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Abstract: A restrained Roman dominating function (RRD-function) on a graph G = (V, E) is a function f

from V into {0, 1, 2} satisfying: (i) every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2; (ii) the
subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an RRD-function
is the sum of its function value over the whole set of vertices, and the restrained Roman domination number
is the minimum weight of an RRD-function on G. In this paper, we begin the study of the restrained Roman
reinforcement number rrR(G) of a graph G defined as the cardinality of a smallest set of edges that we must
add to the graph to decrease its restrained Roman domination number. We first show that the decision problem
associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as
some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established
that rrR(T ) = 1 for every tree T of order at least three.

Keywords: Restrained Roman domination, Restrained Roman reinforcement.

1. Introduction

For definitions and notations not given here we refer the reader to [8]. We consider simple
graphs G with vertex set V = V (G) and edge set E = E(G). The order of G is n = n(G) =
|V |. The open neighborhood of a vertex v, denoted by N(v) (or NG(v) to refer to G) is the set
{u ∈ V (G) | uv ∈ E} and its closed neighborhood is the set N [v] = NG[v] = N(v)∪{v}. The degree
of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The maximum and minimum degree in G are denoted
by ∆ = ∆(G) and δ = δ(G), respectively. A vertex of degree one is called a leaf and its neighbor is
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called a support vertex. As usual, the path (cycle, complete p-partite graph, respectively) of order
n is denoted by Pn (Cn, Kn1,n2,...,np , respectively). A star of order n ≥ 2 is the graph K1,n−1. For
a subset S ⊆ V , the subgraph induced by S in G is denoted as G[S].

A subset S ⊆ V is a dominating set of G if every vertex in V \ S has a neighbor in S. The
domination number γ(G) is the minimum cardinality of a dominating set of G.

As an application, in the design of networks for example, it is essential to study the effect of
some modifications of the graph parameters on its structure. These modifications can be deletion or
addition of vertices, deletion or addition of edges. We refer the reader to chapter 7 of [8] when the
graph parameter is the domination number. The reinforcement number r(G) of a graph G is the
minimum number of edges that have to be added to the graph G in order to decrease the domination
number. Of course for graphs G with domination number one it was assumed that r(G) = 0.
The concept of the reinforcement number was introduced in 1990 by Kok and Mynhardt [10],
and since then it has been defined and studied for several other domination parameters, such as
Roman domination [9], total Roman domination [1], quasi-total Roman domination [5], Italian
domination [7], double Roman domination [4] and rainbow domination [3, 13].

In 2015, Leely Pushpam and Padmapriea [11] introduced the concept of restrained Roman
domination as a new variation of Roman domination. A restrained Roman dominating function

(RRD-function, for short) on a graph G is a function f : V −→ {0, 1, 2} having the properties
that (i) every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2; and (ii) the
subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an
RRD-function f is the sum

w(f) =
∑

v∈V (G)

f(v)

and the restrained Roman domination number of G denoted by γrR(G), is the minimum weight of
an RRD-function on G. Any RRD-function f on G can simply be referred as f = (V0, V1, V2), where
Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2}. For further studies on restrained Roman domination
and its variants, see [2, 12, 14–16].

In this paper, we are interested in starting the study of the restrained Roman reinforcement

number rrR(G) of a graph G defined as the cardinality of a smallest set of edges F ⊆ E(G) such
that γrR(G + F ) < γrR(G), where G denotes the complement graph of G. If there is no subset
of edges F satisfying γrR(G + F ) < γrI(G), then we define rrR(G) = 0. Since for any nontrivial
connected graph G, γrR(G) ≥ 2, we deduce that rrR(G) = 0 for all nontrivial connected graphs
with γrR(G) = 2. Moreover, a subset E′ ⊆ E(G) is called an rrR(G)-set if |E′| = rrR(G) and
γrR(G+ E′) < γrR(G).

Further, we will prove that the decision problem associated with the Restrained Roman rein-
forcement is NP-hard. Then various properties of the restrained Roman reinforcement number are
investigated and some sharp bounds on it are presented.

We finish this section by observing that any rrR(G)-set of a connected graph G with γrR(G) ≥ 3
can decrease the restrained Roman domination number of G by at most two.

Proposition 1. Let G be a connected graph with γrR(G) ≥ 3. If F is an rrR(G)-set, then

γrR(G)− 2 ≤ γrR(G+ F ) ≤ γrR(G) − 1.

