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Abstract: Clustering is a strategy for discovering homogeneous clusters in heterogeneous data sets based
on comparable structures or properties. The number of nodes or links that must fail for a network to be
divided into two or more sub-networks is known as connectivity. In addition to being a metric of network
dependability, connectivity also serves as an indicator of performance. The Euler graph can represent almost
any issue involving a discrete arrangement of objects. It can be analyzed using the recent field of mathematics
called graph theory. This paper discusses the properties of clustered networks like connectivity and chromaticity.
Further, the structure of the antipodal graph in the clustered network has been explored.
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1. Introduction

Clustering is a widely used technique to identify similar data or objects from the enormous
one. It is used in genetic technology to group the genes with similar expression patterns [16].
Ustumbas [17] used tripartite graph clustering in a social network as a cluster of three types of
data objects simultaneously and produced useful information for a recommended system.

A graph is commonly used to depict the architecture of an interconnection network. When con-
structing the topology of interconnection networks, there are various mutually exclusive needs [1].
Network dependability is an important consideration while planning the architecture of an inter-
connection network. The ability of a system to deliver services that can be legitimately trusted is
known as dependability [2, 6]. A network’s connectivity is defined as the number of nodes or links
that must fail for the network to be partitioned into two or more distinct sub-networks. Network
connection assesses a network’s resilience and capacity to continue operating despite the presence
of certain failing components. A higher node or link connection improves the network’s resiliency
to failure. Connectivity is not only a metric of network dependability but also a measure of perfor-
mance. The number of links that must be crossed to reach a target node is reduced as connectivity
improves. Because technical limits limit the number of connections per node to a limited value,
designing a network with better connectivity and a consistent number of connections per node is
critical.

It is implicitly assumed when using these measurements that any subset of the network com-
ponents (channels or processors) might fail at the same moment. However, in certain networks, it
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is acceptable to assume that various subsets of network components do not break simultaneously.
Classic connectivities may not be accurate gauges of dependability for these networks. Restricted
connectivities may, of course, be used as a model to assess network dependability. Harary [9] de-
veloped the notion of conditional connection by demanding some characteristic for unconnected
components of G − F , motivated by the inadequacies of existing connectivity measures. Esfaha-
nian et. al [7] developed another similar study in which the authors provide extensions of edge
connectivity by establishing specific constraints that detached components must meet. For appli-
cations where parallel algorithms might operate on sub-networks with a certain topology, requiring
certain features for disconnected components is very critical. Restricting the defective sets to a
certain class, on the other hand, was inspired by the fact that interconnection networks (which are
typically represented as graphs) might include diverse components with varying levels of reliabil-
ity [5, 8, 10, 13, 14, 18, 19].

In a computer network, which is known as digital telecommunications network, graphs are
structured into clusters. Electronic links are employed within the same cluster where as optical
links are employed between the cluster communications. These data links may be wire or optic
cables or wireless media. Interconnection networks are strenuous to work with in abstract terms.
This motivated many researchers to propose new improved network graphs arguing the benefits
and performance evaluation in different contexts.

Yogalakshmi et. al [11] introduced the clustered graphs and found the degree-based topological
indices for the same. Further, the interrelation of the indices was discussed. In [12], the distance-
based topological indices of a clustered graph were computed. The clustered graph was derived
from a complete tripartite graph Kr,s,t, r ≥ s ≥ t with partite sets R, S, and T by converting
each vertex as a complete graph with order equal to the degree of a corresponding vertex. The
adjacency condition was preserved as in the tripartite graph.

This paper discusses the properties of clustered graphs such as connectivity, Euler property,
antipodal graph, chromatic number, and chromatic index.

