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Abstract: In the present paper, we study a submonoid of the symmetric inverse semigroup I,. Specifically,
we consider the monoid of all order-, fence-, and parity-preserving transformations of I,,. While the rank and
a set of generators of minimal size for this monoid are already known, we will provide a presentation for this
monoid.
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1. Introduction

Let m be a finite chain with n elements, where n is a positive integer, denoted by
n={1<2<---<n}. We denote by PT,, the monoid (under composition) of all partial transfor-
mations on m. A partial transformation « on the set m is a mapping from a subset A of m into 7.
The domain (respectively, image or range) of « is denoted by dom(a) (respectively, im(«)). The
empty transformation is denoted by €. A transformation o € PT, is called order-preserving if z < y
implies za < ya for all z,y € dom(a). It is worth noting that we write mappings on the right of
their arguments and perform composition from left to right. Furthermore, an oo € PT,, is called a
partial injection when « is injective. The set of all partial injections forms a monoid, the symmetric
inverse semigroup I,,, as introduced by Wagner [17]. We denote by POI,, the submonoid of I,
consisting of all order-preserving partial injections on 7. This monoid has already been well-studied
(see e.g., [6]).

A non-linear order that is closed to a linear order in some sense is the so-called zig-zag order.
The pair (71, <) is called a zig-zag poset or fence if

1<2>---<n—1>nifnisoddand 1 <2 > --->n—1<n if nis even, respectively.

The definition of the partial order < is self-explanatory. A transformation o € PT, is referred
to as fence-preserving if it preserves the partial order <, meaning that for all z,y € dom(a) with
x <y, we have xa < ya. The set of fence-preserving transformations on 7 was initially explored by
Currie, Visentin, and Rutkowski. In [2, 14], the authors investigated the number of order-preserving
maps of a finite fence. In particular, a formula for the number of order-preserving self-mappings
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of a fence was introduced. It is noteworthy that every element of a fence is either minimal or
maximal. For all z,y € m with 2 < y, we have y € {x — 1,2 + 1}. We denote by PFI, the
submonoid of I, consisting of all fence-preserving partial injections of m. We denote by IF,, the
inverse submonoid of PF'I, of all regular elements in PFI,. It is easy to see that IF;, is the set
of all « € PFI, with a~! € PFI,. It is worth mentioning that several properties of a variety of
monoids of fence-preserving transformations were studied [3, 7, 9, 11, 12, 16].

In the present paper, we focus on a submonoid of IOF,, = IF, (\POI,. Let a € dom(«) for
some a € IOF,. If a+1 € dom(a) or a —1 € dom(c) then it is easy to verify that a and aa
have the same parity. In other words, a is odd if and only if ac is odd. However, if a — 1 and
a + 1 are not in dom(«), then a and aa can have different parity. In order to exclude this case,
we require that the image of any a € dom(«) has the same parity as ac. In this context, we refer
to a as parity-preserving. In our paper, we consider the monoid TOFL"" of all parity-preserving
transformations of IOF,. Notably, for any o € IOFF®", the inverse partial injection o~
and possesses order-preserving, fence-preserving, and parity-preserving. This observation implies
that TOFP®" is an inverse submonoid of I,,, as explained in [15]. Furthermore, in the same paper
[15], the authors provided a characterization of the monoid TOF}"":

exists

Proposition 1 [15]. Let p <n and let

a:<d1 < dy < e < dp>€In.

ml m2 o e mp

Then o € IOFY if and only if the following four conditions hold:

(1) m1 <mg < ... < my;

(ii) di and mq have the same parity;

(#i) dip1 —d; =1 if and only if miz1 —m; =1 for alli € {1,....,p — 1};

(iv) dit1 — d; is even if and only if miy1 — m; is even for all i € {1,...,p — 1}.

Also in [15], a set of generators of IOFY*" of minimal size is given. This leads to the question of a
presentation of TOFY". In this paper, we will exhibit a monoid presentation for JOFY*". A monoid
presentation is represented as an ordered pair (X | R), where X is a set, referred to as the alphabet
(a set whose elements are called letters), and R is a binary relation on the free monoid generated by
X, denoted by X*. A pair (u,v) € X* x X* is represented by u =~ v and is called relation. We state
that u ~ v, for u,v € X*, is a consequence of R if (u,v) € pr, where pg denotes the congruence
on X* generated by R. We say that the momoid TOF}*" has (monoid) presentation (X | R) if
TOFE" is isomorphic to the factor semigroup X*/pg. For a more comprehensive understanding of
semigroups, presentations, and standard notation see [1, 8, 10, 13].

Given that TOF}"" is a finite monoid, we can always exhibit a presentation for it. A usual
method to establish a good presentations is the Guess and Prove Method, which is described by
the following theorem, adapted to monoids from Ruskuc (1995, Proposition 3.2.2).

Theorem 1 [13]. Let X be a generating set for IOFY™ | let R C X* x X* be a set of relations
and let W C X* that the following conditions are satisfied:

1. The generating set X of IOFY"" satisfies all the relations from R;
2. For each word w € X*, there exists a word w' € W such that the relation w ~ w' is a
consequence of R;

3. [W| < [IOFP™|.

Then IOFY™ is defined by the presentation (X | R).
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In the next section, we introduce the alphabet (generating set) denoted as X,, and the binary
relation R on X). Furthermore, we will demonstrate that X, fulfills all the relations in R as
outlined in Theorem 1, item 1. Following the guidance of item 2 in Theorem 1, we will establish
a set of forms, denoted as P, in Section 3. Finally, in the last section, we will provide a proof for
item 3 of Theorem 1.

2. The generator and relations

In this section, we will define the alphabet X, and introduce a binary relation R on X;. We
will also demonstrate that the corresponding generating set satisfies all the relations in R. Let v;
be the partial identity with the domain n\{i} for all i € {1,...,n}. Additionally, let us define

u; =

1 -+ i i4+1 i+2 i+3 i+4 -~ n
3 . i+2 —  —  — 44 - 7q

and 7; = (w;)~! for all i € {1,..,n — 2}. By Proposition 1, it is easy to verify that u;
as well as T;, i € {1,...,n — 2}, belong to TOF}*. 1In [15], the authors have shown that
{U1, 02, ey Up, Ut , Uy ooy U2, T1, T2, -, T2} is & generating set of IOFY™. In order to use Theo-
rem 1, we define an alphabet

Xn = {UI,UQa ooy Uny UL, U2y -vey Up—2, T, X2, "'axn72}a

which corresponds to the set of generators of IOFL"". For w = wy...w,, with wi,...,w, € X,,
where m being a positive integer, we write w™! for the word w™! = wy,...w;.

