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Abstract: With a possible connection to integrals used in General Relativity, we used our contour integral
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1. Significance statement

Quadruple integrals are broadly utilized in a wide number of disciplines crossing math, science
and engineering. Some interesting areas where these integrals are used are in the three-body
problem and the equations of dynamics [12], integral solutions to the wave equation [9], path
integrals in polymer physics [5], analytical evaluations of double integral expressions related to
total variation [6], electrodynamics of moving media [8], and measurements in heat transfer [2].

The authors discovered various uses of quadruple integrals after reviewing the present literature.
In some cases these integrals were separable and in some cases asymptotic expansions were used
to attain a solution.The authors were unable to uncover quadruple integrals involving exponential
functions and the logarithm of quotient radicals generated in terms of a closed form solution.
This integral features a kernel with the product of the exponential logarithm of quotient radical
functions. The log term mixes the variables so that the integral is not separable except for special
values of k.

The book by Prudnikov et al. [13], is structured towards mathematicians, physicists, experts
in calculus methods, instructors, graduate students, for all those concerned with integrals, higher
transcendental functions and integral transforms and those keen to master the corresponding theo-
ries. This book is also of help when dealing with the modern theory of higher functions and integral
transformations accessible to undergraduate and graduate students [3].

This famous book contains a vast quantity of mathematical formulae. These formulae are
indefinite integrals, definite integrals, multidimensional integrals, finite and infinite sums and and
multidimensional finite and infinite sums. In the book of Prudnikov et al. [13] there is a combination
of integral examples expressed in terms of fundamental constants and Special functions. Since these
types of integral formulae are of such high importance in science, it has encouraged us to contribute
to such tables by adding definite quadruple integrals in terms of the Hurwitz–Lerch Zeta function.

1This work was supported by The Natural Sciences and Engineering Research Council of Canada
(NSERC), Grant No. 504070
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This work represents an illustration of a general approach using contour integration applied to a
particular integral in the book of Prudnikov et al. [13].

2. Preliminaries

We proceed by using the contour integral method [14] and the reflection formula for the gamma
function given by equation (5.5.3) in [10], applied to equation (3.1.3.9) in [13] to yield the Prudnikov
quadruple contour integral representation given by:

∫

R4
+

aww−k−1(rs)(−m−w)/2−1(r+s)(m+w+1)/2(xy)(m+w)/2(x+y)(−m−w−1)/2e−p(r+x)−q(s+y)dxdydrds

= − 1

2πi

∫

C

π2aww−k−1 csc (π(m+ w)/2)

pq
dw

where a, k, w,m, p, q ∈ C, Re(m+ w) > 0, −1 < Re(m) < 0.

3. Introduction

In this paper the main theorem derived is the quadruple definite integral given by

∫

R4
+

(rs)−m/2−1(r+s)(m+1)/2(xy)m/2(x+y)(−m−1)/2e−p(r+x)−q(s+y) logk
(

a
√
r + s

√
xy√

rs
√
x+ y

)

dxdydrds

=
2iπk+2eiπ(k+m)/2Φ

(

eimπ,−k, 1/2 − i log(a)/π
)

pq
,

where the parameters k, a, p, q and m are general complex numbers. This integral is derived in
terms of the Hurwitz–Lerch Zeta function which is a useful special function. This is a function
of three complex variables which is extended by analytic continuation to the complex plane with
the exception of a singularity at 1 and a branch cut between one to infinity. The Lerch function
is a generalization of several important special functions namely, the geometric series, the natural
logarithm, powers and exponentials, polylogarithms, the Riemann zeta function, the alternating
Riemann zeta function, and the Hurwitz zeta function. One advantage of the approach in this
current work is that it reveals the connection between quadruple integral formulae and classical
mathematical functions.

This definite integral will be used to derive special cases in terms of special functions and
fundamental constants and we summarize most of the evaluations in Table 7 for easy reading.
The derivations follow the method used by us in [14]. This method involves using a form of the
generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1

2πi

∫

C

ewy

wk+1
dw, (3.1)

where C is in general an open contour in the complex plane where the bilinear concomitant has the
same value at the end points of the contour. We then multiply both sides by a function of x, y, z
and t, then take a definite quadruple integral of both sides. This yields a definite integral in terms
of a contour integral. Then we multiply both sides of equation (3.1) by another function of x, y, r
and s and take the infinite sums of both sides such that the contour integral of both equations are
the same.
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4. Definite integral of the contour integral