2. Preliminaries

Let G = (V,E) be a connected simple graph with |V | = p and |E| = q, where p and q are finite.
Vertices u and v are adjacent if there is an edge e ∈ E joining u and v, and the edge e is said to
be incident with u and v. The number of edges incident with a vertex u is called the degree of the
vertex and is denoted by d(u). The maximum and minimum graph degrees are denoted by ∆ and δ,
respectively. The vertex connectivity of G denoted by κ(G) and edge connectivity of G denoted
by λ(G) are the minimum number of vertices and edges, respectively, that need to be removed
from a connected graph to make it disconnected. The distance between any two vertices u and v
is the length of any shortest path connecting them. The distance to the vertex farthest away from
a vertex u is its eccentricity ǫ(u). The lowest and greatest eccentricities are known as the radius
R(G) and diameter D(G) of a graph, respectively. The central vertex is one with ǫ(u) = R(G).
A vertex is diametrical or peripheral if ǫ(u) = D(G). A graph is self-centered if all its vertices are
central. An Euler graph is a graph that contains an Eulerian circuit. A graph is Eulerian if and
only if the degree of each vertex is even.

Definition 1 [4]. A k-partite graph is one whose vertex set can be partitioned into k subsets,
or parts so that no edge has both ends in the same part. A k-partite graph is complete if any two
vertices in different parts are adjacent.

Theorem 1 [4]. A nontrivial connected graph G is Eulerian if and only if every vertex of G
has an even degree.
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Definition 2 [3]. The antipodal graph of a graph G denoted by A(G) is the graph on the same
vertices as G, two vertices being adjacent if the distance between is equal to the diameter of G. A
graph is said to be antipodal if it is the antipodal graph A(H) of some graph H.

Definition 3 [15]. A graph is called super-edge connected if every minimum edge cut consists
of edges incident with a vertex of minimum degree.

Definition 4 [7]. The restricted edge connectivity λ′(G) is the minimum cardinality of an edge
cut S in a graph G with the property that G− S contains no isolated vertices.

Definition 5 [11]. A cluster is an n-vertex graph with maximum adjacency between the ver-
tices. A clustered set is the collection of all clusters that all have the same degree and there is no
adjacency between the clusters.

3. Properties of clustered graphs

Let H = (V,E) be a graph, and let R, S, and T be clustered sets having r, s, and t clusters of
maximum adjacency, respectively. Let vertices of the clustered sets R, S, and T of the clustered
graph H be

V (R) = {A11, A12, A13, . . . , A1t, A1(t+1), . . . , A1(t+s), A21, A22, . . . , A2t, A2(t+1), . . . ,

A2(t+s), . . . , Ar1, Ar2, Ar3, . . . , Art, Ar(t+1), . . . , Ar(t+s)};

V (S) = {B11, B12, B13, . . . , B1t, B1(t+1), . . . , B1(t+r), B21, B22, . . . , B2t, B2(t+1), . . . ,

B2(t+r), . . . , Bs1, Bs2, Bs3, . . . , Bst, Bs(t+1), . . . , Bs(t+r)};

V (T ) = {C11, C12, C13, . . . , C1s, C1(s+1), . . . , C1(s+r), C21, C22, . . . , C2s, C2(s+1), . . . ,

C2(s+r), . . . , Ct1, Ct2, Ct3, . . . , Cts, Ct(s+1), . . . , Ct(s+r)}.

Then, H = CL(r, s, t) is said to be a clustered graph if its vertex set V can be partitioned into
three nonempty disjoint subsets V (R), V (S), and V (T ) of vertices of the clustered sets R, S, and
T preserving the adjacency relation (Ai(t+j), Bj(t+i)), (Bjk, Ckj), and (Ck(s+i), Aik) for 1 ≤ i ≤ r,
1 ≤ j ≤ s, and 1 ≤ k ≤ t as the complete tripartite graph Kr,s,t.

Now, the clustered graph CL(r, s, t) is constructed as in Figure 1. The number of vertices n
and the number edges m of the clustered graph are 2(rs+ rt+ st) and

1

2
[r2s+ r2t+ s2r + s2t+ t2r + t2s+ 6rst],

respectively [11].

Example 1. Figure 2 shows the clustered graph CL(3, 2, 2) as an example.

Theorem 2. The connectivity number κ(H) of a clustered graph H is s+ t.

P r o o f. By Whitney’s inequality

κ(H) ≤ λ(H) ≤ δ(H);

i.e., κ(H) ≤ λ(H) ≤ s+ t.
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Figure 1. A clustered graph CL(r, s, t).

Figure 2. The clustered graph CL(3, 2, 2).

