
URAL MATHEMATICAL JOURNAL, Vol. 10, No. 2, 2024, pp. 121–130

DOI: 10.15826/umj.2024.2.011

ON WIDTHS OF SOME CLASSES

OF ANALYTIC FUNCTIONS IN A CIRCLE

Mirgand Sh. Shabozov

Tajik National University,
17 Rudaky Ave., Dushanbe, 734025, Republic of Tajikistan

shabozov@mail.ru

Muqim S. Saidusainov

University of Central Asia,
155 Qimatsho Imatshoev, Khorog, GBAO, Republic of Tajikistan

muqim.saidusainov@ucentralasia.org

Abstract: We calculate exact values of some n-widths of the class W
(r)
q (Φ), r ∈ Z+, in the Banach spaces

Lq,γ and Bq,γ , 1 ≤ q ≤ ∞, with a weight γ. These classes consist of functions f analytic in the unit circle, their
rth order derivatives f(r) belong to the Hardy space Hq, 1 ≤ q ≤ ∞, and the averaged moduli of smoothness
of boundary values of f(r) are bounded by a given majorant Φ at the system of points {π/(2k)}k∈N; more
precisely,

k

π − 2

∫ π/(2k)

0
ω2(f

(r), 2t)Hq,ρ
dt ≤ Φ

( π

2k

)

for all k ∈ N, k > r.

Keywords: Modulus of smoothness, The best approximation, n-widths, The best linear method of approx-
imation.

1. Introduction

There are many studies devoted to calculating exact values of various n-widths of classes of
functions analytic in the unit circle both in the Hardy space Hq (1 ≤ q ≤ ∞) and in the Bergman
space Bq (1 ≤ q ≤ ∞) (see, e.g., [1–36]). The present paper aims to obtain new results related to
calculating exact values of various n-widths of some classes of functions analytic in the unit circle.

First, we introduce some notation and concepts. Define

Uρ := {z ∈ C : |z| < ρ}, 0 < ρ ≤ 1,

Let U := U1, let A (Uρ) be the set of functions analytic in a circle Uρ, and let Hq (1 ≤ q ≤ ∞) be
the Hardy space of functions f ∈ A (U) such that

‖f‖Hq = lim
ρ→1−0

Mq(f, ρ),

where

Mq(f, ρ) :=











(

1

2π

∫ 2π

0
|f(ρeit)|qdt

)1/q

, 1 ≤ q < ∞,

max
{

|f(ρeit)| : 0 < t ≤ 2π
}

, q = ∞;
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the integral is understood in the Lebesgue sense.

It is known [26] that the norm ‖f‖Hq is attained on angular boundary values f(eit) of functions
f ∈ Hq, which exist almost everywhere on [0, 2π). We set

Hq,ρ :=
{

f ∈ A (Uρ) : ‖f(·)‖Hq,ρ := ‖f(ρ·)‖Hq < ∞
}

and, for r ∈ Z+,

H(r)
q :=

{

f ∈ A (U) : f (r) ∈ Hq

}

(H(0)
q ≡ Hq),

where

f (r)(z) =
∞
∑

k=r

αk,rck(f)z
k,

αk,r = k(k − 1) · · · (k − r + 1), k ≥ r, k ∈ Z+, αk,0 ≡ 1,

and ck(f) are coefficients of the Taylor series

f(z) =

∞
∑

k=0

ck(f)z
k.

Denote by

Lq := Lq(U) (1 ≤ q < ∞)

the Banach space of complex-valued functions f on U with finite norms

‖f‖Lq =

(

1

2π

∫∫

(U)
|f(z)|qdxdy

)1/q

=

(

1

2π

∫ 1

0

∫ 2π

0
ρ|f(ρeit)|qdtdρ

)1/q

,

where the integral is understood in the Lebesgue sense.

Let γ(|z|) be a nonnegative measurable function not equivalent to zero and summable on the
set U . Denote by

Lq,γ := L (U, γ) (1 ≤ q < ∞)

the set of complex-valued functions f on U such that

γ1/qf ∈ Lq(U), ‖f‖Lq,γ := ‖γ1/qf‖Lq .

By Bq,γ (1 ≤ q < ∞), we mean the Banach space of functions f ∈ A (U) such that f ∈ Lq,γ . In this
case,

‖f‖Bq,γ =

(
∫ 1

0
ργ(ρ)M q

q (f, ρ)dρ

)1/q

.

In the particular case of γ ≡ 1, the space Bq := Bq,1 is the well-known Bergman space.

