the unique limit. �
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Proposition 1. In a discrete topological space (X, τ), let p, q ∈ X. h : N → N be an one-one
function and f be the unbounded modulus function under consideration. Then the sequence

xn =

{

p, if n = h(k) for some k ∈ N,

q, otherwise

is sf -convergent to q if

lim
n→∞

f(n)

f ◦ h(n)
→ 0

and does not converges otherwise.

P r o o f. In the mentioned topological space, {q} is the smallest neighbourhood of q. To show
the sf -convergence of the sequence {xn : n ∈ N}, it is enough to show that

δf ({n ∈ N : xn /∈ {q}}) = 0.

Now,

δf ({n ∈ N : xn /∈ {q}}) = lim
n→∞

f(|{k ≤ n : xn /∈ {q}}|)

f(n)

= lim
n→∞

f(|{h(k) ≤ n : k ∈ N}|)

f(n)
= lim

n→∞

f(n)

f ◦ h(n)
.

Hence the proposition is true. �

Example 4. Subsequence of an sf -convergent sequence may not be sf -convergent.
Let us assume a topological space (X, τ) where X = {a, b, c} and τ = {∅,X, {b, c}, {a}} and a

sequence {xn : n ∈ N} where,

xn =

{

b, if n = mm for some m ∈ N,

a, otherwise.

Now for every open neighbourhood U of a , we get

{n ∈ N : xn /∈ U} ⊆ {mm : m ∈ N}.

Let us consider the unbounded modulus function f(x) = log(1 + x) then we have,

δf ({n ∈ N : xn /∈ {a}}) = 0.

So, {xn : n ∈ N} is an sf -convergent sequence. Again we construct a subsequence

xni
=

{

xii , if i is odd,

x((i−1)i−1+1), if i is even.

Now for the open neighbourhoods of {a} of a, we have

δf ({i ∈ N : xni
/∈ {a}}) = δf ({2n : n ∈ N}) = 1 6= 0.

Similarly for the open neighbourhood of {b, c} we have

δf ({i ∈ N : xni
/∈ {b, c}}) = δf ({1, 3, 5, . . . }) = 1 6= 0.

Therefore,

xn
sf−lim
9 a, xn

sf−lim
9 b and xn

sf−lim
9 c.

So, {xni
: i ∈ N} is not sf -convergent sequence. �
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Definition 8. A subsequence B = {xnk
: k ∈ N} of any sequence A = {xn : n ∈ N} is called

statistically f -dense (or sf -dense) if δf (nk : xnk
∈ B) = 1.

Theorem 3. In a topological space (X, τ), a sequence {xn : n ∈ N} is sf -convergent if and
only if each of its sf -dense subsequence is sf -convergent.

P r o o f. Suppose (X, τ) be a topological space and {xn : n ∈ N} be a sequence for which
every sf -dense subsequence is sf -convergent. But

lim
n→∞

f(|{k ≤ n : xk ∈ {xn : n ∈ N}}|)

f(n)
= lim

n→∞

f(n)

f(n)
= 1

for every unbounded modulus function f . So {xn : n ∈ N} is sf -dense in itself. Therefore,
{xn : n ∈ N} is sf -convergent.

Conversely, let {xn : n ∈ N} be a sf -convergent sequence of a topological space (X, τ) and a
subsequence {xnk

: k ∈ N} is sf -dense but not sf -convergent. Therefore, there exists a point p ∈ X
and a neighbourhood U of p such that δf ({k ∈ N : xnk

/∈ U}) 6= 0. Now,

lim
n→∞

f(|{n ∈ N : xn /∈ U}|)

f(n)
≥ lim

n→∞,k→∞

f(|{nk ∈ N : xnk
/∈ U}|)

f(n)

= lim
k→∞

f(|{nk ∈ N : xnk
/∈ U}|)

f(|nk|)
× lim

n→∞

f(|nk|)

f(n)
6= 0.

Since,

lim
k→∞

f(|{k ∈ N : xnk
/∈ U}|)

f(k)
6= 0

and {xnk
: k ∈ N} is sf -dense then

i.e. lim
n→∞

f(|nk|)

f(n)
= 1.

So, we get
δf ({n ∈ N : xn /∈ U}) ≥ δf ({k ∈ N : xnk

/∈ U}) 6= 0.

Therefore {xn : n ∈ N} is not sf -convergent sequence, which is a contradiction. So {xnk
: k ∈ N}

must be sf -convergent. �

4. f-statistical limit point, f-statistical cluster point

In this section we extend the concept of statistical limit point to sf -limit point by incorporating
an unbounded modulus function f .

Definition 9. In a topological space (X, τ), a point x0 is called a f -statistical limit point (in
short sf -limit point) of a sequence {xn : n ∈ N} if there exists a subsequence V = {xnk

: k ∈ N}
such that δf{nk : k ∈ N and xnk

∈ V} > 0 and

lim
k→∞

xnk
= x0.

