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Abstract: We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting
Asymmetric Traveling Salesman Problem, which has numerous valuable applications in operations research.
An instance of this problem is given by a complete node- and edge-weighted digraph G. Each node of the graph
G can either be visited by the resulting route or skipped, for some penalty, while the arcs of G are weighted
by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed
walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that
an arbitrary α-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an (α + 1)-
approximation for the problem in question. In particular, using the recent (22 + ε)-approximation algorithm of
V.Traub and J.Vygen that improves the seminal result of O. Svensson, J. Tarnavski, and L.Végh, we obtain
(23 + ε)-approximate solutions for the problem.

Keywords: Prize-Collecting Traveling Salesman Problem, Triangle inequality, Approximation algorithm,
Fixed approximation ratio.

1. Introduction

The Prize-Collecting Traveling Salesman Problem (PCTSP) is of the most recognized problems
of combinatorial optimization. Introduced by Egon Balas in [2], it has valuable applications in drone
routing [10], ride-sharing [23], or metal production. Theoretically, the PCTSP is closely related to
the well-known Traveling Salesman Problem (TSP) [17] and Orienteering Problem (OP) [30].

Following to [2], an informal statement of the PCTSP is to find a traveling plan across a given
transportation network, which consists of cities and roads. This network is represented by some
connected graph.

For each city, the salesperson gains a reward or pays a penalty depending on whether he or she
visits this city or not. In addition, traveling on an arbitrary road is charged with an appropriate
transportation cost.

The goal is to find a tour retaining at least the given amount of reward and having the smallest
accumulated costs and penalties.

1.1. Related work

Since PCTSP embeds the classic Traveling Salesman Problem, its general setting is strongly
NP-hard and hard to approximate [27]. Furthermore, the problem remains intractable even in very
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specific settings, e.g. on the Euclidean plane [25]. As for the majority of known combinatorial
problems, algorithmic desingn of this problem develops in the following main directions.

The first direction is related to exact branch-and-bound-and-cut algorithms [5, 11, 12] and goes
back to fundamental results by E. Balas and M. Fischetti and P. Toth that describe facet-inducing
inequalities for the equivalent mixed-integer linear programs [2, 15], see also [20]. Despite the sig-
nificant impact contributed by these polyhedral results to the theory of combinatorial optimization
and notable recent success in hardware development, exact algorithms still remain applicable to
rather small instances of the problem.

The second one deals with developing problem-specific versions of various heuristics and meta-
heuristics including variable neighborhood search [21], tabu search [26], simulated annealing [14],
bio-inspired and genetic algorithms [13], and their combinations. Often heuristics demonstrate
an amazing performance by finding optimal (or close-to-optimal) solutions in a few seconds for
real-life instances that come from industrial applications. Unfortunately, an absence of theoretical
guarantees entails experimental assessment of these algorithms and possible additional tuning of
their external parameters in case of any novel modification of the problem or series of instances.

Finally, the third direction relates to approximation algorithms augmented by theoretical per-
formance guarantees and polynomial (or quasipolynomial) time approximation schemes (PTAS
and QPTAS, respectively). First, we should mention the famous 5/2-approximation algorithm by
D. Bienstock, M. Goemans, D. Simchi-Levi, and D. Williamson [6] for for the metric PCTSP. These
algorithm relies on the classic L.Lovász result for the Euclidean graphs, an original technique of LP-
relaxation rounding, and exploit as a black box the classic Christofides 3/2-approximation algorithm
[9] for the metric TSP. Further, incorporation of the classic primal-dual approach by M.Goemans
and D.Williamson [16] leads to several improvements of this result including (1 − 2/3e−1/3)−1-
approximation algorithm and more recent (2− ε)-approximation algorithm [1].

We should notice that fixed-ratio approximation appears to be the best approximation result
that can be obtained for an arbitrary metric (unless P=NP) since the metric PCTSP is APX-hard.
Nevertheless, for some metrics of a special kind, there exist much more promising results, including
PTAS for the PCTSP formulated on planar graphs [4] and the PCTSP in doubling metrics [7].
The latter PTAS is based on the breakthrough result obtained by Y. Bartal, L.A. Gottlieb, and
R. Krauthgamer [3] for the classic TSP and continued by the series of recent papers (see, e.g.
[8, 19]), where the efficient approximation of the combinatorial optimization problems is managed
to extend beyond the finite dimensional vector spaces.

