
URAL MATHEMATICAL JOURNAL, Vol. 2, No. 2, 2016

PARALLEL ALGORITHM FOR CALCULATING

GENERAL EQUILIBRIUM IN MULTIREGION

ECONOMIC GROWTH MODELS

Nikolai B. Melnikov

Lomonosov Moscow State University;
Central Economics and Mathematics Institute, RAS, Moscow, Russia

melnikov@cs.msu.ru

Arseniy P. Gruzdev

Lomonosov Moscow State University, Moscow, Russia
gruzdev@cs.msu.ru

Michael G. Dalton

National Oceanic and Atmospheric Administration, Seattle WA, USA
michael.dalton@noaa.gov

Brian C. O’Neill

National Center for Atmospheric Research, Boulder CO, USA
Email: boneill@ucar.edu

Abstract: We develop and analyze a parallel algorithm for computing a solution in a multiregion dynamic

general equilibrium model. The algorithm is based on an iterative method of the Gauss – Seidel type and exploits

a special block structure of the model. Calculation of prices and input-output ratios in production for different

time steps is carried out in parallel. We implement the parallel algorithm using the OpenMP interface for

systems with shared memory. The efficiency of the algorithm is studied with the numbers of cores varying in

the full range from one to the number of time steps of the model.

Key words: Computable general equilibrium, Economic growth, Iterative methods, High-performance com-

puting, OpenMP.

AMS Classification: 91B50, 91B62, 91B66, 91B74, 68W10

1. Introduction

Dynamic computable general equilibrium (CGE) models are widely used for estimating the effects
of demographic and technological changes on energy use and carbon dioxide (CO2) emissions. The
equilibrium is described in the framework of the Arrow –Debreu theory, which leads to a systems
of nonlinear equations. Usually large-scale nonlinear systems are solved by one of the “general-
purpose” Krylov subspace solvers, which can deal effectively with sparse matrices (see, e.g., [1]).

In our paper [2], we presented a parallel algorithm based on an iterative method of the Gauss –
Seidel type [3]. We exploited the special block structure of the nonlinear system of equations in
dynamic CGE models. We implemented the algorithm using parallel programming environments
for the one-region version of the Population-Environmental-Technology (PET) model [4, 5]. The

46 N.B. Melnikov, A.P. Gruzdev, M.G. Dalton and B.C. O’Neill

numerical results showed that the speed of our algorithm is comparable to the one of Krylov
methods solvers such as NITSOL [6].

In this paper we extend the algorithm to models with international trade and apply it to the
multiregion PET model [7]. We implement the parallel algorithm using the OpenMP interface for
systems with shared memory. To demonstrate the effectiveness of the parallel algorithm we use
the PET model calibrated to reproduce major outcomes for the socioeconomic scenarios from the
Shared Socioeconomic Pathways (SSP) database (see, e.g. [8]). The calibration of the PET model
to the SSPs is described in the supplementary material to [8].

The paper is organized as follows. In Sect. 2 we present a description of the multiregion PET
model. In particular, we explain in detail how the intermediate goods demand is calculated in the
presence of the international trade. In Sect. 3 we present the numerical method for calculating the
equilibrium and explain the parallel algorithm. In Sect. 4 we discuss the calculation results.

2. Structure of the CGE model

In this section we describe the multiregion PET model (for description of the one-region PET
model, see, e.g. [2, 4, 5]).

The PET model is a forward-looking CGE model with tree types of agents: consumers, pro-
ducers, and government. Consumers maximize their lifetime utility function taking prices as given
(Subsec. 2.1). Producers maximize profits supported by the prices as described in Subsec. 2.2. Gov-
ernment redistributes capital through taxes and transfers (for details see, e.g. [5]). International
trade is described by the Armington model as described in Subsec. 2.3. Prices are determined by the
markets clearing conditions for production factors, intermediate and final goods (Subsec. 2.4). The
first-order optimality conditions for the agents and supply-equals-demand conditions for markets
form a system of nonlinear equations. A solution to this system of equation is called the general

equilibrium.