We fix a particular sequence of letters as follows: x;; = x;%;42..242j—2 and
Ui j = Uilli42...Uip2j—2 for i € {1,...,n —2}, j € {1,..., [ (n —i)/2]} and obtain the following sets of
words:

W, = {mj ie{l,.,n—2}, je {1 L”;ZJ }}
W;l = {:c;jl (x5 € Wx},

W, = {u” ie{l,.,n—2}, j¢ {1 V‘;ZJ }}

Let w be any word of the form w = w;...w,, with wy, ..., w,, € W,UW, and m is a positive integer.
For k € {1,...,m}, the word wy, is of the form

wy = Wiy, e if wy € W;
iy, i if w, € Wy

for some i, € {1,...,n—2},jr € {1, ..., [(n —4)/2]}. We observe ji = |wy]|, i.e. j is the length of the
word wg. We define two sequences 1,,2,,...,m; and 1,,2,, ..., m, of indicators: for k € {1,...,m}
let

ik 4 2w | + 2WE = 2]WE| if wp € Wy
kr =1 .
U if w, € Wy,

and

i + 2w | — 2]WE| + 2]WE| if  wy € Wy
ku = . .
" if wp € Wy,
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where W (respectively, W) means the word wsy...wy, without the letters in {z1,...,x,—2} re-
spectively, in {u,...,up—2}) for s € {0,1,...,m — 1} and W* = W = €, where € is the empty
word. Let Qg be the set of all words w = w;...w,, with wq,...,w,, € W, U W, and m being a
positive integer such that:

(14) If wy,w; € Wy then iy + 255, + 1 < 4; for k <1 < m;

(24) If w,w; € Wy, then g, + 255 +1 <4 for k <1 <m;
(3¢) If wy, € Wy, then iy +2j, +2 < (k+1), for k € {1,....m — 1} and (k+ 1), — k; > 2;
(4q)

q) Ifwi € Wy then iy + 255, +2 < (k+ 1), for k € {1,...,m — 1} and (k+ 1), — ky, > 2.

Let now w = w1...w,, € Qo and let w* = WO(WY)~L. Further, we define recursively a set A,:
(5¢4) If my, > my and my, + 2 < n then A, = {m, +2,...,n},
if my,, < m, and my + 2 <n then A, = {m, + 2,...,n},
otherwise A,, = 0;
(64) If wy € Wy, then Ay = Ap1 U {ig + 25k +2,...,(k+1), — 1} for ke {1,...,m — 1},
if wy, € Wy then Ay = A1 U{ky +2, ..., (E+ 1)y, — 1)} for ke {1,....m — 1}
(74) If 1 € {1,,1,} then A, = A,
if 1 <1, <1, then A, = 4; U{1,...,1, — 1},
if 1 <1, <1, then Ay = A; U{l, — 1, +1,....1, — 1}.

For aset A ={i; <ip <--- < iy} CW, let vg = v;,vj,...v;, for some k € {1,...,n}. Note that vy
means the empty word e. For convenience, we put v; =€ for i > n + 1. Let

Wy, ={vaw* 1w € Qo, A C Ay} U{vs : AC T}

On the other hand, we will define now a set of relations. For this, let W} be the set of all words of
the form w;yu;, ...u;2;, .75, xj,, ., with the following four properties:
(i) 1 €{0,...,n —2}, and m € {0,...,n — 3};
(ii) ip <ip <---<ire{l,...,n—2}
(iii) J1>J2> > Jm > Jmtl € {1,...,77, — 2};
(iv) if k € {ig,...,31—1} (respectively, k € {ja, ..., jm+1}) then k+1,k+3 ¢ {i1,...,4;} (respectively,
k+1,k+3¢{j1,..,Jm}) forall k € {1,...,n — 3}.

Then we define a sequence R of relations on X' as follows: for i,j € {1,...,n} and k =i + 25 — 2,
let

V1V2Vi43...Vj+3, if 1<j,7—1=2,3;
V1V2V;43---Vi+3, if 7> 4yt — g =2,3;
V1V2V;43V5+4, if 7> Ji—3=1
(E) TiUj = § V1V2Vj42V543, if i< 7,0 —1=1;

V1020543, if 1= j;
V1V2U; Ti42, if i< ],j -1 > 4;
V102U 425, if ©>7,1—75 >4

(L1) uguy &~ ujup = T1T2 & ToT1 & U3 = T3 A V1VU3V4V5;

(LQ) U3UY X T3 = V1V2V3V4V5V6;

(L3) ujuy =~ vivau; and x12; & v3v4x;, 0 > 3;

(L4) wjug =~ v1vovsu; and xox; R v3V4V5T;, 1 > 4;

(L5) uiui—1 = vip3ui—3u;—1 and T; 12; R 030 123,71 > 4;

(LG) Uy R uj_ou; and xjw; X TTj 0,1 > > 3,0 — 5 > 2
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(R1) v? = v, i€ {l,...n};

(RQ) ViVj = V;jV;, 1,] € {1, ...,n},i 7é 7;

(R3) viu; =~ ujv; and viz; ~ xjv;, i € {j +4,...,n};

(R4) viuj = ujvipo and vipox; = xv5, 1 <4 < j;

(R5) viuj ~u; and zjv; = xj, 1€ {j+1,j+2,7+ 3}

(R6) ujv; = u; and vixj =~ xj, i € {1,2,5 4+ 3};

(R7) u? = 22 ~ vy...v4;

(R8) u? =~ u;_su; and 22 =~ m;x;_9, i > 3;

(Rg) Ui = Uj—1 U1 and Tit1T; = Tip1Ti—1, 1€ {2, ey — 5};
(RlO) UiUi4-3 = ViU Uj4-2 and Ti+3T; = Vit6Li+2T5, 7 <n-— 5;
(Rll) W R Vig+1Vig+2Vig4+3Uiy -+ Ugy Ty oo Ly W = UjoUsy o Uy Ty oo Lj Ty € Wi

with jpa1 =10 + 21 — 2m;

—
=
[u—
[\]

N—

w =~ viovi0+1vi0+2vi0+3uil...ul-lacjl...xjm, w = uiouil...uille...xjmxjmﬂ € Wt
with jp41 =40 + 21 —2m — 1;

