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Abstract: For a distance-regular graph Γ of diameter 3, the graph Γi can be strongly regular for i = 2
or 3. J. Kulen and co-authors found the parameters of a strongly regular graph Γ2 given the intersection
array of the graph Γ (independently, the parameters were found by A.A. Makhnev and D.V. Paduchikh). In
this case, Γ has an eigenvalue a2 − c3. In this paper, we study graphs Γ with strongly regular graph Γ2 and
eigenvalue θ = 1. In particular, we prove that, for a Q-polynomial graph from a series of graphs with intersection
arrays {2c3 + a1 + 1, 2c3, c3 + a1 − c2; 1, c2, c3}, the equality c3 = 4(t2 + t)/(4t + 4 − c2

2
) holds. Moreover, for

t ≤ 100000, there is a unique feasible intersection array {9, 6, 3; 1, 2, 3} corresponding to the Hamming (or
Doob) graph H(3, 4). In addition, we found parametrizations of intersection arrays of graphs with θ2 = 1 and
θ3 = a2 − c3.
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1. Introduction

We consider undirected graphs without loops and multiple edges.
Let Γ be a connected graph. The distance d(a, b) between two vertices a, b of Γ is the length of

a shortest path between a and b in Γ. For a vertex a of Γ, denote by Γi(a) the induced subgraph on
the set of all vertices at distance i from a in Γ. Let Γ be a graph with diameter d and let a and b be
vertices of Γ at distance i (0 ≤ i ≤ d). Then the number of vertices that are at distance j from a
and h from b is denoted by pijh(a, b) (0 ≤ i, j, h ≤ d) and is called an intersection number of Γ. Note

that pijh(a, b) = |Γj(a)∩Γh(b)|. Consider the numbers ci(a, b) = pii′1,1(a, b), ai(a, b) = pii1(a, b), and

bi(a, b) = pii+1,1(a, b). If the intersection numbers do not depend on the choice of a and b but only

on i, then these numbers are denoted simply by pijh (0 ≤ i, j, h ≤ d). In this case, Γ of diameter d
is called a distance-regular graph with intersection array (b0, b1, . . . , bd−1; c1, . . . , cd).

If a and b are vertices of the graph Γ, then we denote by d(a, b) the distance between a and b.
Given a vertex a in a graph Γ, we denote by Γi(a) the subgraph induced by Γ on the set of all
vertices at the distance i from a. The subgraph Γ1(a) is called the neighbourhood of the vertex a
and is denoted by [a], if the graph Γ is fixed.

Let Γ be a graph of diameter d and i ∈ {1, 2, 3, . . . , d}. The graph Γi have the same set of
vertices, and vertices u and w are adjacent in Γi if dΓ(u,w) = i. For a subset of vertices Y from Γ,
we denote by Γi(Y ) the subgraph with the set of vertices Y in which PI vertices u and w are
adjacent if dΓ(u,w) = i.

An incidence system with a set of points P and a set of lines L is called an α-partial geometry

of order (s, t) if each line contains exactly s+1 points, each point lies exactly on t+1 lines, any two
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points lie on at most one line, and, for any antiflag (a, l) ∈ (P,L), there is exactly α lines passing
through a and intersecting l (the notation is pGα(s, t)).

A point graph of a geometry of points and lines is a graph whose vertices are points of the
geometry, and two different vertices are adjacent if they lie on a common line. It is easy to see that a
point graph of a partial geometry pGα(s, t) is strongly regular with parameters v = (s+1)(1+st/α),
k = s(t+ 1), λ = (s − 1) + (α− 1)t, and µ = α(t+ 1). A strongly regular graph having the above
parameters for some positive integers α, s, and t is called a pseudogeometric graph for pGα(s, t).

The direct problem in the theory of distance-regular graphs is, given an intersection array,
to find the parameters of a symmetric structure corresponding to a graph with this intersection
array. The inverse problem is finding the intersection array of a distance-regular graph given the
parameters of the corresponding symmetric structure.