We use the method in [14]. The variable of integration in the contour integral is α = w +m.
The cut and contour are in the first quadrant of the complex α-plane. The cut approaches the
origin from the interior of the first quadrant and the contour goes round the origin with zero radius
and is on opposite sides of the cut. Using a generalization of Cauchy’s integral formula we form
the quadruple integral by replacing y by

log

(

a
√
r + s

√
xy√

rs
√
x+ y

)

and multiplying by

(rs)−m/2−1(r + s)(m+1)/2(xy)m/2(x+ y)(−m−1)/2e−p(r+x)−q(s+y)

then taking the definite integral with respect to x ∈ [0,∞), y ∈ [0,∞), r ∈ [0,∞) and s ∈ [0,∞)
to obtain

1

Γ(k + 1)

∫

R4
+

(rs)−m/2−1(r + s)(m+1)/2(xy)m/2(x+ y)(−m−1)/2e−p(r+x)−q(s+y)

× logk
(

a
√
r + s

√
xy√

rs
√
x+ y

)

dxdydrds

=
1

2πi

∫

R4
+

∫

C
aww−k−1(rs)(−m−w)/2−1(r + s)(m+w+1)/2(xy)(m+w)/2(x+ y)(−m−w−1)/2

×e−p(r+x)−q(s+y)dwdxdydrds

=
1

2πi

∫

C

∫

R4
+

aww−k−1(rs)(−m−w)/2−1(r + s)(m+w+1)/2(xy)(m+w)/2(x+ y)(−m−w−1)/2

×e−p(r+x)−q(s+y)dxdydrdsdw

= − 1

2πi

∫

C

π2aww−k−1 csc (π(m+ w)/2)

pq
dw

(4.2)

from equation (3.1.3.9) in [13] where

Re(w +m) > 0, Re(p) > 0, Re(q) > 0, −1 < Re(m) < 0

and using the reflection formula (8.334.3) in [4] for the Gamma function. We are able to switch the
order of integration over α, x, y, r and s using Fubini’s theorem since the integrand is of bounded
measure over the space C× [0,∞) × [0,∞)× [0,∞) × [0,∞).

5. The Hurwitz–Lerch zeta function and infinite sum of the contour integral

5.1. The Hurwitz–Lerch zeta function

The Hurwitz–Lerch Zeta function (see Section 1.11 in [1]) has a series representation given by

Φ(z, s, v) =

∞
∑

n=0

(v + n)−szn,

where |z| < 1, v 6= 0,−1, ... and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt

where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.
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5.2. Derivation of the contour integral

Using equation (3.1) and replacing y by

log(a) +
1

2
iπ(2y + 1)

then multiplying both sides by
2iπ2eiπm(2y+1)/2

pq

taking the infinite sum over y ∈ [0,∞) and simplifying in terms of the Hurwitz–Lerch Zeta function
we obtain

2iπk+2eiπ(k+m)/2Φ
(

eimπ,−k, 1/2−i log(a)/π
)

pqΓ(k + 1)
=

1

2πi

∞
∑

y=0

∫

C

2iπ2aww−k−1eiπ(2y+1)(m+w)/2

pq
dw

=
1

2πi

∫

C

∞
∑

y=0

2iπ2aww−k−1eiπ(2y+1)(m+w)/2

pq
dw = − 1

2πi

∫

C

π2aww−k−1 csc (π(m+w)/2)

pq
dw

(5.1)

from equation (1.232.2) in [4] where Im(w +m) > 0 in order for the sum to converge.

Theorem 1. For k, a, p, q,m ∈ C,
∫

R4
+

(rs)−m/2−1(r + s)(m+1)/2(xy)m/2(x+ y)(−m−1)/2e−p(r+x)−q(s+y)

× logk
(

a
√
r + s

√
xy√

rs
√
x+ y

)

dxdydrds

=
2iπk+2eiπ(k+m)/2Φ

(

eimπ,−k, 1/2 − i log(a)/π
)

pq
.

(5.2)

P r o o f. Observe the right-hand sides of (4.2) and (5.1) are the same so we can simplify the
gamma function and equate the left-hand sides to yield the stated result. �

6. Main results

In the proceeding section we will evaluate equation (5.2) in terms of special functions and
fundamental constants, Hurwitz zeta function ζ(s, a), given in Section 25.11 in [10], Catalan’s
constant C, given by equation (25.11.40) in [10], Riemann zeta function ζ(s), given in Section 25.2
in [10], Glaisher’s constant A, given by equation (5.17.6) in [10] and equation (2.2.1.2.7) in [7], and
Euler’s constant γ, given by equation (5.2.3) in [10].

Example 1.

