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Abstract: Let Cm×m be the set of all m×m matrices whose entries are in C, the set of complex numbers.

Then P (z) :=
n∑

j=0

Ajz
j , Aj ∈ Cm×m, 0 ≤ j ≤ n is called a matrix polynomial. If An 6= 0, then P (z) is said

to be a matrix polynomial of degree n. In this paper we prove some results for the bound estimates of the
eigenvalues of some lacunary type of matrix polynomials.
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1. Introduction

Let Cm×m be the set of all m×m matrices whose entries are in C, the set of complex numbers.
For a matrix polynomial we mean the matrix-valued function of a complex variable of the form

P (z) :=
n
∑

j=0

Ajz
j , Aj ∈ C

m×m, 0 ≤ j ≤ n.

If An 6= 0, then P (z) is called a matrix polynomial of degree n.
A complex number λ is said to be an eigenvalue of the matrix polynomial P (z), if there exists

a nonzero vector u ∈ C
m, such that P (λ)u = 0. The vector u is called an eigenvector of P (z)

associated to the eigenvalue λ.
For matrices A,B ∈ C

m×m, we write A ≥ 0 or A > 0, if A is positive semi-definite or positive
definite respectively. By A ≥ B, we mean A−B ≥ 0 and A > B, means A−B > 0.

We denote by λmax(A) and λmin(A) the maximum and minimum eigenvalues of a Hermitian
matrix A respectively. Also the spectral radius denoted by ρ(A) of a matrix A is defined by

ρ(A) = max
{

|λ| : λ is an eigenvalue of A
}

.

The identity matrix and the conjugate transpose of a vector u are respectively denoted by I and u∗.
Also for α ≥ 0, denote the open disk

K∗(0, α) := {z ∈ C : |z| < α}

and the closed disk
K(0, α) := {z ∈ C : |z| ≤ α}.

Polynomial eigenvalue problems have vital applications in a wide range of science and engi-
neering fields (see for example [4, 9]). It is generally challenging to compute the eigenvalues of a
matrix polynomial, but bounds on such eigenvalues are relatively easy to obtain. These bounds
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can be used by iterative methods to calculate them and are also valuable for the computation of
pseudospectra.

A simple but classical result due to Cauchy [2; 7, Theorem 27.1, p. 122] on the location of zeros
of a polynomial with complex coefficients states:

Theorem 1. Let

p(z) :=

n
∑

j=0

ajz
j , an 6= 0

be a polynomial of degree n with complex coefficients. Then the zeros of p(z) lie in {z : |z| < ρ},
where ρ is the unique positive root of the equation

|an|zn − |an−1|zn−1 − · · · − |a1|z − |a0| = 0.

An extension to matrix polynomials of Cauchy’s classical result was obtained in [1, 5, 8]. It states:

Theorem 2. Let

P (z) :=
n
∑

j=0

Ajz
j, det (An) 6= 0

be a matrix polynomial. Then the eigenvalues of P (z) lie in |z| ≤ ρ, where ρ is the unique positive

root of the equation

‖A−1
n ‖−1zn − ‖An−1‖zn−1 − · · · − ‖A1‖z − ‖A0‖ = 0.

Throughout this paper, ‖ · ‖ denotes a subordinate matrix norm.

2. Main results

We call a matrix polynomial lacunary, if some of its coefficients are missing. In this paper, we
obtain bounds for the eigenvalues of a class of lacunary matrix polynomials. The first result we
prove in this paper states:

Theorem 3. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in K(0, δ), where δ > 1 is the largest

positive root of the equation

zn+1 − 2zn − ‖A1‖z2 + (‖A1‖ − ‖A0‖)z + ‖A0‖ = 0.