Both bounds are sharp.

P r o o f. By assumption, γrR(G + F ) < γrR(G), whence the upper bound follows. To show
the lower bound, let us assume that

γrR(G+ F ) ≤ γrR(G) − 3.
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Let f be a γrR(G + F )-function and let uv ∈ F such that 0 ∈ {f(u), f(v)}. If such an edge does
not exist, then f is an RRD-function of G leading to the contradiction

γrR(G) ≤ γrR(G+ F ).

Hence we suppose that uv exists, and let F ′ = F − {uv}. Without loss of generality, suppose that
f(u) = 0. If f(v) = 1, then f is an RRD-function of G leading to the contradiction

γrR(G) ≤ γrR(G+ F )

too. Hence assume that f(v) 6= 1.

First let f(v) = 2. If u has a neighbor w in G+ F ′ with f(w) ≥ 1, then the function g defined
by g(w) = 2 and g(x) = f(x) otherwise, is an RRD-function of G + F ′ yielding as above to the
contradiction γrR(G+F ′) < γrR(G). Hence we assume that each neighbor u in G+F ′ is assigned 0
under f . Let x1, . . . , xk be the neighbors of u in G+F ′. If k = 1 and x1 has a neighbor assigned 0
other than u, then the function g(u) = 1 and g(x) = f(x) otherwise, is an RRD-function of G+F ′

yielding

γrR(G+ F ′) ≤ γrR(G+ F ) + 1 < γrR(G),

this is a contradiction. If k = 1 and x1 has no neighbor assigned 0 other than u, then the function
g(u) = g(x1) = 1 and g(x) = f(x) otherwise, is an RRD-function of G+ F ′ and thus

γrR(G+ F ′) ≤ γrR(G+ F ) + 2 < γrR(G),

it is a contradiction too. Hence assume that k ≥ 2. If some xi has no neighbor assigned 0 other
than u, then the function g(xi) = 2 and g(x) = f(x) otherwise, is an RRD-function of G + F ′

yielding again γrR(G + F ′) < γrR(G). Hence we assume that for each i, xi has at least two
neighbors assigned 0 under f. In this case, we have g(u) = 1 and g(x) = f(x) otherwise, it is an
RRD-function of G+ F ′ and thus

γrR(G+ F ′) < γrR(G).

Finally, assume that f(v) = 0. Since F is an rrR(G)-set, we can suppose, without loss of
generality, that all neighbors of u in G+F ′ have positive labels under f . Now, if v has a neighbor
with weight 0 in G+F ′, then the function g(u) = 1 and g(x) = f(x) otherwise, it is an RRD-function
of G + F ′ while if v has no neighbor with weight 0 in G + F ′, then the function g(u) = g(v) = 1
and g(x) = f(x) otherwise, is an RRD-function of G+ F ′. Both situations yield the contradiction
γrR(G+ F ′) < γrR(G). Consequently,

γrR(G+ F ) ≥ γrR(G) − 2.

The upper bound of Proposition 1 is attained for the cycle C4, while the lower bound is
attained for the cycle C6. �

2. NP-hardness result

The aim of this section, is to show that the decision problem associated with the Restrained
Roman reinforcement is NP-hard. Consider the following decision problem.
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Figure 1. The graphs Li and H = H1 ∪H2.

Restrained Roman reinforcement problem (RR-reinforcement)

Instance: A nonempty graph G and a positive integer k.
Question: Is rrR(G) ≤ k?

We show that the NP-hardness of the RR-reinforcement problem by transforming the
well-known 3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified
below was proven to be NP-complete in [6].

3-SAT problem

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set X of variables such
that |Cj | = 3 for every j ∈ {1, 2, . . . ,m}.

Question: Is there a truth assignment for X that satisfies all the clauses in C?

Theorem 1. Problem RR-reinforcement is NP-hard for an arbitrary graph.

P r o o f. Let X = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm} be an arbitrary instance of 3-
SAT problem. We will build a graph G and a positive integer k such that rrR(G) ≤ k if and only
if C is satisfiable.

