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Abstract: The mosquito life cycle is developed mathematically with the concept of difference equation. The
qualitative properties of the life-cycle are analyzed. The Lyapunov function is defined for difference equation
to stabilize the system of mosquito life cycle. A novel technique is applied for deriving stability criterion,
especially the back-stepping control technique is applied for discrete time system. The bifurcation analysis is
also furnished for the model of mosquito life cycle. The new technique is applied in the mosquito life cycle
model and its results are examined through MATLAB.
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1. Introduction

Research on mosquito epidemiology is imperative for the society. All over the world, all gov-
ernments can pay more attention to mosquito epidemiological research. [1, 2, 4].

Many researchers developed a mathematical model of Plasmodium Life Cycle in Hepatocyte,
mosquito midgut malaria transmission, HIV transmission, nitrogen cycle etc., in which the authors
explore the complexity, bifurcation and analyze the stability of their model by the presence of an
equilibrium point of the system [5, 6]. By constructing suitable conditions through the Lyapunov
function, local and global stability analysis are discussed [7–9]. The difference equations have a long
journey on the discrete time models of population dynamics [3]. These equations describe typically
autonomous, discrete time dynamics and assume that there is only a temporary change in vital
rates due to dependence on population density. An individual’s important behaviour and activities
can similarly change and fluctuate. Such kind of explicit dependencies on time can be modelled
by using the difference equation. In the recent years, the difference equations have received more
attention in the mathematical areas.

This paper is devotes a mathematical study of mosquito life cycle. The difference equation
concept is utilized to construct the model. A novelty is involved in the derivation of stability
conditions. Earlier researcher have not considered such type of Lyapunov function for difference
equation. Section 2 describes the mathematical model for the mosquito life cycle under difference
equation. Section 3 contains the discussion on equilibrium point position. Sections 4 includes the
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bifurcation analysis of the system of difference equation for the mosquito life cycle. In section 5
we investigate the stability analysis for the system with the conditions of Lypanouv stability, also
related results are presented and finally, Section 6 describes the conclusion.

2. The mathematical model

The mathematical model for the Anopheles mosquito life cycle is described by the system of
equations with the following assumptions.

• The total population of Anopheles mosquito life cycle consists of four forms, namely, adult,
egg, larva and pupa.

• In every stage, the natural death rate µ is considered to be uniform.

• Let N denote the existing population, where φ is natural birth rate at adult stage.

• x1 is the number of population existing at initial stage.

• x2 is the number of eggs.

• x3 is the population of larva.

• x4 is the number of pupa.

The following Figure 1 shows the flow diagram of Anopheles mosquito life cycle.

Figure 1. The flow diagram of Anopheles mosquito life cycle

The Anopheles mosquito life cycle is given by the following system of difference equation:

x1(n+ 1) = (N − µ− α) x1(n) + δ x4(n),
x2(n+ 1) = α x1(n)− (µ+ β) x2(n),
x3(n+ 1) = β x2(n)− (µ + φ+ γ) x3(n),
x4(n+ 1) = γ x3(n)− (µ + δ) x4(n),

(2.1)

where

• x1(n + 1), x2(n + 1), x3(n + 1), x4(n + 1) respectively are the difference equation at each
stage,

• α, β, γ, δ are the respective rates of growth from one stage to another stage.
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3. Analysis of equilibrium position

The equilibrium points are essential for analysing epidemiological dynamics which revolves
around the equilibrium points. In epidemiology, the equilibrium point is a condition in which some
identified or non-identified epidemiological form is balanced.

The epidemiological equilibrium points are unchanged from the epidemiological structure [10,
11]. They arise as a combination of corresponding epidemiological variables.

In mosquito epidemiology, adult, egg, lava and pupa are identified as key variables. The equi-
librium points are obtained by means of relations

x∗1(n) = −

( γ

N − µ− α

)

(x4(n)),

x∗2(n) = −

( αγ

(N − µ− α)(µ + β)

)

(x4(n)),

x∗3(n) = −

( γαδ

(µ+ β)(N − µ− α)(µ − φ+ γ)

)

(x4(n)).

(3.1)

If the pupa x4(n) state growth is equal to same arbitrary constant then the equilibrium points
differ for following cases:

Case 1: If the arbitrary constant χ = 0, then the four states of anopheles mosquito life cycle
such as adult x1(n), eggs x2(n), larva x3(n) and pupa x4(n) are zero, which implies that a
zero-equilibrium point.