2.1. Consumers side

In each of the NR regions the utility function of the representative household is given by the
discounted lifetime consumption

U(c) =
1

ψ

∞∑

t=0

βtnt



NC∑

j=1

(µjtcjt)
ρ




ψ
ρ

,

where t = 0, 1, 2, . . . is time, index j = 1, NC labels consumer goods, cjt is consumption, nt is the
size of population, ψ ∈ (−∞, 1)\ {0} is the intertemporal substitution parameter, β ∈ (0, 1) is the
discount rate, σ = 1/(1 − ρ) is the electivity (ρ ∈ (−∞, 1)\ {0} is the substitution parameter) and
µjt is the preference coefficient (for details of calculating µjt see, e.g., [5]).

The capital dynamics is

(1 + νt) kt+1 = (1− δ) kt + xt, (2.1)

where kt is capital (k0 > 0), xt is investment, δ ∈ (0, 1) is the capital depreciation coefficient,
1 + νt = nt+1/nt is the population growth coefficient (νt is the growth rate).

The budget constraint is

NC∑

j=1

pjtcjt + qtxt = (1− θt)ωtlt + (1− φt) rtkt + gt, (2.2)

Parallel Algorithm for Multiregion Economic Growth Models 47

where pjt is the price of the jth consumer good, qt is the prices of investments, ωt is the wage rate,
rt is the rental rate of capital, gt is the government transfers, lt is the labor supply, θt and φt are
the tax rates on capital and labor incomes, respectively. Here the quantities cjt, kt, xt, lt and gt
are given in per capita terms.

Taking prices as given, the representative household maximizes the utility,

U(c) −→ max, (2.3)

subject to constraints (2.1) and (2.2). The first-order optimality condition for problem (2.1), (2.2)
and (2.3) gives the Euler equation

qt
pt
ct
ψ−1 = β

qt+1(1− δ) + (1− φt+1)rt+1

pt+1

ct+1
ψ−1,

where the consumption composite and price index are

ct =



NC∑

j=1

(µjtcjt)
ρ




1

ρ

, p̄t =



NC∑

j=1

(
pjt
µjt

) ρ
ρ−1



ρ−1

ρ

such that
NC∑

j=1

pjtcjt = p̄tct.

The transversality conditions
lim
t−→∞

λtkt = 0,

where λt is the Lagrange multiplier, guarantees that the optimal trajectory (ct, kt, xt) exists and is
unique (see, e.g., [9]).

2.2. Producers side

Firms are aggregated into sectors that produce final goods (NC consumer goods and one “invest-
ment good”) and intermediate goods (NE energy goods and the rest, which we call materials). The
total number of production sector is NX = NC + 1 +NE + 1.

Production level of the good X is defined by the constant elasticity of substitution (CES)
function

X = γX
(
αK(GKK)ρX + αL(GLL)

ρX + αĒ(GĒĒ)ρX + α
M̂
(G

M̂
M̂)ρX

) 1

ρX , (2.4)

where K is capital, L is labor, Ē is energy composite and M̂ is materials (unlike small letters that

indicate the per capita values, capital letters denote the totals). Here GI , I = K,L, Ē, M̂ , are
the productivity factors and the coefficient γX normalizes the production shares αI to unity. Both
productivity factors and production shares can be sector- and time-dependent. (Current version of
the PET model [8] also has land as a production factor but, for simplicity, we do not consider it
here.)

At each time moment, the producer of the good X maximizes profit, or equivalently, minimizes
costs

PKK + PLL+ PĒĒ + (1 + τ
M̂
)P

M̂
M̂ −→ min

K,L,Ē,M̂

, (2.5)

given the level of production (2.4). Here PI is the corresponding price and τ
M̂

is the tax on the
use of materials (for brevity, we omit the time index).

48 N.B. Melnikov, A.P. Gruzdev, M.G. Dalton and B.C. O’Neill

The minimal cost for problem (2.4) and (2.5) is given by PXX, where

PX =
1

γX

(
α

1

1−ρX

K

(
PK
GK

) ρX
ρX−1

+ α
1

1−ρX

L

(
PL
GL

) ρX
ρX−1

+ α
1

1−ρX

Ē

(
PĒ
GĒ

) ρX
ρX−1

+ α
1

1−ρX

M̂

(
(1 + τ

M̂
)P

M̂

G
M̂

) ρX
ρX−1

)
.

