ON SOME VERTEX-TRANSITIVE DISTANCE-REGULAR ANTIPODAL COVERS OF COMPLETE GRAPHS ${ }^{1}$

Ludmila Yu. Tsiovkina
Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation
tsiovkina@imm.uran.ru

Abstract

In the present paper, we classify abelian antipodal distance-regular graphs Γ of diameter 3 with the following property: (*) Γ has a transitive group of automorphisms G that induces a primitive almost simple permutation group \widetilde{G}^{Σ} on the set Σ of its antipodal classes. There are several infinite families of (arc-transitive) examples in the case when the permutation $\operatorname{rank} \operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)$ of \widetilde{G}^{Σ} equals 2 ; moreover, all such graphs are now known. Here we focus on the case $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$. Under this condition the socle of \widetilde{G}^{Σ} turns out to be either a sporadic simple group, or an alternating group, or a simple group of exceptional Lie type, or a classical simple group. Earlier, it was shown that the family of non-bipartite graphs Γ with the property (*) such that $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$ and the socle of \widetilde{G}^{Σ} is a sporadic or an alternating group is finite and limited to a small number of potential examples. The present paper is aimed to study the case of classical simple socle for \widetilde{G}^{Σ}. We follow a classification scheme that is based on a reduction to minimal quotients of Γ that inherit the property (*). For each given group \widetilde{G}^{Σ} with simple classical socle of degree $|\Sigma| \leq 2500$, we determine potential minimal quotients of Γ, applying some previously developed techniques for bounding their spectrum and parameters in combination with the classification of primitive rank 3 groups of the corresponding type and associated rank 3 graphs. This allows us to essentially restrict the sets of feasible parameters of Γ in the case of classical socle for \widetilde{G}^{Σ} under condition $|\Sigma| \leq 2500$.

Keywords: Distance-regular graph, Antipodal cover, Abelian cover, Vertex-transitive graph, Rank 3 group.

1. Introduction

Let Γ be an antipodal distance-regular graph of diameter three. Then Γ is an antipodal r-cover of a complete graph on $k+1$ vertices, and its intersection array has form $\{k,(r-1) \mu, 1 ; 1, \mu, k\}$, where k, r and μ denote the valency of Γ, the size of its antipodal classes and the number of common neighbours for each two vertices at distance two of Γ, respectively (e.g. see [2]); for brevity, we will refer to such a graph as an $(k+1, r, \mu)$-cover. We denote by $\mathcal{C G}(\Gamma)$ the group of all automorphisms of Γ fixing setwise each of its antipodal classes. If the group $\mathcal{C G}(\Gamma)$ is abelian and acts regularly on (every) antipodal class of Γ, then Γ is called an abelian $(k+1, r, \mu)$-cover (see [5]). There are some important links between abelian covers and other combinatorial or geometric objects (we refer to [9] and [5] for more background). The problem of finding new their constructions involves many natural questions on possible structure of such a graph, and one of them is to study vertex-transitive representatives.

In the present paper, we classify abelian $(k+1, r, \mu)$-covers Γ with the following property:
(*) Γ has a transitive group of automorphisms \widetilde{G} that induces a primitive almost simple permutation group \widetilde{G}^{Σ} on the set Σ of its antipodal classes.
Without loss of generality, we may assume that \widetilde{G} coincides with the full pre-image of \widetilde{G}^{Σ} in $\operatorname{Aut}(\Gamma)$. When the permutation $\operatorname{rank} \operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)$ of \widetilde{G}^{Σ} equals 2 , there are several infinite families of

[^0](arc-transitive) examples; moreover, all such graphs are now known. Here we focus on the case $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$. Under this condition the socle of \widetilde{G}^{Σ} turns out to be either a sporadic simple group, or an alternating group, or a simple group of exceptional Lie type, or a classical simple group (see [3, Ch. 11] for an overview on classification of primitive rank 3 permutation groups).

In [16] and [17], it was shown that the family of non-bipartite graphs Γ with the property $(*)$ such that $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$ and the socle of \widetilde{G}^{Σ} is a sporadic or alternating group is finite and limited to a small number of potential examples. The present paper is aimed to study the case of classical simple socle for \widetilde{G}^{Σ}. We follow a classification scheme that was proposed in [16] and that is based on a reduction to minimal quotients of Γ that inherit the property $(*)$. For each given group \widetilde{G}^{Σ}, we determine potential minimal quotients of Γ, applying the constraints for their spectrum and parameters obtained in [16] in combination with the classification of primitive rank 3 groups of the corresponding type (see [8], [11], and also [13]) and associated rank 3 graphs (see [3, Ch. 11]). This allows us to essentially restrict the sets of feasible parameters of Γ in the case of classical socle for \widetilde{G}^{Σ} with $|\Sigma| \leq 2500$. In particular, we show that for most of these sets Γ must be a covering of a certain distance-transitive Taylor graph.

2. Preliminaries

We keep the notation and terminology from [16] and we refer the reader to [1] and [2] for basic definitions. Next we recall some of them. For a finite group G, we denote by $\operatorname{Soc}(G), Z(G)$ and G^{\prime} its socle, center and derived subgroup, respectively. If $G=G^{\prime}$, then $\mathrm{M}(G)$ denotes its Schur multiplier. If $G \neq 1$, then we write " $\mathrm{d}_{\min }(G)$ " to denote the number $|G: H|$, where H is a proper subgroup of G of the smallest possible index. Further, if G is a transitive permutation group on a finite set Ω and $\operatorname{Orb}_{2}(G)$ is the set of G-orbitals on Ω, then the number $\left|\mathrm{Orb} b_{2}(G)\right|$, denoted by $\operatorname{rk}(G)$, is called the (permutation) rank of G. For each $Q \in \operatorname{Orb} b_{2}(G), Q^{*}$ denotes the orbital paired with Q. If $Q^{*}=Q$ and $a \in \Omega$, then $Q(a)$ denotes the set of all points $b \in \Omega$ such that $(a, b) \in Q$.

In what follows, we consider only undirected graphs without loops or multiple edges. For a graph Γ by $\mathcal{V}(\Gamma)$ and $\mathcal{A}(\Gamma)$ we denote its vertex set and the arc set, respectively. An (n, r, μ)-cover is equivalently defined as a connected graph, whose vertex set admits a partition into n cells (called antipodal classes or fibres) of the same size $r \geq 2$ such that each cell induces an r-coclique, the union of any two distinct cells induces a perfect matching, and every two non-adjacent vertices that lie in distinct cells have exactly $\mu \geq 1$ common neighbours. Since an (n, r, μ)-cover is bipartite if and only if $r=2$ and $\mu=n-2$, and for each $n \geq 3$ there is a unique (abelian) $(n, 2, n-2)$ cover (see [2, Corollary 1.5.4]), we omit these from further consideration. We will say that the set of parameters (n, r, μ) of a non-bipartite abelian (n, r, μ)-cover Γ is feasible if it satisfies the known necessary conditions for the existence of Γ that are collected in [16, Proposition 1] (see [16] for detailed references) and [5, Lemma 3.5, Theorem 5.4]. In view of [5], for every (n, r, μ)-cover Γ and every subgroup N of $\mathcal{C G}(\Gamma)$ of order less than r, the quotient Γ^{N} that is defined as the graph on the set of N-orbits in which two vertices are adjacent if and only if there is an edge of Γ between the corresponding orbits, is a $(n, r /|N|, \mu|N|)$-cover. Hence if Γ is a non-bipartite abelian (n, r, μ)-cover, then, using decomposition $\mathcal{C G}(\Gamma)=O_{p}(\mathcal{C G}(\Gamma)) \times N$, where p is a prime divisor of r, we obtain that Γ possesses a quotient Γ^{N} that is a non-bipartite abelian $\left(n, p^{l}, \mu|N|\right)$-cover with $p^{l}=\left|O_{p}(\mathcal{C G}(\Gamma))\right|$. Clearly, the factor group $\operatorname{Aut}(\Gamma) / N$ acts as a group of automorphisms of Γ^{N}, and in case $\mathcal{C} \mathcal{G}(\Gamma)>M>N$ other quotients Γ^{M} inherit a similar property when $M \unlhd \operatorname{Aut}(\Gamma)$. Thus parameters of Γ may depend on the structure of $\mathcal{C G}(\Gamma)$. This is also demonstrated by the fact that for each non-bipartite abelian (n, r, μ)-cover, every prime divisor of r is also a divisor of n (see [5, Theorem 9.2] and also [6, Theorem 2.5]). These basic observations are crucial for our following arguments; they will be used further without any additional reference.