For each i ∈ {1, 2, . . . , n}, we associate to the variable xi ∈ X a copy of the graph Li as depicted
in Figure 1, and for each j ∈ {1, 2, . . . ,m}, we associate to the clause Cj = {uj , vj , wj} ∈ C a
vertex cj by adding the edge-set Ej = {cjuj, cjvj, cjwj}. Finally, we enclose the graph H illustrated
in Figure 1 by connecting vertices s1, s

′
1 to every vertex cj . Clearly, the resulting graph G is of order

8n+m+19 and size 11n+5m+27 and hence G can be built in polynomial time. Set k = 1. Figure 2
provides an example of the resulting graph when X = {x1, x2, x3, x4} and C = {C1, C2, C3}, where
C1 = {x1, x2, x̄3}, C2 = {x̄1, x2, x4} and C3 = {x̄2, x3, x4}.

It is easy to verify that for any γrR(G)-function g we must have

∑

v∈V (Lj)

g(v) ≥ 4

for each j ∈ {1, 2, . . . , n}. Moreover, to restrained Roman dominate all vertices of V (H), we need
that

m
∑

i=1

g(ci) + g(V (H)) ≥ 6.

Therefore
γrR(G) = w(g) ≥ 4n+ 6.
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Figure 2. An instance of the restrained Roman reinforcement number problem resulting from an instance of
3-SAT. Here k = 1 and γrR(G) = 22, where the black vertex p means there is a RRDF f with f(p) = 2.

Basing on the assignment given to the graph in Figure 2, one can easily define an RRD-function
of G with weight 4n+ 6, which consequently leads to γrR(G) = 4n+ 6.

In the following, we show that C is satisfiable if and only if rrR(G) = 1. Let C be satisfiable
and t : X → {T, F} a satisfying function for C. We build a subset S of vertices of G as follows.
If t(xi) = T , then put the vertices xi and yi in S; while if t(xi) = F , then put the vertices xi and
zi in S. So |S| = 2n. Define the function h on V (G) by h(x) = 2 for every x ∈ S, h(s1) = 1,
h(s3) = h(s′3) = 2 and h(y) = 0 for the remaining vertices. It is easy to verify that h is an
RRD-function of G+ s4s3 of weight

4n+ 5 < γrR(G) = 4n+ 6,

and hence rrR(G) = 1.

Conversely, let rrR(G) = 1. Then, there is an edge e = uv ∈ E(G) for which

γrR(G+ e) < 4n+ 6.

Let g = (V0, V1, V2) be a γrR(G + e)-function. Since whatever the added edge e, we
have g(V (Li)) ≥ 4, and thus vertices u and v cannot both belong to V (Li) (for otherwise
γrR(G+ e) ≥ 4n + 6). On the other hand, since rrR(G) = 1 and g(V (Li)) ≥ 4, we must have

m
∑

j=1

g(cj) + g(V (H)) < 6.

Since also whatever the added edge e, we have g(V (H)) ≥ 5, we conclude that g(V (H)) = 5. In
particular, this is only possible if g(s′1) = 0, g(s1) ≤ 1 and

m
∑

j=1

g(cj) = 0.
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In addition, we note that if {xi, x̄i} ⊆ V2 or {xi, x̄i} ∩ V1 6= ∅ for some i, then g(V (Li)) ≥ 5 which
results in the contradiction

γrR(G+ e) ≥ 4n+ 6.

Thus, |{xi, x̄i} ∩ V2| ≤ 1 and {xi, x̄i} ∩ V1 = ∅ for every i ∈ {1, . . . , n}. Therefore each vertex cj
must have a neighbor in {xi, x̄i} for some i which is assigned a 2. In this case, define the mapping
t : X → {T, F} by

t(xi) =

{

T if f(xi) = 2,

F otherwise
(2.1)

for i ∈ {1, . . . , n}.
We show that t satisfies the truth assignment for C. It is enough to show that every clause in

C is satisfied by t. Consider an arbitrary clause Cj ∈ C for some j ∈ {1, . . . ,m}. If cj is dominated
by xi, then g(xi) = 2 and so t(xi) = T . If cj is dominated by x̄i, then g(x̄i) = 2 and hence t(xi) = F
and t(x̄i) = T . Therefore, in either case the clause Cj is satisfied. The arbitrariness of j shows that
all clauses in C are satisfied by t, that is, C is satisfiable. This completes the proof of the theorem. �

3. Exact values

In this section, we determine the restrained Roman reinforcement number of some classes of
graphs including paths, cycles and complete p-partite graphs for any integer p ≥ 2. As observed
in [11], for every connected graph G of order n ≥ 2, we have 2 ≤ γrR(G) ≤ n. A characterization
of all connected graphs of order n with γrR(G) ∈ {2, 3, n} was provided in [11, 14] as follows.