The cost minimizing input-output ratios AIX = I/X for I = K,L, Ē are given by

AIX =

(
1

αI(γXGI)ρX
PI
PX

) 1

ρX−1

,

and for I = M̂ the ratio is given by

AM̂X =

(
1

α
M̂
(γXGM̂)ρX

(1 + τ
M̂
)P

M̂

PX

) 1

ρX−1

.

Since the PET model is primarily intended for energy economics analysis, it is detailed in the
energy sector,

Ē = γĒ

(
NE∑

i=1

αEi(GEiEi)
ρĒ

) 1

ρ
Ē

, (2.6)

where Ei, i = 1, NE are different energy types. Solving the cost–minimization problem

NE∑

i=1

(1 + τEi)PEiEi −→ min
Ei

given the level of production (2.6), we derive the price of the energy composite,

PĒ =
1

γĒ

(
NE∑

i=1

α
1

1−ρ
Ē

Ei

(
(1 + τEi)PEi

GEi

) ρ
Ē

ρ
Ē

−1

) ρ
Ē

−1

ρ
Ē

and the input-output ratios AEi
Ē

= Ei/Ē,

AEi
Ē

=

(
1

αEi(γĒGEi)
ρĒ

(1 + τEi)PEi
PĒ

) 1

ρ
Ē

−1

,

where τEi , i = 1, . . . , NE , are the taxes on the use of energy.

2.3. Intermediate goods demand

Production has a nested structure. Therefore, calculation of the intermediate goods demand re-
quires a recursive procedure. We derive the necessary formulae first for the one–region model and
then for the multiregion case.

Parallel Algorithm for Multiregion Economic Growth Models 49

X

K L M̂

K L M̂

.

Figure 1. Nested production structure with one intermediate good.

2.3.1. One-region case

To explain the main idea, we first consider the market in which intermediate goods are aggregated
into one good, which we call materials M̂ . In this case, according to the nested production structure
shown in Fig. 1, demand for materials is given by

M̂ = AM̂XX +AM̂
M̂
(AM̂XX) +

(
AM̂
M̂

)2
(AM̂XX) + . . . ,

where the first term corresponds to the portion of materials used in production of the final good
X(K,L, M̂), the second term corresponds to the portions of materials used in production of mate-

rials M̂(K,L, M̂) one level down, etc. Calculating the sum of the geometric series, we obtain

M̂ =
(
1−AM̂

M̂

)
−1

AM̂XX (2.7)

or, equivalently,

M̂ = AM̂XX +AM̂
M̂
M̂. (2.8)

The latter means that demand for materials is equal to the amount of materials needed to produce

the final good and amount needed to produce the materials themselves. Denoting Z = M̂ , A = AM̂
M̂

and Y = AM̂XX, we write (2.7) as

Z = (1−A)−1Y. (2.9)

Next, we consider the production (2.4) with two intermediate goods, energy and materials.
In this case, the aggregate demand for materials is given by

M̂ = AM̂XX +
[
AM̂
M̂
AM̂XX +AM̂

Ê
AÊXX

]

+
[
AM̂
M̂

(
AM̂
M̂
AM̂XX +AM̂

Ê
AÊXX

)
+AM̂

Ê

(
AÊ
M̂
AM̂XX +AÊ

Ê
AÊXX

)]
+ . . .

This formula describes the sum over layer of the nested production structure (Fig. 2). Each expres-
sion in square brackets corresponds to a particular layer. Rearrangement of the terms in square
brackets gives

50 N.B. Melnikov, A.P. Gruzdev, M.G. Dalton and B.C. O’Neill

X

K L Ê M̂

K L Ê M̂ K L Ê M̂

. .

Figure 2. Nested production structure with energy and materials.

M̂ = AM̂XX +
[
AM̂
M̂
AM̂XX +AM̂

Ê
AÊXX

]

+
[(
AM̂
M̂
AM̂
M̂

+AM̂
Ê
AÊ
M̂

)
AM̂XX +

(
AM̂
M̂
AM̂
Ê

+AM̂
Ê
AÊ
Ê

)
AÊXX

]
+ . . .

(2.10)

Similarly, for energy we obtain

Ê = AÊXX +
[
AÊ
M̂
AM̂XX +AÊ

Ê
AÊXX

]

+
[(
AÊ
M̂
AM̂
M̂

+AÊ
Ê
AÊ
M̂

)
AM̂XX +

(
AÊ
M̂
AM̂
Ê

+AÊ
Ê
AÊ
Ê

)
AÊXX

]
+ . . .

