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Abstract: The paper deals with generalized linear and parabolic B—splines with the uniform nodes con-
structed by means only one function ¢(z). For such splines in this paper conditions have been found that
guarantee satisfaction of two—scale relations.
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Introduction

In contemporary mathematics, various generalizations of the polynomial spline—functions reg-
ularly appear. Besides the well-known L-splines (see, for example [1]), let us note the source-
representative splines [2], the Rvachev functions [3], the Leontiev splines [4], the Kvasov iso-
geometric splines [5], the Demyanovich B,-splines [6], and so on.

Recently, the Author [7] suggested another generalization of a known construction of the par-
abolic basis spline (of the B—spline) with the uniform nodes; this spline is constructed by means of
only one function ¢ € Ct[—h,h] (h > 0).

In [7], the approximative and form-retaining properties of the local non-interpolating splines
were investigated. These ones are linear combinations of shifts of the suggested B—splines. As
particular cases, there were considered examples of exponential, elliptic, and hyperbolic local splines
with arbitrary collocation of nodes.

It is well known that the polynomial splines have played important role in development of the
wavelet theory (see, e.g., [8-10]). Namely, in constructing the wavelet decompositions of the space
L?(R), embeddedness of spaces {Vj}32 _ on refining meshes is used. This embeddedness follows
from presence of scaling (multiple-scaled) relations (see [8, § 4.3])) for the basis functions.

But note that not each basis function B(x) satisfies the general scaling equation of the form

B(x) =) h;B(2z—jh) (z€R),
JEZ

and finding such functions B(z) is a complicated problem.

In the present paper, conditions on the function ¢ are given that guarantee implementation
of analogues for the two—scaled relations for the generalized parabolic B-splines from work [7]
(all necessary definitions are given below). Moreover, an analogous problem is considered for the
generalized linear B—splines and corresponding examples are given.

It is worthy to note that we have obtained these results without application of the harmonic
analysis techniques.

!The paper was originally published in Trudy Institute of Mathematics and Mechanics, Ural Branch of
the Russian Academy of Sciences, 2011. Vol. 17, no 3. P. 319-323 (in Russian).
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1. Generalized parabolic B—splines

Let h > 0 and C = Ca, b] be the space of continuous functions given on the segment [a, b] with
usual definition of the norm

[fllc = max |f(z)].
z€la,b]

Fix the function ¢ given on the segment [—2h, 2h] and satisfying the following conditions:

¢’ € C[-2h,2h],  @(-z)=¢(x) (z€[0,2h]),  ¢(0)=¢'(0)=0. (1.1)

The B-spline corresponding to this function ¢ (see [7]) is described by the formula

o(@), € [0, ),
- 20(h) — (e — h) — (e — 2h), € [h,2A),
Ba(x) = m(h) ) o (1.2)
0, x ¢ [0, 3h].

Here, m = m(h) > 0 is the normalizing multiplier.

In the classic case, the normalized parabolic B—spline with the uniform nodes 0, h, 2h 3h (see
[11]) is obtained from this definition if to set ¢(z) = 2% and m(h) = 1/(2h?).

Note evident properties of the function By, o(x) that follow from conditions (1.1):

supp By 2(z) = [0, 3R], By, 5 € C(R), Bp2(3h — x) = By a(x),

(i.e., the function By, 9 is even w.r.t. the middle carrier point x = (3h)/2). If to suppose another
condition to be satisfied that the function ¢(x) does not decrease on [0, h], then the graph of By, ()
will have the form of a symmetric “cap” (w.r.t. the point x = (3h)/2) as a the parabolic B-spline
with the uniform nodes.

In [7], for such functions ¢, the local splines of the following form were investigated

S(z)=8(f,z) = Zijhg(l‘Jr 3h *jh),

, 2
JEZ

where y; = f(jh), f: R — R. It has been proved that these splines locally satisfy to the property

of retaining the original data y; (of the 1-monotonicity type) in the following sense: if y;_; <y <

yi+1 (I € Z), then the spline S(z) does not decrease on the segment [(I —1/2)h, (I4+1/2)h] (I € Z).
Together with the function By, 2(z), consider the function

o(), € [0,2n],

B 20(2h) — ¢(x — 2h) — p(x — 4h), = € [2h,4h],

Bapa(x) = m(2h) o(6h — ), € [4h, 6],
0, x & [0,6h]

that is obtained from he function Bj o by formal substitution of the parameter h by the 2h one. It
is evident that, in a general case, the graph of this function can not be obtained from the graph
of the function By, o by two-times extension along the horizontal axis as it happened un the classic
polynomial case (see [8, § 4.3]). This is since nowhere the demand of homogeneity property of
the function ¢ is imposed. But this is the key reasoning in the described constructing. So, in the
subsequent investigation of the wavelets on the basis of these basis functions, the embeddedness
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of corresponding subspaces {VJ}JO‘;_OO on the refining meshes must be understood in some other
sense.