All the aforementioned results were obtained for the symmetric version of the problem. Mean-
time, approximation of its asymmetric version known as the Prize-Collecting Asymmetric Trav-
eling Salesman Problem (PCATSP) still remains weakly studied. To the best of our knowledge,
(1 + ⌈log n⌉)-approximation algorithm proposed in [24] is the only result obtained in this field so
far. In this paper, we try to bridge this gap.

1.2. Our contribution

For the PCATSP with the triangle inequality, we introduce the first fixed-ratio polynomial time
algorithm, which finds (23 + ε)-approximate solution of the problem for and arbitrary ε > 0. Our
approach appears to be a further extension of the classic splitting-of technique for the Eulerian
graphs and rounding framework of [6], and exploit the seminal recent Svensson-Traub (22 + ε)-
approximation algorithm for the Asymmetric Traveling Salesman Problem (ATSP) with the triangle
inequality, as a main building block.

In Section 2, we give a formulation of the problem in question. Next, in Section 3, we recall
the necessary definitions and notation. Section 4 opens the discussion of novel results. In this
section, we introduce the proposed algorithm, whose approximation ratio and running time bounds
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are proved in Section 5. Finally, in Section 6, we summarize the obtained results and discuss some
open questions.

2. Problem statement

In this paper, we study polynomial approximation of the Profitable Tour Problem (PTP),
introduced by M. Dell’Amico, F. Maffioli, and P. Värbrand in [12], which a simplified version of the
PCATSP introduced by E. Balas in [2]. An arbitrary PTP instance is given by a complete digraph
G = (V,A) augmented by an edge-weighting function c : A → R+ that specifies transportation costs
and fulfills the triangle inequality

c(u, v) + c(v,w) ≥ c(u,w) for any {u, v, w} ⊂ V, (2.1)

and node-weighting function π : V → R+, defining the penalties for skipping nodes of the graph G.
Unlike the classic Asymmetric Traveling Salesman Problem, feasible solution set of the PTP con-
tains an arbitrary closed walk (including the empty tour that skips each node of the graph G). The
problem is to find the minimum cost walk, where a cost of an arbitrary walk T is defined as follows:

cost(T ) =
∑

a∈T

ca +
∑

v 6∈T

πv,

provided T visits some subset W ⊂ V .
Comparing the considered problem with the original one introduced in [2], we should mention

that, similarly to [6]

(i) we assume that transportation costs satisfiy the triangle inequality (2.1),

(ii) visiting of an arbitrary node of the graph G has no additional profit,

(iii) as a consequence, we exclude the knapsack constraint that restricts minimum possible profit
to collect.

3. Preliminaries

Results of this paper are mainly based on approximation algorithms proposed recently for the
ATSP, where the edge-waiting function satisfies the triangle inequality, and on the well-known
splitting-off property of the Eulerian graphs.

In the ATSP, we are given by a complete digraph G = (V,A) and a weighting function c : A →
R+, which specifies transportation costs. Without loss of generality, we assume that c satisfies the
triangle inequality. The goal is to construct a closed route that visits each node of the graph G (a
tour) with the minimum transportation cost.

For our construction, another equivalent formulation of the ATSP appears to be more conve-
nient. In this setting, we are required to find a minimum cost (multi-)subset T ⊂ A, such that (V, T )
is Eulerian connected multigraph. Assuming that each arc a is contained in T with multiplicity xa,
the cost of T is defined by

c(T ) =
∑

a∈T

caxa.

In this context, it is convenient to assume that each tour R is defined by its arc-multiplicity vector
x.