Definition 10. In a topological space (X, τ), a point x0 is called f -statistical cluster point (in
short sf -cluster point) of any sequence {xn : n ∈ N} if for each neighbourhood U of x0, δ

f{n ∈ N :
xn ∈ U} > 0.
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We denote the set of all f -statistical limit points and f -statistical cluster points by Λf and Θf ,
respectively.

Theorem 4. For a sequence {xn : n ∈ N} in a topological space (X, τ), Λf (xn) ⊂ Θf (xn).

P r o o f. Let (X, τ) be a topological space, {xn : n ∈ N} be a sequence and any point p be
f -statistical limit point. Therefore, p ∈ Λf (xn). Then there exists a subsequence {xnk

: k ∈ N},
where {nk : k ∈ N} have a positive δf -density and

lim
k→∞

xnk
= p.

Now,
δf ({nk : k ∈ N}) = α (say) > 0

and for every neighbourhood U of p, {nk : xnk
/∈ U} = F (say) is finite. But,

({n ∈ N : xn ∈ U}) ⊃ ({nk : k ∈ N}) \ F.

Since F is a finite set,

lim
n→∞

f(|F |)

f(n)
= 0

and f is a modulus function,

δf ({kk : k ∈ N} \ F ) = lim
n→∞

f(|{nk : k ∈ N} \ F |)

f(n)
= lim

n→∞

f(|{nk : k ∈ N} \ F |)

f(n)
+ lim

n→∞

f(|F |)

f(n)

≥ lim
n→∞

f(|{nk : k ∈ N} \ F |+ |F |)

f(n)
= lim

n→∞

f(|{nk : k ∈ N}|)

f(n)
= δf ({nk : k ∈ N}).

Therefore,
δf ({n ∈ N : xn ∈ U}) ≥ δf ({nk : k ∈ N}) = α > 0.

Therefore p ∈ Θf (xn). So, Λf (xn) ⊂ Θf (xn). �

Theorem 5. In a topological space (X, τ), for a sequence {xn : n ∈ N}, the set Θf (xn) is a
closed set.

P r o o f. Let {xn : n ∈ N} be a sequence in a topological space (X, τ). Let U be an arbitrary
neighbourhood of point the point x0 ∈ Θf (xn). So U ∩ Θf (xn) \ {x0} 6= ∅. Then we can choose
another point x′0 ∈ U ∩ Θf (xn), where x′0 is a f-statistical cluster point. Then there exist a
neighbourhood V of a point x′0 such that V ⊂ U and

δf ({n ∈ N : xn ∈ V }) = α > 0.

Obviously,
{n ∈ N : xn ∈ U} ⊃ {n ∈ N : xn ∈ V }

and hence
δf ({n ∈ N : xn ∈ U}) ⊃ δf ({n ∈ N : xn ∈ V }) = α > 0.

It means that δf ({n ∈ N : xn ∈ U}) is not a set that has zero δf -density, i.e., x0 ∈ Θf (xn). So

Θf (xn) = Θf (xn). Hence Θf (xn) is a closed set. �
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Theorem 6. In a topological space (X, τ), if there exist two sequence {xn : n ∈ N}, {yn : n ∈ N}
such that δf ({n ∈ N : xn 6= yn}) = 0, then Θf (xn) = Θf (yn) and Λf (xn) = Λf (yn).

P r o o f. Let {xn : n ∈ N} and {yn : n ∈ N} be two sequence of a topological space (X, τ).
Suppose that q be any f-statistical cluster point with respect to {xn : n ∈ N} sequence. So, for
every neighbourhood U of q,

δf ({n ∈ N : xn ∈ U}) > 0.

We have

lim
n→∞

f(|{n ∈ N : xn ∈ U}|)

f(n)
> 0

and

{n ∈ N : xn ∈ U} \ {n ∈ N : xn 6= yn} ⊆ {n ∈ N : yn ∈ U}.

Since δf{n ∈ N : xn 6= yn} = 0 then we get δf ({n ∈ N : yn ∈ U}) > 0. This means that
the set {n ∈ N : yn ∈ U} is not a set that has zero δf -density so q is also f-statistical cluster
point with respect to {yn : n ∈ N} sequence. Therefore Θf (xn) ⊂ Θf (yn). It is easy to
see that Θf (yn) ⊂ Θf (xn) from symmetry. Finally we have Θf (xn) = Θf (yn). The equality
Λf (xn) = Λf (yn) can be shown in a similar way. �

5. Conclusion

An unbounded modulus function can help to manage the rate of statistical convergence up to
a great extend. In a first countable space, sf∗-convergence does not entail sf -convergence, although
sf -convergence requires sf∗ -convergence. An sf -convergent sequence posses a unique limit in a
Hausdörff space. A sequence is sf -convergent if and only if each of its sf -dense subsequence is
sf -convergent. The set Λf (xn) of all f -statistical limit points of a sequence {xn} is a subset of
the set Θf (xn) of all f -statistical cluster points of that sequence. Moreover the collection of all
f -statistical cluster points forms a closed set in related topological space.
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