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Abstract: In this paper the control system described by a nonlinear differential equation is studied. It is
assumed that the control functions have a quadratic integral constraint, more precisely, the admissible control
functions are chosen from the ellipsoid of the space L2([t0, θ];Rm). Different properties of the set of trajectories
are investigated. It is proved that a small perturbation of the set of control functions causes also appropriate
small perturbation of the set of trajectories. It is also shown that the set of trajectories has a small change if
along with the integral constraint on the control functions, a sufficiently large norm type geometric constraint
on the control functions is introduced. It is established that every trajectory is robust with respect to the fast
consumption of the remaining control resource, and hence every trajectory of the system can be approximated
by a trajectory generated by full consumption of the total control resource.

Keywords: Nonlinear control system, Quadratic integral constraint, Set of trajectories, Robustness.

1. Introduction

The control systems described by nonlinear differential equations are investigated in a vast
number of papers. Depending on the character of the control efforts the control systems are classified
as a) the control systems with geometric constraint on the control functions; b) the control systems
with integral constraint on the control functions; and c) the control systems with mixed constraints
on the control functions which include both the geometric and the integral constraints on the
control functions. The geometric constraints on the control functions appear in the case when the
control resource is not exhausted by consumption. But, if the control resource is exhausted by
consumption, say as energy, food, fuel, finance, etc., then the integral constraints on the control
functions is inevitable (see, e.g., [1, 2, 9, 12, 15, 16]). For example, the behaviour of the flying
objects with rapidly changing mass is described as a control system with integral constraint on the
control functions (see, e.g., [2, 12]).

One of the important notions of the control systems theory is the set of trajectories and attain-
able set concepts. Attainable set of the system at the given instant of time consists of points to
which arrive the trajectories of the system and can be defined as a section of the set of trajectories
at the given instant of time. Different topological properties and approximate construction meth-
ods of the set of trajectories described by various types of the integral and differential equations,
where the control functions have integral constraints, are considered in papers [4–8, 11, 13, 14]. In
papers [4, 5, 11, 14] the compactness, closedness, path-connectedness properties and approximate
construction methods of the set of trajectories and attainable sets of the control systems which are
affine with respect to the control vector are discussed. In papers [6–8, 13] the same problems are
investigated for nonlinear control systems. In presented paper the properties of the set of trajecto-
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ries of the nonlinear control systems are studied where the admissible control functions are chosen
from the ellipsoid of the space L2.

The paper is organized as follows. In Section 2, the basic conditions which have to satisfy the
system’s equation are formulated and preliminary properties of the system’s trajectories are given.
In Section 3 it is shown that introduction of the sufficiently large norm type constraint along with
integral constraint and a small perturbation of the given ellipsoid, which characterizes the integral
constraint, induce a small change of the set of trajectories (Theorem 2). A perturbation evaluation
for the set of trajectories is presented. In Section 4 it is proved that every trajectory is robust with
respect to the fast and full consumption of remaining control resource (Proposition 7). Applying
this result it is proved that every trajectory can be approximated by the trajectory generated by
full consumption of the total control resource (Theorem 3).

2. The system’s dynamics

Consider control system described by nonlinear ordinary differential equation

ẋ(t) = f (t, x(t), u(t)) , x(t0) = x0 (2.1)

where x(t) ∈ R
n is the phase state vector, u(t) ∈ R

m is the control vector, t ∈ [t0, θ] is the time.
Let B(·) : [t0, θ] → R

m×m be a continuous matrix function and B(t) be a positive definitem×m
matrix for every t ∈ [t0, θ] . For given ε ∈ [0, 1] and α > 0 we denote

Uε =
{

u(·) ∈ L2

(

[t0, θ];R
m
)

:

∫ θ

t0

〈B(t)u(t), u(t)〉dt ≤ 1 + ε
}

,

Uα
ε = {u(·) ∈ Uε : ‖u(t)‖ ≤ α for almost all t ∈ [t0, θ]} ,

U∗
0 =

{

u(·) ∈ L2

(

[t0, θ];R
m
)

:

∫ θ

t0

〈B(t)u(t), u(t)〉dt = 1
}

,

where L2 ([t0, θ];R
m) is the space of Lebesgue measurable functions u(·) : [t0, θ] → R

m such that

‖u(·)‖2 < +∞, ‖u(·)‖2 =
(
∫ θ

t0

‖u(t)‖2 ds
)1/2

,

‖·‖ denotes the Euclidean norm, 〈·, ·〉 stands for inner product.