(2.11)

Defining y = (AM̂XX, A
Ê
XX)T and

A =

(
AM̂
M̂

AM̂
Ê

AÊ
M̂

AÊ
Ê

)
,

we write expressions (2.10) and (2.11) as a matrix series:
(
M̂

Ê

)
= (I +A+A2 +A3 + . . .)

(
AM̂XX

AÊXX

)
,

where I is the unity 2× 2-matrix. Summing the series, we have
(
M̂

Ê

)
= (I −A)−1

(
AM̂XX

AÊXX

)
. (2.12)

Equation (2.12) can be written in the form

Z = (I −A)−1 Y, (2.13)

where

Z =

(
M̂

Ê

)
, Y =

(
AM̂XX

AÊXX

)
.

Note that equation (2.13) is the same as equation (2.9) we obtained with one intermediate
good. It is the dimensionality of this equation and form of the vectors Z and Y and matrix A that
change when we change the number of intermediate goods.

Parallel Algorithm for Multiregion Economic Growth Models 51

2.3.2. Multiregion case

In this subsection we obtain the intermediate goods demand in the multiregion economy with trade.
International trade is described by the Armington model (see, e.g. [10]). It is based on the

assumption that the same goods produced in different regions are not perfect substitutes but can
be aggregated according a certain rule (usually a CES function). The Armington model enables the
representation of markets in which domestically produced goods keep a share of domestic markets
even though their price is higher than the price in other regions, and in which different exporters
co-exist even if they have different prices.

X

K L M̂

M1 MNR

K1 L1 M̂1 . . . KNR LNR M̂NR

. .

Figure 3. Nested production structure with one intermediate good for the multiregion case.

Same as in the previous subsection, first we consider the market with only one intermediate
good (Fig. 3). Then M̂

(
M1, . . . ,MNR

)
aggregates materialsM1, . . . ,MNR from NR regions (Fig. 4).

M̂

M1 M2 MNR

Figure 4. Armington trade structure for materials.

Similarly to the problem (2.5) and (2.4), we consider

P1M1 + . . .+ PNRMNR → min,

subject to

γ
M̂

(
NR∑

i=1

αiM
ρ
M̂

i

) 1

ρ
M̂

= M̂,

52 N.B. Melnikov, A.P. Gruzdev, M.G. Dalton and B.C. O’Neill

where P1, . . . , PNR are the export prices. Then the minimum of the cost function is equal to P
M̂
M̂ ,

where

P
M̂

=
1

γ
M̂

NR∑

i=1

(
α

1

1−ρ
M̂

i P

ρ
M̂

ρ
M̂

−1

i

)
.

The cost minimizing input-output ratios are given by

bMi

M̂
=
Mi

M̂
=

(
1

αIγ
ρ
M̂

Pi
P
M̂

) 1

ρ
M̂

−1

.

Similarly to relation (2.8), we have

M̂i =

NR∑

j=1

bMij

(
A
M̂j

Xj
Xj +A

M̂j

M̂j

M̂j

)
.

Denoting B =
(
bMij

)
, AX = diag

(
AM̂i

Xi

)
and A = diag

(
AM̂i

M̂i

)
, we write

Z = (I −BA)−1BY (2.14)

where we set Z = (M̂1, . . . , M̂NR)
T , X = (X1, . . . ,XNR)

T , Y = AXX and I is the unity NR ×NR-
matrix.

X

K L Ê M̂

E1 ENR
M1 MNR

K1 L1 Ê1 . . . KNR
LNR ÊNR

K1 L1 M̂1 . . . KNR
LNR M̂NR

. .

Figure 5. Nested production structure with energy and materials in the multiregion case.

In the case of production (2.4) with two intermediate goods, energy and materials (Fig. 5), the
vector Z has the form

Z = (M̂1, Ê1, . . . , M̂NR , ÊNR)
T

and the components of equation (2.14) will have the block structure

B =
(
Bi
j

)
, Bi

j =

(
bMij 0

0 bEij

)
,

Parallel Algorithm for Multiregion Economic Growth Models 53

where bEij = bEi
Ê
/ b

Ej

Ê
. Matrices AX and A will consist of the input-output ratios for materials and

energy,

AX = diag
(
AXi
)
, AXi =

(
AM̂i

Xi

AÊiXi

)
;

A = diag (Ai) , Ai =


 AM̂i

M̂i

0

0 AÊi
Êi


 .