—~
=)
—_
w

SN—

w =~ vi0+1vi0+2vi0+3vi0+4uil...ul-lle...xjm, w = uiouil...uille...xjmxjmﬂ € Wt
with jm—f—l =19+ 20 — 2m + 1;

(R14) w = UigUsy - Uy Ty o Ty W = Ui Uiy Uy Ty Ty, T € Wi With frpgq < 20— 2my
(R15) W =2 Uy Uy Ty e Ty W= Ui Uiy Uy Ty T T € Wy with dg < 2m — 21
(R16) V1...0Uj 5 = U1...Vk+3, 1€ {1, e, n— 2};

(R17) Uk—z‘+3---vk+2$i_,j1 R V1. Va3, 1€ {1, ... ,n — 2};

(R18) Vil R Vp+3Ui—1,5, 1€ {2, N — 2};

(R19) vpiom; ) ~ veraz; 'y, i €{2,...,n — 2},

Lemma 1. The relations from R hold as equations in IOFY" , when the letters are replaced
by the corresponding transformations.

P roof. We show the statement diagrammatically. This method was also used in [4, 5]. We
give an example calculation for the relation (R10) u;u;+3 = viteuitite, i < n—>5, in Figures 1 and 2
below. Note we can show x;43%; = v;16%;+2T; in a similar way. O

By Figures 1 and 2, we have that u;u;13 = U;16U;Ujt2-

1 i i+ 4 n 1 i 47 n

° U;W; 43
Uiy3 \ \ I
e o0 - - - o0
5 i+ 4
Figure 1. @w;u;43.
1 i+ 7 n 1 i i+ 7 n
e °
Uit+6
@, — Vit6Witit2

3
Tita \

Figure 2. EiJrgﬂiﬂiJrQ.
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Next, we will verify consequences of R, which are important by technical reasons.

Lemma 2. (i) For w = wjus,...usTj, ..., Tj,, . € Wy with jpmi1 =20 —2m, we have
W = VUi Uy -+ Ujy Ty oo oLy, -
(i) For W = Uiy Uiy o Ujy Ty oL, T, € W with 190 = 2m — 21, we have

W = Vjy43Ujq -+ Ugy Tjq LG Ly
Proof. (i) We have

(R14)
Wi Wiy -+ Wiy Ljy oo Lj, Lt q ~ Wi WUy -+ Wiy Ly oo Lj, Ly 1 —1L g 41 -

Suppose jmi1 = 2l —2m > 4. Then

(L5)

uiouil...ul-lle...xjmxjmﬂ,lxjmﬂ ~ uiouil...uille...xjmvjm+1+3xjm+l,1xjm+1,3
(R4) (R14)

N U1Uig Wy - Ujy Ty oo L T =1L =3 N V1ljg Uy - Ujy Ty -2 X

.
Suppose jpr1 = 20 —2m < 4, i.e. jpmr1 = 2. We prove that
Ujg Uiy - Uiy Tjy oo Lg, T g N VU Uy - Uy T gy - T

m

by using (L1) and (R4)-(R6) in a similar way.

(ii) The proof is similar to (i), by using (R15) and (L5) if ip > 4 and (R15), (L1), and (R4)—(R6)

if ig = 2.

3. Set of forms

0

In this section, we introduce an algorithm, which transforms any word w € X to a word
in W,, using R, with other words, we show that for all w € X, there is w’ € W,, such that w ~ v’

is a consequence of R. First, the algorithm transforms each w € X} to a “new” word w'.
these “new” words will be collected in a set. Later, we show that this set belongs to W,,.

w e X:\{e}.

All
Let

e Using (R1)—(R6), we can move any v; for i € {1,2,...,n}, at the beginning of the word or we
can cancel it. So we obtain w &~ v, where v € {vy,...,v,}* and W € {uy,ug, ..., up_2, 1, T2,

veey xn,g}*.

e Moreover, we separate the w;’s and x;’s for i € {1,...,n — 2} by (F) and (R1)—(R6). Then

o ~ TBC, where T € {vy,...,v,}*, B € {u1,us, ...,un_o}*, and C € {x1, 9, ..., 2p_2}*.

e By (L1)-(L6) and (R1)-(R6), we get vBC =~ o'B'C’', where v/ € {v1,...,v,}",

B’ € {uy,ug,...;un—2}*, and C" € {x1,29,...,2_2}* such that the indices of the letters in
the word B’ are ascending and in the word C’ are descending (reading from the left to the
right).
By (L1), (R7)-(R10), and (R1)-(R6), we replace subwords of B'C’ of the form
Tit 3T, Tip1T4, T2, uZ, w3, and wu;q until o' B'CY ~ v"wy..w, with v € {v1,...,v,}*
and wy, ..., wp € W, 1 UW, such that
if w; € var(w;...wp) (respectively, z; € var(w;...wp)) then wiy1, uirs ¢ var(w;...wp)
(respectively, i1, 13 ¢ var(wy...wp)) for all ¢ € {1,...,n — 2} and each letter in
wi...w,, is unique. (%)

Note that this is possible since each of the relations (L1), (R7)—(R10), and (R1)—(R6) does
not increase the index of any letter in {ui,ug, ..., up—2, 21, T2, ..., Tp—2} in the “new” word.
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e Using (R11)—-(R15), Lemmas 2, and (R1)-(R6), we remove letters z; and wu;, respectively,
until one can not more remove a letter z; or u; for i € {1,2,...,n—2}. We obtain v"w;...w, ~
v""wh..w'y, where v € {vy, ..., v, }* and wi,...,w'y € WL UW,,. Note that is possible since
each of the relations (R11)—(R15) as well as Lemmas 2 only removes letters (and add letters
in {vy,..., v, }, respectively).

e We decrease the indices of the letters in {ul,uz,.. un 9y L1, Ty eeey T2} (if possible) by
(R16)-(R19) as well as (R1)-(R6) and obtain v"'w}...w'y ~ v*B*C* with v* € {vy, ..., v, }*,
B* € {uj,ug,...,up—2}*, and C* € {x1,x9,...,xp_2}*. Note that the indices of the letters in
B* (respectively, in C*) are ascending (respectively, are descending).

We repeat all steps. The procedure terminates if the word will not change more in all steps. We
obtain v*B*C* ~ va1;...0p, where wy,...,w; € I/Vgc_1 U W, and A C 7 such that no v; (j € A)
can be canceled by using (R1)—(R6). This case has to happen since the number of the letters from
{u1,ug,...; up—9,%1, T2, ...; Typ_2,v1, ..., 0, } decreases or is kept and the indices of the u;’s and z;’s
decrease or are kept in each step.