Case 2: If the pupa growth rate is non-zero, also if

χ > 0, N − µ− α > 0, µ− φ+ γ > 0, µ+ β > 0,

then x3 = −c1, x2 = −c2, x1 = −c3, and so E = (−c3,−c2,−c1, c4) is an equilibrium solution.

Case 3: If

χ < 0, N − µ− α > 0, µ− φ+ γ > 0,

then x3 = c1, x2 = c2, x1 = c3, and so E = (c3, c2, c1,−c4) is an equilibrium solution.

4. Bifurcation analysis

The purpose of bifurcation analysis is to study a dynamical system with respect to the trajectory
represented by system, the occurrence of an equilibrium point and the stability properties of the
equilibrium point, when changes occur in a certain parameter of the system of equations. The
bifurcation analysis is carried out by linearizing the system of equations.

The Jacobian matrix is obtained as









(N − µ− α) 0 0 δ

α −(µ+ β) 0 0
0 β −(µ− φ+ γ) 0
0 0 γ −(µ+ δ)









. (4.1)

The characteristic equation of the above Jacobian matrix given by the equation (4.1) is obtained
as

∆1λ
4 +∆2λ

3 +∆3λ
2 +∆4λ+∆5 = 0,
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where

∆1 = 1,

∆2 = α−N + b+ γ + δ + 4µ− φ,

∆3 = Nφ−Nγ −Nd− 3Nµ −Nβ + αβ + αγ + αd+ βγ + 3αµ + βd− αφ+ 3βµ

+ γδ − βφ+ 3γµ+ 3δµ − δφ− 3µφ+ 6µ2,

∆4 = 3αµ2
− 3Nµ2 + 3βµ2 + 3γµ2 + 3δµ2

− 3µ2φ+ 4µ3
−Nβγ −Nβd− 2Nβµ

−Nγδ +Nβφ− 2Nγµ− 2Nδµ +Nδφ + 2Nµφ+ αβγ + αβd+ 2αβµ

+ αγδ − αβφ+ 2αγµ + βγδ + 2αδµ + 2βγµ − αδφ+ 2βδµ − 2αµφ

− βδφ + 2γδµ − 2βµφ− 2δµφ,

∆5 = αµ3
−Nµ3 + βµ3 + γµ3 + δµ3

− µ3φ+ µ4
−Nβµ2

−Nγµ2
−Nδµ2 +Nµ2φ

+ αβµ2 + αγµ2 + αδµ2 + βγµ2 + βδµ2
− αµ2φ+ γδµ2

− βµ2φ− δµ2φ−Nβγδ

−Nβγµ −Nβδµ +Nβδφ −Nγδµ +Nβµφ+Nδµφ+ αβγµ+ αβδµ − αβδφ

+ αγδµ − αβµφ+ βγδµ − αδµφ− βδµφ,

from the analysis with the different cases.
If any one of the parameter values is equal to zero orN−µ−γ < 0 or µ+β < 0 orN−µ−φ−γ < 0

or µ+ δ < 0 then all the eigen values of the Jacobian matrix given in equation (4.1) are real. Hence
for the linearised form of the system of equations there exists the hyperbolic equilibrium. Therefore
the proposed mathematical model for the mosquito life cycle is satisfies the Lyapunov’s conditions
with respect to the robustness.

By introducing Holling type II parameter [15, 16] in larva stage (x3(n)), the new dimension of
the equation becomes,

x3(n+ 1) = r x3(n)−

[

0.2x23(n) +
0.375x3(n)

1 + x23(n)

]

,

where r = −(µ+ φ+ γ) and the transmission rate from the state is

βx2(n) =

[

0.2x23(n) +
0.375x3(n)

1 + x23(n)

]

.

The bifurcation exists at the larva state x3 when the value of the parameter r varies between 2.5
and 4. Figure 2 shows the existence of bifurcation on the Anopheles mosquito life cycle at the larva
state x3.

5. Stability analysis of anopheles mosquito life cycle

In epidemiology the stability analysis of the system is possible to create a new example and
explore new options. The stability analysis of anopheles mosquito life cycle is developing a balance
of its cycle [12–14]. The following theorem gives the stability of the described model and the
following relation establishes the condition for the anopheles mosquito life cycle.