If, for a distance-regular graph Γ of diameter 3, the graph Γ3 is strongly regular, then, by
[1, Lemma 3], the graph Γ̄3 is pseudogeometric for pGc3(k, b1/c2). Conversely, for the graph Γ̄3,
which is pseudogeometric for pGα(l, t), the graph Γ has an intersection array {l, tc2, l−α+1; 1, c2, α},
where l > tc2 ≥ l − α+ 1 and c2 ≤ α.

Let Γ be a non-bipartite distance-regular graph of diameter 3. By [2, Lemma 3.1], the graph
Γ2 is strongly regular if and only if Γ has the eigenvalue θ = a2 − c3.

The inverse problem was solved by A.A. Makhnev and D.V. Paduchickh. Let Γ be a distance-
regular graph of diameter 3, for which Γ2 is a strongly regular graph with parameters (v, κ, λ, µ)
and eigenvalues κ, r, and −s. Then for x = b2+c2 ≤ rs and µx 6= rs(r+1)(s−1) the parameters of
the intersection array of the graph Γ are expressed in terms of κ, µ, r,−s, and x ([3, Theorem 2]).

We continue the study of distance-regular graphs Γ of diameter 3 with strongly regular graph Γ2

and eigenvalue θ2 = 1.

The following result is obtained in [2, Lemma 4.5].

Proposition 1. Let Γ be a non-bipartite distance-regular graph of diameter 3 with eigenvalue

θ2 = a2 − c3 = 1. The following statements hold :

(1) the eigenvalues θ1 and θ3 are integer, θ1 + θ3 = a1;

(2) c3(c2 + 2) = −(θ1 + 1)(θ3 + 1);

(3) Γ has the intersection array {2c3 + a1 + 1, 2c3, c3 + a1 − c2; 1, c2, c3}.

By Proposition 1, the graph Γ with θ2 = a2 − c3 = 1 and n = a21 + 4(c2 + 2)c3 + 4a1 + 4 has
non-principal eigenvalues 1 and a1/2±

√
n, where the multiplicity of 1 is equal to

(2a1 − c2 + 4c3 + 2)(a1 + 2c3 + 1)c3/(c2c3 + 2a1 + 2c3).

This implies that n is a square and the multiplicity of a1/2±
√
n is equal to

4(2a1 − c2 + 4c3 + 2)(a1 − c2 + c3)(a1 + 2c3 + 1)(a1 + 2c3)/
(

(2a31 − a21c2 + 2a21c3

+8a1c2c3 − 4c22c3 + 8c2c
2
3 +

√
n(2a21 − a1c2 + 2a1c3 + 2c2c3 + 2c2)

+8a21 − 4a1c2 + 24a1c3 − 8c2c3 + 16c23 + 8a1 − 4c2 + 8c3)c2
)

.

Theorem 1. Let Γ be a Q-polynomial distance-regular graph of diameter 3 with strongly regular

graph Γ2. If Γ has an eigenvalue θ = a2 − c3 = 1, then c3 = 4(t2 + t)/(4t + 4 − c22) and Γ has the

intersection array
{

(c22+4c2+4t+4)(t+1)/(4t+4− c22 ), 8(t+1)t/(4t+4− c22), (c2+ t+2)c22/(4t+
4− c22); 1, c2, 4(t

2 + t)/(4t + 4− c22)
}

.
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For t ≤ 100000, there is only one feasible intersection array {9, 6, 3; 1, 2, 3} (t = c2 = 2)
corresponding to the Hamming graph H(3, 4) or the Doob graph with the same parameters.

We found parametrizations of distance-regular graphs of diameter 3 with eigenvalues θ2 = 1 6=
θ3 = a2 − c3.

Theorem 2. Let Γ be a distance-regular graph of diameter 3 with strongly regular graph Γ2.

If Γ has the eigenvalue θ2 = 1 6= a2− c3, then Γ has the intersection array
{

(2n+ r)t+1, 2(n− 1)t,
r(t−1); 1, n+ r+1, 2nt

}

or
{

(2n+ r)t+n+ r+1, (n−1)(2t+1), r(2t−1); 1, n+2r+1, n(2t+1)
}

.