P r o o f. Let u be a unit vector, then we have for |z| > 1,

‖P (z)u‖ = ‖uzn − uzn−1 −A1uz +A0u‖
≥ |z|n −

∥

∥uzn−1 +A1uz −A0u
∥

∥

≥ |z|n − |z|n−1 − ‖A1‖|z| − ‖A0‖

= |z|n
(

1−
(

1

|z| + ‖A1‖
1

|z|n−1
+ ‖A0‖

1

|z|n
))

> |z|n
(

1−
(

1

|z| − 1
+ ‖A1‖

1

|z|n−1
+ ‖A0‖

1

|z|n
))

=
1

|z| − 1

(

|z|n+1 − 2|z|n − ‖A1‖|z|2 + (‖A1‖ − ‖A0‖)|z| + ‖A0‖
)

=
1

|z| − 1
H(|z|), (2.1)
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where
H(z) = zn+1 − 2zn − ‖A1‖z2 + (‖A1‖ − ‖A0‖)z + ‖A0‖.

Here H(z) has two sign changes within its sequence of coefficients and H(0) = ‖A0‖ > 0 and
H(1) = −1 < 0, therefore by Descartes’ rule of signs H(z) has two positive zeros. Let δ be the
largest positive zero of H(z), then H(|z|) > 0 if |z| > δ. Noting that δ > 1, therefore from (2.1), we
have

‖P (z)u‖ > 0 if |z| > δ.

Hence the eigenvalues of P (z) lie in the closed disk K(0, δ), where δ > 1 is the largest positive
root of H(z). �

The following result can be deduced from the above theorem.

Corollary 1. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in K(0, δ′), where δ′ > 1 is the largest

positive root of the equation

zn+1 − 2zn −Mz2 +M = 0

and

M = max(‖A1‖, ‖A0‖).

P r o o f. Let

H(z) = zn+1 − 2zn − ‖A1‖z2 + (‖A1‖ − ‖A0‖)z + ‖A0‖.

Then we have for |z| ≥ 1

H(|z|) = |z|n+1 − 2|z|n − ‖A1‖|z|2 + (‖A1‖ − ‖A0‖)|z|+ ‖A0‖
= |z|n+1 − 2|z|n − ‖A1‖(|z|2 − |z|)− ‖A0‖(|z| − 1)

≥ |z|n+1 − 2|z|n −M(|z|2 − |z|)−M(|z| − 1)

= |z|n+1 − 2|z|n −M |z|2 +M = G(|z|), (2.2)

where
G(z) = zn+1 − 2zn −Mz2 +M.

Since ‖A0‖ · ‖A1‖ 6= 0, therefore M 6= 0 and hence G(z) has two sign changes within its sequence
of coefficients. Also G(0) = M > 0 and G(1) = −1 < 0, thus by Descartes rule of signs G(z) has
two positive zeros. Let δ′ > 1 be the largest positive zero of G(z). Therefore from (2.2), we have

H(|z|) ≥ G(|z|) > 0 if |z| > δ′.

Thus
H(|z|) > 0 if |z| > δ′.

Thus δ ≤ δ′, where δ is the largest positive zero of H(z). However by Theorem 3 all eigenvalues of
P (z) lie in K(0, δ), therefore

K(0, δ) ⊆ K(0, δ′).

This proves the corollary. �

We next prove the following results which give bounds on the eigenvalues of a matrix polynomial
in terms of the norms of coefficient matrices.
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Theorem 4. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in the closed disk

K
(

0, (1 +
√

1 + 4‖A0‖+ 4‖A1‖)/2
)

.

P r o o f. Let u be a unit vector. Then just as in the proof of the Theorem 3, we have for |z| > 1

‖P (z)u‖ ≥ |z|n −
(

|z|n−1 + ‖A1‖|z| + ‖A0‖
)

> |z|n −
(

|z|n−1 + ‖A1‖|z|n−2 + ‖A0‖|z|n−2
)

= |z|n−2(|z|2 − |z| − ‖A1‖ − ‖A0‖) = |z|n−2H(|z|), (2.3)

where
H(z) = z2 − z − ‖A1‖ − ‖A0‖.