We denote by P the set of all words obtained from w € X' by that algorithm.
By (%), we obtain immediately from the algorithm.

Remark 1. Let @ = vaW1.. W, € Pandlet 1 <k <k <m.
If Wy, Wy € Wy, then i + 2’12)].@‘ + 2 <.
If Wy, wy € W, then ip + 2‘?13]4‘ + 2 < 1g.

Let fix a word @ = vgy...W0,, € P. There are a,b € {0,....,n} with a +b = m, t1,....,ta4p €

{1,...,m}, wyy, ...,wy, € Wy and wy, ;. wy,,, € Wy such that

W = VAW ... Wiy, = UAwtl"'wtawz;L“'wz;lM’
where {wy,,...,wt, } = 0 or {wy,,,...,ws,,, } =0 (i.e. a=0orb=0)is possible. We observe that
{d,..c;W} = {wtl,...,wta,w{il,...,wgib} and {t1,....,tq,tat1, - tars} = {1,...,m}. We define
an order on {t1,....,ta,tat1, - tarpt Dy t1 < - -+ < tq and toip < - -+ < tgy1. If a,b > 1, the order
between t1, ...,t, and to11, ..., tetp is given by the following rule:

Let k€ {1,...,a} and l € {1,...,b}

if 4, + 2|wy,, | — 2+ 2|wy, o wy, | — 2|wt_}r1"'w1;1+171| <, + 2|wt ,| — 2 then t; <t,4; and
if g, + 2Jwe, | = 24 2wy, wr, | = 2wt gt >, 4 20wy | — 2 then g > tay,

The case

. —1 —1
it), + 2lwy, | — 24 2wy, owy, | — 2|wta+1”.wta+l—l| Bty

+ 2wy, +l| -2

is not possible, since otherwise we can cancel Wiy, 49wy, |2 and x;, 2y -2 in @ by (R11). Our
a4+l

next aim is to describe the relationships between k,,, (k+1), and k., (k+ 1) for all k€ {1,...,m—1}
for the word w = wy...w,,

Lemma 3. For allk € {1,...m — 1}, we have k,, < (k+ 1), and k, < (k+1),.
Proof. Letke({l,..,m—1}. Suppose wy,wiy1 € W,. We obtain k, < (k+ 1), and

(k4 1)y = ipy1 + 2wppq | + 2]WEL — 2wkt
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By Remark 1, we have iy + 2|wg| + 2 < ig41. This gives
it 2Jug] + 2AWE] = 2WE] < s + 2WE] — AW = iy + 2] + 2AWE — 27+

(since wyy1 € W, implies 2|WF| = 2|[Wk+!| ). Then k, < (k + 1),. For the case wy, wi 11 € W,
we can show that k, < (k+ 1), and k, < (k+ 1), in a similar way.
Suppose wy € W, and w41 € W,. First, we will show &k, < (k + 1),,. We have k, = i} and

(k4 1)y = igy1 + 2wppq | + 2]WEL — 2wkt
Since k € {t1,...,t,} and k+ 1 € {t441, ..., tarp}, We obtain
i + 2wy — 2+ 2WEF = 2AWETL| < i + 2wpy] — 2.

Then
ik < i+ 2lwp| <ippr + 2w |+ AW = 2lWEH

(since wyy1 € W, implies |[WF| = |[WF+1)). Then k, < (k + 1),. Moreover, we prove k, < (k+ 1),
similarly. The case wy € W, and wg41 € W, can be shown in a similar way as above. ]

Of course, the next goal should be the proof of w = w;i...w,, € Qo, i.e. we will show that w
satisfies (14)-(44).

Lemma 4. We have w = wy...wy, € Q.

P roof. Exactly, w satisfies (1) and (2,). This is trivially checked by Remark 1.
Let k € {1,...,m — 1} and let wy € Wy, w41 € W,. This provides k € {t1,...,t,}, k+1 €
{tat+1, s tarp}. We have

i+ 2wy — 24 2WF = 2AWETL| < i + 2wpy| — 2.

Since wy11 € Wy, we have
k k41
2[Wy| = 2[w, .

So
ik + 2Jwy| — 24+ 2iWEH = 2AWEH| <igyn + 2fwpga]| - 2.

We observe that
ik + 2Jwy| — 2+ 2/WEH | = 2iWH | + 1 <y + 2fwpqa| - 2.

If
ik + 2)wg| = 24 2WH | = 2AWIH 41 = iy + 2Jwp | - 2,

we can cancel w;, | 9w, |~2; Ty, +2hwy,4,|—2 PY (1213) in . This contradicts w € P. Then
ik + 20w | — 2+ 2lWH | = 2lWiH 4+ 2 <lipyr + 2wpp] - 2,

ie.
g + 2Jwy| + 2 < i+ 2wpp] = 2AWEH 4 2IWE = (k+ 1),
Next, to show that (k+ 1), — k; > 2. Lemma 3 gives (k + 1), — k; > 1.
If (k+1), — ky =1 then

iri1 — i — 2fwy| — 2]WE| + 2wk = 1.
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This implies
ipa1 + 2w | — 2 = i + 2wy — 2+ 2(WE| — 2w £1

since

2AWy| = 2{Wip| +2(Wr .

We can cancel w;, (o, |-2; Tiy,y+2wpsq|—2 0 @ by (R13). This contradicts w € P. Thus,
(k+ 1)y — ky > 2. In case wg, wirq1 € Wy, by using Remark 1, we easily get

i + 2Jwg| + 2 < (k +1),.

To show (k4 1), — k, > 2, it is routine to calculate directly. Together with Remark 1, we will get
that (k+1); — k; > 2. Altogether, w satisfies (3,). We prove that w satisfies (4,) in a similar way.
Therefore, w € Q. O

We have shown w € Q. This leads us to the next step, showing that A C A,,. First, we point
out subsets of 7, which do not contain any element of A.

Lemma 5. Let g € {1,...,a} and let
p € {ig, + 1,0, + 2wy, | + 1} N7
Then p ¢ A.

Proof. Assumep e A. Then

(R3) )

i -
< Wy ...’Up’ll}tq ...wtawtaﬂ '"wta+b'

—1 -1
vatl ...’U}tq Wy, ’U}ta+1 "'wta+b

If p € {ig, + 1,4, + 2,9z, + 3} N7 then

(R5)
vpuitq ~ uitq.