The next result from [16] distinguishes several types of quotients that an abelian non-bipartite
$(k+1, r, \mu)$-cover with the property $(*)$ may possess.
Proposition 1 [16, Proposition 2]. Let Γ be a non-bipartite $(k+1, r, \mu)$-cover and Σ be the set of its antipodal classes. Suppose Γ has a transitive automorphism group G_{1} which induces a primitive almost simple permutation group $G_{1}{ }^{\Sigma}$ on Σ and put $T=\operatorname{Soc}\left(G_{1}{ }^{\Sigma}\right)$. Let G be the full pre-image of the group T in G_{1} and K be the kernel of the action of the group G on Σ. Then K contains a subgroup N that is normal in G_{1} and satisfies one of the following conditions (below the symbol ${ }^{-}$denotes factorization with respect to N):
(T1) $\bar{K} \simeq E_{p^{l}}$ is an elementary abelian group of exponent p and either
(i) $\bar{G}=\bar{K} \times \bar{G}^{\prime}$ and $\bar{G}^{\prime} \simeq T$, or
(ii) \bar{G} is a quasi-simple group with center \bar{K};
(T2) $\bar{K} \simeq E_{p^{l}}$ is an elementary abelian group of exponent p, T acts faithfully on \bar{K}, i.e. $T \leq G L_{l}(p)$, and $\mathrm{d}_{\min }(T) \leq\left(p^{l}-1\right) /(p-1) ;$
(T3) $\bar{K} \simeq S^{l}$, where S is a simple non-abelian group, and either
(i) $\bar{G}=\bar{K} \times C_{\bar{G}}(\bar{K})$ and $C_{\bar{G}}(\bar{K}) \simeq T$, or
(ii) $\bar{G} \leq \operatorname{Aut}(\bar{K})$ and T contains a proper subgroup of index dividing l.

Each graph Γ that satisfies the hypothesis of Proposition 1 will be referred to as a minimal $(k+1, r, \mu)$-cover of type ($\mathrm{T} x$) with $x=1,2,3$ and denoted by $\Gamma\left(G_{1}, G, K\right)$ if $|K|=r$, the triple $\left(G_{1}, G, K\right)$ satisfies the condition ($\mathrm{T} x$) from the conclusion of Proposition 1 and K is a minimal normal subgroup of G_{1} (in particular, $N=1$). Thus, for a minimal $(k+1, r, \mu)$-cover $\Gamma\left(G_{1}, G, K\right)$ the number r is a prime when $G_{1}=G$ and $K \leq Z(G)$.

From now on Γ is a non-bipartite abelian $(k+1, r, \mu)$-cover with property ($*$), Σ is the set of its antipodal classes, \widetilde{G} is a transitive group of automorphisms of Γ which induces a primitive almost simple permutation group \widetilde{G}^{Σ} on $\Sigma, \operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3, k_{1}$ and k_{2} are the non-trivial subdegrees of \widetilde{G}^{Σ}, $K=\mathcal{C G}(\Gamma) \leq \widetilde{G}$ and G is the full pre-image of the $\operatorname{group} \operatorname{Soc}\left(\widetilde{G}^{\Sigma}\right)$ in \widetilde{G}.

Now we proceed with final technical definitions. For a vertex x of Γ, by $F(x)$ and $\Gamma_{1}(x)$ (or $[x]$) we denote, respectively, the antipodal class of Γ containing x, and its neighborhood in Γ. Put $\Omega=\mathcal{V}(\Gamma)$, and fix $a \in \Omega$ and $F=F(a)$. Let $M=\widetilde{G}_{\{F\}}$ and $H=\widetilde{G}_{a}$ (note $|K|=r$ implies $M=K: H)$. Then $\mathcal{A}(\Gamma)=Q_{1} \cup Q_{2}$ for some $Q_{1}, Q_{2} \in \operatorname{Or} b_{2}(G)$ with $Q_{i}=Q_{i}^{*}$ (see [16]), $\left|Q_{i}\right|=r k_{i}(k+1)$, and $\left|H: \widetilde{G}_{a, b_{i}}\right|=k_{i}$ for each arc $\left(a, b_{i}\right) \in Q_{i}$, so H has exactly two orbits on $\Gamma_{1}(a)$ (with representatives b_{1} and b_{2}). For $i=1,2$, let Φ_{i} denote the (rank 3) graph on Σ in which two vertices $F(x)$ and $F(y)$ are adjacent if and only if $(x, y) \in Q_{i}$. If $\operatorname{rk}\left(G^{\Sigma}\right)=3$ then the group G^{Σ} is also primitive as $\mu\left(\Phi_{i}\right) \neq 0, k_{i}$ (see, for example, [1, 16.4]). Moreover, the parameters k_{1}, k_{2} and λ satisfy the following equation (see [16])

$$
\left(\lambda-\lambda_{1}\right) k_{1}=\left(\lambda-\lambda_{2}\right) k_{2},
$$

where $\lambda_{i}=\left|\Gamma_{1}\left(b_{i}\right) \cap H\left(b_{i}\right)\right|, i=1,2$. We will say that Γ admits an H-uniform edge partition (with parameters $\left(\mu_{1}, \mu_{2}\right)$) (see [16]), if for each $j=1,2$ and for every two distinct vertices $z_{1}, z_{2} \in F$, the number of edges between $Q_{j}\left(z_{1}\right)$ and $Q_{j}\left(z_{2}\right)$ is constant and equal to $k_{j} \mu_{j}$, where μ_{j} is a fixed integer.

Lemma 1 [16, Lemma 1]. Suppose that $G_{\{F\}}=G_{a} \times K$ and $\mathrm{rk}\left(G^{\Sigma}\right)=3$. If H acts transitively on $F \backslash\{a\}$ or $r \leq 3$, then Γ admits an H-uniform edge partition.

Theorem 1 [16, Theorem 1]. Suppose that $G_{\{F\}}=G_{a} \times K$ and $\operatorname{rk}\left(G^{\Sigma}\right)=3$. Then for each $x \in F \backslash\{a\}$ we have

$$
\left(\mu-\mu_{1}\right) k_{1}=\left(\mu-\mu_{2}\right) k_{2},
$$

where $\mu_{i}=\left|\Gamma_{1}\left(b_{i}\right) \cap Q_{i}(x)\right|, i=1,2$. If, moreover, Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right)$, then $\mu_{i}^{\prime}=\mu_{i}$ (in particular, $\left.k_{i}-1=\lambda_{i}+(r-1) \mu_{i}\right)$ for every $i=1,2$ and $\gamma=-\left(\lambda-\lambda_{1}-\lambda_{2}\right)+\left(\mu-\mu_{1}-\mu_{2}\right)=r\left(\mu-\mu_{1}-\mu_{2}\right)-1$ is an eigenvalue of Γ.

3. Main results

Theorem 2. Suppose that $\Gamma=\Gamma(\widetilde{G}, G, K)$ is a minimal abelian $(k+1, r, \mu)$-cover, $k+1 \leq 2500$, $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$ and $T=\operatorname{Soc}\left(\widetilde{G}^{\Sigma}\right)$ is a classical simple group, isomorphic to the group $\widetilde{M} / Z(\widetilde{M})$, where $\widetilde{M}=S p_{2 n-2}(q), \Omega_{2 n}^{ \pm}(q), \Omega_{2 n-1}(q)$ or $S U_{n}(q)$ for $n \geq 3$. Assume $\widetilde{G}=G$ whenever $\operatorname{rk}(T)=3$. Then one of the following statements is true:
(1) $T \simeq P S U_{4}(4), \operatorname{rk}(T)=3, k+1=1105, r=5$ and $\mu=210$;
(2) $T \simeq G^{\prime} \simeq P \Omega_{2 n}^{ \pm}(2), \operatorname{rk}(T)=3, k+1=\left(2^{2 n-1}-\varepsilon 2^{n-1}\right)$, where $\varepsilon= \pm 1$ and $n \leq 6$, $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1, r=2$ and either $G=G^{\prime} \simeq Z_{2} \cdot P \Omega_{8}^{+}(2), \varepsilon=+1, k+1=120$, and $\mu \in\{64,54\}$, or the group G^{\prime} is intransitive on $\mathcal{V}(\Gamma)$;
(3) $T \simeq G^{\prime} \simeq P \Omega_{5}(8) \simeq P S_{4}(8), \operatorname{rk}(T)=5,2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1, k+1=2016$ and $r \mu \in\{2048,1980\}$, or $k+1=2080$ and $r \mu \in\{2048,2108\}$, wherein either $r=4$ and G^{\prime} is intransitive on $\mathcal{V}(\Gamma)$, or $r=2$ and G^{\prime} is transitive on $\mathcal{V}(\Gamma)$;
(4) $T \simeq P \Omega_{m}(q), \operatorname{rk}(T)=3,2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1, r=2$ and either
(i) $m=5, q=3, k+1=36$ and $\mu \in\{16,18\}$, or
(ii) $m=5, q=4$, with $k+1=120$ and $\mu \in\{54,64\}$ or $k+1=136$ and $\mu \in\{64,70\}$, or
(iii) $m=7, q=4$, with $k+1=2016$ and $\mu \in\{990,1024\}$ or $k+1=2080$ and $\mu \in\{1024,1054\}$,
and in all cases (i)-(iii) the group G^{\prime} is intransitive on $\mathcal{V}(\Gamma)$;
(5) $T \simeq G^{\prime} \simeq S U_{3}(3), \operatorname{rk}(T)=4, k+1=36,2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1, r=2, \mu \in\{16,18\}$ and G^{\prime} is intransitive on $\mathcal{V}(\Gamma)$;
(6) $T \simeq G^{\prime} \simeq P S p_{6}(2) \simeq P \Omega_{7}(2), \operatorname{rk}(T)=3, k+1=120,2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1, r=2$, $\mu \in\{54,64\}$ and G^{\prime} is intransitive on $\mathcal{V}(\Gamma)$.