∫

R4
+

4
√
r + se−3r−2s−3x−2y

(

π2 − 4 log2
(√

r+s
√
xy√

rs
√
x+y

))

(rs)3/4 4
√
xy 4

√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2 dxdydrds =

48C + π2

576
√
2

and

∫

R4
+

4
√
rs 4

√
r + s(xy)3/4e−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy 4
√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2 dxdydrds =

1

16π

(

C

3
√
2
− π2

144
√
2

)

.
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P r o o f. Use equation (5.2) and set k = −2, a = i, m = −1/2, p = 3, q = 2, rationalize the
denominator and compare real and imaginary parts and simplify in using entry (2) in table (64:12:7)
in [11]. �

Example 2.
∫

R4
+

√
rs
√
xye−3r−2s−3x−2y

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)dxdydrds =

4− π

6

and
∫

R4
+

√
rs
√
xye−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
) dxdydrds = 0.

P r o o f. Use equation (5.2) and set k = −1, a = −1, m = −1, p = 3, q = 2, rationalize the
denominator and compare real and imaginary parts and simplify in using entry (1) in table (64:12:7)
in [11]. �

Example 3.

∫

R4
+

e−2r−3s−2x−3y
(

(r + s)3/8 4
√
xy − 4

√
rs 8

√
r + s 4

√
x+ y

)

(rs)7/8(xy)3/8(x+ y)3/8 log
(√

r+s
√
xy√

rs
√
x+y

) dxdydrds

=
2

3
π tanh−1

(

cos
(π

8

)

− sin
(π

8

))

.

P r o o f. Use equation (5.2) and form a second equation by replacing m → n and take their
difference. Next we set k = −1, a = 1, m = −3/4, n = −1/4, p = 2, q = 3 and simplify using
equation (9.559) in [4] and entry (3) in table (64:12:7) in [11]. �

Example 4.
∫

R4
+

e−r−s−x−y
(

6
√
r + s 24

√
xy − 24

√
rs 8

√
r + s 24

√
x+ y

)

(rs)2/3(xy)3/8 6
√
x+ y log

(√
r+s

√
xy√

rs
√
x+y

) dxdydrds

= 2π log

(√
3 tan

(

3π

16

))

.

P r o o f. Use equation (5.2) and form a second equation by replacing m → n and take their
difference. Next we set k = −1, a = 1, m = −3/4, n = −2/3, p = 1, q = 1 and simplify using
equation (9.559) in [4] and entry (3) in table (64:12:7) in [11]. �

Example 5.
∫

R4
+

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)2 dxdydrds = 4(C − 1).
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P r o o f. Use equation (5.2) and set a = eai, m = −1, p = 1, q = 2 and simplify in terms of
the Hurwitz zeta function using entry (3) in table (64:12:7) in [11]. Next apply l’Hopitals’ rule as
k → −1 and simplify in terms of the digamma function ψ(0)(a) given by equation (5.15.1) in [10].
Next take the first partial derivative with respect to a and set a = π and simplify in terms of
Catalan’s constant C. �

Example 6.

∫

R4
+

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)3dxdydrds = − i

(

π3 − 32
)

4π
.

P r o o f. Use equation (5.2) and set a = eai,m = −1, p = 1, q = 2 and simplify in terms of
the Hurwitz zeta function using entry (3) in table (64:12:7) in [11]. Next apply l’Hopitals’ rule
as k → −1 and simplify in terms of the digamma function ψ(0)(a). Next take the second partial
derivative with respect to a and set a = π and simplify in terms of π. �

Proposition 1. For all a, k, p, q ∈ C the equality is true

∫

R4
+

e−p(r+x)−q(s+y) logk
(

a
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

dxdydrds

=
2ieiπ(k−1)/2πk+2

(

2kζ (−k, 1/2 · (1/2− i log(a)/π))− 2kζ (−k, 1/2 · (3/2− i log(a)/π))
)

pq
.

(6.1)

P r o o f. Use equation (5.2) and set m = −1 and simplify using entry (4) in table (64:12:7)
in [11]. �

Proposition 2. For all k ∈ C then,

∫

R4
+

e−r−s−x−y logk
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

dxdydrds = −2
(

2k+1 − 1
)

eiπk/2πk+2ζ(−k). (6.2)

P r o o f. Use equation (6.2) and set a = i, p = q = 1 and simplify using entry (2) in
table (64:12:7) in [11]. �

Example 7.

∫

R4
+

e−r−s−x−y

√

log
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

dxdydrds = −2
(

2
√
2− 1

)

eiπ/4π5/2ζ

(

−1

2

)

.

P r o o f. Use equation (6.2) and set k = 1/2 and simplify. �



A Quadruple Integral 159

Example 8.
∫

R4
+

e−3(r+x)−4(s+y)

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

)dxdydrds = −1

6
iπ log(2).

P r o o f. Use equation (6.1) set a = i and apply l’Hopital’s rule as k → −1 and set q = 3,
q = 4 and simplify. �

Example 9.

∫

R4
+

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy

dxdydrds =
1

2
π2(log(4) + iπ).