In the PET model the energy composite is the aggregate (2.6) of NE energy types. In this case,
Z will be a vector of dimensions (NE + 1)NR (NE energy types plus materials per region). Matrix

elements bEij and A
Êi

Êi
will be diagonal matrices and AXi will have NE + 1 elements.

2.4. Market equilibrium

Aggregate supply for capital KAS and labor LAS are determined by the sums over all regions of
ntkt and ntlt, respectively. Aggregate demand for capital and labor are

KAD =

NX∑

j=1

AKXjXj +AKGPGP,

LAD =

NX∑

j=1

ALXjXj +ALGPGP,

where GP is government purchases and AKGP and ALGP are the government sector input-output
ratios of capital and labor, respectively.

An equilibrium is defined by the markets clearing conditions. That means aggregate demand is
equal to aggregate supply (in each region and each time t) for the factors of production and final
goods,

KAD = KAS ,

LAD = LAS ,

XAD = XAS .

Here XAD is equal to the sums of ntct (or ntxt) over all regions, and X
AS is the production output.

For the government sector, we require that revenues are equal to expenditures,

GREV = GEXP .

The set of the optimality conditions for consumers and producers and markets clearing con-
ditions form a system of nonlinear equations that need to be solved. This system of equations
depends on consumer quantities, i.e. capital, investment, consumption and government transfers,
on the one hand and production costs (prices) and input-output ratios on the other.

3. Parallel algorithm

Since all other quantities can be obtained explicitly if we know capital K and prices P , the system
of equations describing the general equilibrium can be written as

f(K,P) = 0.

54 N.B. Melnikov, A.P. Gruzdev, M.G. Dalton and B.C. O’Neill

The block structure of the system and parallel algorithm for solving such systems were described in
detail in our paper [2]. Here we briefly recall the main ideas before describing the implementation
of the parallel algorithm.

input : K0, P 0

output : K, P

1 marker: if diff > tol and it < numIt then

2 omp parallel default(private)
3 omp shared(dyn arrays, stor arrays)
4 omp copyin(parameters)
5 omp for
6 for t← 0 to T do

7 Calculate prices P for time moment t (inner loop);
8 Update dyn arrays;
9 end

10 omp end parallel
11 Update stor arrays;
12 it← (it + 1);
13 diff ← update (K,P);
14 end

15 goto marker

Figure 6. The OpenMP implementation.

The Fair –Taylor method [3] works as follows. Let Ks be the sth iterate of capital. To obtain
the next iterate of prices P s+1 it is necessary to solve the system

f(Ks, P) = 0 (3.1)

with respect to P . To obtain the next iterate of capital Ks+2 it is necessary to solve the system

f(K,P s+1) = 0 (3.2)

with respect to K, and so on.

The part of the algorithm that calculates the next iterate of capital (3.2) is implemented as
the outer loop. The part that calculates the next iterate of prices (3.1) is implemented as the
inner loop. Blocks of the system (3.1) that correspond to different time-periods can be calculated
in parallel. To improve the convergence, solution of each block is broken down into two nested
loops: the NewtonA-loop for factor prices (PK and PL in NR regions) and the NewtonB-loop for
all other prices (goods prices in each region and export prices). The NewtonA-loop has a smaller
dimensions, therefore we can use the classical Newton method with backtracking as a solver. For
the NewtonB-loop we use a more advanced Krylov subspace method NITSOL (see, e.g. [6, 11]),
because it has much larger dimensions and it is called more often to calculate the Jacobian for the
NewtonA-loop.

The algorithm is described in Fig. 6. The input data of the algorithm is the initial approxima-
tions of capital K0 and prices P 0 and the output is the equilibrium capital K and prices P . The
general parameters are the tolerance tol and number of iterations numIt. Parameter T is the time
horizon of the model.

There are two types of arrays for storing and processing the economic data: dyn and stor. The
first group of arrays corresponds to data at the current time and is used by the inner loop (Fig. 6,
lines 6–9), the second is used for storing data over the iterations of the algorithm (outer loop). The

Parallel Algorithm for Multiregion Economic Growth Models 55

variable it is the iteration index and diff is the target error for the outer loop. The lines 8 and 11
in Fig. 6 correspond to the implementation of economic equations and line 13 computes the error
using current iterates of capital and prices.