Moreover, if $r=2$ and $G^{\prime} \simeq T$, then for any given pair of parameters k and μ, Γ is a unique (up to isomorphism) distance-transitive $(k+1,2, \mu)$-cover.

Pr o o f . Let $k+1 \leq 2500$. Under this condition $\mathrm{rk}(T)=3$ for all k except the following cases (a)-(d) (note that in [16, Example] the case (d) is missing, and the subdegrees k_{1}, k_{2} for the case (c) are mistyped):
(a) $k+1=36, k_{1}=14, k_{2}=21, T \simeq P S L_{2}(8), \operatorname{rk}(T)=5, \widetilde{G}^{\perp} \simeq P \Gamma L_{2}(8)=T .3 ;$
(b) $k+1=36, k_{1}=14, k_{2}=21, T \simeq P S U_{3}(3), \operatorname{rk}(T)=4, \widetilde{G}^{\perp} \simeq P \Gamma U_{3}(3)=T .2 ;$
(c) $k+1=2016, k_{1}=455, k_{2}=1560, G^{\Sigma} \simeq S p_{4}(8), \operatorname{rk}\left(G^{\Sigma}\right)=5$ and $\widetilde{G}^{\Sigma} \simeq S p_{4}(8) \cdot Z_{3}$
(d) $k+1=2080, k_{1}=567, k_{2}=1512, G^{\Sigma} \simeq S p_{4}(8), \operatorname{rk}\left(G^{\Sigma}\right)=5$ and $\widetilde{G}^{\Sigma} \simeq S p_{4}(8) . Z_{3}$.

Then, by [16, Propositions 2, 3], if $\operatorname{rk}(T)=3, T \not \leq \operatorname{Aut}(K)$ and $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1$, then either $G^{\prime} \simeq T$ acts transitively on $\mathcal{V}(\Gamma)$, or G is a quasisimple group. Therefore, in order to find some necessary conditions for Γ to exist (as well as for its covers with property (*)), in case $\operatorname{rk}(T)=3$ it suffices to consider the case $\widetilde{G}=G$, and if, moreover, $K \leq Z(G)$, then one may assume that r is prime. Taking this into account, we further specify the possible structure of G for each potential pair $\left(\widetilde{G}^{\Sigma}, \Phi_{1}\right)$.

Throughout the rest of the proof, we put $N=G^{\prime}$ and denote by θ and $-\tau$, respectively, the positive and negative eigenvalues of Γ, other than k and -1 . We will consider the following possible combinations for T and complementary rank 3 graphs Φ_{1} and Φ_{2} associated with \widetilde{G}^{Σ}, applying their description from [8] and [3, Theorem 11.3.2].
(A) Let $k_{1}=q\left(q^{n-1}-1\right)\left(t q^{n-1}+1\right) /(q-1)$ and suppose the graph Φ_{1} has parameters

$$
\left(\frac{q^{n}-1}{q-1}\left(t q^{n-1}+1\right), q \frac{q^{n-1}-1}{q-1}\left(t q^{n-2}+1\right), q^{2} \frac{q^{n-2}-1}{q-1}\left(t q^{n-3}+1\right)+q-1, \frac{q^{n-1}-1}{q-1}\left(t q^{n-2}+1\right)\right),
$$

where $t=q, 1, q, q^{2}, q^{1 / 2}, q^{3 / 2}$ for $\widetilde{M}=S p_{2 n}(q), \Omega_{2 n}^{+}(q), \Omega_{2 n+1}(q), \Omega_{2 n+2}^{-}(q), S U_{2 n}(\sqrt{q})$ or $S U_{2 n+1}(\sqrt{q})$, respectively (see [3, Theorem 11.3.2(i)]).

By condition $k+1 \leq 2500$, hence the equality $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1$ holds if and only if $t=1, q=3, n=2$ and $\left(v, k_{1}, \lambda\left(\Phi_{1}\right), \mu\left(\Phi_{1}\right)\right)=(16,6,2,2)$, which contradicts the constraint $n \geq 3$ for $t=1$. If r is a power of a prime p, say $r=p^{l}$, then feasible sets of parameters k, r, and μ are described by Table 1, and Γ has no H-uniform edge partitions in the cases $t=1, q, q^{2}$ (this can be easily checked by complete enumeration in GAP [14], based on Theorem 1, [16, Proposition 1] and [5, Lemma 3.5, Theorem 5.4]).
(A1) Let $T \simeq P S p_{2 n}(q)$ and $k+1=\left(q^{2 n}-1\right) /(q-1)$. Then $\operatorname{rk}(T)=3$, while $\mathrm{d}_{\min }(T)=k+1$, except for the cases when $q=2,2 n \geq 6$ and $\mathrm{d}_{\min }(T)=2^{n-1}\left(2^{n}-1\right)$ or $2 n=4, q=3$ and $\mathrm{d}_{\min }(T)=27$ (see [12, Theorem 2]). Moreover, $\mathrm{M}(T)=Z_{\operatorname{gcd}(2, q-1)}$ for $(q ; n) \neq(2 ; 2),(2 ; 3)$ and $\mathrm{M}(T)=Z_{2}$ for $(q ; n)=(2 ; 2),(2 ; 3), \operatorname{Out}(T)=Z_{\operatorname{gcd}(2, q-1)} \cdot Z_{e}$, where $q=p^{e}, p$ is a prime.

According to Table $1(q ; n) \notin\{(2 ; 3),(3 ; 2)\}$. Hence $\mathrm{d}_{\min }(T)=k+1$. It follows that $K \leq Z(G)$ and, as noted above, it suffices to consider the case of prime r.

Since Γ has no H-uniform edge partitions, we have $r \geq 5$. Also, $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1$. Hence, due to [16, Proposition 3] $N=G^{\prime} \simeq T$ acts transitively on $\mathcal{V}(\Gamma)$. But then $G_{a} \simeq N_{\{F\}}$ contains a subgroup of index r and $G_{\{F\}}=G_{a} N_{\{F\}}$.

If $n=3=q$, then $(|N|)_{5}=5$ and hence $\left|N_{\{F\}}\right|$ is not divisible by 5 , a contradiction.
Let $n=2$. Then $N_{\{F\}}$ is an extension of a group of order q^{3} by a group of the form $\left((q-1) / 2 \times L_{2}(q)\right) .2$ or $\left((q-1) \cdot L_{2}(q)\right)$ (see, for example, [4] or [13]). In any case, $N_{\{F\}}$ does not contain subgroups of index 5 , a contradiction.
(A2) Let $T \simeq O_{2 n+1}(q), t=q$ and $k+1=\left(q^{2 n}-1\right) /(q-1)$. Recall that $P S p_{4}(q) \simeq O_{5}(q)$ for $n=2$, and also that $O_{2 n+1}(q) \simeq P S p_{2 n}(q)$ for even q (see, for example, [18]). Since the corresponding cases are considered in case (A1), we will further assume that $n \geq 3$ and q is odd. Then $\operatorname{rk}(T)=3$ and by [18, Theorem] $\mathrm{d}_{\min }(T)=k+1$, except for the case $q=3$, in which $\mathrm{d}_{\min }(T)=3^{n}\left(3^{n}-1\right) / 2$. Moreover, $\mathrm{M}(T)=Z_{(2, q-1)}$ for $(q ; n) \neq(3 ; 3)$ and $\mathrm{M}(T)=Z_{2} \times Z_{2} \times Z_{3}$ for $q=3=n$ (e.g. see $[7]$).

As in case (A1) we have $q=n=3$ and since $\mathrm{d}_{\min }(T)>r$ we conclude $K \leq Z(G)$. Hence we may assume that r is prime. But then Table 1 gives $r=2$ and hence by Lemma 1 and Theorem 1 Γ admits an H-uniform edge partition, a contradiction.

Table 1. Feasible parameters of Γ with $r=p^{l}$ in case (A)

(A3) Let $T \simeq O_{2 n}^{+}(q)$, where $n \geq 3, t=1$ and $k+1=\left(q^{n}-1\right)\left(q^{n-1}+1\right) /(q-1)$. Then condition $k+1 \leq 2500$ implies either $n=3$ and $q \leq 5$, or $n=4$ and $q \leq 3$, or $n=5,6$ and $q=2$. According to Table 1 none of these cases is possible.
(A4) Let $T \simeq O_{2 n}^{-}(q)$, where $n \geq 2, t=q^{2}$ and $k+1=\left(q^{n}-1\right)\left(q^{n+1}+1\right) /(q-1)$. Then $r k(T)=3$ and in view of Table $1 n=2,3,4$. Recall that $O_{4}^{-}(q) \simeq L_{2}\left(q^{2}\right)$ and $O_{6}^{-}(q) \simeq U_{4}(q)$ (e.g. see [18]).