Now H(z) = 0 implies

z =
1±

√

1 + 4‖A1‖+ 4‖A0‖
2

.

Also lim
z→∞

H(z) = ∞, thus if

|z| > 1 +
√

1 + 4‖A1‖+ 4‖A0‖
2

,

then H(|z|) > 0. This implies from (2.3) that for |z| > 1

‖P (z)u‖ > 0 if |z| > 1 +
√

1 + 4‖A1‖+ 4‖A0‖
2

.

We note that
1 +

√

1 + 4‖A1‖+ 4‖A0‖
2

> 1,

therefore the eigenvalues of P (z) lie in the closed disk K
(

0, (1 +
√

1 + 4‖A1‖+ 4‖A0‖)/2
)

. �

It is clear that if ρ > 0 then

1 + ρ >
1

2
(1 +

√

1 + 4ρ)

and therefore we have the following:

Corollary 2. Let

P (z) := Izn − Izn−1 −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in the open disk K∗(0, 1 + ‖A0‖+ ‖A1‖).

The next result which we prove gives an upper bound for the positive eigenvalues. For the proof
we need the following lemmas.

Lemma 1 [3]. If the real polynomial

p(z) = zn − zn−1 − a1z + a0, a1a0 > 0, n > 2,

has two positive zeros, its largest positive zero δ satisfies δ < 1 +
√
a1.
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The above lemma is due to Dehmer and Mowshowitz [3]. We also need the following lemma.

Lemma 2 [6, p. 235]. Let M ∈ C
m×m be a Hermitian matrix, then

λmin(M) = min
u∈Cm, u∗u=1

{u∗Mu}

and

λmax(M) = max
u∈Cm, u∗u=1

{u∗Mu}.

Theorem 5. Let

P (z) =: Izn − Izn−1 −A1z +A0, A1 ≥ A0 > 0, n > 2

be a matrix polynomial. If λ is a positive eigenvalue of P (z), then

λ < 1 +
√

‖A1‖.

P r o o f. Let u be a unit vector. Define

Pu(z) = u∗P (z)u = zn − zn−1 − u∗A1uz + u∗A0u.

Then Pu(z) is a polynomial with complex coefficients. Also since A0 > 0, therefore Pu(z) has two
sign changes within its sequence of coefficients. Moreover Pu(0) = u∗A0u > 0 and

Pu(1) = u∗A0u− u∗A1u = u∗(A0 −A1)u ≤ 0,

therefore by Descartes’ rule of signs Pu(z) has two positive roots. Hence by Lemma 1, the largest
positive zero δu of Pu(z) satisfies

δu < 1 +
√

u∗A1u.

Thus by Lemma 2, we have

δu < 1 +
√

λmax(A1) ≤ 1 +
√

‖A1‖. (2.4)

Let λ be a positive eigenvalue of P (z), then λ is a zero of Pu(z) for some unit vector u and therefore
by (2.4), we have

λ < 1 +
√

‖A1‖.
This proves the theorem. �

Taking A1 = I in Theorem 5, we get the following:

Corollary 3. Let

P (z) =: Izn − Izn−1 − Iz +A0, I ≥ A0 > 0, n > 2

be a matrix polynomial. If λ is a positive eigenvalue of P (z), then λ < 2.

The next theorem gives a bound on the eigenvalues of another class of lacunary matrix polynomials.

Theorem 6. Let

P (z) =: Izn −A1z +A0, ‖A0‖ · ‖A1‖ 6= 0, n > 2

be a matrix polynomial. Then the eigenvalues of P (z) lie in the closed disk

K
(

0, (‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4)/2
)

.
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P r o o f. Let u be a unit vector. Then just as in the proof of the Theorem 3, we have for
|z| > 1,

‖P (z)u‖ ≥ |z|n − ‖A1‖|z| − ‖A0‖
> |z|n −

(

‖A1‖|z|n−1 + ‖A0‖|z|n−2 + |z|n−2
)

= |z|n−2(|z|2 − ‖A1‖|z| − ‖A0‖ − 1) = |z|n−2H(|z|), (2.5)

where

H(z) = z2 − ‖A1‖z − ‖A0‖ − 1.