The graph B4. The graph B3,2.

u1 u1

u2 u2

u3u3

u5 u5 u4u4

Figure 3. Graphs B4 and B3,2.

Let C := (u1u2u3u4u5) be a cycle of length 5 and let Bp be the graph obtained from C by
adding p ≥ 1 new vertices attached by edges at u1 and let Bp,q be the graph obtained from C
by adding p ≥ 1 new vertices attached by edges at u1 and q ≥ 1 other new vertices attached by
edges at u3 (see Fig. 3). Recall that the diameter, diam(G), of a graph G is the maximum distance
between the pair of vertices.

Proposition 2 [11]. Let G be a connected graph of order n ≥ 2. Then

(a) γrR(G) = 2 if and only if n = 2 or ∆(G) = n− 1 and δ(G) ≥ 2;

(b) γrR(G) = n if and only if G ≃ C4, C5, Bp, Bp,q or G is a tree with diam(G) ≤ 5.

Proposition 3 [14]. Let G be a connected graph of order n ≥ 4. Then γrR(G) = 3 if and only

if G satisfies one of the following conditions:
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(i) ∆(G) = n− 1 and G has exactly one leaf ;

(ii) ∆(G) = n− 2 and G has a vertex u of degree n− 2 such that the induced subgraph G[N(u)]
has no isolated vertex.

On the other hand, the exact values of the restrained Roman domination number have been
established in [11] for paths, cycles and complete p-partite graphs.

Proposition 4 [11]. The following conditions holds:

(a) γrR(Pn) = n for 1 ≤ n ≤ 6 and γrR(Pn) = ⌈(2n+ 1)/3⌉ + 1 for n ≥ 7;

(b) γrR(Cn) = 2 ⌈n/3⌉ when n 6≡ 2 (mod 3) and γrR(Cn) = 2 ⌈n/3⌉+ 1 otherwise;

(c) γrR(Km,n) = 4 for m,n ≥ 2;

(d) if Kn1,n2,...,np is the complete p-partite graph such that p ≥ 3 and n1 ≤ n2 ≤ . . . ≤ np, then
γrR(K1,n2,...,np) = 2, γrR(K2,n2,...,np) = 3 and γrR(Kn1,n2,...,np) = 4 for n1 ≥ 3.

Now we are ready to find the restrained Roman reinforcement number for paths, cycles and
complete p-partite graphs, p ≥ 2.

Proposition 5. For n ≥ 3, rrR(Pn) = 1.

P r o o f. Let Pn := w1w2 . . . wn. If n ≡ 0 (mod 3), then the function g defined by

g(w3i+1) = 2

for 0 ≤ i ≤ (n − 3)/3 and g(w) = 0 otherwise, is an RRD-function of Pn + w1wn of weight 2n/3.
If n ≡ 2 (mod 3), then the function g defined by g(wn) = 2, g(w3i+1) = 2 for 0 ≤ i ≤ (n − 5)/3
and g(x) = 0 otherwise, is an RRD-function of Pn + w1wn−2 of weight (2n+ 2)/3. Finally, if
n ≡ 1 (mod 3), then the function g defined by g(wn) = 1, g(w3i+1) = 2 for 0 ≤ i ≤ (n − 4)/3 and
g(w) = 0 otherwise, is an RRD-function of Pn +w1wn−1 of weight (2n+ 1)/3. All considered cases
show that rrR(Pn) = 1. �

Proposition 6. For n ≥ 4,

rrR(Cn) =

{

2 if n ≡ 0 (mod 3),
1 otherwise.

P r o o f. Assume that Cn := (w1w2 . . . wn) be a cycle on n vertices. If n ≡ r (mod 3) with
r ∈ {1, 2}, then by a similar argument to that used in the proof of Proposition 5, we can see
that rrR(Cn) = 1. Hence we assume that n ≡ 0 (mod 3). First, since the function g defined by
g(wn−2) = 1, g(w3i+1) = 2 for 0 ≤ i ≤ (n − 6)/3 and g(x) = 0 otherwise, is an RRD-function of
Cn + {w1wn−1, w1wn−3} of weight (2n − 3)/3 = γrR(Cn) − 1 (Proposition 4-(b)), we deduce that
rrR(Cn) ≤ 2.