Since the minimal degree is s + t, each cluster is adjacent to at least s + t clusters, according to
the adjacency criterion. As a result, detaching a cluster requires at least s+ t vertices. Therefore,

κ(H) = s+ t.

�

Corollary 1. The edge connectivity number λ(H) of a clustered graph H is s+ t.

Theorem 3. If H(V,E) is a clustered graph and S is a subset of V, then

2 ≤ c(H − S) ≤ |S|.

In other words, there are exactly two components in (H − S) if |S| = δ(H).

P r o o f. The connectivity number of a clustered graph H is s+ t = δ(H). Removal of (s+ t)
vertices (or edges) disconnects only one cluster from the graph. Hence, by the adjacency condition
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of a clustered graph, the number of components is two. �

Corollary 2. A clustered graph is a restricted edge- (λ′)-connected graph.

P r o o f. By Theorem 3, the number of components in H − S is 2. Hence, it is λ′-connected.
�

Corollary 3. A clustered graph is super-edge connected.

P r o o f. The clusters in the clustered set R contain vertices of minimum degree. By the
structure of the clustered graph, the edges joining the vertices of each cluster in the clustered set R
are edge cuts. Each edge in the edge cut is incident with a minimum degree vertex. Hence, the
graph is super-edge connected. �

Theorem 4. If each cluster in the clustered sets has minimum adjacency of all vertices of the
clustered graph, then the minimum number of edges is [(rs+ st+ rt)(s+ t)].

P r o o f. In a clustered graph H, we have

κ(H) = s+ t and κ(H) ≤ δ(H).

Then the graph must have (n/2)(s + t) edges, i.e., [(rs+ st+ rt)(s+ t)] edges. �

Theorem 5. The distance between vertices in a clustered graph H is at most 4.

P r o o f. For 1 ≤ i ≤ r, 1 ≤ l ≤ s, and 1 ≤ k ≤ t, let Ai, Bl, and Ck be the clusters in the
clustered sets R, S, and T, respectively:

R = {A1, A2, A3, . . . , Ai, . . . , Ar},

S = {B1, B2, B3, . . . , Bl, . . . , Bs},

T = {C1, C2, C3, . . . , Ck, . . . , Ct}.

Vertices in each cluster are adjacent to each other. Any cluster in one of the clustered sets R, S,
and T is adjacent to every cluster in the other clustered sets.

Consider a cluster Ai in the clustered set R. There are (s+ t) adjacent vertices in Ai, where s
vertices are adjacent to s-clusters in S and t vertices are adjacent to t-clusters in T . Take a vertex
v in Ai. Clearly, v is adjacent to a cluster Bl in S or Ck in T . Consequently, each vertex in Bl or
Ck may be reached from v by a path of length at most 2. Furthermore, the path length grows by
one from each vertex in Ai other than v. Similarly, the distance between a vertex in one clustered
set and any vertex in another clustered set is at most three.

Now, consider vertices u in Ai and v in Aj with i 6= j. There is no adjacency between Ai and
Aj for any 1 ≤ i, j ≤ r. The path from u to v must pass through any cluster in S or T . The length
of the u− v path is 3 or 4.

Hence, the distance between vertices in the clustered graph is at most 4. �

Corollary 4. In a clustered graph H, the radius is

R =

{

4, r ≥ s ≥ t > 1,
3, otherwise,

and the diameter is

D =

{

3, r = s = t = 1,
4, otherwise.
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Corollary 5. (i) Clustered graph H is self-centered graph for either r ≥ s ≥ t > 1 or
r = s = t = 1.

(ii) Complement of the clustered graph has diameter 2.

Corollary 6. In clustered graph antipodal vertices lies in the same clustered set.

P r o o f. The diameter of clustered graph is 4. If v is a antipodal vertex of u then d(u, v) = 4.
Let u ∈ Ai in R then by Theorem 5, v ∈ Aj in R for some j with i 6= j such that d(u, v) = 4.
Similarly it holds for the vertices in the clustered sets S and T .

Theorem 6. The antipodal graph A(H) of a clustered graph is disconnected, and the compo-
nents are balanced partite graphs or isolated vertices.