Proposition 1. The sets Uε and Uα
ε are bounded, closed and convex subsets of the

space L2 ([t0, θ];R
m). The set U∗

0 is bounded and closed subset of the space L2 ([t0, θ];R
m).

It is not difficult to show that there exists c∗ > 0 such that the inequality

‖u(·)‖2 ≤ c∗ (2.2)

is satisfied for every u(·) ∈ Uε and ε ∈ [0, 1].
It is assumed that the function f(·, ·, ·) : [t0, θ]×R

n×R
m → R

n satisfies the following conditions:

2.A. The function f(·, ·, ·) : [t0, θ]× R
n × R

m → R
n is continuous.

2.B. For every bounded set D ⊂ [t0, θ] × R
n there exist γ1 = γ1(D) > 0, γ2 = γ2(D) > 0 and

γ3 = γ3(D) > 0 such that the inequality

‖f(t, x1, u1)− f(t, x2, u2)‖ ≤ [γ1 + γ2(‖u1‖+ ‖u2‖)] ‖x1 − x2‖+ γ3‖u1 − u2‖

is satisfied for every (t, x1, u1) ∈ D × R
m and (t, x2, u2) ∈ D × R

m.
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2.C. There exists κ > 0 such that the inequality

‖f(t, x, u)‖ ≤ κ (‖x‖ + 1) (‖u‖+ 1)

is held for every (t, x, u) ∈ [t0, θ]×R
n × R

m.

If the function (t, x, u) → f(t, x, u) : [t0, θ]×R
n×R

m → R
n is Lipschitz continuous with respect

to (x, u), then the conditions 2.B and 2.C are satisfied.

Let us define the trajectory of the system (2.1) generated by a control function
u∗(·) ∈ L2 ([t0, θ];R

m). An absolutely continuous function x∗(·) : [t0, θ] → R
n satisfying the equa-

tion ẋ∗(t) = f (t, x∗ (t) , u∗(t)) for almost all t ∈ [t0, θ] and initial condition x∗(t0) = x0 is said to be
a trajectory of the system (2.1) generated by the control function u∗(·) ∈ L2 ([t0, θ];R

m). The sets
of trajectories of the system (2.1) generated by all admissible control functions u(·) ∈ Uε, u(·) ∈ Uα

ε

and u(·) ∈ U∗
0 are denoted by Xε(t0, x0), X

α
ε (t0, x0) and X

∗
0 (t0, x0) respectively. It is obvious that

the inclusions
Xα

ε (t0, x0) ⊂ Xε(t0, x0), X∗
0 (t0, x0) ⊂ Xε(t0, x0)

are verified for every ε ∈ [0, 1] and α > 0.
For fixed t ∈ [t0, θ] we set

Xε(t; t0, x0) = {x(t) ∈ R
n : x(·) ∈ Xε(t0, x0)} , (2.3)

Xα
ε (t; t0, x0) = {x(t) ∈ R

n : x(·) ∈ Xα
ε (t0, x0)} , (2.4)

X∗
0 (t; t0, x0) = {x(t) ∈ R

n : x(·) ∈ X∗
0 (t0, x0)} . (2.5)

The sets Xε(t; t0, x0), X
α
ε (t; t0, x0) and X∗

0 (t; t0, x0) are called the attainable sets of the sys-
tem (2.1) at the instant of time t, generated by all admissible control functions from the sets Uε,
Uα
ε and U∗

0 respectively.
It is obvious that the attainable sets consist of points to which arrive the trajectories of the

system (2.1) at the instant of time t.
By symbol C ([t0, θ];R

n) we denote the space of continuous functions x(·) : [t0, θ] → R
n with

norm
‖x(·)‖C = max {‖x(t)‖ : t ∈ [t0, θ]} ,

hn(·, ·) and hC(·, ·) stand for the Hausdorff distance between the subsets of the spaces R
n and

C ([t0, θ];R
n) respectively.