Now we prove the inverse inequality. For this purpose, we need only to show that adding an
arbitrary edge e cannot decrease γrR(Cn). Observe that for any edge e ∈ Cn,

γrR(Cn + e) ≤ γrR(Cn).

Let e be an arbitrary edge in Cn and let f be a γrR(Cn + e)-function. Suppose first that there are
three consecutive vertices wi, wi+1, wi+2 such that f(wi) = f(wi+1) = f(wi+2) = 0, say for i = 1.
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Then the edge e must join w2 to some vertex assigned 2, say wk, with k /∈ {1, 3}. Also, to restrained
Roman dominate w1 and w3, we must also have f(w4) = f(wn) = 2.

Consider the cycles C ′ := (w2w3 . . . wk) of order k − 1 and C ′′ := (w2wk . . . wnw1) of order
n − k + 3. Let k − 1 ≡ s1 (mod 3) and n − k + 3 ≡ s2 (mod 3). Notice that s1 = 0 and s2 = 2;
s1 = 2 and s2 = 0 or s1 = s2 = 1. Assume that k− 1 ≡ 0 (mod 3) (the case n− k+3 ≡ 0 (mod 3)
is similar). Then n − k + 3 ≡ 2 (mod 3), and since the restrictions of f on V (C ′) and V (C ′′) are
RRD-functions, we deduce from Proposition 4-(b), that

γrR(Cn + e) = f(V (C ′)) + f(V (C ′′))− 2

≥ γrR(C
′) + γrR(C

′′)− 2 =
2(k − 1)

3
+

2(n− k + 3) + 3 + 2

3
− 2 =

2n+ 3

3
> γrR(Cn).

Assume now that s1 = s2 = 1. Then, as above, it follows from Proposition 4-(b) that

γrR(Cn + e) = f(V (C ′)) + f(V (C ′′))− 2

≥ γrR(C
′) + γrR(C

′′)− 2 =
2(k − 1) + 3 + 1

3
+

2(n− k + 3) + 3 + 1

3
− 2 =

2n+ 6

3
> γrR(Cn).

Thus in either case we obtain a contradiction. Next suppose there are three consecutive vertices
wi, wi+1, wi+2 such that f(wi) + f(wi+1) + f(wi+2) = 1, say for i = 1.

If f(w2) = 1, then f(w1) = f(w3) = 0 and each of w1 and w3 must be adjacent a vertex
assigned 2 as well as to a vertex assigned 0. This possible only if e = w1w3 and so

H = (Cn + e)− w2

is a cycle on n− 1 vertices, where the restriction of f to H is an RRD-function. It follows that

γrR(Cn + e) = f(V (H)) + 1 ≥ γrR(H) + 1,

and by Proposition 4-(b), we obtain

γrR(Cn + e) ≥
2(n − 1) + 3 + 2

3
+ 1 > γrR(Cn)

which is a contradiction. Hence we can assume that f(w2) = 0. Without loss of generality, let
f(w1) = 1 and f(w3) = 0. To restrained Roman dominate w2, the edge e must join w2 to a
vertex with label 2, say wk. Likewise for w3 we must have f(w4) = 2. Now, consider the cycles
C ′ := (w2w3 . . . wk) of order k − 1 and the path P ′ := wk . . . wnw1 of order n− k + 2.

Let k− 1 ≡ s1 (mod 3) and n− k+2 ≡ s2 (mod 3). Notice that s1 = 0 and s2 = 1; s1 = 1 and
s2 = 0 or s1 = s2 = 2. Notice also that the restrictions of f on V (C ′) and V (P ′) are RRD-functions,
and thus

γrR(Cn + e) = f(V (C ′)) + f(V (P ′))− 2 ≥ γrR(C
′) + γrR(P

′)− 2.

Now using Propositions 4-(a,b), we get a contradiction as before.
Finally, let

f(wi) + f(wi+1) + f(wi+2) ≥ 2

for each 1 ≤ i ≤ n, where the sum in indices is taken modulo n. Then we have

γrR(Cn + e) =
1

3

n
∑

i=1

(f(wi) + f(wi+1) + f(wi+2)) ≥
2n

3
= γrR(Cn),

and therefore, γrR(Cn + e) = γrR(G). Consequently, rrR(Cn) = 2 as desired. �
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Proposition 7. For integers 1 ≤ r ≤ s with r + s ≥ 3,

rrR(Kr,s) =

{

1 if r = 1, 2, 3,
r − 2 if r ≥ 4.