If $n=4$ and $q=2$, then by [4] $\mathrm{d}_{\min }(T)=119$. By [12, Theorem 1, Theorem 3] $\mathrm{d}_{\text {min }}(T)=q^{2}+1=17$ for $n=2$ and $\mathrm{d}_{\min }(T)=\left(q^{3}+1\right)(q+1)=112$ for $n=3=q$. In each case $\mathrm{d}_{\min }(T)>r$ and hence $K \leq Z(G)$. Arguing as in case (A3), we obtain that $r=5$ and $N=G^{\prime}$ acts transitively on $\mathcal{V}(\Gamma)$. But then $N \simeq L_{2}(16)$ or $O_{8}^{-}(2)$, and $|N|$ is not divisible by 25 . This contradicts the fact that $N_{\{F\}}$ must contain a subgroup of index r.
(A5) Let $T \simeq P S U_{2 n}(\sqrt{q})$. In view of Table 1 either $T \simeq P S U_{4}(2) \simeq P S p_{4}(3)$ and $\mathrm{d}_{\min }(T)=27$ or $T \simeq P S U_{4}(3) \simeq O_{6}^{-}(3) \not \leq G L_{7}(2)$ and $\mathrm{d}_{\min }(T)=112$, or $T \simeq P S U_{4}(4)$ and $\mathrm{d}_{\min }(T)=325$ (see [4] and [12, Theorem 3]). Hence $K \leq Z(G)$ and we may assume that r is a prime. If G is a quasi-simple group, then r divides $|\mathrm{M}(T)|$ and so by [7] $r=2$ and $q=9$. If $N \simeq T$ acts transitively on $\mathcal{V}(\Gamma)$, then r^{2} divides $|N|$ and so $r=5$ for $q=16$ and $r \leq 3$ for $q \leq 9$.

Suppose $q=9$. Then $r=2, \Gamma$ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$ and $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(15,130),(20,112)\}$. Enumeration of orbital graphs in GAP [14] shows that Γ does not exist when $N \simeq T$. But for $G=N$ the groups $\left(G_{a}\right)^{[a]}$ and $\left(G_{\{F\}}\right)^{\Sigma-\{F\}}$ are permutation isomorphic. Moreover, for the vertex $b_{1} \in Q_{1}(a)$ the group $G_{a, b_{1}}$ has exactly two orbits of length 4 and one orbit of length 27 on $[a]$, which contradicts the fact $\lambda_{1} \in\{15,20\}$.

Suppose $q=4$. Then $r=3, N \simeq T$ acts transitively on $\mathcal{V}(\Gamma),\left(\lambda_{1}, \lambda_{2}\right)=(3,13)$ and Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)=(4,9)$. A complete enumeration of orbital graphs in GAP [14] shows that this case cannot occur.
(A6) In the case of $T \simeq P S U_{2 n+1}(\sqrt{q})$ and $t=\sqrt{q}^{3}$ we have $n=2$ and $q=4,9$, but according to Table 1 none of the cases gives a feasible parameter set.
(B) Let us consider the cases $T \simeq \widetilde{M} / Z(\widetilde{M})$, where $\widetilde{M}=S p_{4}(q), S U_{4}(q), S U_{5}(q), \Omega_{6}^{-}(q), \Omega_{8}^{+}(q)$ or $\Omega_{10}^{+}(q)$ from [3, Theorem 11.3.2(ii)] (see also [8]).
(B1) Let $k_{1}=t(q+1)$ and the graph Φ_{1} have parameters

$$
((t+1)(t q+1), t(q+1), t-1, q+1)
$$

where $t=q, q^{2}, q^{1 / 2}, q^{3 / 2}$ for $\widetilde{M}=S p_{4}(q), \Omega_{6}^{-}(q), S U_{4}(\sqrt{q})$ or $S U_{5}(\sqrt{q})$, respectively. If $r=p^{l}$ is a power of a prime p, then feasible sets of parameters k, r, and μ are described by Table 2, and Γ does not admit H-uniform edge partitions when $t=q, \sqrt{q}$ (this can be easily checked in GAP [14], applying Theorem 1, [16, Proposition 1] and [5, Lemma 3.5, Theorem 5.4]). Moreover, cases $t=q$, q^{2}, \sqrt{q} correspond to the above cases (A1), (A5) and (A4), respectively.

Table 2. Feasible parameters of Γ with $r=p^{l}$ in case (B)

	q	$k+1$	k_{1}, k_{2}	θ	$-\tau$	$r \mu$	r
(B1), type $t=q$:	7	$\begin{aligned} & 400 \\ & 820 \end{aligned}$	$\begin{aligned} & 56,343 \\ & 90,729 \end{aligned}$	$\begin{aligned} & 19 \\ & 21 \\ & 21 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & -21 \\ & -19 \\ & -39 \\ & -21 \end{aligned}$	$\begin{aligned} & 400 \\ & 396 \\ & 836 \\ & 800 \end{aligned}$	$\begin{aligned} & 2,4,5,8,25 \\ & 2 \\ & 2 \\ & 2,4,5,8,16,25 \end{aligned}$
(B1), type $t=q^{2}$:	2 3 4	45 280 1105	$\begin{aligned} & 12,32 \\ & 36,243 \\ & 80,1024 \end{aligned}$	$\begin{array}{\|l} 4 \\ 11 \\ 9 \\ 31 \\ 16 \\ 69 \end{array}$	$\begin{aligned} & -11 \\ & -4 \\ & -31 \\ & -9 \\ & -69 \\ & -16 \end{aligned}$	$\begin{aligned} & 50 \\ & 36 \\ & 300 \\ & 256 \\ & 1156 \\ & 1050 \end{aligned}$	$\begin{aligned} & 5 \\ & 3,9 \\ & 2,5 \\ & 2,4,8,16,32,64,128 \\ & 17 \\ & 5,25 \end{aligned}$
(B1), type $t=\sqrt{q}$:	16	325	68, 256	$\begin{array}{\|l\|} \hline 9 \\ 12 \end{array}$	$\begin{aligned} & -36 \\ & -27 \end{aligned}$	$\begin{aligned} & 350 \\ & 338 \end{aligned}$	$\begin{aligned} & 5 \\ & 13 \end{aligned}$
(B1), type $t=\sqrt{q}^{3}$:	\varnothing						
(B2),(B3):	\varnothing						

(B2)\&(B3) Let $T=\Omega_{8}^{+}(q), k_{1}=q\left(q^{2}+1\right)\left(q^{3}-1\right) /(q-1)$ and the graph Φ_{1} have parameters

$$
\left(1+q\left(q^{2}+1\right) \frac{q^{3}-1}{q-1}+q^{6}, q\left(q^{2}+1\right) \frac{q^{3}-1}{q-1}, q\left(q^{2}+1\right) \frac{q^{3}-1}{q-1}-q^{5}-1,\left(q^{2}+1\right) \frac{q^{3}-1}{q-1}\right),
$$

(see [3, Theorem 2.2.17, Proposition 3.2.3]) or let $T=\Omega_{10}^{+}(q), k_{1}=q\left(q^{2}+1\right)\left(q^{5}-1\right) /(q-1)$ and the graph Φ_{1} have parameters
$\left(\left(q^{4}+1\right)\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1), q\left(q^{2}+1\right) \frac{q^{5}-1}{q-1}, q-1+q^{2}(q+1)\left(q^{2}+q+1\right),\left(q^{2}+1\right)\left(q^{2}+q+1\right)\right)$.