Assume that X is a Banach space, B is the unit ball in this space, M is a convex centrally
symmetric subset of X, Ln ⊂ X is an n-dimensional linear subspace, Ln ⊂ X is a subspace of
codimension n, and Λ : X → Ln is a continuous linear operator from X into Ln. Define the best
approximation to an element f ∈ X by elements of the subspace Ln ⊂ X as

En(f)X := E(f, Ln)X = inf {‖f − ϕ‖X : ϕ ∈ Ln} .

The approximation to the fixed set M ⊂ X by the fixed subspace Ln ⊂ X is defined by

E(M, Ln)X := sup {E(f, Ln)X : f ∈ M} .
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If the approximation is performed with a linear operator A then, we will study the sharp upper
bound

sup {‖f −A(f)‖X : f ∈ M} ,

and the quantity

E (M, Ln)X = inf {sup {‖f −A(f)‖X : f ∈ M} : AX ⊂ Ln} , (1.1)

which characterizes the best linear approximation of the set M by elements of Ln ⊂ X. If there
exists a linear operator A∗, A∗X ⊂ Ln realizing the infimum in (1.1), i.e., an operator such that

E (M, Ln)X = sup {‖f −A∗(f)‖X : f ∈ M} ,

then A∗ is called the best linear method of approximation to M.
The quantities

bn(M,X) := sup
{

sup {ε > 0; εB ∩ Ln+1 ⊂ M} : Ln+1 ⊂ X
}

,

dn(M,X) := inf{E(M, Ln)X : Ln ⊂ X},

dn(M,X) := inf
{

sup {‖f‖X : f ∈ M ∩ Ln} : Ln ⊂ X
}

,

δn(M,X) := inf {E (M, Ln)X : Ln ⊂ X} ,

(1.2)

are called Bernstein, Kolmogorov, Gelfand, and linear n-widths, respectively (see, for example,
[8, Ch. II], [30, Ch. III]).

If there exists a subspace L̄n+1 ⊂ X, dim L̄n+1 = n+ 1, for which

bn(M,X) := sup {ε > 0 : εB ∩ Ln+1 ⊂ M} ,

then it is an extremal subspace for bn(M,X). A subspace L∗
n ⊂ X, dimL∗

n = n, on which the
infimum in (1.2) is attained, i.e., dn(M,X) = E(M, L∗

n) is called an extremal subspace for the
Kolmogorov n-width dn(M,X). If there exist a subspace Ln

∗ ⊂ X of codimention n such that

dn(M,X) := sup {‖f‖X : f ∈ M ∩ Ln
∗} ,

then Ln
∗ is said to be extremal for dn(M,X). A subspace L̃n ⊂ X, dim L̃n = n such that

δn(M,X) = E (M, L̃n),

if it exists, is called extremal for δn(M,X). Finding extremal subspaces L̂n ⊂ X, dim L̂n = n, such
that

E(M, L̂n)X = E (M, L̂n)X = dn(M,X) = δn(M,X)

is of special interest. The n-widths mentioned above satisfy the relations [8, 30]

bn(M,X) ≤
dn(M,X)
dn(M,X)

= δn(M,X). (1.3)

2. Main theorem

Following [28, p. 652] and [14, p. 284], for an arbitrary function f ∈ Hq (1 ≤ q ≤ ∞), we
consider the modulus of smoothness

ω2(f, 2x)Hq := sup
|t|≤x

∥

∥f(ei(·+t))− 2f(ei(·)) + f(ei(·−t))
∥

∥

Lq[0,2π]
,
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where the Lq[0, 2π]-norm is defined by

‖f‖Lq [0,2π] =















(

1

2π

∫ 2π

0
|f(eit)|qdt

)1/q

, 1 ≤ q < ∞,

ess sup
0≤t≤2π

|f(eit)|, q = ∞.

Let Φ(t), t ≥ 0, be a continuous increasing function such that Φ(0) = 0. Using Φ as a majorazing
function, we consider the class of functions studied by Taikov [28]:

W (r)
q (Φ) :=

{

f ∈ A (U) : f (r) ∈ Hq,
k

π − 2

∫ π/(2k)

0
ω2(f

(r), 2t)Hqdt ≤ Φ
( π

2k

)

, k ∈ N

}

,

where r ∈ Z+ and 1 ≤ q ≤ ∞.
In [28, Theorem 4], it is proved that, if the majorant Φ(t) for 0 < t ≤ π/2 satisfies the inequality

Φ(λt)

Φ(t)
≥

π

π − 2











1−
2

λπ
sin

λπ

2
, if 0 < λ ≤ 2,

2

(

1−
1

λ

)

, if λ ≥ 2,
(2.1)

then the following equality holds for all n ∈ N, r ∈ Z+, n > r, and 1 ≤ q ≤ ∞:

dn

(

W (r)
q (Φ),Hq

)

=
1

αn,r
Φ

(

π

2(n− r)

)

.