Let us formulate the propositions which will be used in following arguments.

Proposition 2. Each control function u(·) ∈ L2 ([t0, θ];R
m) generates unique trajectory of the

system (2.1).

Denote
α∗ = κ

[

(θ − t0) + (θ − t0)
1/2c∗

]

· expκ
[

(θ − t0) + c∗(θ − t0)
1/2

]

(2.6)

where c∗ is defined by (2.2).
The following proposition characterizes boundedness of the set of trajectories.

Proposition 3. For every ε ∈ [0, 1] and x(·) ∈ Xε(t0, x0) the inequality ‖x(·)‖C ≤ α∗ holds.

P r o o f. Let us choose an arbitrary ε > 0 and x(·) ∈ Xε(t0, x0), generated by the control
function u(·) ∈ Uε. According to the Condition 2.C, inequality (2.2) and Cauchy–Schwarz inequality
we have

‖x(t)‖ ≤ κ

∫ t

t0

(‖x(τ)‖ + 1)(‖u(τ)‖ + 1) dτ

≤ κ

∫ t

t0

(‖u(τ)‖ + 1)‖x(τ)‖ dτ + κ
[

(θ − t0) + (θ − t0)
1/2c∗

]
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for every t ∈ [t0, θ]. Applying Bellman–Gronwall inequality and Cauchy–Schwarz inequality and
taking into consideration (2.2) and (2.6) we conclude from the last inequality

‖x(t)‖ ≤ κ
[

(θ − t0) + (θ − t0)
1/2c∗

]

· exp
[

κ

∫ θ

t0

(‖u(τ)‖ + 1) dτ

]

≤ κ
[

(θ − t0) + (θ − t0)
1/2c∗

]

· expκ
[

(θ − t0) + c∗(θ − t0)
1/2

]

= α∗

(2.7)

for every t ∈ [t0, θ]. The inequality (2.7) completes the proof. �

Let

ψ(δ) = κ(α∗ + 1)
(

δ + c∗δ
1/2

)

, δ ≥ 0. (2.8)

It is obvious that ψ(δ) → 0 as δ → 0+.

Proposition 4. For every ε ∈ [0, 1], x(·) ∈ Xε(t0, x0), t1 ∈ [t0, θ] and t2 ∈ [t0, θ] the inequality

‖x(t1)− x(t2)‖ ≤ ψ(|t1 − t2|)

is verified, and hence

hn(Xε(t1; t0, x0),Xε(t2; t0, x0)) ≤ ψ(|t1 − t2|)

where ψ(·) is defined by (2.8).

P r o o f. Without loss of generality let us assume that t2 > t1. Choose an arbitrary ε > 0 and
x(·) ∈ Xε(t0, x0), generated by the control function u(·) ∈ Uε. According to the Condition 2.C,
Proposition 3, (2.2) and (2.8) we have

‖x(t2)− x(t1)‖ ≤ κ

∫ t2

t1

(‖x(τ)‖ + 1)(‖u(τ)‖ + 1) dτ ≤ κ(α∗ + 1)

∫ t2

t1

(‖u(τ)‖ + 1) dτ

≤ κ(α∗ + 1)
[

(t2 − t1) + (t2 − t1)
1/2c∗

]

= ψ(|t2 − t1|) .

The proposition is proved. �

Proposition 3, Proposition 4 and Arzela-Ascoli theorem (see, e.g., [10, p. 102]) imply the validity
of the following theorem.

Theorem 1. For each ε ∈ [0, 1] the set of trajectories Xε(t0, x0) of the system (2.1) is a
precompact subset of the space C ([t0, θ];R

n).