As $k+1 \leq 2500$, it follows that $q \leq 3$ and hence either $k+1=135,1120$ and $T=O_{8}^{+}(q)$ for $q=2,3$ respectively, or $q=2, k+1=2295$ and $T=O_{10}^{+}(2)$. According to Table 2 in any case, none of the parameter sets k, r and μ is feasible (this was checked in GAP [14] using [16, Proposition 1]) and [5, Lemma 3.5, Theorem 5.4]).
(C) Now let us consider the cases $T \simeq \widetilde{M} / Z(\widetilde{M})$, where $\widetilde{M}=S U_{m}(2), \Omega_{2 m}^{ \pm}(2), \Omega_{2 m}^{ \pm}(3), \Omega_{2 m-1}(3)$, $\Omega_{2 m-1}(4)$ or $\Omega_{2 m-1}(8)$ for $m \geq 3$, from [3, Theorem 11.3.2 (iii,iv)] (see also [8]).
(C1) Let $T=U_{n}(2)($ see $[3, \S 3.1 .6])$ and the graph $\Phi_{1}=\mathrm{NU}_{n}(2)$ have parameters

$$
\left(2^{n-1}\left(2^{n}-\varepsilon\right) / 3,\left(2^{n-1}+\varepsilon\right)\left(2^{n-2}-\varepsilon\right), 2^{2 n-5} 3-\varepsilon 2^{n-2}-2,2^{n-3} 3\left(2^{n-2}-\varepsilon\right)\right)
$$

where $\varepsilon=(-1)^{n}$.
In view of Table 3 we have $n=5$ and $k+1=176$, i.e. $T \simeq U_{5}(2)$. Since

$$
2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1
$$

and r divides 4 , then either $N \simeq T$ acts transitively on $\mathcal{V}(\Gamma)$, or G is a quasisimple group and by [7] $K \leq \mathrm{M}(T)=Z_{2}$. But in the first case, by [4], $L=N_{\{F\}} \simeq Z_{3} \times U_{4}(2)$ has no subgroups of index r, a contradiction. In the second case $r=2$ and Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$, and $\left\{\left(\mu_{1}, \mu_{2}\right),\left(\lambda_{1}, \lambda_{2}\right)\right\}=\{(78,21),(56,18)\}$. But then subdegrees of the group G_{a} on $Q_{1}(a)$ (recall that $\left|Q_{1}(a)\right|=k_{1}$) are as follows: $1^{1}, 6^{1}, 32^{4}, 36^{1}$ (the upper indices denote the multiplicities of the corresponding subdegrees). This contradicts the fact $\lambda_{1} \in\{78,56\}$.
(C2) Let $T=P \Omega_{2 n}^{ \pm}(2)$ (see $[3, \S 3.1 .2]$) and the graph $\Phi_{1}=\mathrm{NO}_{2 n}^{\varepsilon}(2)$ have parameters

$$
\left(2^{2 n-1}-\varepsilon 2^{n-1}, 2^{2 n-2}-1,2^{2 n-3}-2,2^{2 n-3}+\varepsilon 2^{n-2}\right)
$$

where $\varepsilon= \pm 1$. Since $k+1 \leq 2500, n \leq 6$. Then

$$
2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1
$$

for all n and ε (see also [17, Example 1]).
Suppose $n=3$.
If $T \simeq P \Omega_{6}^{+}(2) \simeq L_{4}(2) \simeq$ Alt $_{8}$, then $r=2$ and N is intransitive on $\mathcal{V}(\Gamma)$ (note that Γ is a graph from [17, Theorem 2(ii)]).

Let $T \simeq P \Omega_{6}^{-}(2) \simeq U_{4}(2) \simeq P S p_{4}(3)$. Then $k+1=36, \mathrm{M}(T)=Z_{2}$ and $\operatorname{rk}(T)=3$. Since $\mathrm{d}_{\min }\left(U_{4}(2)\right)=27$ (see [4]), we get $K \leq Z(G)$.

Assume that N is transitive on $\mathcal{V}(\Gamma)$. Then $r=2, N=G \simeq S p_{4}(3)$ or $P S p_{4}(3)$. Consequently, $G_{a} \simeq S L_{2}(9)$ or $G_{a} \simeq \mathrm{Alt}_{6}$. In the first case $K=Z(G) \leq G_{a}$, and in the second case the rank of the transitive representation N on $\mathcal{V}(\Gamma)$ is equal to 5 . Both cases are impossible.

Let $n>3$. Since $\mathrm{d}_{\min }(T)=2^{n-1}\left(2^{n}-1\right)$ (see [18]) for $\varepsilon=+1, \mathrm{~d}_{\min }(T)=119$ (see [4]) for $\varepsilon=-1$ and $n=4, \mathrm{~d}_{\min }(T)=495$ (see [4]) for $\varepsilon=-1$ and $n=5$, and $\mathrm{d}_{\min }(T)=2015$ (see [13]) for $\varepsilon=-1$ and $n=6$, we get $K \leq Z(G)$. Then, by [16, Proposition 3], either $N \simeq T$ is intransitive on $\mathcal{V}(\Gamma)$, or N is transitive on $\mathcal{V}(\Gamma)$. Let us consider the second case. Recall that $\mathrm{M}(T)=Z_{2} \times Z_{2}$ for $n=4, \varepsilon=+1$ and $\mathrm{M}(T)=1$ otherwise (e.g. see [7]). Further, the group $T_{\{F\}}$ is isomorphic to the group $P S p_{2 n}(2)$ (see [13]) and it has no subgroup of index r from the corresponding case in Table 3. Hence $N=G, n=4, \varepsilon=+1$ and $r=2$. By Lemma 1 and Theorem 1Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$ and $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(32,28),(30,27)\}$, and $\mu \in\{64,54\}$.

Table 3. Feasible parameters of Γ with $r=p^{l}$ in cases (C1)-(C3)

	n	$k+1$	k_{1}, k_{2}	θ	$-\tau$	$r \mu$	r
(C1)	5	176	135, 40	5	-35	204	2
				35	-5	144	2, 4
(C2), $\varepsilon=-1:$	3	36	15, 20	5	-7	36	2,3, 9
				7	-5	32	2, 4, 8, 16
	4	136	63, 72	9	-15	140	2
				15	-9	128	2, 4, 8, 16, 32, 64
	5	528	255, 272	17	-31	540	2, 3, 9, 27
				31	-17	512	$2,4,8,16,32,64,128,256$
	6	2080	1023, 1056	9	-231	2300	2
				21	-99	2156	2
				27	-77	2128	2, 4, 8
				33	-63	2108	2
				63	-33	2048	$r=2^{l}, l \leq 10$
				77	-27	2028	2, 13, 169
				99	-21	2000	$2,4,5,8,25,125$
				231	-9	1856	2, $4,8,32$
(C2), $\varepsilon=+1$:	3	28	15, 12	3	-9	32	2, 4
				9	-3	20	2
	4	120	63, 56	7	-17	128	2, 4, 8
				17	-7	108	2, 3, 9, 27
	5	496	255, 240	15	-33	512	2, 4, 8, 16
				33	-15	476	2
	6	2016	1023, 992	13	-155	2156	2, 7
				31	-65	2048	2, 4, 8, 16, 32
				65	-31	1980	2, 3, 9
				155	-13	1872	2, 3, 4
(C3), $\varepsilon=-1$:	3	126	45, 80	5	-25	144	2,3
				25	-5	104	2, 4
				$\sqrt{125}$	$-\sqrt{125}$	124	2
(C3), $\varepsilon=1$:	\varnothing						

Table 4. Feasible parameters of Γ with $r=p^{l}$ in case (C4)

	ε, q, n	$k+1$	k_{1}, k_{2}	θ	$-\tau$	$r \mu$	r
(C4)	$\begin{aligned} & -1,3,2 \\ & -1,3,3 \end{aligned}$	36	20, 15	5	-7	36	2, 3, 9
				7	-5	32	2, 4, 8, 16
		351	224, 126	14	-25	360	3,9
				25	-14	338	13, 169
				35	-10	324	3, 9, 27, 81
	1,3,2	45	32, 12	4	-11	50	5
				11	-4	36	3, 9
	1,3,3	378	260, 117	13	-29	392	2, 7
				29	-13	360	2, 3, 4, 9
				$\sqrt{377}$	$-\sqrt{377}$	376	2, 4
	-1, 4, 2	120	51, 68	7	-17	128	2, 4, 8
				17	-7	108	2, 3, 9, 27
	-1, 4, 3	2016	975, 1040	13	-155	2156	2, 7
				31	-65	2048	2, 4, 8, 16, 32
				65	-31	1980	2, 3,9
				155	-13	1872	2, 3, 4
	1, 4, 2	136	75,60	9	-15	140	2
				15	-9	128	2, 4, 8, 16, 32, 64
	1,4,3	2080	1071, 1008	9	-231	2300	2
				21	-99	2156	2
				27	-77	2128	2, 4, 8
				33	-63	2108	2
				63	-33	2048	$r=2^{l}, l \leq 10$
				77	-27	2028	2, 13, 169
				99	-21	2000	$2,4,5,8,25,125$
				231	-9	1856	2, $4,8,32$
	$-1,8,2$	2016	455, 1560	13	-155	2156	2, 7
				31	-65	2048	2, 4, 8, 16, 32
				65	-31	1980	2, 3,9
				155	-13	1872	2, 3, 4
	1, 8, 2	2080	567, 1512	9	-231	2300	2
				21	-99	2156	2
				27	-77	2128	2, 4, 8
				33	-63	2108	2
				63	-33	2048	$r=2^{l}, l \leq 10$
				77	-27	2028	2, 13, 169
				99	-21	2000	$2,4,5,8,25,125$
				231	-9	1856	2, 4, 8, 32

A computer check in GAP [14] shows that in the case when $r=2, N \simeq T$ and N is intransitive on $\mathcal{V}(\Gamma), \Gamma$ exists and it is unique distance-transitive $(k+1,2, \mu)$-cover (note it can be also constructed using [17, Theorem 1] or appears in [17, Example 1]).
(C3) Let $T=P \Omega_{2 n}^{ \pm}(3)$ (see $\left.[3, \S 3.1 .3]\right)$ and the graph $\Phi_{1}=\mathrm{NO}_{2 n}^{\varepsilon}(3)$ have parameters

$$
\left.\left(\frac{1}{2} 3^{n-1}\left(3^{n}-\varepsilon\right), \frac{1}{2} 3^{n-1}\left(3^{n-1}-\varepsilon\right), \frac{1}{2} 3^{n-2}\left(3^{n-1}+\varepsilon\right), \frac{1}{2} 3^{n-1}\left(3^{n-2}-\varepsilon\right)\right)\right),
$$

where $\varepsilon= \pm 1$.
In view of Table 3 we have $k+1=126, \varepsilon=-1$ and $r \leq 4$. Then $T \simeq U_{4}(3)$ and $\mathrm{d}_{\min }(T)=112$ (see [4]). Hence $K \leq Z(G)$. Enumeration of feasible parameters in GAP [14] shows that Γ does not admit H-uniform edge partitions when $\lambda=\mu$, a contradiction with Lemma 1 and Theorem 1 .