In the following, we need some standard definitions and notation. As usual, by δ(U1, U2) we
denote the set or arcs {(u, v) ∈ A : u ∈ U1, v ∈ U2} for an arbitrary disjoint non-empty subsets
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U1, U2 ⊂ V . In particular case, where U1 = W and U2 = V \W , δ(U1, U2) coincides with classic
notation of outgoing and incoming cuts

δ+(W ) = δ(W,V \W ) = {(u, v) ∈ A : u ∈ W, v /∈ W} and

δ−(W ) = δ(V \W,W ) = {(u, v) ∈ A : u /∈ W, v ∈ W},

respectively and the cut δ(X) = δ+(X) ∪ δ−(X). Next, we use a short notation δ(v) for X = {v}.

Further, we use the classic Held-Karp Mixed Integer Linear (MILP)-model for the ATSP

min
∑

a∈A

caxa (3.1)

s.t. x(δ+(v)) = x(δ−(v)) (v ∈ V ), (3.2)

x(δ(U)) ≥ 2 (∅ 6= U ⊂ V ), (3.3)

xa ∈ Z+ (a ∈ A). (3.4)

Here, equation (3.2) ensures that an arbitrary feasible solution induces a Eulerian multi-subgraph
and (3.3) is the classic subtour elimination constraint. We denote optimum values of problem
(3.1)–(3.4) and its LP-relaxation as ATSP∗ and ATSP-LP∗, respectively.

In their seminal paper [28], O. Svensson, J. Tarnavski, and L. Végh provided the first polynomial
time approximation for the ATSP within a fixed ratio. A few years later, this breakthrough result
was substantially improved by V. Traub and J. Vygen in [29]. We remind this result, since it is
one of the main building blocks of our own contribution.

Theorem 1. For an arbitrary positive ε, there exists a polynomial-time algorithm that finds a
feasible tour T for the given ATSP instance, such that

ATSP∗ ≤ c(T ) ≤ (22 + ε) ATSP-LP∗ .

We employ this result to prove the similar approximation result for the special case of the
PCATSP, where all feasible walks are restricted to visit a given pair of nodes {u, v} ⊂ V , we
call this problem PCATSPu,v. Following the known results (see, e.g. [6, 11]), we propose the
MILP-model for this problem:

min
∑

a∈A

caxa +
∑

w∈V

πw(1− yw) (3.5)

s.t. x(δ+(w)) = x(δ−(w)) (w ∈ V ), (3.6)

x(δ(S)) ≥ 2 (S ⊂ V : |S ∩ {u, v}| = 1), (3.7)

x(δ(S)) ≥ 2yw (∅ 6= S ⊆ V \{u, v}, w ∈ S), (3.8)

xa ∈ Z+, yw ∈ {0, 1}, (3.9)

yu = yv = 1, (3.10)

where, for the tour W , the Boolean variable yw indicates of whether W visits the node w ∈ V ,
total transportation costs and node-skipping penalties accumulated by W are represented by the
objective function (3.5), equation (3.6) guarantees that the multigraph (V,W ) is Eulerian and,
together with (3.7)–(3.8), ensures its connectivity.

As for the Held-Karp model, we assign an LP-relaxation PCATSP-LPu,v to the problem
PCATSPu,v, where constraint (3.9) is relaxed by xa ≥ 0 and yw ∈ [0, 1], and denote by PCATSP∗

u,v,
PCATSP-LP∗

u,v, and T C(PCATSP-LPu,v) the optimum values of the problem PCATSPu,v and
problem PCATSP-LPu,v and the time complexity of the PCATSP-LPu,v, respectively.
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4. Approximation algorithm

We start with an approximation algorithm (Algorithm Au,v) for the PCATSPu,v used as a
subroutine in our main Algorithm A for the PCATSP.

Algorithm Au,v employs two outer parameters. The former one is an arbitrary approximation
Algorithm A0 for the asymmetric ATSP. For any ATSP instance I and some α ≥ 0, this algorithm
finds an approximate solution T = T (I), such that:

ATSP∗ ≤ c(T ) ≤ α ·ATSP-LP∗ . (4.1)

The latter parameter gives a threshold value τ separating full-size auxiliary ATSP instances ap-
proximated using algorithm A0 from the smaller ones, which are solved to optimality.