P r o o f. Case (i): r = s = t = 1. In this case, the clustered graph is isomorphic to C6 and
has a unique antipodal point for each vertex. Hence, the antipodal graph is disconnected.

Case (ii): r ≥ s ≥ t > 1. It is obvious that the clustered sets R, S, and T each have several
clusters. According to Corollary 6, the antipodal vertex is in the same clustered set. Except for
one vertex in each Aj , all vertices of the clusters Aj are the antipodal points of a vertex v in Ai,
where j 6= i. Consequently, none of vertices in Ai is adjacent to the vertex v. It results in an
r-partite graph, where r is the number of clusters in R. A similar argument demonstrates that the
antipodal points of vertices in the clustered sets S and T form s-partite and t-partite graphs.

Case(iii): r ≥ s ≥ t and t = 1. If t = 1, then the clustered set T contains only one cluster
and its vertices have eccentricity 3. If s = t = 1, then both S and T contain one cluster each with
vertices of eccentricity 3. Vertices in the clustered set R have eccentricity 4. The antipodal points
does not exist for vertices with eccentricity 3. Since V (A(H)) = V (H), the antipodal graph has
isolated points. �

Theorem 7. A clustered graph H is Eulerian if and only if r, s, and t are either all odd or all
even.

P r o o f. In a clustered graph, the possible degrees of vertices are r + s, r + t, and s + t. It
is known that the sum of two numbers is even if both are either odd or even. According to the
Eulerian criterion, the degree of all vertices is even if and only if r, s, and t are either all odd or all
even. �

Corollary 7. A clustered graph H is Eulerian if and only if its underlying complete tripartite
graph is Eulerian.

Theorem 8. The complement H̄ of a clustered graph H is not a Eulerian graph.

P r o o f. The number of vertices in a clustered graph is 2(rs + rt + st), which is even. The
degree of a vertex v in the complement graph is d̄v = n− 1− dv. It is clear that H̄ is not Eulerian.
�

Theorem 9. If r, s, and t are neither all odd nor all even, then a spanning Eulerian subgraph
exists.

P r o o f. As the values of r, s, and t are neither all odd nor all even, two cases arise.

Case (i): there are two odd and one even values. Let r and s be odd and t be even. Let T be the
clustered set containing clusters of degree s + r. Similarly, let the clustered sets S and R contain
clusters of degree t+ r and t+ s, respectively. Remove the edges adjacent with the clustered sets S
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and R that lead to the degrees t+ r− 1 and t+ s− 1 of those adjacent vertices. There are t edges
that arise from T to S and T to R, respectively. The vertices of the cluster B1 in the clustered set
S that are connected to T are {B11, B12, . . . , B1t}, and we remove t/2 edges between the vertices
alternatively. Continue this process for the remaining s− 1 clusters in the clustered set S. Extend
the same process to the clustered set R. Finally, the degrees of vertices are s + r, t + r − 1, and
t+ s− 1, which are even. Hence, the Eulerian spanning subgraph is derived.

Case (ii): there are one odd and two even values. Let r and s be even and t be odd. Let T, S,
and R be clustered sets containing clusters of degree s+r, t+r, and s+ t, respectively. The vertices
Bi(t+j), i = 1, 2, . . . , s, j = 1, 2, . . . , r, in the clustered set S are adjacent to the vertices Aj(t+i) in the
clustered set R. Remove the edges Ai(t+i)Bi(t+i), i = 1, 2, . . . , (s− 1), and the edges Ai(t+s)Bs(t+i),
i = s, (s + 1), . . . , r. The vertices Bij and Akj, i = 1, 2, . . . , s, j = 1, 2, . . . , t, k = 1, 2, . . . , r, are
connected to the clustered set X. Remove the edges between these vertices (within the cluster)
alternatively. The degrees of the vertices are s + r, t + r − 1, and t + s − 1, which are even. The
proof is complete. �

Corollary 8. A clustered graph H is a super-Eulerian graph for r, s, and t neither all odd nor
all even.

Theorem 10. The chromatic number of a clustered graph is s+ r.