If p =iz, +h+tfor some h € {2,4,..., 2w, | — 2} and t € {2,3} then

-1 -1 _ . . ) -1 -1
Wi, ...’Up’u)tq Wy, ’U}ta+1 "'wta+b = Wy ...’Upu“q ’U,th +2...’U,th+2‘wtq ‘72’U}tq+1 Wy, ’Ll)ta+1 "'wta+b
(R3) —1 —1
X Wy "'uitq "'v(itq +h+t)ul'tq+h...uitq +2|wtq ‘_thqﬂ Wy, ’U}ta+1 "'wta+b
(R5) 1 1

X Wy ...Uitq "’uitq +h...uitq +2‘wtq |_2’U)tq+l "‘wtawta+1 '”wta+b’

i.e. we can cancel v, in ¥ using (R3) and (R5), a contradiction. O

Lemma 6. Let p € A and let g € {1,...,a} such thatty #m. If p € {(tg)u+1,..., (tg+1)y — 1}
then
p € {(tg)u+ 2wy, | +2, ..., (tg + 1)y — 1} C Ay,

Proof Wehave (t;), = i,. It is a consequence of Lemma 5 that
p € {ir, + 2wy, | +2,..., (tg + 1)y — 1}

and by (6,), we have
{ir, + 20wy, | +2,..., (tg + 1)y — 1} C A,
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Lemma 7. Let p€ A, ifta =m and p € {ip, + 1,...,n} then p € {m, +2,...,n} C A,.

Proof. Assume p € {iy, +1,....mz + 1}. We have my + 1 = 4, + 2|wy,| + 1. Then
p € {iy, +1,...,0, + 2w, |+ 1}. By Lemma 5, we have p ¢ A. Therefore, p € {m, +2,...,n} C A,
by (5¢)- O

Lemma 8. Let p € A, then p # (toy1)u + 1 for alll € {1,...,b}.

Proof. Letl e {l,..,b}. Assume p = (ty4i)u + 1. Suppose that there exists ¢ € {1,...,a}
with t; > tq4. Then

(13) )

“ —1 -
~ ’Ll)t1 ...’Up’ll}tq ...’U}ta ’U}ta+1 '"wta+b

-1 —

vatl ...’Ll)tq ...wtawtaﬂ "'wta-kb

(R4) .
~ Wy ...U]tq "’wtaUP+2\wtq---wta\wta+1 ...wta+b.

Since
(tay)u+ 1 =i,y + 2wy} oyt | = 2wy, | + 1,

we have

p+ 2wy, ..wg, | = + 2[wt W H] + 1.

a+l

Suppose t; < tq4; for all ¢ € {1,...,a}. Then we have

(tast)u + 1 =it + 2wt ot [+1,

a+1
i.e.
~1 1 (B3 1 ~1
vatl...wtq...wtawta+1...wta+b ~ wtl...wtq...wtavataﬂ wta+b'

Both cases imply

-1 -1

Wey =Wy - g 41t Pty

W
ta Zt atl +2‘wta+l

(%)w w we wi L, wit Lt (@)w w w wi bt awst aw !
~ Wt Wi Wa Wta g Vi +lJr2\wt+|+1 tati " Vtaty T Ut Wta Wta e Wtg g Wt

i.e. we can cancel v, in @ using (R3), (R4), and (R6), a contradiction. O

Lemma 9. Let p€A and let l€{1,...,b} such that tor17#m. If pe{(toti)u+t1,...; (tar1+1)y—1}
then
pe{(ta+l)u+2 (a+l+1 _1}CA

Proof. Itis a consequence of Lemma 8 that p € {(to41)u + 2, ..., (tat1 + 1)u — 1} and by
(64), we have {(tg4i)u +2, ..., (tayi + 1)y — 1} C A, O

Lemma 10. Let p € A. Iftar1 =m and p € {my, +1,...,n} then p € {my +2,....,n} C A,.

Proof. Suppose p = my+1 = (tas1)u + 1. By Lemma 8, we have p ¢ A. Therefore,
p€{my+2,...,n} C Ay, by (5). O
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Lemma 11. If1 <1, <1, thenp & A for all p € {1,....;1, — 1, }.

Proof. Letpe{l,..1,—1;}. Assume p € A. We observe that

Ly — 1 = 2w, |, owy L | = 2wy, owg, | = 2Kk
for some positive integer k. We put U = wy,...wy, and X = wiib...wiil, ie. 2k = 2|X| —2|U| and

|X| = |U|+ k. Let
~1 ~1
Wty Wty = Y1 YY) +1---Yiua |k
where y1, ..., Y4k € {71, -, Tn—2}. Then

(R4)
VpWty - W Y1 Y| Yju|+1-- Y| +k = Wiy - Wiy Vpt 2|y, owig | Y1 Y| Y | +1- YU+ k-

Using Remark 1, it is routine to calculate that
-1 -1 . -1
2wy wy | <y + 20wy,

ie.

-1 -1

(Lu = 1g) 4 2wy, owy, | = 2|wy w7

| < 7:ta-ﬁ—l + 2|wl;l_1|,1|

This implies
P + 2]wt1...wta\ S ita+1 + 2"(1};111‘
Then

(14)

Wiy oWt Vot 20wy, coweo | Y1 YU YU |+1-- YU |+ = Wiy - W, Y1---Y U | VoYU |+1--- YU |+
Note that 1, — 1, is even and there is i € {2,4,...,1, — 1} such that p € {i — 1,4}. If p=1i—1
then
P = 21Y 1Y +ije—1| = 1.
If p =i then
P = 2|Yui| 41 Y| +if2—1] = 2.
Thus,

Wiy - Wi Y1---YU| VoYU | +1-- YU | +k
(R4)

~

Wy Wt Y1--Y U Y |41 Yo—2ly 41 Yy i 211 YU +i/2- - YU+ (1u—12) /2
= Wiy W Y1 Y| Yt |+1---VpY U +i /2 YU |+ (1u—1z) /2
(where p € {1,2})

(R6)
N Wiy W YL Y Y|+ 1Y +if2-- YU +Qu—12) /25

i.e. we can cancel v, in ¥ using (R4) and (R6), a contradiction. O

Lemma 12. Let p € A with p € {1,...,1, — 1}. If1 <1, <1, then p € {1,...,1, — 1} C A,
and if 1 <1, <1y thenp e {1, — 1, +1,...,1, — 1} C A,.