It is also proved that the function Φ∗(t) = t2/(π−2) satisfies constraint (2.1).

It is also of interest to calculate the exact values of the above n-widths for the classes W
(r)
q (Φ)

in the spaces Lq,γ and Bq,γ , r ∈ Z+, 1 ≤ q < ∞.
For this purpose, we specify the extremal subspaces L∗

n, L
n
∗ , and L̄n+1 and the best linear

approximation method Λ∗
n−1 already mentioned in the first section.

We set

L∗
n := span

{

{zk}r−1
k=0,

[

{

1 +
ρ2(n−k)αk,r

α2n−k,r

[

βk,r

(

1−
( k − r

2n− k − r

)2)

− 1
]}

zk
]n−1

k=r

}

,

Λ∗
n−1 :=

r−1
∑

k=0

ck(f)z
k +

n−1
∑

k=r

{

1 +
ρ2(n−k)αk,r

α2n−k,r

[

βk,r

(

1−
( k − r

2n− k − r

)2)

− 1
]

}

ck(f)z
k,

(2.2)

where

βk,r :=
2(n − r)

π − 2

∫ π/2(n−r)

0
(1− sin(n− r)x) cos(k − r)xdx, k ≥ n > r, k, n ∈ N, r ∈ Z+.

Theorem 1. Let r ∈ Z+, 1 ≤ q < ∞, and let the majorant Φ satisfies condition (2.1). Then,
the following equalities hold for all n ∈ N, n > r:

bn

(

W (r)
q (Φ), Bq,γ

)

= bn

(

W (r)
q (Φ),Lq,γ

)

= dn
(

W (r)
q (Φ), Bq,γ

)

= dn
(

W (r)
q (Φ),Lq,γ

)

,

dn

(

W (r)
q (Φ), Bq,γ

)

= dn

(

W (r)
q (Φ),Lq,γ

)

= E
(

W (r)
q (Φ);L∗

n

)

Lq,γ

= E

(

W (r)
q (Φ);L∗

n

)

Lq,γ

= sup
{

‖f − Λ∗
n−1(f)‖Lq,γ : f ∈ W (r)

q (Φ)
}

=
1

αn,r
Φ

(

π

2(n − r)

)(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

.

(2.3)

Moreover,
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(1) the subspace L∗
n is extremal in the case of n-widths dn

(

W
(r)
q (Φ),Lq,γ

)

and δn
(

W
(r)
q (Φ),Lq,γ

)

;

(2) the continuous linear operator Λ∗
n−1 is the best linear approximation method for W

(r)
q (Φ) in

Lq,γ ;

(3) the subspace Ln
∗ is extremal for the n-width dn

(

W
(r)
q (Φ), Bq,γ

)

;

(4) the subspace L̄n+1 is extremal for the n-width bn

(

W
(r)
q (Φ), Bq,γ

)

.

To prove the theorem, we need the following lemma.

Lemma 1. The following inequality holds for an arbitrary function f ∈ H
(r)
q (r ∈ Z+,

1 ≤ q < ∞):

En−1(f)Lq,γ ≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

En−r−1(f
(r))Hq . (2.4)

Inequality (2.4) turns into an equality at the function f0(z) = zn, n > r.

P r o o f. Relation (2.3) from [14] with s = 0 implies that, for an arbitrary function f ∈ H
(r)
q

(r ∈ Z+, 1 ≤ q < ∞), there exists a polynomial pn−1 ∈ Pn−1 satisfying the following inequality
for n ∈ N, n > r, and 0 < ρ ≤ 1:

∥

∥f(ρeit)− pn−1(ρe
it)
∥

∥

Hq
≤

ρn

αn,r
En−r−1(f

(r))Hq . (2.5)

We raise both sides of (2.5) to the power q (1 ≤ q < ∞), multiply both sides by ργ(ρ), integrate
with respect to ρ over [0, 1], and raise the obtained result to the power 1/q (1 ≤ q < ∞). Finally,
we have

‖f − pn−1‖Lq,γ ≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

En−r−1(f
(r))Hq .