P r o o f. The maximum degree in a clustered graph is s + r. The bound for the chromatic
number of a graph is ∆ ≤ χ ≤ ∆+1. Let the set of colors be {α1, α2, . . . , αi}, s+ r ≤ i ≤ s+ r+1.

Define a color function f as

f(Cij) = αj, 1 ≤ i ≤ t, 1 ≤ j ≤ s+ r,
f(Aij) = αj , 1 ≤ i ≤ r, 1 ≤ j ≤ t+ s,
f(Bij) = α(i+j), (i+ j) mod (r + s), 1 ≤ i ≤ s, 1 ≤ j ≤ t+ r.

Clearly, the range of f is {1, 2, 3, . . . , r + s}. Hence, the theorem is proved. �

Theorem 11. The chromatic index of the clustered graph is s+ r.

P r o o f. By Vizing’s theorem,

χ′(H) ≤ 1 + ∆(H).

Clearly, ∆(H) = r + s; i.e.,

χ′(H) ≤ 1 + r + s.

To prove the claim, it is enough to prove the existence of a function from the edge set of H to the
color set C, and |C| = r + s. The edges can be categorized into two types by the structure of a
clustered graph. One is within the clusters and another is between the clustered sets. Considering
edges within the cluster, we obtain a complete graph. Moreover, the clusters in the clustered sets
R, S, and T are of order t+ s, t+ r, and s+ r, respectively. It is well known that

χ′(Kn) =

{

∆, n is even,

∆+ 1, n is odd.

Case (i): ∆(H) is even. If ∆(H) = s+ r is even, then the edges within the clustered set T are
assigned r + s − 1 colors. It is clear that the degrees of the clustered sets S and R are less than
or equal to the degree of the clustered set T . Therefore, all the edges within the clusters of R, S,
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and T are assigned at most r+ s− 1 colors. The edges between the clustered sets are now assigned
(r + s)th color. Hence, χ′(H) = r + s.

Case (ii): ∆(H) is odd. Since r + s is odd, the matching is not perfect and r + s colors are
needed. Let C = {α1, α2, . . . , αs+r} be the color set, and let E be the edge set of the clustered
graph. To assign colors between the clustered sets, define a function f : E → C as

f(CijBji) = αp+i+j−2, (p+ i+ j − 2) mod (r + s), 1 ≤ i ≤ t, 1 ≤ j ≤ s,
f(Ci(s+j)Aji) = αp+s+j+i−2, (p+ s+ j + i− 2) mod (r + s), 1 ≤ i ≤ t, 1 ≤ j ≤ r,

f(Bi(t+j)Aj(t+i)) = αp+t+i+j−2, (p+ t+ i+ j − 2) mod (r + s), 1 ≤ i ≤ s, 1 ≤ j ≤ r,

where p = (r + s+ 1)/2.

In the clustered set T , edges adjacent to the clustered set R are assigned r colors, and s colors
assign the edges adjacent to S with repetition of t clusters. There is a maximal matching of size
(s + r − 1)/2, and each cluster of T has (r + s)(r + s− 1)/2 edges. Therefore, each cluster in the
clustered set T is assigned r + s colors. Since there is no adjacency between the clusters in the
same clustered set, we assign the same r + s colors to the clusters. Moreover, the clusters in the
clustered set R and S are assigned at most r + s colors. Thus, all the edges of H can be assigned
at most r + s colors. Hence, χ′(H) = r + s. �

4. Conclusion

The concept of conditional connectivity is introduced in response to the shortcomings of the tra-
ditional connectivity measure by requiring some property for disconnected components. Similarly,
edge connectivity was created by specifying certain measures of a network’s robustness. Certain
properties of disconnected components are required in applications where parallel algorithms can
run on subnetworks with a given topology. Euler graph has reached the pinnacle of achievement
in numerous circumstances arising in computer science, physical science, communication science,
economics, and many other fields. It can be used to represent almost any issue involving discrete ar-
rangements of objects where the focus is on the relationships between the objects rather than their
internal properties. This paper discussed graph properties of clustered graphs like connectivity, Eu-
lerian property, and chromaticity. Further properties of the clustered graphs will be incorporated
in the future.
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