The following examples of graphs with eigenvalues θ2 = 1 6= θ3 = a2 − c3 are known:

(1) {21, 10, 3; 1, 6, 15}, half 7-cube with spectrum 211, 97, 121,−335, v = 1+21+35+7 = 64, and
Γ2 is a graph with parameters (64, 35, 18, 20);

(2) {111, 88, 9; 1, 12, 99} with spectrum 1111, 21148, 1444,−9407, v = 1 + 111 + 814 + 74 = 1000,
and Γ2 is a strongly regular graph with parameters (1000, 814, 663, 660).

For graphs from Theorem 2 for n < 350, t < 1000, we have only feasible intersection arrays
{21, 10, 3; 1, 6, 15}, {111, 88, 9; 1, 12, 99}, {561, 448, 54; 1, 12, 504}, and {561, 448, 75; 1, 21, 480}.

2. Proof of Theorem 1

Let Γ be a Q-polynomial distance-regular graph of diameter 3 with eigenvalue θ2 = a2− c3 = 1.
By Proposition 1, the graph Γ has integer eigenvalues.

Lemma 1. a1 = (c2 + 2)c3/t− t− 2 for some positive integer t.

P r o o f. We have

(a21 + 4(c2 + 2)c3 + 4a1 + 4) = u2,

where u is a positive integer. Solving the Diophantine equation

u2 − (a1 + 2)2 = 4(c2 + 2)c3,

we get

u = (c2 + 2)c3/t+ t, a1 = (c2 + 2)c3/t− t− 2

for some positive integer t. �

Lemma 2. The inequality c3 > t holds.

P r o o f. We have

k = (c2c3 + 2c3t− t2 + 2c3 − t)/t,

hence

(c2c3 + 2c3t− t2 + 2c3 − t) > 0.

Further,

k3 = 2(c2c3 + 2c3t− t2 + 2c3 − t)(c2 + t+ 2)(c3 − t)/(c2t
2),

hence c3 > t. �

Lemma 3. The graph Γ is not Q-polynomial with respect to E2.
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P r o o f. Suppose that Γ is a Q-polynomial graph with respect to E2. Then, by [4], the equality

−2(c2c3 + 2c3t− t2 + 2c3 − 2t)(c2 + 2t+ 2)(2c3 − t)(c3 + 1)/((c2c3 + 2c3 − 2t)(t + 2)t)

= −(c2c3 + 2c3t− t2 + 2c3 − 2t)(c2 + 2t+ 2)(2c3 − t)(c3 + 1)/((c2c3 + 2c3 − 2t)(t+ 2)t)

holds and either c3 = (t2 + 2t)/(c2 + 2t+ 2), or c3 = t/2, or c3 = −1.

In any case, we have a contradiction. �

Lemma 4. If Γ is not Q-polynomial with respect to E1, then c3 = 4(t2 + t)/(4t+ 4− c22).

P r o o f. Let Γ be a Q-polynomial graph with respect to E1. Then, by [4], the following
equality holds:

−(c22c
2
3 − c22c3t− c2c3t

2 + 4c2c
2
3 − 4c2c3t+ 2c3t

2 − 2t3 + 4c23 − 4c3t)(c2c3 + 2c3t

−t2 + 2c3 − 2t)(c2 + 2t+ 2)(2c3 − t)/((c2c3 + t2 + 2c3)(c2c3 + 2c3 − 2t)c2t
2)

= −(c42c
3
3 + 4c32c

3
3t− 5c32c

2
3t

2 + 4c22c
3
3t

2 + c32c3t
3 − 10c22c

2
3t

3 + 4c22c3t
4 − 4c2c

2
3t

4

+4c2c3t
5 + 8c32c

3
3 − 6c32c

2
3t+ 24c22c

3
3t− 42c22c

2
3t

2 + 16c2c
3
3t

2 + 16c22c3t
3 − 40c2c

2
3t

3

+24c2c3t
4 + 24c22c

3
3 − 36c22c

2
3t+ 48c2c

3
3t+ 12c22c3t

2 − 108c2c
2
3t

2 + 16c33t
2

+68c2c3t
3 − 40c23t

3 − 8c2t
4 + 32c3t

4 − 8t5 + 32c2c
3
3 − 72c2c

2
3t+ 32c33t+ 48c2c3t

2

−88c23t
2 − 8c2t

3 + 80c3t
3 − 24t4 + 16c33 − 48c23t+ 48c3t

2 − 16t3)(c2c3 + 2c3t− t2 + 2c3

−2t)(2c3 − t)/
(

(c2c3 + 2c3t− 2t2 + 2c3 − 2t)(c2c3 + t2 + 2c3)(c2c3 + 2c3 − 2t)c2t
2
)

.