Note that in general, the set of trajectories Xε(t0, x0) and X
∗
0 (t0, x0) are not closed subsets of

the space C ([t0, θ];R
n) (see, [3, 6]). Denote

Bn(α∗) = {x ∈ R
n : ‖x‖ ≤ α∗} ,

Dn(α∗) = {(t, x) ∈ [t0, θ]× R
n : x ∈ Bn(α∗)} ,

where α∗ is defined by equality (2.6).

Here and henceforth we will have in mind the cylinder Dn(α∗) as the set D in Condition 2.B.
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3. Properties of the set of trajectories

Denote

β∗ = γ1(θ − t0) + 2γ2c∗(θ − t0)
1/2, (3.1)

g∗ = γ3c∗(θ − t0)
1/2 · exp(β∗), (3.2)

BC(1) = {x(·) ∈ C ([t0, θ];R
n) : ‖x(·)‖C ≤ 1} , (3.3)

where c∗ is defined in (2.2).

Proposition 5. For every ε ∈ [0, 1] the inequality

hC(Xε(t0, x0),X0(t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

holds.

P r o o f. Let us choose an arbitrary x(·) ∈ Xε(t0, x0) generated by the control function
u(·) ∈ Uε. Define new control function u0(·) : [t0, θ] → R

m, setting

u0(t) =
1√
1 + ε

u(t), t ∈ [t0, θ]. (3.4)

The equality (3.4) yields that u0(·) ∈ U0. Now, from (2.2), (3.4) and Cauchy-Schwarz inequality
it follows that

‖u(·) − u0(·)‖1 =

∫ θ

t0

(

1− 1√
1 + ε

)

‖u(τ)‖ dτ ≤ c∗(θ − t0)
1/2

(

1− 1√
1 + ε

)

. (3.5)

Let x0(·) : [t0, θ] → R
n be the trajectory of the system (2.1) generated by the control function

u0(·) ∈ U0. Then x0(·) ∈ X0(t0, x0). From Condition 2.B, (2.1) and (3.5) it follows that

‖x(t)− x0(t)‖ ≤
∫ t

t0

[

γ1 + γ2(‖u(τ)‖ + ‖u0(τ)‖)
]

‖x(τ)− x0(τ)‖ dτ

+γ3c∗(θ − t0)
1/2

(

1− 1√
1 + ε

) (3.6)

for every t ∈ [t0, θ].
Taking into consideration the inequality (2.2), Gronwall–Bellman inequality and Cauchy–

Schwarz inequality, from (3.1), (3.2) and (3.6) we obtain

‖x(t)− x0(t)‖ ≤ γ3c∗(θ − t0)
1/2

(

1− 1√
1 + ε

)

· exp
[

∫ θ

t0

[γ1 + γ2(‖u(τ)‖ + ‖u0(τ)‖)] dτ
]

≤ γ3c∗(θ − t0)
1/2

(

1− 1√
1 + ε

)

· exp(β∗) = g∗

(

1− 1√
1 + ε

)

for every t ∈ [t0, θ], and hence

‖x(·) − x0(·)‖C ≤ g∗

(

1− 1√
1 + ε

)

.

Since x(·) ∈ Xε(t0, x0) is an arbitrarily chosen trajectory, x0(·) ∈ X0(t0, x0), then the last inequality
implies that

Xε(t0, x0) ⊂ X0(t0, x0) + g∗

(

1− 1√
1 + ε

)

BC(1) (3.7)
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where BC(1) is defined by (3.3). From inclusion X0(t0, x0) ⊂ Xε(t0, x0) and (3.7) we obtain the
proof of the proposition. �

From Proposition 5 it follows the validity of the following corollaries.

Corollary 1. hC(Xε(t0, x0),X0(t0, x0)) → 0 as ε→ 0+.

Corollary 2. For every ε ∈ [0, 1] and t ∈ [t0, θ] the inequality

hn(Xε(t; t0, x0),X0(t; t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

is verified where the sets Xε(t; t0, x0), ε ∈ [0, 1], are defined by (2.3).

Denote
r∗ = 2γ3c

2
∗ · exp(β∗) (3.8)

where β∗ is defined by (3.1).