Algorithm Au,v

Input: an instance of the PCATSPu,v

Parameters: an approximation algorithm A0 for the ATSP with triangle inequality,
a threshold τ ≥ 3

Output: an approximate solution Wu,v of this instance

1: find an optimum solution (x̄, ȳ) for the PCATSP-LPu,v

2: define the subset Vu,v ⊂ V as follows:

Vu,v =
{

w ∈ V : ȳw ≥
α

α+ 1

}

,

by construction, {u, v} ⊂ Vu,v

3: consider an ATSP instance Iu,v on the subgraph G〈Vu,v〉 induced by the subset Vu,v

4: if |Vu,v| > τ then

5: set Wu,v to an approximate solution of Iu,v found by Algorithm A0

6: else

7: set Wu,v to an optimum solution of this instance
8: end if

9: output Wu,v

Algorithm A is based on the following simple decomposition idea:

(i) by construction, any feasible solution of the PCATSP is either a closed walk Wu,v visiting at
least two nodes u and v of the input graph G or an empty walk that does not visit any node
at all;

(ii) in the former case, the walk Wu,v is a feasible solution of the appropriate restricted problem
PCATSPu,v and has the cost

cost(Wu,v) =
∑

a∈Wu,v

caxa +
∑

w/∈V ′

πw,

where xa denotes the inclusion multiplicity for the arc a in the walk Wu,v and V ′ is the subset
of nodes visited by this walk;

(iii) in the latter case, the cost of the empty walk is
∑

w∈V πw.
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Finally, the initial PCATSP is decomposed as follows:

PCATSP∗ = min
{

∑

w∈V

πw,min
{

PCATSP∗
u,v : {u, v} ⊂ V

}

}

. (4.2)

Algorithm A

Input: an instance of the PCATSP
Output: an (α + 1)-approximate solution of this instance

1: initialize the set of candidate solutions C = ∅

2: for all {u, v} ⊂ V do

3: construct the auxiliary instance PCATSPu,v

4: employ Algorithm Au,v to find its approximate solution Wu,v

5: append the walk Wu,v to C
6: end for

7: let W̄ = argmin
{

cost(Wu,v) : Wu,v ∈ C
}

8: if cost(W̄ ) ≤
∑

w∈V

πw then

9: output W̄
10: else

11: output the empty walk
12: end if

5. Theoretical guarantees

First of all, we show that Algorithm Au,v, as an algorithm for PCATSPu,v, inherits all the ap-
proximation features of algorithm A0 for the ATSP with the triangle inequality. In particular, if we
take the Svensson-Traub algorithm, then Algorithm Au,v, in polynomial time, will find an approxi-
mate solution of the subproblem PCATSPu,v, whose cost does not exceed (23+ ε) PCATSP-LP∗

u,v.
We start with the following technical lemma.

Lemma 1. For each Vu,v ⊂ V , such that |Vu,v| > 3, the optimum value of the problem

min
∑

caxa (5.1)

s.t. x(δ+(w)) = x(δ−(w)) (w ∈ V ), (5.2)

x(δ(U)) ≥ 2

(

U ⊂ V : Vu,v ∩ U 6= ∅,

Vu,v ∩ V \U 6= ∅

)

, (5.3)

xa ≥ 0 (a ∈ A), (5.4)

x(δ(w))

{

≥ 2, if w ∈ Vu,v,

= 0, otherwise
(5.5)

is equal to the optimum value of problem (5.1)–(5.4).

Lemma 1 can be derived from a much more general result on connectivity of Eulerian graphs
obtained by L. Lovász [22] and B. Jackson [18]. Nevertheless, we prefer to present its direct proof,
since, in our case, it appears to be much simpler.
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P r o o f. Indeed, denote by X∗
1 and X∗

2 optimal sets of the problem (5.1)–(5.4) and (5.1)–(5.5),
respectively. We show that an arbitrary rational solution

x∗ = argmin
{

∑

a∈A

xa : x ∈ X∗
1

}

(5.6)

belongs to X∗
2 . To prove it, it is sufficient to show that x∗(δ(w)) = 0 for an arbitrary w /∈ Vu,v,

since, for any w ∈ Vu,v, inequality x∗(δ(w)) ≥ 2 follows straightforwardly from equation (5.3). By
construction, there exists a number D ≥ 1, such that the vector ξ∗ = D ·x∗ is an integer and fulfills
the following constraints:

ξ(δ+(w)) = ξ(δ−(w)) (w ∈ V ), (5.7)

ξ(δ(S)) ≥ 2D (S ∈ Su,v), (5.8)

ξ ≥ 0, (5.9)

where
Su,v = {S ⊂ V : Vu,v ∩ S 6= ∅, Vu,v \ S 6= ∅}

and ξ∗(δ(S)) is even for an arbitrary S ⊂ V .
Assume that there exists w0 /∈ Vu,v, for which ξ∗(δ(w0)) > 0. Obviously, inequality (5.8) holds

tight for at least one subset S̄ ∈ Su,v. Indeed, otherwise, for some nodes w′ and w′′ neighboring to
w0, for which ξ∗(a) > 0, a ∈ {(w′, w0), (w0, w

′′)}, there exists the vector ξ̃, built as follows:

ξ̃a =











ξ∗a − 1, for a = (w′, w0) or a = (w0, w
′′)

ξ∗a + 1, for a = (w′, w′′)

ξ∗a, for any other arc.

(5.10)

By construction, ξ̃ satisfies equations (5.7)–(5.9). Furthermore,

∑

a∈A

ξ̃a =
∑

a∈A

ξ∗a − 1, and
∑

a∈A

caξ̃a ≤
∑

a∈A

caξ
∗
a,

by triangle inequality. Therefore, the vector x̃ = 1/D · ξ̃ is feasible in the problem (5.1)–(5.4), it
belongs to X∗

1 , and
∑

a∈A

x̃a =
∑

a∈A

x∗a −
1

D

that contradicts to (5.6).
Therefore, we proved that there exists a subset S̄ ∈ Su,v, w0 /∈ S̄ and the neighbors w′, w′′ ∈ S̄,

such that ξ∗(δ(S̄)) = 2D, and ξ̃(δ(S̄)) = 2D − 2. Notice that, even in this case, any time, when
{w′, w′′}∩Vu,v = ∅, transform (5.10) still provides feasible solution x̃ that contradicts to minimality
of x∗. Therefore, in the sequel, we assume without of loss of generality that w′ ∈ Vu,v.

Denote by S′ the maximal subset of V \{w0}, such that S′ ∈ Su,v, w
′ ∈ S′, and ξ∗(δ(S′)) = 2D.

Since
w0 /∈ Vu,v, Vu,v \ (S

′ ∪ {w0}) 6= ∅ and ξ∗(δ(S′ ∪ {w0})) ≥ 2D.

Therefore, S′ cannot contain all the neighbors of w0, since, otherwise (see Fig. 1)

2D ≤ ξ∗(δ(S′ ∪ {w0})) < ξ∗(δ(S′)) = 2D.

Further, consider the subsets S′ and S̄. Since

S′ ∩ S̄ 6= ∅, V \ (S′ ∪ S̄) 6= ∅, S̄ \ S′ 6= ∅, and S′ \ S̄ 6= ∅,
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0
w

S'

Figure 1. Example of subset S′, node w0, and its neighbors.

for an arbitrary vector ξ satisfying (5.7)–(5.9), the following inequalities

ξ(δ(S′ \ S̄)) + ξ(δ(S̄ \ S′)) ≤ ξ(δ(S′)) + ξ(δ(S̄)), (5.11)

ξ(δ(S′ ∪ S̄)) + ξ(δ(S′ ∩ S̄)) ≤ ξ(δ(S′)) + ξ(δ(S̄)) (5.12)

are valid. Indeed, as it follows from Fig. 2,

ξ(δ(S′ \ S̄)) = a+ b+ d, ξ(δ(S̄ \ S′)) = c+ d+ e,

ξ(δ(S′ ∪ S̄)) = a+ e+ f, ξ(δ(S′ ∩ S̄)) = b+ c+ f,

ξ(δ(S′)) = a+ c+ d+ f, ξ(δ(S̄)) = b+ d+ e+ f.