This implies inequality (2.4). The equality in (2.4) for the function f0(z) = zn is verified by direct
calculation. The proof of lemma is complete. �

P r o o f of Theorem 1. Taikov proved [28, p. 288] the following inequality for an arbitrary
function f ∈ Hq (1 ≤ q ≤ ∞):

En−1(f)Hq ≤
n

π − 2

∫ π/(2n)

0
ω2(f, 2t)Hqdt; (2.6)

and the equality in (2.6) for the function f0(z) = zn, n ∈ N.
Replacing in (2.6) the number n with n − r and the function f with f (r) ∈ Hq, we obtain the

following inequality for any function f ∈ H
(r)
q :

En−r−1(f
(r))Hq ≤

n− r

π − 2

∫ π/2(n−r)

0
ω2(f

(r), 2t)Hqdt. (2.7)

In view of (2.7), we can write inequality (2.4) in the form

En−1(f)Lq,γ ≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q
n− r

π − 2

∫ π/2(n−r)

0
ω2(f

(r), 2t)Hqdt. (2.8)

From (2.8), assuming that f ∈ W
(r)
q (Φ), we obtain

En−1(f)Lq,γ ≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

Φ

(

π

2(n− r)

)

.
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Hence, by relations (1.3), we write upper estimates for the Bernstein and Kolmogorov n-widths:

bn

(

W (r)
q (Φ),Lq,γ

)

≤ dn

(

W (r)
q (Φ),Lq,γ

)

≤ En−1

(

W (r)
q (Φ)

)

Lq,γ

≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

Φ

(

π

2(n− r)

)

.

(2.9)

To obtain a similar upper estimate for the linear n-width, we will use a result of Vakarchuk

[36, p. 324]. He proved the following inequality for an arbitrary function f ∈ W
(r)
q (Φ) (r ∈ Z+,

1 ≤ q ≤ ∞) for all n ∈ N and 0 < ρ ≤ 1:

∥

∥

∥
f(ρei(·))− Λ∗

n−1(f, ρe
i(·))
∥

∥

∥

Hq

≤
ρn

αn,r
Φ

(

π

2(n− r)

)

,

Hence, we obtain an upper estimate for the linear n-widths:

δn

(

W (r)
q (Φ),Lq,γ

)

≤ En−1

(

W (r)
q (Φ)

)

Lq,γ

= sup
{

‖f − Λ∗
n−1(f)‖Lq,γ : f ∈ W (r)

q (Φ)
}

≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

Φ

(

π

2(n− r)

)

.

(2.10)

Relations (2.9) and (2.10) imply the following upper estimates for the n-widths bn(·), dn(·), and
δn(·):

λn

(

W (r)
q (Φ),Lq,γ

)

≤ En−1

(

W (r)
q (Φ);L∗

n

)

Lq,γ

≤ En−1

(

W (r)
q (Φ);L∗

n

)

Lq,γ

≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

Φ

(

π

2(n− r)

)

,

(2.11)

where λ(·) is any of the n-widths bn(·), dn(·), or δn(·).
It is known [8, Ch. II, Sect. 3] that, if X and Y are linear normed spaces and X is the subspace

of Y (X ⊂ Y ), then dn (N,X) = dn (N, Y ), where N ⊂ X. Consequently, we can write

dn
(

W (r)
q (Φ),Lq,γ

)

= dn
(

W (r)
q (Φ), Bq,γ

)

.

By definition of the Bernstein n-width, we write

bn

(

W (r)
q (Φ),Lq,γ

)

≥ bn

(

W (r)
q (Φ), Bq,γ

)

.

In view of relation (1.3), to complete the proof of Theorem 1, it remains to obtain the inequality

bn

(

W (r)
q (Φ), Bq,γ

)

≥
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

Φ

(

π

2(n− r)

)

.

To this end, let us introduce the (n+ 1)-dimensional ball of polynomials

Bn+1 :=

{

pn ∈ Pn : ‖pn‖Bq,γ ≤
1

αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

Φ

(

π

2(n − r)

)}

and prove the possibility of the embedding Bn+1 ⊂ W
(r)
q (Φ).

We also introduce the notation

(1− cosnx)∗ :=
{

1− cosnx, if 0 < nx ≤ π; 2, if nx > π
}

.
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The following inequality was proved in [27] for an arbitrary polynomial pn ∈ Pn:

‖p(r)n ‖Hq ≤ αn,r‖pn‖Hq , n > r, n ∈ N, r ∈ Z+.