Proof Ifl1<1,<1,then{l,.. 1, -1} C A, by (7,). If 1 <1, <1,, it is a consequence
of Lemma 11 that p € {1, —1,+1,...,1, — 1} and by (7,), we have {1, — 1, +1,...,1, — 1} C A,,.
O
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Lemma 13. We have (ty), ¢ A for all ¢ € {1,...,a}.
Proof. Letqe({l,..,a}. We have
Wig = Wiy Wigg 42+ Uiy, 4+2|wy, |2
and (tq)y = it,. Assume (t4), € A. If 4y, > 2 then

(R3)

~1 -1 U= e ‘ —1 -1
vitq Wy, ...wtq - We, wtaH ...wta+b ~ Wy ...Uth ultq uth+2...u“q +2‘wtq |_2’U)tq+1 ...wtawtaﬂ ...wta+b
(Rig) _1 _1
~ wtl...vitq+2‘wtqHluitq,1uitq+1...uitq+2‘wtq‘,3wtq+1...wtawta+l...wta+b.
If iy, = 1 then ¢ = 1 and
. -1 -1 _ -1 -1
1)“1 wtlwt2...wtawta+1...wta+b = U1U1U3...u1+2‘wt1 ‘,2wt2...wtawta+l "'wta+b

(R16)

~ -1 -1
~ 1)1’[)2...’[)1+2‘wt1 ‘+1’U}t2 "'wtawta+1 LW

tatb”
We observe that we can replace several letters in w by letters with decreasing index by (R18) and
the letters uy,us, ..., U1 42w, |—2 WeTe canceled in w by (R16), respectively, a contradiction. O

Lemma 14. We have (toy1)u ¢ A for alll € {1,...,b}.

Proof. Letl e {1,..,b}. Now assume that (t,4;), € A. We will have the following two
cases. In the first case, we suppose that there exists ¢ € {1,...,a} with ¢; > t,4; and, of course, for
the trivial second case is supposed t; < to4; for all ¢ € {1,...,a}. Using (R3) and (R4) in the first
case and (R4) in the second case, together with a few tedious calculations, both cases imply

1 -1

-1 -1
v(ta+l)uwt1...wtq...wtawtaﬂ...wt”b ~ Wty .. W, U +1"'wta+b'

) -1 -1 W,
Zta‘l’l +2|wta+1 ...wta+l| ta

It is routine to calculate that

-1 -1 (B9 1 -1 -1
Wy - W, V. -1 -1 W ) R Wy ... Wi, W LU, -1 W, LW .
t1 ta Zta+l+2|wta+1mwta+l| ta+1 tat+b t1 ta ta+1 Zta+l+2‘wta+l| tatl tatb
. -1
If iy, + 2w, " | > 3 then
Wi, ... Wt w;l P ~1 w;l ...w;l
1 a “la41 Zta_H—I—ZthaHI a+l a+b
1 -1

_ -1 o
= wtl"'wtawta+1"'Uita+l+2|w;ll+l‘x“a+1+2‘wfa+l‘72xzta+1+2|wta+1|74'"x”a+lwta+l+1'"wta-ﬁ—b
(R19) .

~ wtl"'wtawta+1"

'vita+z +2‘w;1+l |+1mifa+l T2lwe, 4y _3xita+z F2lwe, =5 Lty =1 Wy 11 Wtopy

If i, + 2w, | | = 3 then w, ' = z1. Thus,

+b
Wiy ... W, U 1 st t
1 Wi, ”a+1+2|wta+1“'wta+l| tarr Weaiy
(R4) (R17)

o -1 -1 v -1 -1
R Wiy Wiy Wy oWy V3T R Wy W Wy T Wy~ V1U2V3VY,

We observe that we can replace several letters in w by letters with decreasing index by (R19) and
the letter x1 can be canceled in w by (R17), respectively, a contradiction. U

If we summarize the previous lemmas, then we obtain:
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Lemma 15. We have A C A,.

Proof Let pe A Then it is easy to verify that p € {1,...;1,} or p € {ky, + 1,...,(k + 1), }
for some k € {1,....,m — 1} or p € {my + 1,...,n}. Suppose that p € {k, + 1,...,(k + 1), — 1}
for some k € {1,...,m — 1}. Lemmas 13 and 14 show that k, ¢ A. Then we can conclude that
p € Ay by Lemmas 6 and 9. Suppose p € {m,, + 1,...,n}. Then we can conclude that p € A,, by
Lemmas 7 and 10. Finally, we suppose that p € {1,...,1, — 1}. Then we can conclude that p € A,
by Lemma 12. Eventually, we have p € A,, for all p € A. Therefore, A C A,,. O

Lemmas 4 and 15 prove that @ = vaw;...w,, € W,. Consequently, we have:
Proposition 2. P C W,.
By the definition of the set P and Proposition 2, it is proved:

Corollary 1. Let w € X;:. Then there is w' € P C W,, with w ~ w'.

4. A presentation for /OFP"

In this section, we exhibit a presentation for IOFL*". Concerning the results from the previous
sections, it remains to show that |W,| < |[IOFY*|. For this, we construct a word w,, for all
a € IOFY", in the following way.

Let
a:<d1 < dy < -0 < dy

ml m2 “ee mp

> € IOFP"\{e}
for a positive integer p < n. There are a unique [ € {0,1,...,p — 1} and a unique set {ry,...,7} C
{1,...,p — 1} such that (i)—(iii) are satisfied:

(i) m<..<rmg
(ii) drj41 —dp, # mp1 —my, fori e {1,...,1};
(iii) diy1 —d; = mijp1 —my for i € {1, P — 1}\{7“1, ...,Tl}.

Note that | = 0 means {ri,...,r;} = (). Further, we put r;,1 = p. For i € {1,...,1}, we define
e (nri—me) = pa=dr))/2 A My =My > drgy =
1T .
udriv((dri+1_dm)_(mrﬁrl—mri))/Q if My 1 — My < dm-i-l - dri-

Obviously, we have w; € W,UW,, for all i € {1, ...,1}. If m, = d), then we put wy4; = €. If m,, # d,,
we define additionally

Wiy = LTmp,(dp—myp)/2 if dp > Myp;
+1 — .
udpv(mp_dp)/Q if dp < Mp.