If $N \simeq T$ acts transitively on $\mathcal{V}(\Gamma)$, then $N_{\{F\}} \simeq U_{4}(2)$ contains a subgroup of index $r \leq$ 4, a contradiction. Therefore $G=N$ is a quasi-simple group and, by [7], $r=2$. Hence, by Lemma 1 and Theorem 1, Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$ and $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(24,45),(20,34)\}$. Since $G=N$, the groups $\left(G_{a}\right)^{[a]}$ and $\left(G_{\{F\}}\right)^{\Sigma-\{F\}}$ are permutation isomorphic. Moreover, for the vertex $b_{1} \in Q_{1}(a)$ the group $G_{a, b_{1}}$ has exactly two non-single-point orbits on $Q_{1}(a)$: one orbit of length 12 and one orbit of length 32 . This is impossible, since $\lambda_{1} \in\{20,24\}$.
(C4) Let $T=P \Omega_{2 n+1}(q)$ (see [3, § 3.1.4]) and the graph $\Phi_{1}=\mathrm{NO}_{2 n+1}(q)$ have parameters

$$
\left(\frac{1}{2} q^{n}\left(q^{n}+\varepsilon\right),\left(q^{n-1}+\varepsilon\right)\left(q^{n}-\varepsilon\right), 2\left(q^{2 n-2}-1\right)+\varepsilon q^{n-1}(q-1), 2 q^{n-1}\left(q^{n-1}+\varepsilon\right)\right)
$$

where $\varepsilon= \pm 1, q=3,4,8$ and $n \geq 2$. According to Table 4 , the equality $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1$ holds only when either $k+1=36$ and $q=3$ or $q=4$.

For $q=3$ we have either $n=2$ and $\mathrm{d}_{\min }(T)=27$, or $n=3$ and $\mathrm{d}_{\min }(T)=351$ (see [4]). For even q we have $P \Omega_{2 n+1}(q) \simeq P S p_{2 n}(q)$ and, by $\left[12\right.$, Theorem 2], $\mathrm{d}_{\min }(T)=\left(q^{2 n}-1\right) /(q-1)$, i.e. $\mathrm{d}_{\min }(T)=85$ for $2 n=q=4, \mathrm{~d}_{\min }(T)=585$ for $4 n=q=8$ and $\mathrm{d}_{\min }(T)=1365$ for $n=3$ and $q=4$. Moreover, $r=p^{l} \geq \mathrm{d}_{\min }(T)$ is possible only for $4 n=q=8$. Together with the fact that $P S p_{4}(8) \nsubseteq G L_{10}(2)$, this implies $K \leq Z(G)$.

First we consider the cases when $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1$.
If $\varepsilon=+1, q=3$ and $n=2$ then $T \simeq P \Omega_{5}(3) \simeq P S p_{4}(3)$ and $\operatorname{rk}(T)=3$. This possibility was treated in case (A5).

Let $q=n=3$. Then $T \simeq P \Omega_{7}(3), \operatorname{rk}(T)=3$ and $k+1$ is equal to 351 (for $\varepsilon=-1$) or 378 (for $\varepsilon=+1$). In any case by [4] L has no subgroup of index 3,7 or 13 .

Hence if $N \simeq T$ is transitive on $\mathcal{V}(\Gamma)$ then $r=2, \varepsilon=+1$ and $N_{a}=N_{F} \simeq L_{4}(3)$ has two orbits on $[a]$. Moreover, for the vertex $b_{2} \in Q_{2}(a)$ the group $N_{a, b_{2}}$ has exactly two non-single-point orbits on $Q_{2}(a)$ (recall that $k_{2}=\left|Q_{2}(a)\right|=117$), and the lengths of these orbits are 80 and 36 . This contradicts the fact that by Lemma 1 and Theorem 1Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$ and $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(133,56),(126,60)\}$.

Hence $G=N$ and, by [7], $\mathrm{M}(T)=Z_{2} \times Z_{3}$, which together with Table 4 implies $r \leq 3$ for $k+1=378$ and $r=3$ for $k+1=351$. Then, by Lemma 1 and Theorem 1, Γ admits an H-uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$. More precisely, if $k+1=378$, then $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=$ $\{(133,56),(126,60)\}$ for $r=2$ and $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(84,40),(91,36)\}$ for $r=3$, and if $k+1=351$, then $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(75,40),(73,45)\}$ and $r=3$. Since the groups $\left(G_{a}\right)^{[a]}$ and $\left(G_{\{F\}}\right)^{\Sigma-\{F\}}$ are permutation isomorphic, in the case $r=2$ a contradiction is achieved in a similar way as above. Let $r=3$. For $k+1=351$ the group $G_{a, b_{1}}$, where $b_{1} \in Q_{1}(a)$, has five orbits on $Q_{1}(a)$ (recall that $k_{1}=\left|Q_{1}(a)\right|=224$): two orbits of length 81 , one orbit of length 60 and two single-point orbits. This is impossible, since $\lambda_{1}=73$ or 75 . Let $k+1=378$. Since for
the vertex $b_{2} \in Q_{2}(a)$ the group $G_{a, b_{2}}$ has exactly two non-single-point orbits on $Q_{2}(a)$ (recall that $\left.k_{2}=\left|Q_{2}(a)\right|=117\right)$, and the lengths of these orbits are 80 and 36 , then $\lambda_{2}=36$. But then $\mu_{2}=40$, which is impossible, since $G_{a}=G_{F}$ and the group $G_{a, b_{2}}$ moves 36 or 80 vertices from $Q_{2}\left(a^{*}\right) \cap\left[b_{2}\right]$ for some vertex $a^{*} \in F(a)$.

Let $q=8$. According to Table $4 T \simeq P \Omega_{5}(8) \simeq P S p_{4}(8)$ and as noted above $\operatorname{rk}(T)=5$. Further, the group $\left(\widetilde{G}_{\{F\}}\right)^{\Sigma-\{F\}}$ has the form $L_{2}(64) \cdot Z_{3} \cdot Z_{2}$ for $k+1=2016$ and $\left(L_{2}(8) \times L_{2}(8)\right) \cdot Z_{6}$ for $k+1=2080$. Hence, by [16, Proposition 3] and taking into account that $\mathrm{M}(T)=1$, we obtain either $r=4$, one of -65 or 63 is an eigenvalue of Γ and N is intransitive on $\mathcal{V}(\Gamma)$, or $N \simeq T$ acts transitively on $\mathcal{V}(\Gamma)$. Let us consider the second case. If $k+1=2080$ then for a subgroup of index r in $N_{\{F\}}$ we have either $p=3$ and r divides 3^{5}, or $r=p=2$. If $k+1=2016$ then for a subgroup of index r in $N_{\{F\}}$ we have $r=p \leq 3$. Enumeration of the orbital graphs of N in GAP [14] shows that the case $r=3$ is impossible, while for $r=2$ the graph Γ exists: for $k+1=2016$ the parameter μ equals to 1024 or 990 , and for $k+1=2080$ the parameter μ equals to 1024 or 1054. More precisely, for each feasible set of parameters k, μ, it turns out to be the unique (up to isomorphism) distance-transitive $(k+1,2, \mu)$-cover.