We also need the inequality

ρnq‖pn‖
q
Hq

≤ M q
q (pn, ρ) (n ∈ N, 1 ≤ q ≤ ∞, 0 < ρ ≤ 1), (2.12)

which follows from the inequality
∫

|z|=1
|pn(z)|

q|dz| ≤ ρ−(nq+1)

∫

|z|=ρ
|pn(z)|

q|dz|

established by Hille, Szegő, and Tamarkin (see, for example, [25]). Multiplying both sides of (2.12)
by ργ(ρ) and integrating with respect to ρ over [0, 1], we obtain

(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

‖pn‖Hq ≤ ‖pn‖Bq,γ

and hence

‖pn‖Hq ≤

(
∫ 1

0
ρnq+1γ(ρ)dρ

)−1/q

‖pn‖Bq,γ . (2.13)

To prove that the ball Bn+1 belongs to the class W
(r)
q (Φ), we will use the inequality

ω2(p
(r)
n , 2t)Hq ≤ 2αn,r(1− cos(n− r)t)∗‖pn‖Hq (2.14)

obtained from one of Taikov’s result [28].
Consider two cases: 2k ≥ n− r and 2k < n− r.
Let 2k ≥ n− r. By (2.13) and (2.14), for an arbitrary polynomial pn ∈ Bn+1, we have

k

π − 2

∫ π/(2k)

0
ω2(p

(r)
n , 2t)Hqdt ≤ 2αn,r

(
∫ 1

0
ρnq+1γ(ρ)dρ

)−1/q

‖pn‖Bq,γ

×
k

π − 2

∫ π/(2k)

0
(1− cos(n− r)t)dt ≤

π

π − 2

(

1−
2k

π(n− r)
sin

π(n− r)

2k

)

Φ

(

π

2(n − r)

)

.

(2.15)

Using (2.15) and the first inequality from (2.1) with

t =
π

2(n − r)
, λ =

n− r

k
, λt =

π

2k
, (2.16)

we obtain
k

π − 2

∫ π/(2k)

0
ω2(p

(r)
n , 2t)Hqdt ≤ Φ

( π

2k

)

. (2.17)

Let 2k < n− r. By (2.14) and (2.13), for an arbitrary polynomial pn ∈ Bn+1, we have

k

π − 2

∫ π/(2k)

0
ω2(p

(r)
n , 2t)Hqdt

≤ Φ

(

π

2(n − r)

)

k

π − 2

(
∫ π/(n−r)

0
2(1− cos(n− r)t)dt+

∫ π/(2k)

π/(n−r)
4dt

)

=
2π

π − 2

(

1−
k

n− r

)

Φ

(

π

2(n − r)

)

.

(2.18)
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Using (2.16) and the second inequality from (2.1) with (2.18), we obtain equality (2.17). The

inclusion Bn+1 ⊂ W
(r)
q (Φ) is proved. Then, by definition of the Bernstein n-width, we obtain

bn

(

W (r)
q (Φ), Bq,γ

)

≥ bn(Bn+1, Bq,γ) ≥
1

αn,r
Φ

(

π

2(n − r)

)(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

. (2.19)

Comparing relations (2.11) and (2.19), we obtain the required equality (2.3).

It follows from the proof of Theorem 1 that the subspace L∗
n is extremal for the class W

(r)
q (Φ)

in the space Lq,γ in the case of exact values of the Kolmogorov n-width dn(·) and the linear
n-width δn(·). The subspace L̄n+1 is extremal for the Bernstein n-width bn(·). The linear continuous
operator Λ∗

n−1 defined by equality (2.2) is the best linear approximation method for the class

W
(r)
q (Φ) in Lq,γ . By definition of the Gelfand n-width, the last inequality in (2.10) particularly

implies the following inequality for an arbitrary function f ∈ W
(r)
q (Φ) in the case ck(f) = 0,

k = 0, n − 1:

dn
(

W (r)
q (Φ), Bq,γ

)

≤ sup
{

‖f‖Bq,γ : f ∈ W (r)
q (Φ) ∪ Ln

∗

}

≤
1

αn,r
Φ

(

π

2(n − r)

)(
∫ 1

0
ρnq+1γ(ρ)dρ

)1/q

.
(2.20)

Comparing inequalities (2.19) and (2.20) and taking into account relation (1.3), we see that the
subspace Ln

∗ of codimension n is extremal for the Gelfand n-widths dn(·). Theorem 1 is proved. �

3. Conclusion

In the Banach spaces Lq,γ and Bq,γ , 1 ≤ q ≤ ∞, with a weight γ, exact values of some n-

widths of the classes W
(r)
q (Φ), r ∈ Z+, have been calculated. It was proved that the subspace L∗

n

is extremal for the Kolmogorov and linear n-widths in the class W
(r)
q (Φ), the continuous linear

operator Λ∗
n−1 is the best linear approximation method for W

(r)
q (Φ) in Lq,γ , and the subspace Ln

∗

is extremal for the n-width dn(W
(r)
q (Φ), Bq,γ). The subspace L̄n+1 is extremal for the n-width

bn(W
(r)
q (Φ), Bq,γ).
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