S
S'

a e

Figure 2. Cut sizes: a = |δ(S′\S̄, V \(S′∪S̄)|; b = |δ(S′\S̄, S′∩S̄)|; c = |δ(S̄\S′, S′∩S̄)|; d = |δ(S′\S̄, S̄\S′)|;
e = |δ(S̄ \ S′, V \ (S′ ∪ S̄))|; f = |δ(S′ ∩ S̄, V \ (S′ ∪ S̄))|.

Therefore, inequalities (5.11) and(5.12) hold for any non-negative function c of transportation
costs. Furthermore, for ξ∗,

ξ∗(δ(S′ \ S̄)) + ξ∗(δ(S̄ \ S′)) < ξ∗(δ(S′)) + ξ∗(δ(S̄)), (5.13)

by construction. Next, by assumption, w′ ∈ Vu,v ∩ S′ ∩ S̄, w′′ ∈ S̄ \ S′, and w0 /∈ S′, which imply
ξ∗(δ(S′ ∩ S̄)) ≥ 2D. Thus, we obtain

ξ∗(δ(S′ ∪ S̄)) ≤ 2D,

due to (5.12) and the equality

ξ∗(δ(S′)) = ξ∗(δ(S̄)) = 2D. (5.14)
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Consequently, Vu,v ⊂ S′∪ S̄, since otherwise, taking into account the inequality Vu,v ∩ (S̄∩S′) 6= ∅,
we come to contradiction with the maximality of the subset S′.

Coming back to the subsets S̄ \ S′ and S′ \ S̄, we can easily show that each belong to Su,v,
which implies

ξ∗(δ(S′ \ S̄)) ≥ 2D and ξ∗(δ(S̄ \ S′)) ≥ 2D.

These equations together with (5.14) contradict (5.13). Lemma 1 is proved. �

Theorem 2. If the Algorithm A0 approximates the ATSP in time T C(A0) within the accuracy
bound (4.1), then the Algorithm Au,v, in time T C(A0)+T C(PCATSP-LPu,v), finds an approximate
solution Wu,v of the PCATSPu,v, for which

PCATSP∗
u,v ≤ cost(Wu,v) ≤ (α+ 1) PCATSP-LP∗

u,v . (5.15)

P r o o f. Since the description of the Algorithm Au,v leads to a straightforward upper bound
of its time complexity, we proceed with the bound of its approximation ratio (5.15). Indeed, make
a simple transformation of the fractional solution (x̄, ȳ) obtained at Step 1 of the Algorithm Au,v

as follows:

x̂ =
α+ 1

α
· x̄, ŷw =

{

1, if ȳw ≥ α/(α + 1),

0, otherwise.
(w ∈ V ). (5.16)

Further, the set Vu,v defined at Step 2 of the Algorithm Au,v obeys the equation

Vu,v = {w ∈ V : ŷw = 1},

by construction. We consider the non-trivial case, where |Vu,v| > τ . Then, Wu,v coincides with an
approximate solution of the auxiliary ATSP instance defined on the subgraph G〈Vu,v〉 provided by
Algorithm A0. Denote by x′ the appropriate feasible solution of its MIP-model

min
∑

caxa (5.17)

s.t. x(δ+(w)) = x(δ−(w)) (w ∈ Vu,v), (5.18)

x(δ(U)) ≥ 2 (∅ 6= U ⊂ Vu,v), (5.19)

xa ∈ Z+. (5.20)

By condition,
ATSP∗ ≤ c(x′) ≤ α ·ATSP-LP∗ .

In turn, the LP-relaxation of problem (5.17)–(5.20), the problem ATSPLP, appears to be equivalent
to the problem (5.1)–(5.5), whose optimum value is equal to the optimum value of the problem
(5.1)–(5.4), by Lemma 1.

Further, we prove that the vector x̂ is a feasible solution of problem (5.1)–(5.4). Indeed, equation
(5.2) follows from (3.6), since x̂ = (α + 1)/α · x̄. In order to prove that x̂ satisfies equation (5.3),
notice that, if |{u, v} ∩ S| = 1, it easily follows from (3.7).