Now let $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1$.
Let us consider the case when N is transitive on $\mathcal{V}(\Gamma)$.
For transitive N, the case $\varepsilon=-1, q=3$ and $n=2$ was excluded earlier in (C2).
Let $q=4$. Then $\operatorname{rk}(T)=3$ and by $[7] \mathrm{M}(T)=1$. If $n=2$ then by [4] $N_{\{F\}} \simeq L_{2}(16)$ (for $k+1=120)$ or $\left(\mathrm{Alt}_{5} \times \mathrm{Alt}_{5}\right): Z_{2}($ for $k+1=136)$ has no subgroup of index 3 , so $r=2$. If $n=3$, then $N_{\{F\}} \simeq P \Omega_{6}^{\varepsilon}(4): Z_{2}$ (see [13]) has no subgroup of index $3,5,7$ or 13 , so $r=2$ again. Enumeration of the orbital graphs of $P \operatorname{Sp}_{2 n}(q)$ on $r(k+1)$ points in GAP [14] shows that none of these cases is realized.

A computer check in GAP [14] shows that in the case when $r=2, N \simeq T$ and N is intransitive on $\mathcal{V}(\Gamma), \Gamma$ exists and it is unique distance-transitive $(k+1,2, \mu)$-cover (note it can be also constructed using [17, Theorem 1]).
(D) Finally, let the pair (\widetilde{M}, Y), where Y is the pre-image in \widetilde{M} of a point stabilizer in T, be one of the following (up to conjugacy in $\operatorname{Aut}(\widetilde{M})($ see $[3, \S$ 11.3.2, Theorem 11.3.2(v)-(x)])):

$$
\begin{gathered}
\left(S U_{3}(3), P S L_{3}(2)\right),\left(S U_{3}(5), 3 . \operatorname{Alt}_{7}\right),\left(S U_{4}(3), 4 . P S L_{3}(4)\right),\left(S p_{6}(2), G_{2}(2)\right),\left(\Omega_{7}(3), G_{2}(3)\right), \\
\left(S U_{6}(2), 3 . P S U_{4}(3) .2\right) ;
\end{gathered}
$$

let further the graph Φ_{1} have parameters

$$
(36,14,4,6), \quad(50,7,0,1), \quad(162,56,10,24), \quad(120,56,28,24), \quad(1080,351,126,108)
$$

or ($1408,567,246,216)$,
respectively (for their detailed description, see $[3, \S-\S 10.14,10.19,10.48,10.39,10.78,10.81]$). Then feasible parameters of Γ are described by Table 5 , which, in particular, shows the cases $k+1=56$, 1080 are impossible.

Let $T \simeq S U_{3}(3)$. Then $\operatorname{rk}(T)=4, \mathrm{M}(T)=1$, and by $[4] \mathrm{d}_{\min }(T)=28>r$. Hence $K \leq Z(G)$ and $N \simeq T$. Suppose N is intransitive on $\mathcal{V}(\Gamma)$. Then by [16, Proposition 3] we have either $r=4$ and 7 is an eigenvalue of Γ, or $r=2$ and $\gamma=-2\left(\lambda\left(\Phi_{i}\right)+k_{j} \mu\left(\Phi_{i}\right) / k_{i}+1\right)+k$ is an eigenvalue of Γ. In the second case $\gamma \in\{ \pm 7\}$, which in view of Table 5 implies $\mu \in\{16,18\}$. Computer check in GAP [14] shows that for $r=2$ and each μ, Γ exists and it is the only (up to isomorphism) distance-transitive ($36,2, \mu$)-cover.

Suppose $N \simeq T$ is transitive on $\mathcal{V}(\Gamma)$. Then $N_{\{F\}} \simeq L_{3}(2)$ must contain a subgroup of index r. But in view of [4] the index of a proper subgroup in $L_{3}(2)$ must be divisible by 7 or 8 , which
implies $r=8$. Enumeration of the orbital graphs of the group $S U_{3}(3)$ on $36 r$ points in GAP [14] shows that this is impossible.

For $r=4$ enumeration of the orbital graphs of the group $K \times S U_{3}(3)$ on 144 points in GAP [14] shows this case is also impossible.

In all other cases $\operatorname{rk}(T)=3$ and $\mathrm{d}_{\min }(T)>r$. Hence $K \leq Z(G)$ and, by the remark after Proposition 1, we will assume that r is prime.

For $T \simeq P S U_{3}(5)$ we have $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1$ and by $[7] \mathrm{M}(T)=Z_{3}$. In view of Table $5 r=2$ and hence $N=G^{\prime} \simeq T$. Enumeration of the orbital graphs of the group $Z_{2} \times S U_{3}(5)$ on 100 points in GAP [14] shows this case is impossible.

For $T \simeq S p_{6}(2)$, we have $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right)=k-1$ and, by $[7] \mathrm{M}(T)=1$, so $N=G^{\prime} \simeq T$. Since the rank of the representation of the group $S p_{6}(2)$ on cosets by its subgroup isomorphic to the group $G_{2}(2)^{\prime}$, equals 5 , we obtain that N is intransitive on $\mathcal{V}(\Gamma)$. Further, in view of Lemma 1 and Theorem 1Γ admits an H-uniform edge partition with parameters (μ_{1}, μ_{2}) and either $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(28,32),(27,30)\}$ and $r=2$, or $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(18,20),(19,22)\}$ and $r=3$. Since the groups $\left(G_{a}\right)^{[a]}$ and $\left(G_{\{F\}}\right)^{\Sigma-\{F\}}$ are permutation isomorphic, for $b_{1} \in Q_{1}(a)$
 19. Hence $r=2$. Enumeration of the orbital graphs of the group $Z_{r} \times \operatorname{Sp}_{6}(2)$ on 240 points in GAP [14] shows that Γ exists and it is distance-transitive with $\mu=54$ or 64 .

For $T \simeq P S U_{6}(2)$ we have $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1$ and, by $[7], \mathrm{M}(T)=Z_{3} \times Z_{2} \times Z_{2}$. Since the rank of transitive representation of $P S U_{6}(2)$ on its right X-cosets with $X \simeq U_{4}(3)$ equals 5 , then G is a quasi-simple group and $r=2$. In view of Lemma 1 and Theorem 1Γ admits an H uniform edge partition with parameters $\left(\mu_{1}, \mu_{2}\right)$ and $\left\{\left(\lambda_{1}, \lambda_{2}\right),\left(\mu_{1}, \mu_{2}\right)\right\}=\{(286,429),(280,410)\}$. Since the groups $\left(G_{a}\right)^{[a]}$ and $\left(G_{\{F\}}\right)^{\Sigma-\{F\}}$ are permutation isomorphic, for $b_{1} \in Q_{1}(a) G_{a, b_{1} \text {-orbits }}$ on $Q_{1}(a)$ have lengths $1,320,30,96$ and 120 . This is a contradiction, since $\lambda_{1}=286$ or 280 .

Table 5. Feasible parameters of Γ with $r=p^{l}$ in case (D)

(M, Y)	$k+1$	k_{1}, k_{2}	θ	$-\tau$	$r \mu$	r
$\left(S U_{3}(3), P S L_{3}(2)\right)$	36	14,21	5	-7	36	$2,3,9$
			7	-5	32	$2,4,8,16$
$\left(S U_{3}(5), 3 . \mathrm{Alt}_{7}\right)$	50	7,42	7	-7	48	$2,4,8$
$\left(S p_{6}(2), G_{2}(2)\right)$	120	56,63	7	-17	128	$2,4,8$
			17	-7	108	$2,3,9,27$
$\left(S U_{6}(2), 3 . P S U_{4}(3) .2\right)$	1408	567,840	21	-67	1452	2,11
			67	-21	1360	$2,4,8$

Theorem 3. Suppose that $\Gamma=\Gamma(\widetilde{G}, G, K)$ is a minimal abelian $(k+1, r, \mu)$-cover, $k+1 \leq 2500$, $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$ and $T=\operatorname{Soc}\left(\widetilde{G}^{\Sigma}\right) \simeq P S L_{d}(q)$. Assume $\widetilde{G}=G$ whenever $\operatorname{rk}(T)=3$. Suppose further that $(T, k+1) \neq\left(\operatorname{Alt}_{s},\binom{s}{2}\right)$. Then $\widetilde{G}^{\Sigma} \simeq P \Gamma L_{2}(8), k+1=36, r=2, \mu \in\{16,18\}, G^{\prime} \simeq T, G^{\prime}$ is transitive on $\mathcal{V}(\Gamma)$, and Γ is a unique (up to isomorphism) distance-transitive ($36,2, \mu$)-cover.

Proof. Let $T \simeq P S L_{d}(q)$. Next we consider potential combinations for T and the complementary rank 3 graphs Φ_{1} and Φ_{2} associated with \widetilde{G}^{Σ}, applying their description from [8] and [3, Theorem 11.3.3]. Since $k+1 \leq 2500$, we are left with the following two cases (E) and (H).
(E) Let either $T=P S L_{2}(4) \simeq P S L_{2}(5) \simeq \operatorname{Alt}_{5}, k+1=\binom{5}{2}$, or $T=P S L_{2}(9) \simeq \operatorname{Alt}_{6}, k+1=\binom{6}{2}$, or $T=P S L_{4}(2) \simeq$ Alt $_{8}, k+1=\binom{8}{2}$, or $G=P \Gamma L_{2}(8), k+1=\binom{9}{2}$ (see [8] and also [3, Theorem 11.3.3(ii)]). Then $\Phi_{1} \simeq T(m)$ and $m=5,6,8,9$, respectively. The cases $m \leq 8$ were considered in [17, Theorem 2]. Below we treat the remaining case $m=9$.