Hence,

c3 ∈
{

4(t2 + t)/(4t+ 4− c22), (2t
3 + (t2 + 2t)c2 + 4t2 + 4t)/(c22 + 2c2(t+ 2) + 2t2 + 4t+ 4),

(t2 + 2t)/(c2 + 2t+ 2), 1/2t
}

.

The latter three cases contradict Lemma 2. �

Theorem 1 is proved. �

3. Proof of Theorem 2

Let Γ be a non-bipartite distance-regular graph of diameter 3 with eigenvalues

θ1 = a1 − 1, θ2 = 1, θ3 = a2 − c3.

By [2, Lemma 3.1(v)], we have b1 = (a2− c3+1)c3/(a2− c3). This implies the following statement.

Lemma 5. One of the following equalities holds:

(1) c3 = (c3 − a2)m, where m is a positive integer not exceeding 1;

(2) k = b2 + c2 + c3 + 1;

(3) k = b2 + c2 + c3 − 1.



Graphs with eigenvalue a2 − c3 = 1 131

In the second case, we have a2−c3 = 1. In the third case, we have a2−c3 = −1, a contradiction
with [2, Lemma 3.1(b)].

Hence,

c3 = (c3 − a2)m, a2m = c3(m− 1), a2 = (m− 1)n,

b1 = mn−m for some positive integer n greater than 1.

The non-principal eigenvalues a1 − 1 and 1 are roots of the quadratic equation

x2 − (b2 + c2 +m− n− 1)x+ c2m− (m− 1)n − b2 − c2 = 0.

Hence,

a1 = k − a2 +m− n− 1

and

a1 − 1 = c2m− (m− 1)n − k + a2.

Hence

k = a1 + 1 +mn−m, k + a1 − 1 = c2m, 2a1 = m(c2 − n+ 1).

If m = 2t, then c2 = n+ r + 1, a1 = t(r + 2), b1 = 2t(n− 1), and Γ has the intersection array

{t(2n + r) + 1, 2t(n − 1), rt− r; 1, n + r + 1, 2nt}

and the non-principal eigenvalues rt+ 2t− 1, 1, and −n of multiplicities

(2nt+ rt+ n+ 1)(2nt + rt+ 1)(2n + r)(t− 1)(n− 1)/((rt + n+ 2t− 1)(rt+ 2t− 2)(n + r + 1)n),

(2nt+ rt+ n+ 1)(2nt+ rt+ 1)(nt− t+ 1)(n − 1)r/((rt+ 2t− 2)(n + r + 1)(n + 1)n),

2(2nt+ rt+ 1)(nt− t+ 1)(2n + r)t/((rt+ n+ 2t− 1)(n + 1)n),

respectively.

If m = 2t+ 1, then

c2 = n+ 2r + 1, a1 = (2t+ 1)r, b1 = (2t+ 1)(n − 1),

and Γ has the intersection array

{

(2t+ 1)(n + r − 1) + 1, (2t + 1)(n − 1), 2rt− r; 1, n+ 2r + 1, 2nt+ n
}

and the non-principal eigenvalues r(2t+ 1) + 2t, 1, and −n of multiplicities

(2nt+ 2rt+ 2n+ r + 1)(2nt+ 2rt+ n+ r + 1)(n + r)(n− 1)(2t− 1)/((2rt + n+ r + 2t)

×(2rt+ r + 2t− 1)(n + 2r + 1)n),

(2nt+ 2rt+ 2n+ r + 1)(2nt + 2rt+ n+ r + 1)(2nt+ n− 2t+ 1)(n − 1)r/((2rt+ r + 2t− 1)

×(n+ 2r + 1)(n + 1)n),

(2nt+ 2rt+ n+ r + 1)(2nt + n− 2t+ 1)(n+ r)(2t+ 1)/((2rt + n+ r + 2t)(n + 1)n),

respectively.

Theorem 2 is proved. �
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