Theorem 1. The system of equation (2.1) for the anopheles mosquito life cycle is stabilized,
if the following conditions exist for the system namely

(N − µ− α)x1(n) = x1(n)− δx4(n)− x21(n+ 1),

(µ + β)x2(n) = αx1(n)− x2(n) + x22(n+ 1),

(µ− φ+ γ)x3(n) = βx2(n)− x3(n) + x23(n+ 1),

(µ + γ)x4(n) = γx3(n)− x4(n) + x24(n+ 1).

(5.1)
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Figure 2. Existence of bifurcation in the Anopheles mosquito life cycle at the state x3

P r o o f. Consider the Lyapunov function

V (xn) =

4
∑

i=1

(xi(n)).

Take the difference equation (2.1), we obtain

∆V (xn) =

4
∑

i=1

∆
(

xi(n)
)

4
∑

i=1

(

xi(n+ 1)− xi(n)
)

.

Substitutions of (5.1) in (2.1) leads to the relation

∆V = −x2i (n+ 1) for i = 1, 2, 3, 4.

Hence

∆V < 0,

which shows that V is a negative definite function. By Laselle’s invariance principle, the model (2.1)
is asymptotically stable. �

5.1. Stability analysis for Anopheles life cycle by using backward strict-

feedback

The stability analysis helps to know how long the life can be accumulated and accelerated
about the condition without any degradation. This study helps to determine the mean life of the
mosquito. The strict-feedback control gives more accuracy to the system.

Theorem 2. The system of equations (2.1) for the anopheles mosquito life cycle with the back-
ward strict feedback mechanism under the concept of difference equation is globally asymptotically
stable if

u1 = (µ+ δ + 1)x4(n)− x24(n),
u2 = −w2

2(n),
u3 = −w2

3(n),
u4 = −δx4(n)− w2

4.

(5.2)
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P r o o f. The backward strict feedback is applied to the system equation (2.1) to get the
accuracy and so, consider the following difference equations

x4(n+ 1) = γx3(n)− (µ+ δ)x4(n) + u1,

x3(n+ 1) = βx2(n)− (µ− φ+ γ)x3(n) + u2,

x2(n+ 1) = αx1(n)− (µ + β)x2(n) + u3,

x1(n+ 1) = (N − µ− α)x1(n) + δx4(n) + u4.

Consider the stability of the pupa state

x4(n+ 1) = γx3(n)− (µ+ δ)x4(n),

where x3(n) is regraded as a virtual controller.
Define the Lyapunov function

V1(n) = x4(n) (5.3)

and the difference of the above equation (5.3) as follows

∆V1(n) = ∆x4(n) = x4(n+ 1)− x4(n) = γx3(n)− (µ+ δ)x4(n)− x4(n) + u1. (5.4)

Assume the virtual controller x3(n) = κ1 then we have

∆V1(n) = γκ1 − (µ + δ)x4(n)− x4(n) + u1.

By applying the controller,
u1 = (µ + δ + 1)x4(n)− x24(n)

and the virtual control κ1 = 0 then the difference equation (5.4) becomes

∆V1(n) = −x24(n) < 0,

which is the negative definite function. Hence the pupa state x4 is globally asymptotically stable.
Thus, the controller κ1(x4(n)) is an estimative when x4(n) is regarded as virtual controller.
The relation between x3 and k1(x4(n)) is

w2(n) = x3(n)− κ1.

Consider the (x4(n), w2(n)) subsystem (pupa and larva states)

x4(n) = −x4(n)− x24(n),
w2(n + 1) = βκ2 + w2(n) + u2.

(5.5)

Let x2(n) be a virtual controller for the subsystem (5.5) and assume that the subsystem (5.5)
is globally asymptotically stable when the state x2(n) = κ2.

Define the Lyapunov function

V2(n) = x4(n) + w2(n).

The difference equation of V2(n) is

∆V2(n) = ∆x4(n) + ∆w2(n) = x4(n + 1)− x4(n) + w2(n+ 1)− w2(n). (5.6)

Substituting the equation (5.5) in the difference equation (5.6), also taking κ2 = 0 and u2 = −w2
2(n),

then the equation (5.6) leads to

∆V2(n) = −x24(n)− w2
2(n).
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Consequently V2 is the negative definite function. Hence the system of equation (5.5) is globally
asymptotically stable.

Thus, the function w2(n) is estimative, when the state x2(n) is consider as a virtual controller.
Then the relation between w3(n) and w2(x4(n), w2(n)) is

w3(n) = x2(n)− κ2.