Proposition 6. For every ε ∈ [0, 1] and α > 0 the inequality

hC(Xε(t0, x0),X
α
ε (t0, x0)) ≤

r∗

α

is satisfied where r∗ is defined by (3.8).

P r o o f. Let us choose an arbitrary ε ∈ [0, 1] and y(·) ∈ Xε(t0, x0) generated by the control
function v(·) ∈ Uε. Define new control function v∗(·) : [t0, θ] → R

m, setting

v∗(t) =







v(t) if ‖v(t)‖ ≤ α ,
v(t)

‖v(t)‖ · α if ‖v(t)‖ > α.
(3.9)

Let
A∗ = {t ∈ [t0, θ] : ‖v(t)‖ > α}.

Then from (2.2) we have

α2µ(A∗) ≤
∫

A∗

‖v(τ)‖2 dτ ≤
∫ θ

t0

‖v(τ)‖2 dτ ≤ c2∗,

and hence

µ(A∗) ≤
c2∗
α2

(3.10)

where µ(A∗) stands for the Lebesgue measure of the set A∗.
Since v(·) ∈ Uε and ‖v(τ)‖ > α for every τ ∈ A∗, then (3.9) implies that

∫ θ

t0

〈B(τ)v∗(τ), v∗(τ)〉 dτ

=

∫

[t0,θ]\A∗

〈B(τ)v(τ), v(τ)〉 dτ +

∫

A∗

〈B(τ)v(τ), v(τ)〉 · α2

‖v(τ)‖2 dτ

≤
∫

[t0,θ]\A∗

〈B(τ)v(τ), v(τ)〉 dτ +

∫

A∗

〈B(τ)v(τ), v(τ)〉 dτ

=

∫ θ

t0

〈B(τ)v(τ), v(τ)〉 dτ ≤ 1 + ε.

(3.11)
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Now, (3.9) and (3.11) yield that v∗(·) ∈ Uα
ε . Let y∗(·) : [t0, θ] → R

n be the trajectory of the
system (2.1) generated by the control function v∗(·) ∈ Uα

ε . Then y∗(·) ∈ Xα
ε (t0, x0). Now the

condition 2.B, inclusions v(·) ∈ Uε, v∗(·) ∈ Uα
ε , (2.2), (3.9) and (3.10) imply that

‖y(t)− y∗(t)‖ ≤
∫ t

t0

[

γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)
]

‖y(τ)− y∗(τ)‖ dτ + γ3

∫

A∗

‖v(τ) − v∗(τ)‖ dτ

≤
∫ t

t0

[

γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)
]

‖y(τ)− y∗(τ)‖ dτ + γ3 · [µ(A∗)]
1/2

[

‖v(·)‖2 + ‖v∗(·)‖2
]

≤
∫ t

t0

[

γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)
]

‖y(τ)− y∗(τ)‖ dτ +
2γ3c

2
∗

α

for every t ∈ [t0, θ]. The last inequality, the inclusions v(·) ∈ Uε, v∗(·) ∈ Uα
ε , Bellman–Gronwall

inequality and (3.8) yield

‖y(t)− y∗(t)‖ ≤ 2γ3c
2
∗

α
· exp

(
∫ θ

t0

[γ1 + γ2(‖v(τ)‖ + ‖v∗(τ)‖)] dτ
)

≤ 2γ3c
2
∗

α
· exp(β∗) =

r∗

α

for every t ∈ [t0, θ], and hence

‖y(·)− y∗(·)‖C ≤ r∗

α
. (3.12)

Since y(·) ∈ Xε(t0, x0) is an arbitrarily chosen trajectory, y∗(·) ∈ Xα
ε (t0, x0), then from (3.12)

it follows that

Xε(t0, x0) ⊂ Xα
ε (t0, x0) +

r∗

α
·BC(1), (3.13)

where the set BC(1) is defined by (3.3). Taking into consideration that Xα
ε (t0, x0) ⊂ Xε(t0, x0), we

obtain from (3.13) the proof of the proposition. �

Corollary 3. hC(Xε(t0, x0),X
α
ε (t0, x0)) → 0 as α→ +∞ uniformly with respect to the

ε ∈ [0, 1].