Let $k+1=36$ and $\widetilde{G}^{\Sigma} \simeq P \Gamma L_{2}(8)$. Then $T \simeq L_{2}(8), \operatorname{rk}(T)=4, \mathrm{M}(T)=1$, the graph Φ_{1} has parameters $(36,14,7,4)$ and $2\left(\lambda\left(\Phi_{1}\right)+\lambda\left(\Phi_{2}\right)+1\right) \neq k-1$. If $r=p^{l}, p$ is prime, then $p \leq 3$. Note that $L_{2}(8) \not \leq G L_{l}(3)$ for $l<4$ and $L_{2}(8) \not \leq G L_{l}(2)$ for $l<5$. Hence $K \leq Z(G)$. By [16, Proposition 3] $r \neq 3$ and if $r \leq 16$, then by [16, Proposition 3] $G^{\prime} \simeq T$ is transitive on $\mathcal{V}(\Gamma)$, which, in view of [4], implies $r=2$. Enumeration of the orbital graphs of the group $Z_{2} \times L_{2}(8)$ on 72 points in GAP [14] shows that $\mu=16$ or 18 , and Γ is a unique distance-transitive $(36,2, \mu)$-cover (see also [16, Example]).
(H) If $T=P S L_{3}(4), T_{\{F\}} \simeq$ Alt $_{6}$ and Φ_{1} is the Gewirtz graph (with parameters $(56,10,0,2)$) or $T=P S L_{4}(3), T_{\{F\}} \simeq P S p_{4}(3)$ and $\Phi_{1} \simeq \mathrm{NO}_{6}^{+}(3)$ (with parameters $(117,36,15,9)$), then there is no feasible set of parameters.

Remark 1. In proofs of Theorems 2 and 3, in a computer search for distance-regular orbital graphs we used GAP packages GRAPE [15] and coco2p [10].

Remark 2. An explicit construction of covers with $r=2$ and intransitive group G^{\prime} from the conclusions of Theorem 2 can be found in [17, Theorem 1, Example 1].

Corollary 1. Suppose that Ψ is a non-bipartite abelian ($n, r^{\prime}, \mu^{\prime}$)-cover with a transitive group of automorphisms X that induces a primitive almost simple permutation group X^{Ξ} on the set Ξ of its antipodal classes such that $\operatorname{rk}\left(X^{\Xi}\right)=3$ and the pair $\left(X^{\Xi}, n\right)$ satisfies conditions of Theorem 2 or 3. Then Ψ has a minimal quotient $\Gamma(\widetilde{G}, G, K)$ that is an (n, r, μ)-cover from the conclusion of the respective theorem with $\operatorname{Soc}\left(X^{\Xi}\right) \simeq G / K$ and $r^{\prime} \mu^{\prime}=r \mu$.

4. Concluding remarks

In this paper, we continued studying abelian antipodal distance-regular graphs Γ of diameter 3 with the property $(*): \Gamma$ has a transitive group of automorphisms \widetilde{G} that induces a primitive almost simple permutation group \widetilde{G}^{Σ} on the set Σ of its antipodal classes. As in [16], we focused on the case $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$. In [16] and [17], it was shown that in the alternating and sporadic cases for \widetilde{G}^{Σ} the family of non-bipartite graphs Γ with the property $(*)$ and $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=3$ is finite and limited to a small number of potential examples with $|\Sigma| \in\{10,28,120,176,3510\}$. Here we assumed that the socle of \widetilde{G}^{Σ} is a classical simple group. The case of classical simple socle seems to be both most interesting and complicated, since, on one hand, there is an infinite family of non-bipartite representatives Γ (see [17, Example 1]), and on the other hand, its study requires a profound inspection of \widetilde{G}^{Σ}. So we started classification of graphs Γ with "small" $|\Sigma|$. In order to describe minimal quotients of Γ, we used the technique for bounding their spectrum that is based on analysis of their local properties and the structure of \widetilde{G}^{Σ}, which was developed in [16] and applied in [16] and [17] for the cases of sporadic, alternating and exceptional socle (the latter was investigated under condition $|\Sigma| \leq 2500$). As a result, we significantly refined the sets of feasible parameters of Γ with $|\Sigma| \leq 2500$ in the case of classical socle, showing, in particular, that for most of these sets Γ must be a covering of a certain distance-transitive Taylor graph.

We also wish to mention two more challenging examples of graphs with the property $(*)$, namely, abelian $(n, 3,12)$-covers with $n=36$ or 45 and $\operatorname{rk}\left(\widetilde{G}^{\Sigma}\right)=4$ or 5 , respectively (for their constructions,
see [9]). . A computer assisted inspection shows that they are the only minimal abelian (n, r, μ) covers $\Gamma(\widetilde{G}, G, K)$ such that $3 \leq \operatorname{rk}\left(\widetilde{G}^{\Sigma}\right) \leq 5, r>2, n \leq 2500$ and $G=G^{\prime}$ is a quasi-simple group.

REFERENCES

1. Aschbacher M. Finite Group Theory, 2-nd ed. Cambridge: Cambridge University Press, 2000. 305 p. DOI: 10.1017/CBO9781139175319
2. Brouwer A.E., Cohen A.M., Neumaier A. Distance-Regular Graphs. Berlin etc: Springer-Verlag, 1989. 494 p. DOI: 10.1007/978-3-642-74341-2
3. Brouwer A.E., Van Maldeghem H. Strongly Regular Graphs. Cambridge: Cambridge University Press, 2022. 462 p. DOI: 10.1017/9781009057226
4. Conway J., Curtis R., Norton S., Parker R., Wilson R. Atlas of Finite Groups. Oxford: Clarendon Press, 1985. 252 p.
5. Godsil C. D., Hensel A. D. Distance regular covers of the complete graph. J. Comb. Theory Ser. B, 1992. Vol. 56, No. 2. P. 205-238. DOI: 10.1016/0095-8956(92)90019-T
6. Godsil C. D., Liebler R. A., Praeger C. E. Antipodal distance transitive covers of complete graphs. Europ. J. Comb., 1998. Vol. 19, No. 4. P. 455-478. DOI: 10.1006/eujc.1997.0190
7. Gorenstein D. Finite Simple Groups: An Introduction to Their Classification. New York: Springer, 1982. DOI: 10.1007/978-1-4684-8497-7
8. Kantor W. M., Liebler R. A. The rank 3 permutation representations of the finite classical groups. Trans. Amer. Math. Soc., 1982. Vol. 271, No. 1. P. 1-71. DOI: 10.2307/1998750
9. Klin M., Pech C. A new construction of antipodal distance-regular covers of complete graphs through the use of Godsil-Hensel matrices. Ars Math. Contemp., 2011. Vol. 4. P. 205-243. DOI: 10.26493/1855-3974.191.16b
10. Klin M., Pech C., Reichard S. COCO2P - a GAP4 Package, ver. 0.18, 2020. URL: https://github.com/chpech/COCO2P/.
11. Liebeck M. W., Saxl J. The finite primitive permutation groups of rank three. Bull. London Math. Soc., 1986. Vol. 18, No. 2. P. 165-172. DOI: 10.1112/blms/18.2.165
12. Mazurov V. D. Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups. Algebr. Logic, 1993. Vol. 32, No. 3. P. 142-153. DOI: 10.1007/BF02261693
13. Roney-Dougal C. M. The primitive permutation groups of degree less than 2500. J. Algebra, 2005. Vol. 292, No. 1. P. 154-183. DOI: 10.1016/j.jalgebra.2005.04.017
14. The GAP - Groups, Algorithms, and Programming - a System for Computational Discrete Algebra, ver. 4.7.8, 2015. URL: https://www.gap-system.org/
15. Soicher L.H. The GRAPE package for GAP, ver. 4.6.1, 2012. URL: https://github.com/gap-packages/grape
16. Tsiovkina L. Yu. On a class of vertex-transitive distance-regular covers of complete graphs. Sib. Elektron. Mat. Izv., 2021. Vol. 8, No. 2. P. 758-781. (in Russian) DOI: 10.33048/semi.2021.18.056
17. Tsiovkina L. Yu. On a class of vertex-transitive distance-regular covers of complete graphs II. Sib. Electron. Mat. Izv., 2022. Vol. 19, No. 1. P. 348-359. (in Russian) DOI: 10.33048/semi.2022.19.030
18. Vasil'ev A. V., Mazurov V. D. Minimal permutation representations of finite simple orthogonal groups. Algebr. Logic, 1995. Vol. 33, No. 6. P. 337-350. DOI: 10.1007/BF00756348

[^0]: ${ }^{1}$ This work is supported by the Russian Science Foundation under grant no. 20-71-00122.