Next, suppose that S ∩ {u, v} = ∅ (the case {u, v} ⊂ S can be tackled by analogy). For an
arbitrary w ∈ Vu,v ∩ S, we have ŷw = 1, i.e. ȳw ≥ α/(α + 1). Therefore,

x̂(δ(S)) =
∑

e∈δ(S)

x̂e =
α+ 1

α

∑

e∈δ(S)

x̄e ≥
α+ 1

α
· 2ȳw ≥ 2,

since, x̄(δ(w)) ≥ 2ȳw.
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Thus, we showed that x̂ is a feasible solution of the problem (5.1)–(5.4), whose optimum value
equals to ATSP-LP∗, i.e.

c(x′) ≤ α ·ATSP-LP∗ ≤ α · c(x̂).

Therefore, for the feasible solution (x′, ŷ) (induced by the walk Wu,v) of the problem (3.5)–(3.10),
we have

PCATSP∗
u,v ≤ cost(Wu,v) = c(x′) +

∑

w∈V

πw(1− ŷw) ≤ α · ATSP-LP∗

+
∑

w∈V

πw(1− ŷw) ≤ α · c(x̂) +
∑

w∈V

πw(1− ŷw) = (α+ 1) · c(x̄) +
∑

w∈V

πw(1− ŷw).

Taking into account the inequality

1− ŷw ≤ (α+ 1)(1 − ȳw)

following straightforwardly from (5.16), we obtain

cost(Wu,v)

PCATSP-LP∗
u,v

≤
(α+ 1) · c(x̄) + (α+ 1)

∑

w∈V πw(1− ȳw)

c(x̄) +
∑

w∈V πw(1− ȳw)
= α+ 1.

Theorem 2 is proved. �

Finally, we obtain our main result, which easily follows from Theorem 2.

Theorem 3. From Theorem 2 it follows that Algorithm A finds (α + 1)-approximate feasible
solution of the PCATSP in time

O(n2 · (T C(A0) + T C(PCATSP-LPu,v))). (5.21)

P r o o f. First, we obtain an upper accuracy bound for AlgorithmA. Without loss of generality,
we skip the trivial case, where, for the given PCATSP instance, an arbitrary non-empty walk is
dominated by the empty walk and

PCATSP∗ =
∑

w∈V

πw.

Then, in (4.2), the minimum is achieved at some pair {ũ, ṽ} ⊂ V . Therefore, for the output walk
W̄ , by Theorem 2 we have

PCATSP∗ ≤ cost(W̄ ) ≤ cost(Wū,v̄) ≤ (α+ 1) · PCATSP-LP∗
ũ,ṽ

≤ (α+ 1) · PCATSP∗
ũ,ṽ = (α+ 1) · PCATSP∗ .

In turn, the complexity bound (5.21) easily follows from the construction of Algorithm A and
Theorem 2. Indeed, the running time of Algorithm A is determined by the for-loop statement
located between its Step 2 and Step 6. At each iteration of this loop, we employ Algorithm Au,v

to one of O(n2) auxiliary instances of the PCATSPu,v. Theorem 3 is proved. �

Remark 1. Exploiting the recent (22 + ε)-approximation algorithm for the ATSP, for an
arbitrary ε > 0 we obtain the polynomial-time algorithm for the PCATSP within approximation
ratio (23 + ε).

Remark 2. Since auxiliary instances PCATSPu,v are mutually independent, all of them can be
approximated in parallel. In this case, the running-time bound of Algorithm A coincides asymp-
totically with the running-time bound of Algorithm Au,v.
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6. Conclusion

In this paper, we proposed the first fixed-ratio (23 + ε)-approximation algorithm for the
PCATSP. By its appearance, our algorithm owes to the recent breakthrough results of O. Svensson
and V. Traub [28, 29] for the asymmetric TSP, who make possible polynomial time approximation
for asymmetric versions of other routing problems within fixed ratios. To future work, we postpone
reports on some algorithms of such kind including the algorithm for the general version of the
PCATSP.
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