From Propositions 5 and 6 it follows the validity of the following theorem.

Theorem 2. For every ε ∈ [0, 1] and α > 0 the inequality

hC(X0(t0, x0),X
α
ε (t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

+
r∗

α

is satisfied where g∗ and r∗ are defined by (3.2) and (3.8) respectively.

Corollary 4. For every ε ∈ [0, 1], α > 0 and t ∈ [t0, θ] the inequality

hn(X0(t; t0, x0),X
α
ε (t; t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

+
r∗

α

is satisfied where Xα
ε (t; t0, x0) is defined by (2.4).

4. Robustness of the trajectories

Let us discuss the robustness of the trajectories with respect to the fast consumption of the
remaining control resource.
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Proposition 7. Let ν > 0 be a given number, Q∗ ⊂ [a, b] be Lebesgue measurable set,
z(·) ∈ X0(t0, x0) be a trajectory of the system (2.1) generated by the control function w(·) ∈ U0,

∫ θ

t0

〈B(τ)w(τ), w(τ)〉dτ = σ∗ < 1,

the control function w∗(·) ∈ L2([t0, θ];R
m) be such that

∫ θ

t0

〈B(τ)w∗(τ), w∗(τ)〉dτ = 1, w∗(t) = w(t), t ∈ [t0, θ] \Q∗,

and z∗(·) be the trajectory of the system (2.1) generated by the control function w∗(·). If

µ(Q∗) ≤
[

ν

2c∗γ3 exp(β∗)

]2

, (4.1)

then

‖z(·) − z∗(·)‖C ≤ ν

where c∗ is defined by (2.2), β∗ is defined by (3.1).

P r o o f. Let us underline that the equality

∫ θ

t0

〈B(τ)w∗(τ), w∗(τ)〉dτ = 1

implies that w∗(·) ∈ U∗
0 and hence z∗(·) ∈ X∗

0 (t0, x0). From Condition 2.B, inclusions w(·) ∈ U0,
w∗(·) ∈ U∗

0 , (2.2) and definition of the control function w∗(·) it follows that

‖z(t) − z∗(t)‖ ≤
∫ t

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

‖z(τ)− z∗(τ)‖ dτ + γ3

∫

Q∗

‖w(τ) − w∗(τ)‖ dτ

≤
∫ t

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

‖z(τ)− z∗(τ)‖ dτ + γ3 · [µ(Q∗)]
1/2

[

‖w(·)‖2 + ‖w∗(·)‖2
]

≤
∫ t

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

‖z(τ)− z∗(τ)‖ dτ + 2γ3c∗ · [µ(Q∗)]
1/2

for every t ∈ [t0, θ]. The last inequality, the inclusions w(·) ∈ U0, w∗(·) ∈ U∗
0 , Bellman–Gronwall

inequality, (3.1) and (4.1) imply

‖z(t)− z∗(t)‖ ≤ 2γ3c∗[µ(Q∗)]
1/2 · exp

(
∫ θ

t0

[

γ1 + γ2(‖w(τ)‖ + ‖w∗(τ)‖)
]

dτ

)

≤ 2γ3c∗[µ(Q∗)]
1/2 · exp(β∗) ≤ ν

for every t ∈ [t0, θ], and consequently ‖z(·) − z∗(·)‖C ≤ ν.

The proof is completed. �

Theorem 3. The equality

hC(X0(t0, x0),X
∗
0 (t0, x0)) = 0

holds.
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P r o o f. Let ν > 0 be an arbitrary fixed number and let us choose an arbitrary trajectory
x(·) ∈ X0(t0, x0) of the system (2.1) generated by the control function u(·) ∈ U0. Assume that

∫ θ

t0

〈B(τ)u(τ), u(τ)〉dτ = σ∗ < 1.