Clearly, w;41 € W, UW,. We consider the word
W = wWy...Wi41-

From this word, we construct a new word w}, by arranging the subwords s € W, in reverse order
at the end, replacing s by s~'. In other words, we consider the word

-1 -1

*
Wa = Wy W Wy )Wy



188 Apatsara Sareeto and Jorg Koppitz

such that ws,, ..., ws, € Wy, ws, 1, ..., ws,,, € Wy and

{wsyy ey Wsyy Weyiqs-oes w8a+b} ={w1,...,wayp},

where s1 < ... < 84, Squb < ... < Sqt1, and a,b € U {0} with

atb— l it d, =my;
l+1 if d, #my.

: — * _ o,—1 -1 _ *
For convenience, a = 0 means wg, = wy_ ' ..w,, and b = 0 means w, = ws,...ws,. Now, we add

recursively letters from the set {vq,...,v,} € X, to the word w},, obtaining new words Ag, A1, ..., Ap.

(1) For dp, <mn —2:
(1.1) if my < dp, then A\g = vg, 2..v,W};
(1.2) if n —1>my > dp then Ao = vy, 12...0,W;
(1.3) if my = d, then A\g = V1.0 W};
otherwise Ao = wy,.
2) If d, = m, =n — 1 then \yg = v,w}. Otherwise \y = w.
P P « o
(3) For k €{2,....,p}:
(3.1) lf 2<my —mp_1 =d —dp—1 then \y_p11 =vg,_,+1---Vd, —1 p—k;
(3.2) lf 2 <my —myp_1 <dp —di_1 then )\pkarl = Udkf(mkfmk,lfm---Udkfl)‘pflﬁ
(3.3) if my —my—1 > d — dip—1 > 2 then A\y_p11 = Vg, 42.--Vdy—1Ap;
otherwise A\,_jy1 = Ap_i.
(4) If dy =1 or m; =1 then \, = \p_1.
(5) If1< d1 <m then )‘p = ’Ul...vdl_l)\pfl.
(6) If 1 <my < dp then Ay = Vg, —my+1---Vd; —1Ap—1.

The word A, induces a set A = {a € W : v, is a letter in \,} and it is easy to verify that p ¢ A for
all p € dom(a). We put wo = Ap. The word w, has the form w,, = vaw}.

Our next aim is to present the relationship between cardinality of W, and IOFF*. This
leads us to assume the existence of a map f : IOF}* \{e} — W,\{vz}, where f(a) = w, for all
a € TOFY" \{e}. We start by constructing the transformation a, .+ for any vaw* € W, different
from vy, Let vaw* € W),\{vg}. We have w € Qp, A C A, and there are wy, ..., w,, € W, UW,
such that w = w;...w,, for some positive integer m. For k € {1,...,m}, we define ap = k, + 2
and by = i + 2j, + 2, whenever wy € W,. On the other hand, we define a; = i + 2j; + 2 and
br =k + 2, whenever wy, € W,,. It is easy to verify that a,, = b,,. We put

N 5 1+ 1, —min{l,, 1, }..1, a1..24 -+ am-1...My  Qp...0
vaw® = PAN 1 41, —min{ly, 1, 01 b2 oo bp_1..may bpme.n )

For convenience, we also give

B < dq ds - dp >
a'UA’LU* - m PEEEY
1 ma my

for some positive integer p < n. In the following, we show that « . is well-defined in the sense
that the construction of ay, .~ gives a transformation.

Lemma 16. « .~ is well-defined.
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Proof. Letke{l,..,m—1}. Suppose wy, w1 € W,. We have

(k+ 1)y = igg1, (b + 1)y = g1 + 2Jwgyr| + 2WEF — 2Wwh+L|]

and ap = i + 271 + 2,b, = k;z + 2. Then

(k+ 1)y — ag = g1 — (ig + 24k + 2),
(k+ 1) — by = dpp1 + 2Jwppr | + 2AWF = 2WEFL | — &, — 2
= k1 + 2w |+ AW = 2AWIHY — i — 2fwi| — 2/WE| + 2[W)| -2
= igr1 — ik — 2Jk — 2 = dpq1 — (ik + 2k +2).

Therefore, (k+ 1), —ar = (k+ 1)z — bg.

For the rest cases (wy € W, and wgy1 € W,, wp € W, and wry; € W, as well as
Wk, Wi4+1 € Wy), a proof similar as above will eventually show that (k + 1), —ar = (k+ 1)y — by.
Furthermore, suppose d, = m,,. Let k € {1,...,m} and wy € W,,. We have

ap — ky =i + 255 + 2 — ky = i + 20 + 2 — i = 2j, + 2,
bp —ky =k, +2—k; =2.

Thus, ar — ky # b — k.

For the case wy, € W, we can show ag — k, # br — k, in the same way.

Continuously, suppose d, # m,. By the previous part of the proof, we have a, — k, # by, — kz
for all k € {1,...,m — 1}. Moreover, we observe that d,, ¢ {am,,...,n} and my ¢ {by,,...,n} because
N — G, = N — by,. This implies d,, = m,, and m, = m,. By any of the above, we can conclude that
o+ 1S well-defined. O

The proof of Lemma 16 shows (k + 1), — ar = (k+ 1), — b for all k € {1,...,m — 1}. Then
ai — ky # b — ky for all k& € {1,...,m}, whenever d, = m,, and a; — k, # by — k, for all
ke {l,...,m—1} and dp, = my, m, = my, whenever d, # m,. Furthermore, observing by trivial
calculation, ap — k, > 2 and by — k, > 2. Therefore, if there exists i € {1,....,p — 1}, where
diy1 —d; # mip1 —my, then d; € {1y, ..., (m — 1), }(U{my}), m; € {14, ...,(m — 1), }(U{m,}) and
we put ky, = dy,, kg = my, for all k € {1,...,m — 1}(U{m}) (we put r,, = p, whenever d,, # m,).
This gives the unique set {rq,...,7,} as required by the definition of Wa, e - Moreover, we need
to show that .+ € TOFF* \{e} by checking (i)-(iv) of Proposition 1. We will now show that
Q€ TOFE™ as well as Way, e = vaw*. This gives the tools to calculate that |W,| < [TOFY"|.

Lemma 17. «ay .« € IOFY"\{e}.

Proof. Clearly, a,,w # €. We will prove that «,,.,~ satisfies the conditions (i)—(iv) in
Proposition 1. We observe that di < dy < --- < dp and m; < mg < --- < m,, by definition of
oy - We have 1, —dy =1, —my, ie. 1, — 1, = di — my. By the definition of k, and &, for
k € {1,...,m}, we observe that 1, — 1, is even, i.e. di — mj is even. Thus, d; and m; have the
same parity.