Consider the (w3(n), w2(n), w4(n)) subsystem

w3(n+ 1) = αx1(n) + w3(n) + u3,

w2(n+ 1) = w2(n)− w2
2(n),

x4(n+ 1) = x4(n)− x24(n).
(5.7)

Let x1(n) be a virtual controller in (5.7) and assume that the subsystem (5.7) is globally
asymptotically stable, when x1(n) = κ3.

Let us define the Lyapunov function

V3(n) = V2(n) + w3(n). (5.8)

The differences from of the above equation (5.8) gives

∆V3(n) = ∆x4(n) + ∆w2(n) + ∆w3(n). (5.9)

Assume the controller x1(n) = κ3.
If κ3 = 0, and u3 = −w2

3(n), then the difference equation (5.9) leads to

∆V3(n) = −x24(n)w
2
2(n)−w2

3(n) < 0,

which is the negative definite function. Hence the subsystem of equation (5.7) is globally asymp-
totically stable.

Thus, the function w4(n) is estimative when x1(n) is taking as virtual controller, then the
relation between x1(n) and κ3 is

w4(n) = x1(n)− κ3.

Consider the (w4(n), w2(n), w3(n), w4(n)) subsystem

w4(n+ 1) = γx4(n) + w4(n) + u4,

w3(n+ 1) = w3(n)− w2
3(n),

w2(n+ 1) = w2(n)− w2
2(n),

x1(n+ 1) = x1(n)− x21(n).

Let us assume the Lyapunov function is as follows

V4(n) = V3(n) + w4(n). (5.10)

The difference equation of V4(n) is

∆V4(n) = ∆x4(n) + ∆w2(n) + ∆w3(n) + ∆w4(n). (5.11)

Choose the controller as follows
u4 = −δx4(n)− w2

4

substituting the controller u4 in the equation (5.10), then the difference equation (5.11) becomes

∆V4(n) = −x24(n)− w2
2(n)− w2

3(n)− w2
4(n) < 0,

which is negative definite function on R
4. Thus by the concept of Lyapunov stability theory, the

Anopheles mosquito life cycle (2.1) is globally asymptotically stable.
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5.2. Numerical simulation

A numerical result is required in this section to validate the model’s analytical result. MATLAB
tool is utilised to confirm the theoretical results obtained in our model via backsteeping control
technique analysis. Here the stability of the model is composed respect to two different initial
conditions with the backstepping controllers is as follows in the system of equations (5.2).

The sensitive depend on initial condition is used to identify the stability and internal equilibrium
that have a large influence on the each life cycle states.

To perform the sensitivity depend on initial conditions, the parameter values are considered as

α = 0.341, β = 0.567, γ = 0.197, δ = 0.907.

The natural death rate µ = 0.4 is considered to be uniform in all states and the total population N

is considered as 10000000.

First, the initial conditions of the model is taken as

x1(0) = 1.28, x2(0) = 8.76, x3(0) = 9.87, x4(0) = 8.23.

Figure 3 shows the stability on the internal equilibrium points. From Figure 3, the adult state x1
is stable at 1.3869, the egg state x2 is stable at 0.4063, the larva state x3 is stable at 0.2019 and
the pupa state x4 is stable at 0.0305.
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Figure 3. Stability at the internal equilibrium points

Second, the initial conditions of the model are taken as

x1(0) = 86198, x2(0) = 27564, x3(0) = 8584367, x4(0) = 48975.

Figure 4 shows the stability on the internal equilibrium points. From the Figure 4, the adult state
x1 is stable at 1.3869, the egg state x2 is stable at 0.4063, the larva state x3 is stable at 0.2019 and
the pupa state x4 is stable at 0.0305.
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Figure 4. Stability on the internal equilibrium points
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Figure 5. Sensitive dependance on initial conditions and internal equilibrium points

From the Figure 5, the Anopheles mosquito life cycle is stable at the internal equilibrium
points, for this two different initial conditions were considered and the model is stable at the
internal equilibrium points x∗1(n) = 1.3869, x∗2(n) = 0.4063, x∗3(n) = 0.2019, x∗4(n) = 0.030.

6. Conclusion

The Anopheles mosquito life cycle is modeled under the concept of difference equation. The sta-
bility of the model is estimated based on the Lyapunov conditions. The designing of the Lyapunov
function is a new development in the difference equation concept. The strict feedback technique is
also applied for a proposed mathematical model. Numerical results are furnished to supports the
theory.
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