P r o o f. Let X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys} be the partite sets of Kr,s.

If r = 1, then the function g defined by g(x1) = 2, g(y1) = g(y2) = 0 and g(x) = 1 otherwise,
is an RRD-function of K1,s + y1y2 of weight n − 1 and it follows from Proposition 2-(b) that
rrR(K1,s) = 1.

If r = 2, then the function g defined by g(x1) = 2 and g(x) = 0 otherwise, is an RRD-function
of K2,s + x1x2 of weight 2 and we get from Proposition 2-(a) that rrR(K2,s) = 1.

If r = 3, then the function g defined by g(x1) = 2, g(x2) = 1 and g(x) = 0 otherwise, is an
RRD-function of K3,s + x1x3 of weight 3 and by Proposition 4-(c), we have rrR(K3,s) = 1.

Let r ≥ 4. First we observe that the function g defined by g(x1) = 2, g(x2) = 1 and g(x) = 0
otherwise, is an RRD-function of Kr,s+{x1xi | 3 ≤ i ≤ r} of weight 3 and thus by Proposition 4-(c),
rrR(Kr,s) ≤ r − 2.

To show that rrR(Kr,s) ≥ r − 2, let F be an rrR(Kr,s)-set. Then

2 ≤ γrR(Kr,s + F ) ≤ 3.

By Propositions 2-(a) and 3 we must have ∆(Kr,s+F ) ≥ r+s−2 and this implies that |F | ≥ r−2.
Therefore rrR(Kr,s) = r − 2 and the proof is complete. �

Proposition 8. Let Kn1,n2,...,np be the complete p-partite graph such that p ≥ 3 and

3 ≤ n1 ≤ n2 ≤ . . . ≤ np. Then rrR(Kn1,n2,...,np) = n1 − 2.

P r o o f. Let G = Kn1,n2,...,np and X1 = {x1, . . . , xn1
}, X2 = {y1, . . . , yn2

}, . . . ,Xp be the
partite sets of G. Let F be an rrR(G)-set. By Proposition 4-(d) we deduce that γrR(G+F ) ∈ {2, 3},
and by Propositions 2-(a) and 3 we must have

∆(G+ F ) ≥ n1 + · · ·+ np − 2

implying that |F | ≥ n1−2. On the other hand, the function g defined by f(x1) = 2, f(x2) = 1 and
f(x) = 0 otherwise, is an RRD-function of G+ {xix1 | 3 ≤ i ≤ n1} yielding rrR(G) ≤ |F | = n1 − 2.
Consequently, rrR(G) = n1 − 2. �

4. Graphs with small restrained Roman reinforcement number

In this section, we study graphs with small restrained Roman reinforcement number. We begin
with the following lemma.

Lemma 1. If G is a connected graph of order n ≥ 3 with γrR(G) = n, then rrR(G) = 1.

P r o o f. By Proposition 2, G ≃ C4, C5, Bp, Bp,q or G is a tree with diam(G) ≤ 5. If
G ∈ {C4, C5}, then the desired result follows from Proposition 6. If G ∈ {Bp, Bp,q}, then the
function g defined by g(u1) = 2, g(u2) = g(u5) = 0 and g(x) = 1 otherwise, is an RRD-function of
G+ u2u5 and hence rrR(G) = 1. Hence, we assume that G is a tree with diameter at most 5.

Let v1v2 . . . vk (k ≥ 3) be a diametral path in G. Define the function f by f(v1) = f(v3) = 0,
f(v2) = 2 and f(x) = 1 for the remaining vertices. Clearly, f is an RRD-function of G+ v1v3 and
hence rrR(G) = 1. �
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Proposition 9. Let G be a connected graph of order n ≥ 4 with γrI(G) ≥ 3. If f = (V0, V1, V2)
is a γrR(G)-function with V1 6= ∅, then

rrR(G) = 1.

P r o o f. Let f = (V0, V1, V2) be a γrR(G)-function such that V1 6= ∅. If γrR(G) = n, then the
desired result comes from Lemma 1.

Hence assume that γrR(G) < n. Then V0 6= ∅ and so V2 6= ∅. Since G is connected and V1 6= ∅,
there exists a vertex w ∈ V1 such that w is dominated by V0 ∪ V2. Note that if w has a neighbor in
V0 and another one in V2, then reassigning w provides an RRD-function with weight γrR(G)− 1, a
contradiction.