In this paper, we are searching for an answer on the following question. For what functions ¢
satisfying conditions (1.1), there exist real numbers A;, Ag, A3, and A4 such that for any x € R

the equality holds
th(:c) = AlBh72(fE) + AgBh72($ — h) + AgBmg(l‘ — Qh) + A4Bh72($ — 3h)? (1.3)

We call this equation the scaling (two—scaled) relation for the generalized B—spline that is deter-
mined by formula (1.2). In the subsequent formulas, the expression o/o is supposed to be equal to 1.

Theorem 1. Let the function ¢ satisfy conditions (1.1). Then equality (1.3) holds iff there
exists such a number A € R, for which the following equalities hold:

_pt+h) =20(h) +p(t —h)+ () et —2h) —2p(h) + ot —h) + p(t)

' 10 - olt =) -
_ 2p(2h) — ot = 2h) — () — @t —h) _ 2¢(2h) — @(t = h) — p(t + h) — ¢(t) (1.4)
2p(h) — o(t — h) 2p(h) = o(t) ’ '
0<t<h.

P r oo f. By virtue of symmetry of the generalized B—spline w.r.t. the middle of the segment
carrier, it is possible to think that A; = A4 and Ay = As.

Consider equality (1.3) as an equation w.r.t. the coefficients Ay, As, As and A4 on each segment
[0,h], [h,2h],...,[Bh,6h]. We obtain that

m(2h)
Ay = Ay mh)
A ) [l ) = 2p(0) + (e — 1) + (0] _
m(h) o(t)
_m(2h) [p(2h — 1) = 2p(h) + plt — ) + o(0)] _
m(h) p(t—h)
_ m(2h) [20(2h) — p(t — 2h) — o(t) — ot — )] _
m(h) 2¢(h) —(t — h)
_ m(2h) [20(2h) — (t —h) — o(t+h) — o(t)]
m(h) 2¢(h) — () '

O

Ezamples. Give examples of three functions ¢ that satisfy equalities (1.4). In the sequel for
simplicity, we put m(2h) = m(h).

Ezample 1. Let o(z) = x? (the parabolic splines). Then A; = Ay = 1, Ay = A3 = 3 are the
binomial coefficients from [8, formula 4.3.4].

Ezample 2. Let ¢(x) = cosh(Bz) — 1 (8 > 0) (the exponential splines corresponding to the
linear differential operator of the third order with the form L3 = £L3(D) = D(D? — 3?), where D is
the differentiation symbol). Then A; = A4 =1, Ay = A3 =1+ 2cosh Sh.
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Ezample 3. Let ¢(x) = 1 — cosazx (o > 0), i.e., be the trigonometric splines corresponding
to the linear differential operator of the third order with the form L3 = L£3(D) = D(D? + o?).
Then Ay = A4 =1, Ay = A3 =1+ 2cosah.

In connection with the latter two examples, note the Author’s work [12]. There the scaling
relations are constructed for the B-L-splines (of an arbitrary order) in more generalized form than
in (1.3).

2. Generalized linear B—splines

The scheme suggested for obtaining the two—scaled relations can be expanded onto the gener-
alized linear B—splines.
Let the function ¢ be given on the segment [0,2h] and satisfy the following conditions:

v € C[0,2h], »(0) =0. (2.1)
The generalized linear B—spline is described by the formula

p(x),  xe[0h]
Byi(z) =m(h){ ¢(2h —x), x € [h,2h], (2.2)
0, z & [0,2h].
Here, m(h) > 0 is the normalizing multiplier. If to put ¢(z) = x and m(h) = 1/h, then formula
(2.2) defines the normalized linear B—spline (see, for example [11]).
It is evident that supp By 1 = [0,2h], Bp1 € C(R), By 1(2h —x) = Bpi(x) (2 € [0,h]). Also,

consider the function
e(x),  x€l0,2h],

Baa(2) = m(2h) { w(4h—2), v € [2h,4h]
0, x ¢ [0,4h]

that was obtained by formal substitution of the parameter h by 2h one in the function By, ;. We
are interested in the question: for what ¢ the equality holds

Bopi(z) = C1Bp1(x) + CaBp 1 (x — h) + C3Bp, 1 (x — 2h) (r € R), (2.3)

where C1, Cs, and C3 are some real numbers?