Now H(z) = 0 implies

z =
‖A1‖ ±

√

‖A1‖2 + 4‖A0‖+ 4

2
.

Thus H(|z|) > 0 if

|z| > ‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4

2
.

Also noting that

‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4

2
> 1.

therefore from (2.5), we have

‖P (z)u‖ > 0 if |z| > ‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4

2
.

Therefore the eigenvalues of P (z) lie in the closed disk

K
(

0, (‖A1‖+
√

‖A1‖2 + 4‖A0‖+ 4)/2
)

.

�

The next result is obtained on restricting the coefficient matrices. For the proof we need the
following lemma due to Dehmer and Mowshowitz [3].

Lemma 3 [3]. If the real polynomial

p(z) = zn − a1z + a0, a1a0 > 0, n > 2,

has two positive zeros, its largest positive zero satisfies

δ <
1 +

√
4a1 + 1

2
.

Theorem 7. Let

P (z) =: Izn −A1z +A0, A1 ≥ I +A0, A0 > 0, n > 2

be a matrix polynomial. If λ is a positive eigenvalue of P (z), then

λ <
1 +

√

4‖A1‖+ 1

2
.
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P r o o f. Let u be a unit vector and Pu(z) = u∗P (z)u. Then since

P (z) = Izn −A1z +A0,

we have
Pu(z) = zn − u∗A1uz + u∗A0u.

Now by hypothesis

Pu(1) = 1− u∗A1u+ u∗A0u = u∗(I −A1 +A0)u ≤ 0

and
Pu(0) = u∗A0u > 0.

Also Pu(z) has two sign changes within its sequence of coefficients, therefore by Descartes’ rule of
signs Pu(z) has two positive zeros. Hence by Lemma 3, the largest positive zero δu of Pu(z) satisfies

δu <
1 +

√
4u∗A1u+ 1

2
.

This gives on using Lemma 2

δu <
1 +

√

4λmax(A1) + 1

2
≤ 1 +

√

4‖A1‖+ 1

2
.

In the same way as in Theorem 5, we conclude that any positive eigenvalue λ of P (z) satisfies

λ <
1 +

√

4‖A1‖+ 1

2
.

�

For m = 1, the matrices Aj reduce to aj ∈ C and therefore in this case the above results reduce
to various theorems proved by Dehmer and Mowshowitz [3].

The bounds obtained in Theorem 3–5 are incomparable. We consider the following examples:

Example 1. Let n = 3, ‖A0‖ = ‖A1‖ = ‖A‖ for some matrix A. Then if ‖A‖ = 1, we have

δ = 2.3485 > 2 =
1 +

√

1 + 4‖A0‖+ 4‖A1‖
2

.

However, if ‖A‖ = 6, then

δ = 3.5544 < 4 =
1 +

√

1 + 4‖A0‖+ 4‖A1‖
2

.

Example 2. Let ‖A0‖ = ‖A1‖ = 3, then

1 +
√

1 + 4‖A0‖+ 4‖A1‖
2

= 3 > 1 +
√
3 = 1 +

√

‖A1‖.

However, if ‖A0‖ = ‖A1‖ = 1/2, then

1 +
√

1 + 4‖A0‖+ 4‖A1‖
2

= 1.618 < 1.7071 = 1 +
√

‖A1‖.
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Example 3. Assume ‖A0‖ = ‖A1‖ = ‖A‖ for some matrix A. Then if n = ‖A‖ = 4 we have

δ = 2.5279 < 3 = 1 +
√

‖A1‖.

However, if n = 3 and ‖A‖ = 6 then

δ = 3.5544 > 3.44 = 1 +
√

‖A1‖.

Note, we used Desmos, an online graphing calculator and mathematical tool, for the calcula-
tions.
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