In the OpenMP version, the time steps of the inner loop are performed in the parallel region.
All dyn and stor arrays are shared. The arrays with parameters are distributed using copyin clause
(Fig. 6, line 4).

4. Results and discussion

For calculations we use the PET model with NR = 9 regions and time horizon T = 105 years.
The total number of production sectors is NX = 10 in each region. As inputs the PET model
uses national production and household survey data at the baseyear and long-term population and
technical change projections over the whole time period. We use three sets of input data that
correspond to socioeconomic scenarios from the Shared Socioeconomic Pathways (SSP) database
(for the implementation of SSPs in the PET model, see [8]).

1 2 4 8 12

1

2

3

4

5

6

7

8

9

10

Number of cores (threads)

S
p
e
e
d
u
p

SSP2

SSP3

SSP5

(a) Lomonosov (Intel Xeon X5670 2.93 GHz, 12 Gb)

1 2 4 8 16 32

1

3

5

7

9

11

13

15

17

19

Hyperthreading

Number of cores (threads)

S
p
e
e
d
u
p

SSP2

SSP3

SSP5

(b) Yellowstone (Intel Xeon E5-2670 2.6 GHz, 64 Gb)

Figure 7. Speedup of the model runs for different SSPs.

0 50 100 150 200 250 300

Iteration

0

20

40

60

80

100

120

140

160

T
im

e
,
se

c

1 threads

2 threads

4 threads

8 threads

12 threads

(a) Regular node

0 50 100 150 200 250 300

Iteration

0

50

100

150

200

T
im

e
,
se

c

1 threads

2 threads

4 threads

8 threads

16 threads

32 threads

64 threads

128 threads

(b) SMP node

Figure 8. Timing of the outer loop iterations for the SSP3 obtained at the Lomonosov supercomputer.

We use two supercomputer systems for the model runs. The first one is the Lomonosov super-
computer [12]. We use two types of nodes at the Lomonosov: regular node with 12 cores (Intel

56 N.B. Melnikov, A.P. Gruzdev, M.G. Dalton and B.C. O’Neill

0 20 40 60 80 100

Year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
,
se

c

1st iter

100th iter

200th iter

(a) Regular node (4 threads)

0 20 40 60 80 100

Year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
,
se

c

1st iter

100th iter

200th iter

(b) SMP node (16 threads)

Figure 9. Timing of year-blocks in the inner loop for the SSP3 obtained at the Lomonosov supercomputer.

Xeon X5670 2.93 GHz, 1 Gb/core) and a node with 128 cores (16 Gb/core) with shared memory,
the Symmetric MultiProcessing (SMP) node. The second system is the Yellowstone supercom-
puter [13]. At the Yellowstone we use regular node with 16 cores (Intel Xeon E5-2670 2.6 GHz,
4 Gb/core), up to 32 cores with hyperthreading. The model is implemented using Fortran. For
the algorithm implementation we use BLAS [14], LAPACK [15] and Fortran implementation of
NITSOL [6]. For compiling the libraries and our code we use the Intel Fortran Compiler 15 with
optimization flag -O3 and standard make-file techniques for building the project.

To study strong scalability of the parallel algorithm we need to increase the computing power
while keeping the total problem size constant. This is achieved by running the model with the
same initial approximations K0 and P0 and same set of numerical parameters (for each SSP) with
increasing number of threads. The results show that the speedup of the parallel algorithm grows
almost linearly at both supercomputers as the number of threads grows from 1 to about 12–16
(Fig. 7). Overall, we obtain the speedup of about 10 times for a regular node. With further
increase of the number of nodes the speedup slows down and saturates (Table 1). Once the number
of nodes becomes greater than the time horizon of the model each thread solves one year-block of
the inner loop an no more speed up is possible with this algorithm. From Table 1 we see that the
maximum speedup is about 22 times but using 64 nodes we already get very close to it.