Let Q∗ ⊂ [t0, θ] be such that

µ(Q∗) ≤
[

ν

2c∗γ3 exp(β∗)

]2

, (4.2)

where c∗ is defined by (2.2), β∗ is defined by (3.1) and let
∫

[t0,θ]\Q∗

〈B(τ)u(τ), u(τ)〉 dτ = σ1, (4.3)

B∗ =

∫

Q∗

B(τ) dτ. (4.4)

It is obvious that B∗ is positive definite m×m matrix and σ1 ≤ σ∗ < 1.
Define new control function v0(·) : [t0, θ] → R

m, setting

v0(t) =

{

u(t) if t ∈ [t0, θ] \Q∗,

u0 if t ∈ Q∗,
(4.5)

where u0 ∈ R
m is such that

〈B∗u0, u0〉 = 1− σ1. (4.6)

From (4.3), (4.4), (4.5) and (4.6) it follows that

∫ θ

t0

〈B(τ)v0(τ), v0(τ) >〉 dτ =

∫

[t0,θ]\Q∗

〈B(τ)u(τ), u(τ)〉 dτ +

∫

Q∗

〈B(τ)u0, u0〉 dτ

= σ1 +
〈(

∫

Q∗

B(τ) dτ
)

u0, u0

〉

= σ1 + 〈B∗u0, u0〉 = σ1 + 1− σ1 = 1,

and hence v0(·) ∈ U∗
0 . Let x0(·) be the trajectory of the system (2.1) generated by the control

function v0(·) ∈ U∗
0 . Then x0(·) ∈ X∗

0 (t0, x0) and from (4.2) and Proposition 7 we obtain

‖x(·) − x0(·)‖C ≤ ν .

Since x(·) ∈ X0(t0, x0) is an arbitrarily chosen trajectory, x0(·) ∈ X∗
0 (t0, x0), then the last

inequality implies that
X0(t0, x0) ⊂ X∗

0 (t0, x0) + ν ·BC(1) (4.7)

where BC(1) is defined by (3.3). Taking into consideration that X∗
0 (t0, x0) ⊂ X0(t0, x0), from (4.7)

we obtain that
hC(X

∗
0 (t0, x0),X0(t0, x0)) ≤ ν . (4.8)

Since ν > 0 is an arbitrarily fixed number, then (4.8) yields the proof of the theorem. �

From Theorem 3 we obtain the validity of the following corollaries.

Corollary 5. The equality

cl (X0(t0, x0)) = cl (X∗
0 (t0, x0))

is verified where cl denotes the closure of a set.
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The Corollary 5 means that every trajectory x(·) ∈ X0(t0, x0) of the system (2.1) can be
approximated by the trajectory which is generated by full consumption of the control resource.

Corollary 6. For every t ∈ [t0, θ] the equality

cl (X0(t; t0, x0)) = cl (X∗
0 (t; t0, x0))

is satisfied where X0(t; t0, x0) and X
∗
0 (t; t0, x0) are defined by (2.3) and (2.5) respectively.

From Theorems 2 and 3 we obtain the validity of the following theorem.

Theorem 4. For every ε ∈ [0, 1] and α > 0 the inequality

hC(X
∗
0 (t0, x0),X

α
ε (t0, x0)) ≤ g∗

(

1− 1√
1 + ε

)

+
r∗

α

is satisfied where g∗ and r∗ are defined by (3.2) and (3.8) respectively.

5. Conclusion

The results asserting that a small perturbations in the quadratic integral constraints inspire a
small deviation on the set of trajectories can be applied in mathematical modelling of the control
systems where the total control resource is measured with small errors. According to the obtained
results, it is possible to introduce a norm type geometric constraint along with quadratic type inte-
gral constraint where upper bound of the norm type geometric constraint is sufficiently large. Since
the integrally constrained control functions are not geometrically constrained, this fact simplifies
the structure of the set of control functions and allows to avoid geometrical unboundedness of the
admissible control functions.

Robustness of the trajectories with respect to the fast and full consumption implies that it is
reasonable to spend the control resource in economical mode, i.e. it is advisable to consume the
control resource on the domains with sufficiently small Lebesgue measures in small portions. This
yields that if you have a superfluous control resource and you want to get rid of this resource, then
by spending all of the resource on the domain with sufficiently small Lebesgue measure, you will
get a small deviation from the original system’s trajectory.
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