Now, if w is adjacent to a vertex in V2, then the function g defined by g(w) = 0 and g(x) = f(x)
otherwise, is an RRD-function of G + wz where z ∈ V0, of weight less than γrR(G), and thus
rrR(G) = 1. If w is adjacent to a vertex in V0, then the function g defined by g(w) = 0 and
g(x) = f(x) otherwise, is an RRD-function of G + wu where u ∈ V2, of weight less than γrR(G)
and so rrR(G) = 1. This completes the proof. �

Proposition 10. Let G be a connected graph of order n with γrR(G) ≥ 3. Then rrR(G) = 1 if

and only if γrR(G) = n or G has a function f = (V0, V1, V2) of weight less than γrR(G) such that

one of the following conditions holds:

(i) G[V0] has at most two isolated vertices and V2 dominates V0;

(ii) G[V0] has no isolated vertices and there is exactly one vertex v ∈ V0 which is not dominated

by V2.

P r o o f. If γrR(G) = n, then by Lemma 1 we have rrR(G) = 1. Hence suppose that
γrR(G) < n, and let f = (V0, V1, V2) be a function on G with weight less than γrR(G) satisfy-
ing (i) or (ii). Since ω(f) < γrR(G) ≤ n − 2, we have |V0| ≥ 2. In the case V2 is non-empty, let
u ∈ V2. Now, if (ii) holds, then V2 6= ∅ and f is an RRD-function of G+ uv.

Assume now that (i) holds. If G[V0] has two isolated vertices w, v, then f is an RRD-function
of G + {wv} and if G[V0] has exactly one isolated vertex, say w, then f is an RRD-function of
G+ {wz}, where z is any vertex in V0 − {w}. Hence in either case rrR(G) = 1.

Conversely, let rrR(G) = 1 and suppose that {uv} is an rrR(G)-set. If γrR(G) = n, then we
are done. Hence suppose that γrR(G) ≤ n − 1 and let f be a γrR(G + {uv})-function. Notice
that vertices u and v cannot be assigned both positive values under f (otherwise f is an RRD-
function of G). Without loss of generality, assume that f(u) = 0. If f(v) = 0, then f is a function
satisfying (i). Hence assume that f(v) ≥ 1. If u is adjacent to a vertex with label 2 other than v,
then f is an RRD-function of G. Hence u is not dominated by V2 in G and so f is a function
satisfying (ii). This completes the proof. �

Proposition 11. Let G be a connected graph of order n with γrR(G) ≥ 3. If δ(G) = 1, then
rrR(G) = 1.

P r o o f. First note that n ≥ 3, since γrR(G) ≥ 3. If γrR(G) = n, then the result comes from
Lemma 1. Hence we assume that γrR(G) < n, and let f = (V0, V1, V2) be a γrR(G)-function. We
have V0 6= ∅ (because γrR(G) < n) and thus V2 6= ∅.

Let u be a support vertex of G and u1 a leaf neighbor of u. By definition we have f(u1) ≥ 1.
If f(u1) = 1 or f(u) = 1, then the desired result comes from Proposition 9.

Hence we assume that f(u1) = 2 and f(u) 6= 1. The minimality of f implies that f(u) = 0.
Note that u1 is the only neighbor of u which assigned a 2, for otherwise u1 can be reassigned the
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value 1 instead of 2. Let w be a neighbor of u with label 0. To Roman dominate w, there is a
vertex v such that f(v) = 2. Then the function g defined on G+ uv by g(u1) = 1 and g(x) = f(x)
otherwise, is an RRD-function of G+ {uv} with weight ω(f)− 1. Consequently, rrR(G) = 1. �

Corollary 1. For any tree T of order n ≥ 3, rrR(T ) = 1.

5. Bounds on rrR(G)

In this section, we present some sharp upper bounds on the restrained Roman reinforcement
number of a graph. Given a set S ⊆ V of vertices in a graph G and a vertex v ∈ S, the external

private neighborhood of v with respect to S in the set

epn(v, S) =
{

u ∈ V − S | N(u) ∩ S = {v}
}

.

Proposition 12. Let G be a connected graph with γrI(G) ≥ 3. If f = (V0, V1, V2) is a

γrR(G)-function with V2 6= ∅, then

rrR(G) ≤ min
{

|epn(v, V2) ∩ V0| : v ∈ V2

}

.