Let dijt1—d; = 1for somei € {1,...,p—1}. Then d; € dom(a)\{1y, ..., my} implies m;1 —m; =
di+1 — dl =1.

Let m;y1 —m; =1 for some i € {1,...,p—1}. Then m; € im(a)\{1z,...,my} implies di}1 —d; =
mi41 — My = 1.

Let d;+1 — d; is even. Suppose d;+1 — d; # m;+1 —m;. This gives d; = k, and m; = k, for some
ke {1,...,m — 1}. By the definition of k, and k,, we observe that k, — k, is even.
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Moreover, (k + 1), — diy1 = (kK + 1)y — miqq since (k + 1), — (k + 1), is even, we have
diy1 — m;yq is even. Then d;41, d; and d;, m; as well as d;41, m;1 have the same parity. This
implies that m;y1, m; have the same parity, i.e. m;y1 — m; is even. Conversely, we can prove sim-
ilarly that, if m;1 —m; is even then d; 11 —d; is even. By Proposition 1, we get a ,,« € IOFE*. O

. ek . L~
We can construct f(ay,w+) = Wa, |\ > where Wary e = Vi, with w = wy...w,, for

W1, ey Wy, € Wy UW,, and A C 7. We will prove that f is surjective in the next lemma.

w*

Lemma 18. Let vaw* € W,,\{vi}. Then there is a € IOF}*" \{e} with vaw* = w,,.

. A RN R
Proof. We have Way e = VAWa, e where w = wq...W,, with wq, ..., w,, € W, UW, and

C . First, our goal is to show that @ = w. Suppose d, = m, and let k € {1,...,m} such that
br — ks > ap — ky. By the definition of wy, we have wy, = Loy (b —ka)—(ar —ku))/2 and k; = 7. Then

(bp —kz) — (ap —ku) i+ 2 +2—ipg —ky =2+ ky
2 = 2 = Jk»

ie. Wy = w;, j, = wg. For the case b, — k; < ay — ky, we can prove that Wy = wy, in a similar way.
This gives wW1... Wy = W1... Wy,

Suppose dp, # m,. We have ay — k, # by — k; for all k € {1,...,m —1} and by a similar proof as
above, we have W1...Wy—1 = W1...Wy—1. If my, < d, then w,, = Ty (dp—myp) /2 and m, = mg = ip,.
Then

dp—mp My — Mg gy + 20m —
5 = 5 = 9 = Jms

ie. Wy, = i, j, = Wy. For the case m, > d,, we can prove w,, = w,, in a similar way. Thus,

1oe Wy 1Wy, = W1...Wyp—1Wym. Then w = w, ie. w* = w(’;v The next goal is to show that

~ Aw
A=A
1) To show that A C A: let a € A. We have A C A, since vaw* € W,,. Therefore, we have the
following cases: a € {am,....,n} = Aj or a € {ag,...,(k+ 1), — 1} = Ay for some k € {1,...,m — 1}
or
a€{l+1, —min{l,, 1,}, .., 1, — 1} = As.

Ifa € Ay and my, # d, then a € A since (1.1) and (1.2), respectively. Ifa € A; and a € {d,+1,...,n}
with m, = d,, then a € A since (1.3) and (2), respectively.

Suppose a € Ap with a € {ag,...,dr,+1 — 1}. If 2 < dy 41 — dr, < My, 41 — My, then wy € W
Note that ay, = ky, +2 = d,, +2. Thus, a € A since (3.3). If 2 < my, 41 — My, < dp, 1 — dy, then
wg € Wy

Note

d'r‘k+1 —a = m'r‘k+1 - bk‘? bk} = km + 2’
ar = a, — b + by, = drkJrl — My41 + ke +2= drkJrl — My +1 + My, + 2.

Thus, a € A since (3.2).

Suppose a € As. If 1 <dy <mj and a € {1,...,d; — 1} then a € A since (5). f1<my < dy
and a € {dy —m1+1,...,1, — 1} then a € A since (6) (note that 1, — 1, = dy — mq).

Suppose a € A; U Ay U A3 and there exists s € {2,...,p} such that ds — ds—1 = ms — mg_1 > 2
with @ € {ds—1 + 1,...,ds — 1}. Then a € A since (3.1). By any of the above, we have A C A.
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2) To show that A C A: let

Al = {1 +1, — min{lu, 196}, vy Ly — 1},
Ay = {al, vy 2 — 1} U {ag, T 1} U...u {am,l, ey My, — 1},

Az = {apm,...,n}.
Because A C A, we have A C A; U Ay U A3 and AN {dl,. dp} = (. This implies A C A; U
Ay UAz\{d1,....dp}. Conversely, we have A; U Ay U A3\{d1,...,d,} C A by the definition of oy, .

Thus, A = Al U Ay U Ag\{dl, p}

Let a € A. By the deﬁmtlon of A, we can observe that a # d; for all i € {1,...,p}.

Suppose a is given by (1.1) or (1.2) or (1.3) or (2). Then a € A3\{dy, ..., p}.

Suppose a is given by (3.1). Then a € A1 U Ay U A3\{d1,...,dp}.

Suppose a is given by (3.2), i.e. a € {ds — ms+ms_1 +2,...,ds — 1} for some s € {2,...,p}.

We have already shown that there is k € {1,...,m — 1} such that dy — ms + ms—1 + 2 = ay.
Then a € Ax\{d1,...,dp}.

Suppose a is given by (3.3). Then a € As\{d1, ...,d,}.

Suppose a is given by (5). Then a € A;\{d1,...,dp}.

Suppose a is given by (6). Then a € A;\{d1,...,dp} (note that di —m; =1, — 1;). Therefore,
we have a € A, i.e. AC A.

By 1) and 2), we get A = A. This implies vqw* = v ;0* = w . O

Q’,UAw*

Lemma 18 establishes that f is surjective, which implies |W,,| < [IOF}""|. We will now adjust
our alphabet and relations to meet the requirements of Theorem 1. As mentioned previously,
X, = {5:s5 € X,} is a generating set for the monoid TOFF*". Building on the insights from
Lemma 1, we can conclude that X,, satisfies all the relations from R = {31 = 39 : 51 = 59 € R}.

Corollary 1 further shows that for any w € 72, there exists a corresponding w' € W, for
which w = w' is a consequence of R. This implies that R C X, x X,, and that W, C X, meet the
conditions 1-3 in Theorem 1. We now possess all the necessary items to conclude our main result.

Theorem 2. (X, | R) is a monoid presentation for IOF;".
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