P r o o f. Use equation (6.1) set a = i and take the first partial derivative with respect to k
and set k = 0, p = q = 1 and simplify. �

Example 10.

∫

R4
+

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

) dxdydrds = π log(2)(2iγ + π − i(log(2) + 2 log(π))).

P r o o f. Use equation (6.1) set a = i and take the first partial derivative with respect to k
then apply l’Hopital’s rule as k → −1 and set p = q = 1 and simplify. �

Example 11.

∫

R4
+

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy log2

(

i
√
r+s

√
xy√

rs
√
x+y

) dxdydrds =
1

12
π2(−24 log(A) + 2γ − iπ + log(16)).

P r o o f. Use equation (6.1) set a = i and take the first partial derivative with respect to k
and set k = −2, p = q = 1 and simplify. �

Proposition 3. For all a, p, q ∈ C, Re(a) > 0 then,

∫

R4
+

log
(

log
(

a
√
r+s

√
xy√

rs
√
x+y

))

e−p(r+x)−q(s+y)

√
rs
√
xy

dxdydrds =
π2

(

4 log
(√

2πΓ(3/4−i log(a)/2π)
Γ((π−2i log(a))/4π)

)

+ iπ
)

2pq
.

P r o o f. Use equation (6.1) and take the first partial derivative with respect to k and set
k = 0 and simplify using equation (25.11.18) in [10] �
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7. Summary table of quadruple integrals involving

f(x, y, r, s)
∫

R4
+

f(x, y, r, s)dudx

4
√
r + se−3r−2s−3x−2y

(

π2 − 4 log2
(√

r+s
√
xy√

rs
√
x+y

))

(rs)3/4 4
√
xy 4

√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2

48C + π2

576
√
2

4
√
rs 4

√
r + s(xy)3/4e−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy 4
√
x+ y

(

4 log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)2

1

16π

(

C

3
√
2
− π2

144
√
2

)

√
rs
√
xye−3r−2s−3x−2y

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
)

4− π

6

√
rs
√
xye−3r−2s−3x−2y log

(√
r+s

√
xy√

rs
√
x+y

)

rsxy
(

log2
(√

r+s
√
xy√

rs
√
x+y

)

+ π2
) 0

e−2r−3s−2x−3y
(

(r + s)3/8 4
√
xy − 4

√
rs 8

√
r + s 4

√
x+ y

)

(rs)7/8(xy)3/8(x+ y)3/8 log
(√

r+s
√
xy√

rs
√
x+y

)

2

3
π tanh−1

(

cos
(π

8

)

− sin
(π

8

))

e−r−s−x−y
(

6
√
r + s 24

√
xy − 24

√
rs 8

√
r + s 24

√
x+ y

)

(rs)2/3(xy)3/8 6
√
x+ y log

(√
r+s

√
xy√

rs
√
x+y

) 2π log

(√
3 tan

(

3π

16

))

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)2 4(C − 1)

e−r−2(s+y)−x

√
rs
√
xy

(

log
(√

r+s
√
xy√

rs
√
x+y

)

+ iπ
)3 − i

(

π3 − 32
)

4π

e−r−s−x−y logk
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

−2
(

2k+1 − 1
)

eiπk/2πk+2ζ(−k)

e−r−s−x−y

√

log
(

i
√
r+s

√
xy√

rs
√
x+y

)

√
rs
√
xy

−2
(

2
√
2− 1

)

eiπ/4π5/2ζ

(

−1

2

)

e−3(r+x)−4(s+y)

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

) −1

6
iπ log(2)

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy

1

2
π2(log(4) + iπ)

e−r−s−x−y log
(

log
(

i
√
r+s

√
xy√

rs
√
x+y

))

√
rs
√
xy log

(

i
√
r+s

√
xy√

rs
√
x+y

) π log(2)(2iγ + π − i(log(2) + 2 log(π)))

log
(

log
(

a
√
r+s

√
xy√

rs
√
x+y

))

e−p(r+x)−q(s+y)

√
rs
√
xy

π2
(

4 log
(√

2πΓ(3/4−i log(a)/2π)
Γ((π−2i log(a))/4π)
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)
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8. Discussion

In this work we used our contour integral method to derive a quadruple integral involving the
logarithm of quotient radicals in terms of the Hurwitz–Lerch Zeta transcendent. The integrals
derived are not easy to numerically evaluate as we suspect the presence of singularities and the
integrand maybe highly oscillatory. The importance of this work is that we are able to write down
a closed form solution for this integral. This is advantageous as we now have the Hurwitz–Lerch
Zeta function with analytic continuation to use in order to evaluate this quadruple integral. We
also employed Wolfram Mathematica to assist with numerical computation where needed. We will
use our contour method to derive other multiple integrals for future work.
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