P r o o f. Let f = (V0, V1, V2) be a γrR(G)-function with V2 6= ∅. If |epn(v, V2) ∩ V0| = 0 for
some vertex v ∈ V2, then reassigning v the value 1 instead of 2 provides an RRD-function of weight
less than γrR(G) leading to a contradiction. Hence |epn(v, V2) ∩ V0| ≥ 1 for every v ∈ V2. Let u be
a vertex in V2 such that

|epn(u, V2) ∩ V0| = min{|epn(v, V2) ∩ V0| : v ∈ V2}

and let epn(u, V2) ∩ V0 = {u1, . . . , uǫ}. If |V2| ≥ 2 and w ∈ V2 − {u}, then the function g defined
by g(u) = 1 and g(x) = f(x) otherwise, is an RRD-function of G + {wx | x ∈ epn(v, V2) ∩ V0} of
weight less than γrR(G) and so

rrR(G) ≤ min{|epn(v, V2) ∩ V0| : v ∈ V2}.

Hence assume that V2 = {u}. Then u dominates all vertices in V0. Since γrR(G) ≥ 3, we have
V1 6= ∅ and the desired result follows from Proposition 9. �

We observe that for any γrR(G)-function f = (V0, V1, V2), every vertex u of V2 can have at most
dG(u) neighbors in V0. Whence we have the following corollary.

Corollary 2. Let G be a connected graph with γrR(G) ≥ 3 and f = (V0, V1, V2) a

γrR(G)-function with |V2| ≥ 1. Then rrR(G) ≤ ∆.

Corollary 3. Let G be a connected graph with γrR(G) ≥ 3 containing a path v1v2v3v4v5 in

which dG(vi) = 2 for i ∈ {2, 3, 4}. Then rrR(G) ≤ 2.

P r o o f. If γrR(G) = n, then the result is immediate from Lemma 1. Hence we assume that
γrR(G) < n, and let f = (V0, V1, V2) be a γrR(G)-function. By Proposition 9, we may assume that
V1 = ∅. Then we must have 2 ∈ {f(v2), f(v3), f(v4)} and the result follows from Proposition 12. �

Using Propositions 9 and 12 we obtain the next result.
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x

y

Figure 4. A graph G of order 18 and rrR(G) = 4.

Theorem 2. For any graph G of order n ≥ 3, we have

rrR(G) ≤ max{1, (2n − γrR(G))/γrR(G)}.

Moreover, the bound is sharp.

P r o o f. If γrR(G) = 2, then rrR(G) = 0 and the result is true.

If γrR(G) = n, then by Lemma 1, rrR(G) = 1 and the desired result follows.

Hence we assume that 3 ≤ γrR(G) < n, and let f = (V0, V1, V2) be a γrR(G)-function. If V1 6= ∅,
then the result follows from Proposition 9. Thus suppose that V1 = ∅. Then γrR(G)/2 = |V2| ≥ 2
and clearly

|epn(u, V2) ∩ V0| ≤ (2n− γrR(G))/γrR(G)

for some u ∈ V2. Now, the result is immediate by Proposition 9.

To show the sharpness, consider the graph G illustrated in Figure 4. It is easy to see that
γrR(G) = 4 and the function f on G defined by f(x) = f(y) = 2 and f(z) = 0 otherwise, is the
unique γrR(G)-function. Then

rrR(G) ≤ (2n − γrR(G))/γrR(G) = 8.

Now let F be an rrR(G)-set. Then γrR(G+F ) ≤ 3 and so ∆(G+F ) ≥ n−2 (see Propositions 2-(a)
and 3). This implies that |F | ≥ 8, and consequently,

rrR(G) = 8 = (2n − γrR(G))/γrR(G).

�

6. Conclusion

The main objective of this paper was to start the study of the restrained Roman reinforcement
number rrR(G) of a graph G. We first showed that the decision problem associated with the
restrained Roman reinforcement problem is NP-hard, and then various properties as well as some
sharp bounds of the restrained Roman reinforcement number have been established. In particular
we showed that rrR(T ) = 1 for every tree T of order at least three and that rrR(G) ≤ ∆(G) for
any connected graph G with γrR(G) ≥ 3. As a future work, one can focus on the problem of
characterizing all connected graphs G such that rrR(G) = ∆(G).
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