Theorem 2. Let the function ¢ satisfy conditions (2.1). Then equality (2.3) holds iff there
exists such a number A € R for which the following equalities hold:

5= so(tm)gpzt;o(h —1) _ @(Zi;(—ht)_;)go(t) (0<t<h). (2.4)

P roof It is similar to one of Theorem 1. Under this,

C1=0C3= 7:5(2:)),
Oy = m(2h) [p(t +h) —p(h —t)] _ m(2h) [p(2h —1t) — @(t)].
m(h) o(t) m(h) p(h —1)
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Ezamples. As in the previous paragraph, it is possible to give examples of three functions ¢
satisfying equalities (2.4). Again for simplicity, we put m(2h) = m(h).

Ezample 4. Let ¢(xz) = x (the linear splines). Then C; = C3 = 1, Cy = 2 are the binomial
coefficients from [8, formula 4.3.4].

Ezample 5. Let ¢(x) = sinh Bz (8 > 0), i.e., be the exponential splines of the second or-
der corresponding to the linear differential operator of the form Ly = Lo(D) = D? — 2. Then
C1=C3=1, Cy =2coshSh.

Ezample 6. Let ¢(x) = sinhax (o > 0), i.e., be the trigonometric splines of the second or-
der corresponding to the linear differential operator of the form Lo = Lo(D) = D? + o?. Then
Ci=C3=1, Cy =2cosah.

3. Conclusion

It would be interesting to construct examples of other functions ¢ satisfying relations (1.4) or
(2.4). But it is not clear, how using only one function ¢, it is possible to construct analogues of
the polynomial B—splines of more high degrees, i.e., to derive formules of the type (1.2).

REFERENCES

1. Alberg J., Nilson E., Walsh J. Theory of splines and their applications. Moscow: Mir, 1972. 318 p.
[in Russian]

2. Shevaldin V.T. Estimations from below of diameters of classes of source-represented functions //
Trudy Steklov Math. Institute of RAS, 1989. Vol. 189. P. 185-201. [in Russian]

3. Rvachev V.A. Finite solutions of functional-differentional equations and their applications // Uspekhy
Math. Nauk, 1990. Vol. 45, no. 1. P. 77-103. [in Russian]

4. Leontiev V.L. Orthogonal finite functions and numerical methods. Ulyanovsk: Ulyanovsk State Uni-
versity, 2003. 181 p. [in Russian]

5. Kvasov B.I. Methods for the iso-geometric approximation by splines. Moscow: Fizmatlit, 2006. 360 p.
[in Russian]

6. Demyanovich Yu.K. Wavelet basis for B,-splines on a non-uniform mesh // Math. Modelling, 2006.
Vol. 18, no. 10. P. 123-126. [in Russian]

7. Shevaldin V.T. Three-point scheme for approximation by local splines / Proceedings of International
Summer Math. School by the name of S.B. Stechkin on the Theory of Functions. Tula: Tula State
University, 2007. P. 151-156. [in Russian]

8. Chui Ch. Introduction into wavelets. Moscow: Mir, 2001. 412 p. [in Russian]

9. Subbotin Yu.N., Chernykh N.I. Construction of WJ™*(R) wavelets and their approximative properties
in various metrics // Proc. of Instit. of Math. and Mech. Ural Branch of RAS, 2005. Vol. 11, no. 2.
P. 131-167. [in Russian]

10. Novikov I.Ya., Protasov V.Yu., Skopina M.A. Theory of wavelets. Moscow: Fizmatlit, 2005.
616 p. [in Russian]

11. Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Spline—functions methods. Moscow: Nauka,
1980. 355 p. [in Russian]

12. Shevaldin V.T. Calibration relations for B-L-splines. Modern problems of mathematics: Abstracts of
42nd Russian Youth Conference. Instit. of Math. and Mech. Ural Branch of RAS: Ekaterinburg, 2011.
P. 151-153. [in Russian]