Fig. 8 shows that, for the number of threads from about one to ten, there is a visible monotone
decreases in timing of the outer loop as the algorithm converges (especially after the 50th iteration).
This effect can be explained if we look at the timings of different year-blocks of the inner loop
(Fig. 9). As the number of iterations increase the algorithm stops computing the Jacobian in the
NewtonA-loop using the one from the previous iteration. The number of these “fast” year-blocks
of the inner loop is increasing from iteration to iteration. For the 100th iteration of the outer loop
the calculation times of more than 60 first year-blocks are close to zero. For the 200th the “fast”
year-blocks span almost the whole time horizon T = 105.

Table 1. Speedup of the model runs for the SSP3 at the SMP node of the Lomonosov supercomputer.

Threads 1 2 4 8 16 32 64 128

Speedup 1 1.8 3.3 7.3 11 17 21.5 22

From Fig. 8 we also see that the timings of the outer loops uniformly decrease with the number
of threads increasing. But as the number of threads increases above ten, the timings of the outer
loops level out. The reason is that the timing of the inner loop in the parallel algorithm cannot get

Parallel Algorithm for Multiregion Economic Growth Models 57

smaller than the timing of the slowest year-block. From Fig. 9 we see that the number of “fast”
year-blocks is increasing as the algorithm converges but there are always some “slow” year-blocks
close to the end period T .

Aknowledgments

We are grateful to R. Loft and M. Weitzel for useful discussions of the results.

REFERENCES

1. Kelley C. Iterative Methods for Linear and Nonlinear Equations. SIAM: Philadelphia, 1995.

2. Melnikov N., Gruzdev A., Dalton M. and O’Neill B. Parallel algorithm for solving large-scale
dynamic general equilibrium models // Russian Supercomputing Days, Moscow, 2015. P. 84–95.

3. Fair R., Taylor J. Solution and maximum likelihood estimation of dynamic nonlinear rational expec-
tations models // Econometrica, 1983. Vol. 51. P. 1169–1185.

4. Dalton M., O’Neill B., Prskawetz A., Jiang L. and Pitkin J. Population aging and future carbon
emissions in the United States // Energy economics, 2008. Vol. 30, P. 642–675.

5. Melnikov N., O’Neill B. and Dalton M. Accounting for the household heterogeneity in dynamic
general equilibrium models // Energy economics, 2012. Vol. 34, P. 1475–1483.

6. Pernice M., Walker H. NITSOL: a Newton iterative solver for nonlinear systems // SIAM J. Sci.
Comput., 1998. Vol. 19, P. 302–318.

7. O’Neill B., Dalton D., Fuchs R., Jiang L., Pachauri S. and Zigova K. Global demographic
trends and future carbon emissions // Proc. Natl. Acad. Sci. U.S.A., 2010. Vol. 107, P. 17521–17526.

8. Ren X., Weitzel M., O’Neill B.C., Lawrence P., Meiyappan P., Levis S., Balistreri E.J. and

Dalton M. Avoided economic impacts of climate change on agriculture: integrating a land surface model
(CLM) with a global economic model (iPETS)// Climatic Change, 2016. P. 1–15. DOI: 10.1007/s10584-
016-1791-1

9. Stokey N., Lucas R. and Prescott E. Recursive Methods in Economic Dynamics. Harvard University
Press: Cambridge MA, 1989. 608 p.

10. Armington P. A theory of demand for products distinguished by place of production // IMF Staff
Papers, 1969. Vol. 16, P. 170–201.

11. Eisenstat S. and Walker H. Globally convergent inexact Newton methods // SIAM J. Optimization,
1994 Vol. 4, P. 393–422.

12. Sadovnichy V., Tikhonravov A., Voevodin Vl. and Opanasenko V. “Lomonosov”: Supercom-
puting at Moscow State University. In Contemporary High Performance Computing: From Petascale
toward Exascale. Chapman & Hall/CRC Computational Science, 2013. P. 283–307.

13. Computational and Information Systems Laboratory, 2012. Yellowstone: IBM iDataPlex Sys-
tem (Climate Simulation Laboratory). Boulder, CO: National Center for Atmospheric Research.
http://n2t.net/ark:/85065/d7wd3xhc.

14. Basic Linear Algebra Subprograms. Available from: http://www.netlib.org/blas/ Accessed 10
October 2016.

15. Linear Algebra Package. Available from: http://www.netlib.org/lapack/ Accessed 10 October
2016.

